RideNN: A New Rider Optimization Algorithm-Based Neural Network for Fault Diagnosis in Analog Circuits
Fault diagnosis in electronic circuits is an emerging area of research, where fully automated diagnosis systems are being developed for the investigation of the circuits. Developing test methods for the diagnosis of faults in analog circuits is still a complex task. Consequently, a technique for the...
Saved in:
| Published in | IEEE transactions on instrumentation and measurement Vol. 68; no. 1; pp. 2 - 26 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9456 1557-9662 |
| DOI | 10.1109/TIM.2018.2836058 |
Cover
| Abstract | Fault diagnosis in electronic circuits is an emerging area of research, where fully automated diagnosis systems are being developed for the investigation of the circuits. Developing test methods for the diagnosis of faults in analog circuits is still a complex task. Consequently, a technique for the fault diagnosis in analog circuits is designed by proposing a new optimization algorithm, named, rider optimization algorithm (ROA). The development of ROA is based on a group of riders, racing toward a target location. Moreover, a classifier, termed RideNN, is developed by including the proposed algorithm as the training algorithm for the neural network (NN). RideNN, along with the orthogonal transformation and Bhattacharyya coefficient, is applied for the fault diagnosis of analog circuits. The proposed technique is experimented using three basic circuits, such as triangular wave generator (TWG), low noise bipolar transistor amplifier (BTA), and differentiator (DIF) and an application circuit, solar power converter (SPC). The performance is evaluated using two evaluation metrics, namely, accuracy (ACC) and false alarm ratio (FAR). The analysis results show that the proposed technique attains an ACC of 99.9% in TWG, 99.9% in BTA, 99% in DIF, and 95% in SPC without noise. |
|---|---|
| AbstractList | Fault diagnosis in electronic circuits is an emerging area of research, where fully automated diagnosis systems are being developed for the investigation of the circuits. Developing test methods for the diagnosis of faults in analog circuits is still a complex task. Consequently, a technique for the fault diagnosis in analog circuits is designed by proposing a new optimization algorithm, named, rider optimization algorithm (ROA). The development of ROA is based on a group of riders, racing toward a target location. Moreover, a classifier, termed RideNN, is developed by including the proposed algorithm as the training algorithm for the neural network (NN). RideNN, along with the orthogonal transformation and Bhattacharyya coefficient, is applied for the fault diagnosis of analog circuits. The proposed technique is experimented using three basic circuits, such as triangular wave generator (TWG), low noise bipolar transistor amplifier (BTA), and differentiator (DIF) and an application circuit, solar power converter (SPC). The performance is evaluated using two evaluation metrics, namely, accuracy (ACC) and false alarm ratio (FAR). The analysis results show that the proposed technique attains an ACC of 99.9% in TWG, 99.9% in BTA, 99% in DIF, and 95% in SPC without noise. |
| Author | Kariyappa, B. S Binu, D. |
| Author_xml | – sequence: 1 givenname: D. orcidid: 0000-0002-1649-5541 surname: Binu fullname: Binu, D. email: altimatebinu@gmail.com organization: R V College of Engineering, VTU University, India – sequence: 2 givenname: B. S surname: Kariyappa fullname: Kariyappa, B. S organization: R V College of Engineering, VTU University, India |
| BookMark | eNp9kMtLAzEQh4MoWKt3wUvA89Y8NtmNt1qfoC2Inpc0jxrdbmqSpehfb2rFgwdPwzC_b2b4DsBu5zsDwDFGI4yROHu6exgRhOsRqSlHrN4BA8xYVQjOyS4YoDwqRMn4PjiI8RUhVPGyGgD76LSZTs_hGE7NGm66AGer5JbuUybnOzhuFz649LIsLmQ0Osf6INtc0tqHN2h9gNeybxO8dHLR-egidJnqZOsXcOKC6l2Kh2DPyjaao586BM_XV0-T2-J-dnM3Gd8XirIqFbzW1iKu54Raxogsha6kFcywEmkzJ0JxI3QppGbYUKnmtJrXium6pEpZQekQnG73roJ_701MzavvQ_4lNgTnJaQmlOcU2qZU8DEGY5tVcEsZPhqMmo3NJttsNjabH5sZ4X8Q5dK3oBSka_8DT7agM8b83qlphXBZ0S8P84QX |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2923468 crossref_primary_10_1007_s11220_023_00457_y crossref_primary_10_1142_S0219876224500257 crossref_primary_10_1109_ACCESS_2019_2943071 crossref_primary_10_1002_jnm_2764 crossref_primary_10_1016_j_image_2022_116756 crossref_primary_10_1093_comjnl_bxaa032 crossref_primary_10_1108_DTA_10_2020_0234 crossref_primary_10_1007_s12145_025_01742_y crossref_primary_10_1186_s44147_023_00326_1 crossref_primary_10_1007_s12145_025_01768_2 crossref_primary_10_1093_comjnl_bxab002 crossref_primary_10_1016_j_asoc_2025_112854 crossref_primary_10_1007_s12046_020_01436_9 crossref_primary_10_1080_03772063_2023_2172464 crossref_primary_10_1007_s12065_019_00335_1 crossref_primary_10_3233_WEB_210454 crossref_primary_10_3390_electronics10010035 crossref_primary_10_1109_ACCESS_2024_3403908 crossref_primary_10_1007_s00034_020_01595_4 crossref_primary_10_1142_S0219622021500188 crossref_primary_10_1002_ima_22482 crossref_primary_10_1007_s12065_020_00400_0 crossref_primary_10_1016_j_advengsoft_2023_103472 crossref_primary_10_3233_IDT_220077 crossref_primary_10_1155_2022_7783196 crossref_primary_10_1007_s10836_021_05938_0 crossref_primary_10_1109_TIE_2023_3310075 crossref_primary_10_1007_s10470_025_02360_w crossref_primary_10_1515_bmt_2019_0180 crossref_primary_10_3390_app11219973 crossref_primary_10_1016_j_dsp_2022_103626 crossref_primary_10_1016_j_eswa_2023_121964 crossref_primary_10_4018_IJSIR_304901 crossref_primary_10_1002_int_22558 crossref_primary_10_1371_journal_pone_0316151 crossref_primary_10_1080_10255842_2023_2267721 crossref_primary_10_1142_S1793351X22400165 crossref_primary_10_1007_s10470_021_01835_w crossref_primary_10_1080_03091902_2020_1791986 crossref_primary_10_1016_j_ijin_2022_11_003 crossref_primary_10_1007_s11220_021_00370_2 crossref_primary_10_1007_s44230_023_00046_y crossref_primary_10_1080_01969722_2022_2145662 crossref_primary_10_1016_j_asoc_2020_106835 crossref_primary_10_1049_iet_com_2020_0236 crossref_primary_10_1002_cpe_7480 crossref_primary_10_1007_s11042_024_18659_1 crossref_primary_10_1016_j_knosys_2022_109364 crossref_primary_10_1049_sil2_12019 crossref_primary_10_1007_s00521_021_06145_w crossref_primary_10_1109_TMTT_2022_3199756 crossref_primary_10_3934_math_2023256 crossref_primary_10_1142_S0218001422500100 crossref_primary_10_1142_S1793962320500695 crossref_primary_10_1142_S1793351X22400153 crossref_primary_10_1142_S0218126621500481 crossref_primary_10_3233_WEB_210473 crossref_primary_10_1007_s00500_021_05816_z crossref_primary_10_1142_S0219467821500030 crossref_primary_10_1002_cpe_7355 crossref_primary_10_1111_jph_13408 crossref_primary_10_4018_IJISP_285583 crossref_primary_10_1109_TIM_2020_2969008 crossref_primary_10_1080_1448837X_2024_2440170 crossref_primary_10_1109_TIE_2020_3028796 crossref_primary_10_1007_s00521_024_10624_1 crossref_primary_10_1016_j_array_2023_100315 crossref_primary_10_1109_ACCESS_2020_2968744 crossref_primary_10_1109_ACCESS_2024_3367232 crossref_primary_10_1155_2021_9511425 crossref_primary_10_1007_s11277_021_09157_w crossref_primary_10_1088_1757_899X_1105_1_012004 crossref_primary_10_2139_ssrn_3419768 crossref_primary_10_4018_IJSIR_304724 crossref_primary_10_1093_comjnl_bxab194 crossref_primary_10_1109_ACCESS_2020_2993084 crossref_primary_10_1007_s10489_022_03665_3 crossref_primary_10_4015_S1016237223500084 crossref_primary_10_1109_TIM_2022_3192070 crossref_primary_10_7717_peerj_cs_937 crossref_primary_10_1002_cpe_6308 crossref_primary_10_1007_s11761_023_00359_7 crossref_primary_10_1007_s12065_021_00606_w crossref_primary_10_1007_s12652_020_02051_6 crossref_primary_10_1007_s13042_024_02488_7 crossref_primary_10_4015_S1016237224500194 crossref_primary_10_1007_s00371_020_01992_5 crossref_primary_10_1109_TIM_2022_3194890 crossref_primary_10_1007_s11277_021_08696_6 crossref_primary_10_1049_iet_com_2019_0079 crossref_primary_10_1515_bams_2019_0065 crossref_primary_10_1002_cpe_7026 crossref_primary_10_1016_j_apm_2025_116029 crossref_primary_10_1007_s11227_022_04883_9 crossref_primary_10_1016_j_vlsi_2020_11_006 crossref_primary_10_2139_ssrn_4098748 crossref_primary_10_1007_s11042_023_18071_1 crossref_primary_10_1080_13682199_2023_2180140 crossref_primary_10_3390_sym13061096 crossref_primary_10_1007_s11277_020_07921_y crossref_primary_10_1007_s42600_022_00211_5 crossref_primary_10_1007_s41315_022_00258_8 crossref_primary_10_1016_j_measurement_2024_114785 crossref_primary_10_1109_TIM_2023_3280535 crossref_primary_10_1142_S0219467822500218 crossref_primary_10_1007_s11063_022_10935_1 crossref_primary_10_1109_TGCN_2021_3069187 crossref_primary_10_1007_s00202_020_00985_w crossref_primary_10_1016_j_seta_2020_100973 crossref_primary_10_1109_ACCESS_2020_2998003 crossref_primary_10_1002_dac_5381 crossref_primary_10_1016_j_compbiolchem_2025_108375 crossref_primary_10_1007_s41939_023_00222_4 crossref_primary_10_1016_j_csfx_2021_100058 crossref_primary_10_1142_S0219649221500520 crossref_primary_10_4018_ijwsr_2021070103 crossref_primary_10_1016_j_ins_2021_12_122 crossref_primary_10_1007_s11277_022_09632_y crossref_primary_10_3233_MGS_230025 crossref_primary_10_32604_cmc_2022_028855 crossref_primary_10_1109_JBHI_2022_3229743 crossref_primary_10_1166_jno_2023_3417 crossref_primary_10_1142_S1469026823410079 crossref_primary_10_1002_dac_4692 crossref_primary_10_1016_j_nima_2023_168946 crossref_primary_10_1145_3563391 crossref_primary_10_1080_21681163_2020_1830436 crossref_primary_10_1109_TIM_2021_3115582 crossref_primary_10_1109_TMTT_2019_2914106 crossref_primary_10_1587_elex_18_20210174 crossref_primary_10_1007_s00521_021_05810_4 crossref_primary_10_1007_s12652_022_04462_z crossref_primary_10_1080_01969722_2023_2166259 crossref_primary_10_1109_JIOT_2023_3271831 crossref_primary_10_1016_j_jksuci_2020_10_005 crossref_primary_10_1016_j_measurement_2022_111826 crossref_primary_10_1007_s41870_024_01726_z crossref_primary_10_1142_S0219265921500390 crossref_primary_10_1016_j_iot_2023_100723 crossref_primary_10_1080_10255842_2023_2244109 crossref_primary_10_1007_s11277_022_09685_z crossref_primary_10_1142_S0219691320500642 crossref_primary_10_1080_01969722_2022_2137622 crossref_primary_10_1007_s11277_024_11166_4 crossref_primary_10_1109_TIM_2020_3024337 crossref_primary_10_1016_j_iot_2022_100622 crossref_primary_10_1080_0952813X_2022_2115141 crossref_primary_10_3390_electronics10050550 crossref_primary_10_3390_s23229125 crossref_primary_10_1007_s11277_024_11525_1 crossref_primary_10_1007_s13278_021_00843_y crossref_primary_10_1109_ACCESS_2020_2964054 crossref_primary_10_1142_S0219467823500043 crossref_primary_10_1111_exsy_12663 crossref_primary_10_1051_e3sconf_202346101053 crossref_primary_10_3233_JHS_210655 crossref_primary_10_1093_comjnl_bxab022 crossref_primary_10_1093_comjnl_bxaa177 crossref_primary_10_1007_s12083_024_01638_6 crossref_primary_10_1093_comjnl_bxab021 crossref_primary_10_1007_s00034_022_02262_6 crossref_primary_10_3390_biomimetics9110701 crossref_primary_10_4236_eng_2021_133011 crossref_primary_10_1002_int_22845 crossref_primary_10_1142_S0219691320500873 crossref_primary_10_1007_s10586_024_04867_9 crossref_primary_10_1080_21681163_2022_2083018 crossref_primary_10_1016_j_advengsoft_2022_103231 crossref_primary_10_1007_s40313_020_00564_1 crossref_primary_10_3233_IDT_220097 crossref_primary_10_1016_j_advengsoft_2022_103197 crossref_primary_10_1016_j_sna_2023_114274 crossref_primary_10_1007_s12065_020_00402_y crossref_primary_10_1007_s12892_024_00263_2 crossref_primary_10_1007_s41870_022_01022_8 crossref_primary_10_4015_S101623721950042X crossref_primary_10_1016_j_bspc_2021_103425 crossref_primary_10_1093_comjnl_bxaa185 crossref_primary_10_4018_IJSIR_304402 crossref_primary_10_1007_s41315_022_00250_2 crossref_primary_10_1016_j_aej_2024_08_021 crossref_primary_10_1002_dac_4462 crossref_primary_10_1007_s13278_024_01397_5 crossref_primary_10_1089_big_2018_0143 |
| Cites_doi | 10.1016/j.neucom.2010.12.003 10.1504/IJBIC.2010.032124 10.1016/S0263-2241(01)00049-5 10.1016/j.neucom.2013.08.005 10.1109/TIM.2007.904549 10.1016/j.measurement.2015.11.041 10.1016/S0263-2241(00)00008-7 10.1109/TSP.2017.2708023 10.1109/19.997811 10.1109/TEVC.2009.2011992 10.1016/j.advengsoft.2016.01.008 10.1016/j.patcog.2005.12.003 10.1007/s00521-015-1920-1 10.1002/cta.2075 10.1007/BF00133990 10.1016/j.compeleceng.2012.12.006 10.1016/j.advengsoft.2013.12.007 10.1049/ip-cds:20010418 10.1016/j.measurement.2010.10.004 10.1016/j.compstruc.2016.03.001 10.1016/j.isatra.2013.06.006 10.1049/ip-cds:20040495 10.1016/j.ins.2009.03.004 10.1109/TCS.1979.1084665 10.1038/scientificamerican0792-66 10.1016/j.aeue.2017.01.002 10.1109/TIM.2009.2025068 10.1109/82.558453 10.1016/j.protcy.2012.10.016 10.1109/TIM.2008.925009 10.1109/NABIC.2009.5393690 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2018.2836058 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 26 |
| ExternalDocumentID | 10_1109_TIM_2018_2836058 8370147 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M RIG |
| ID | FETCH-LOGICAL-c357t-68dff06db23f552a49d7af95e540deb29c6e9d49ad51e3acb37b8c5d843ccf933 |
| IEDL.DBID | RIE |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:17:09 EDT 2025 Thu Apr 24 22:56:25 EDT 2025 Wed Oct 01 02:46:06 EDT 2025 Wed Aug 27 02:49:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-68dff06db23f552a49d7af95e540deb29c6e9d49ad51e3acb37b8c5d843ccf933 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1649-5541 |
| PQID | 2154028236 |
| PQPubID | 85462 |
| PageCount | 25 |
| ParticipantIDs | ieee_primary_8370147 proquest_journals_2154028236 crossref_primary_10_1109_TIM_2018_2836058 crossref_citationtrail_10_1109_TIM_2018_2836058 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-Jan. 2019-1-00 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-Jan. |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref12 ref37 ref15 ref14 ref31 wagh (ref1) 2014; 6 ref30 ref33 ref11 shi (ref8) 2011; 672 ref32 ref10 prasannamoorthy (ref5) 2010; 22 rajakumar (ref25) 2012; 6 ref17 ref19 ref18 kennedy (ref20) 2011 stošovi? (ref36) 2013; 39 kumar (ref34) 2013; 52 puvaneswari (ref16) 2015; 2 ref24 ref23 ref26 ref22 ref21 ref28 ref27 ref29 sun (ref2) 2008 ref7 ref9 ref4 ref3 ref6 |
| References_xml | – volume: 672 start-page: 303 year: 2011 ident: ref8 article-title: Brain storm optimization algorithm publication-title: Proc Int Conf Swarm Intell – ident: ref35 doi: 10.1016/j.neucom.2010.12.003 – ident: ref18 doi: 10.1504/IJBIC.2010.032124 – volume: 6 start-page: 47 year: 2014 ident: ref1 article-title: Wavelet transform based techniques for fault detection of power supply unit publication-title: Proc IJEE – ident: ref7 doi: 10.1016/S0263-2241(01)00049-5 – ident: ref28 doi: 10.1016/j.neucom.2013.08.005 – ident: ref10 doi: 10.1109/TIM.2007.904549 – ident: ref32 doi: 10.1016/j.measurement.2015.11.041 – year: 2008 ident: ref2 article-title: Neural-network-based approaches for analogue circuit fault diagnosis publication-title: Test and Diagnosis of Analogue Mixed-Signal and RF Integrated Circuits The System on Chip Approach – volume: 2 start-page: 190 year: 2015 ident: ref16 article-title: Test variables selection and multiple parametric faults detection in nonlinear analog circuits publication-title: International Journal of Engineering Research and Technology – ident: ref3 doi: 10.1016/S0263-2241(00)00008-7 – ident: ref29 doi: 10.1109/TSP.2017.2708023 – volume: 22 start-page: 107 year: 2010 ident: ref5 article-title: Frequency domain technique for fault diagnosis in analog circuits-software and hardware implementation publication-title: J Theor Appl Inf Technol – ident: ref4 doi: 10.1109/19.997811 – ident: ref6 doi: 10.1109/TEVC.2009.2011992 – ident: ref21 doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref30 doi: 10.1016/j.patcog.2005.12.003 – ident: ref13 doi: 10.1007/s00521-015-1920-1 – ident: ref33 doi: 10.1002/cta.2075 – ident: ref27 doi: 10.1007/BF00133990 – volume: 39 start-page: 190 year: 2013 ident: ref36 article-title: Oscillation-based analog diagnosis using artificial neural networks based inference mechanism publication-title: Comput Elect Eng doi: 10.1016/j.compeleceng.2012.12.006 – ident: ref23 doi: 10.1016/j.advengsoft.2013.12.007 – ident: ref14 doi: 10.1049/ip-cds:20010418 – ident: ref31 doi: 10.1016/j.measurement.2010.10.004 – ident: ref26 doi: 10.1016/j.compstruc.2016.03.001 – volume: 52 start-page: 816 year: 2013 ident: ref34 article-title: Fuzzy classifier for fault diagnosis in analog electronic circuits publication-title: ISA Trans doi: 10.1016/j.isatra.2013.06.006 – ident: ref15 doi: 10.1049/ip-cds:20040495 – ident: ref24 doi: 10.1016/j.ins.2009.03.004 – ident: ref9 doi: 10.1109/TCS.1979.1084665 – ident: ref22 doi: 10.1038/scientificamerican0792-66 – ident: ref37 doi: 10.1016/j.aeue.2017.01.002 – ident: ref11 doi: 10.1109/TIM.2009.2025068 – ident: ref12 doi: 10.1109/82.558453 – volume: 6 start-page: 126 year: 2012 ident: ref25 article-title: The lion's algorithm: A new nature-inspired search algorithm publication-title: Procedia Technol doi: 10.1016/j.protcy.2012.10.016 – ident: ref17 doi: 10.1109/TIM.2008.925009 – ident: ref19 doi: 10.1109/NABIC.2009.5393690 – start-page: 760 year: 2011 ident: ref20 article-title: Particle swarm optimization publication-title: Encyclopedia of Machine Learning |
| SSID | ssj0007647 |
| Score | 2.6255713 |
| Snippet | Fault diagnosis in electronic circuits is an emerging area of research, where fully automated diagnosis systems are being developed for the investigation of... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2 |
| SubjectTerms | Algorithms Analog circuits Artificial neural networks Bhattacharyya coefficient Circuit design Circuit faults Circuits classifier Electronic circuits False alarms Fault diagnosis Integrated circuit modeling Low noise Neural networks Optimization Optimization algorithms orthogonal transformation Power converters Racing Test procedures Transistor amplifiers |
| Title | RideNN: A New Rider Optimization Algorithm-Based Neural Network for Fault Diagnosis in Analog Circuits |
| URI | https://ieeexplore.ieee.org/document/8370147 https://www.proquest.com/docview/2154028236 |
| Volume | 68 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSxxBFH6oEIgHTVzIqJE65BKwZ6ulq7yNy2ACM4IoeGtqTZqMMzLTffHX-6q7ZxAN4q0bqoqmv6q31XvfA_jhnJWo5k1iqTUJc4EnMtbKOK48NVahSRvjHaOxuLpjv-_5_RqcrGphvPdV8plvx8fqLt_NbBlDZZ1I1NJj6Tqsp1LUtVorqZsKVvNj9vAAo1WwvJLsqs7tr1HM4ZLtfqxYiM3dX6igqqfKG0FcaZfhNoyW31Unlfxrl4Vp26dXlI0f_fAvsNWYmWRQ74uvsOanO7D5gnxwBz5VyZ92sQvhJnd-PD4lA4Iyj8S3OblGWfLQFGmSweTPbJ4Xfx-SM9R6jkRKD1x-XOeQEzR8yVCXk4Jc1Jl7-YLkOGsaI0PkPJ_bMi8We3A3vLw9v0qa_gsIHE-LREgXQjc2nKKB875myqU6KO7RynPokSsrvHJMacd7nmpraGqk5U4yam1QlO7DxnQ29d-AOKnRs-sLHST-B2GMx4FGU6ZFcD7ttqCzhCSzDTl57JExySonpasyBDGLIGYNiC34uZrxWBNzvDN2N2KyGtfA0YKjJepZc3IXGZpALPqhVBz8f9YhfMa1VR2GOYKNYl7672iYFOa42pHPx7TfdQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5RUFV6KAWKCK_ugQtSndfu2l5uKRCFR4xUBYmbtc9iERKU2Jf-emZtJ0KlQr3Z0q5t-dud-WZ2HgDHxugY1bwKNNUqYMbxIPa5MoYLS5UWSGm9v2OYhIM7dnXP71fgxzIXxlpbBp_Zpr8sz_LNVBfeVdbyhVo6LPoAa5wxxqtsraXcjUJWVcjs4BZGXrA4lGyL1uhy6KO44mbX5yz49u6vlFDZVeWNKC71S38Dhosvq8JKHptFrpr6z19FG__307_Cl5pokl61MjZhxU624POr8oNb8LEM_9TzbXC_MmOT5JT0CEo94u9m5BalyVOdpkl649_TWZY_PAU_Ue8Z4ot64OOTKoqcIPUlfVmMc3Jexe5lc5LhrIn3DZGzbKaLLJ9_g7v-xehsENQdGBA6HuVBGBvn2r7lFHWcdyUTJpJOcIs8z6BNLnRohWFCGt6xVGpFIxVrbmJGtXaC0h1YnUwndheIiSXadt1Quhj_Q6iUxYFKUiZDZ2zUbkBrAUmq6_LkvkvGOC3NlLZIEcTUg5jWIDbgZDnjuSrN8c7YbY_JclwNRwMOFqin9d6dp0iCmLdEabj371nf4dNgNLxJby6T631Yx_eIyilzAKv5rLCHSFNydVSuzheib-LC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RideNN%3A+A+New+Rider+Optimization+Algorithm-Based+Neural+Network+for+Fault+Diagnosis+in+Analog+Circuits&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Binu%2C+D.&rft.au=Kariyappa%2C+B.+S&rft.date=2019-01-01&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=68&rft.issue=1&rft.spage=2&rft.epage=26&rft_id=info:doi/10.1109%2FTIM.2018.2836058&rft.externalDocID=8370147 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |