Application research on the prediction of tar yield of deep coal seam mining areas based on PSO-BPNN machine learning algorithm

There are abundant deep coal resources in northern Shaanxi, but the fragile natural environment in this area hinders the large-scale exploitation of oil-rich coal. In-situ thermal conversion of deep coal to oil and gas will become an environmentally friendly technology for oil-rich coal mining. Accu...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in earth science (Lausanne) Vol. 11
Main Authors Qiao, Junwei, Wang, Changjian, Su, Gang, Liang, Xiangyang, Dong, Shenpei, Jiang, Yi, Zhang, Yu
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 04.07.2023
Subjects
Online AccessGet full text
ISSN2296-6463
2296-6463
DOI10.3389/feart.2023.1227154

Cover

Abstract There are abundant deep coal resources in northern Shaanxi, but the fragile natural environment in this area hinders the large-scale exploitation of oil-rich coal. In-situ thermal conversion of deep coal to oil and gas will become an environmentally friendly technology for oil-rich coal mining. Accurate prediction of oil-rich coal tar yield in various regions is a prerequisite. Based on a particle swarm optimization algorithm and two machine learning algorithms, BP neural network and random forest, a prediction model of tar yield from oil-rich coal is constructed in this paper. Combined with the particle swarm optimization method, the problem of slow convergence speed and possibly falling into local minimum value of BP neural network is solved and optimized. The results showed that the PSO-BP had a convergence speed about five times faster than that of the BP neural network. Furthermore, the predicted value of the PSO-BP was consistent with the measured value, and the average relative error was 4.56% lower than that of the random forest model. The advantages of fast convergence and high accuracy of the prediction model are obviously apparent. Accurate prediction of tar yield would facilitate the research process of in-situ fluidized mining of deep coal seams.
AbstractList There are abundant deep coal resources in northern Shaanxi, but the fragile natural environment in this area hinders the large-scale exploitation of oil-rich coal. In-situ thermal conversion of deep coal to oil and gas will become an environmentally friendly technology for oil-rich coal mining. Accurate prediction of oil-rich coal tar yield in various regions is a prerequisite. Based on a particle swarm optimization algorithm and two machine learning algorithms, BP neural network and random forest, a prediction model of tar yield from oil-rich coal is constructed in this paper. Combined with the particle swarm optimization method, the problem of slow convergence speed and possibly falling into local minimum value of BP neural network is solved and optimized. The results showed that the PSO-BP had a convergence speed about five times faster than that of the BP neural network. Furthermore, the predicted value of the PSO-BP was consistent with the measured value, and the average relative error was 4.56% lower than that of the random forest model. The advantages of fast convergence and high accuracy of the prediction model are obviously apparent. Accurate prediction of tar yield would facilitate the research process of in-situ fluidized mining of deep coal seams.
There are abundant deep coal resources in northern Shaanxi, but the fragile natural environment in this area hinders the large-scale exploitation of oil-rich coal. In-situ thermal conversion of deep coal to oil and gas will become an environmentally friendly technology for oil-rich coal mining. Accurate prediction of oil-rich coal tar yield in various regions is a prerequisite. Based on a particle swarm optimization algorithm and two machine learning algorithms, BP neural network and random forest, a prediction model of tar yield from oil-rich coal is constructed in this paper. Combined with the particle swarm optimization method, the problem of slow convergence speed and possibly falling into local minimum value of BP neural network is solved and optimized. The results showed that the PSO-BP had a convergence speed about five times faster than that of the BP neural network. Furthermore, the predicted value of the PSO-BP was consistent with the measured value, and the average relative error was 4.56% lower than that of the random forest model. The advantages of fast convergence and high accuracy of the prediction model are obviously apparent. Accurate prediction of tar yield would facilitate the research process of in-situ fluidized mining of deep coal seams.
Author Dong, Shenpei
Wang, Changjian
Zhang, Yu
Liang, Xiangyang
Qiao, Junwei
Jiang, Yi
Su, Gang
Author_xml – sequence: 1
  givenname: Junwei
  surname: Qiao
  fullname: Qiao, Junwei
– sequence: 2
  givenname: Changjian
  surname: Wang
  fullname: Wang, Changjian
– sequence: 3
  givenname: Gang
  surname: Su
  fullname: Su, Gang
– sequence: 4
  givenname: Xiangyang
  surname: Liang
  fullname: Liang, Xiangyang
– sequence: 5
  givenname: Shenpei
  surname: Dong
  fullname: Dong, Shenpei
– sequence: 6
  givenname: Yi
  surname: Jiang
  fullname: Jiang, Yi
– sequence: 7
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
BookMark eNqNkctu2zAQRYkiAZo6-YGs-ANy-Za0TI0-AhhxgCRrYviyGVCiQKkovOqvV7aDIOgiyIrDmTlnMfcLOutz7xG6pmTJedN-DR7KtGSE8SVlrKZSfEIXjLWqUkLxszf1Z3Q1js-EEMqZFKS9QH9vhiFFC1PMPS5-nFV2h-d62nk8FO-iPY5ywBMUvI8-ucPHeT9gmyHhGelwF_vYbzEUDyM2MHp3cNw_bKpv93d3uAO7i73HadafFtM2lzjtukt0HiCN_urlXaCnH98fV7-q9ebn7epmXVku66mSnAQCytFaUdlKJ6U0EOoWgjKqsYI2beuElUYII1wjqfAtGKvmvgRWB75Atyevy_CshxI7KHudIepjI5etno8YbfKahAakUyZwQUUt64YLr0AZyY1snKtnFz-5fvcD7P9ASq9CSvQhEn2MRB8i0S-RzBQ7UbbkcSw-fAxq_oNsnI5hTQVieg_9B1mVpQk
CitedBy_id crossref_primary_10_1016_j_cageo_2024_105848
crossref_primary_10_3389_feart_2023_1308175
crossref_primary_10_2118_223940_PA
crossref_primary_10_1016_j_fuel_2024_132827
crossref_primary_10_1038_s41598_025_89871_8
Cites_doi 10.1016/j.jaap.2020.104805
10.1007/s10064-023-03185-5
10.3969/j.issn.1001-1986.2021.01.009
10.3390/ijerph20010868
10.3969/j.issn.1674-1803.2022.10.05
10.1016/j.csite.2022.102596
10.1016/j.coal.2015.03.006
10.3389/fenrg.2021.824691
10.3390/en15093292
10.3390/catal12040376
10.1016/j.apenergy.2016.08.166
10.1021/acsomega.2c02786
10.1016/j.petrol.2021.109844
10.3390/app13053230
10.3964/j.issn.1000-0593(2022)08-2616-08
10.3390/foods10061365
10.1063/5.0135290
10.1007/s11356-022-24821-9
10.1155/2023/2530651
10.1007/s40747-023-01012-8
10.1016/j.orggeochem.2017.05.004
10.1162/neco.2006.18.7.1527
10.3390/sym14050880
10.1016/j.fuel.2014.11.059
10.1016/j.psep.2019.10.002
10.1016/j.ins.2023.01.103
10.1016/j.egyr.2021.01.021
10.1007/s42461-022-00684-z
10.13225/j.cnki.jccs.YG19.1758
10.1021/acsomega.2c08033
10.3390/ijerph20010227
10.1016/j.fuel.2019.116324
10.13225/j.cnki.jccs.2021.1046
10.3390/ijerph20010624
10.1007/s11069-022-05652-w
10.1016/j.jmrt.2023.05.271
10.1155/2023/3160184
10.1016/j.energy.2023.127470
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3389/feart.2023.1227154
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2296-6463
ExternalDocumentID oai_doaj_org_article_0f8a5d6bf3414757834e6a6b53b58dd7
10.3389/feart.2023.1227154
10_3389_feart_2023_1227154
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c357t-530f0a6d1761595d555baf79af6b68c41899d4c5b44b4d8514e9abc61895a27f3
IEDL.DBID UNPAY
ISSN 2296-6463
IngestDate Fri Oct 03 12:43:42 EDT 2025
Wed Oct 01 15:26:33 EDT 2025
Thu Apr 24 22:51:30 EDT 2025
Wed Oct 01 02:41:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-530f0a6d1761595d555baf79af6b68c41899d4c5b44b4d8514e9abc61895a27f3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.frontiersin.org/articles/10.3389/feart.2023.1227154/pdf
ParticipantIDs doaj_primary_oai_doaj_org_article_0f8a5d6bf3414757834e6a6b53b58dd7
unpaywall_primary_10_3389_feart_2023_1227154
crossref_primary_10_3389_feart_2023_1227154
crossref_citationtrail_10_3389_feart_2023_1227154
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-04
PublicationDateYYYYMMDD 2023-07-04
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-04
  day: 04
PublicationDecade 2020
PublicationTitle Frontiers in earth science (Lausanne)
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Chen (B1) 2017; 111
Liang (B13) 2020; 260
Moazen (B20) 2023; 628
Hinton (B6) 2006; 18
Liu (B15) 2023; 30
Liu (B17); 35
Zhang (B35); 15
Wu (B28) 2020; 133
Xie (B29) 2023; 2023
Liu (B14) 2016; 183
Shi (B21) 2022; 47
Tang (B23) 2023; 13
Wang (B25) 2020; 45
Yan (B31) 2022; 34
Guo (B5) 2021; 49
Liu (B16); 275
Gao (B4) 2023; 25
Zhang (B34); 82
Li (B12); 9
Li (B10); 209
Wang (B26) 2021; 46
Wang (B27) 2023; 41
Zhang (B33); 39
Li (B9); 42
Marshall (B19) 2015; 143
Li (B11) 2023; 20
Xu (B30) 2015; 152
Du (B2) 2022; 12
Zhang (B36); 20
Ju (B8) 2021; 7
Wang (B24) 2022; 14
Yin (B32) 2023
Zhao (B37) 2021; 2021
Zhu (B39) 2023; 115
Zheng (B38) 2023; 20
Ma (B18) 2022; 7
Song (B22) 2023; 2023
Jiang (B7) 2020; 147
Fu (B3) 2023; 8
References_xml – volume: 147
  start-page: 104805
  year: 2020
  ident: B7
  article-title: Integrated coal pyrolysis with steam reforming of propane to improve tar yield
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2020.104805
– volume: 2021
  start-page: 1
  year: 2021
  ident: B37
  article-title: The Research on coal tar productivity prediction method based on logging information
  publication-title: Prog. Geophys.
– volume: 82
  start-page: 142
  ident: B34
  article-title: Study on overlying strata movement patterns and mechanisms in super-large mining height stopes
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-023-03185-5
– volume: 49
  start-page: 87
  year: 2021
  ident: B5
  article-title: Chemical compositions and technological properties of low-rank coals in the south Shenfu mining area: Characteristics, relationship and practice
  publication-title: Coal Geol. Explor.
  doi: 10.3969/j.issn.1001-1986.2021.01.009
– volume: 20
  start-page: 868
  year: 2023
  ident: B11
  article-title: Research on the mechanism and control technology of coal wall sloughing in the ultra-large mining height working face
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph20010868
– volume: 34
  start-page: 25
  year: 2022
  ident: B31
  article-title: Study on the relationship model between oil-rich coal tar yield and compensation density in huangling mining area
  publication-title: Coal Geol. China
  doi: 10.3969/j.issn.1674-1803.2022.10.05
– volume: 41
  start-page: 102596
  year: 2023
  ident: B27
  article-title: Economic and heating efficiency analysis of double-shell downhole electric heater for tar-rich coal in-situ conversion
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2022.102596
– volume: 143
  start-page: 22
  year: 2015
  ident: B19
  article-title: Geochemistry and petrology of Palaeocene coals from Spitsbergen - Part 1: Oil potential and depositional environment
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2015.03.006
– volume: 9
  start-page: 824691
  ident: B12
  article-title: Short-term power generation forecasting of a photovoltaic plant based on PSO-BP and GA-BP neural networks
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2021.824691
– volume: 15
  start-page: 3292
  ident: B35
  article-title: Research on intelligent comprehensive evaluation of coal seam impact risk based on BP neural network model
  publication-title: Energies
  doi: 10.3390/en15093292
– volume: 12
  start-page: 376
  year: 2022
  ident: B2
  article-title: The catalytic effect from alkaline elements on the tar-rich coal pyrolysis
  publication-title: Catalysts
  doi: 10.3390/catal12040376
– volume: 183
  start-page: 470
  year: 2016
  ident: B14
  article-title: Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.08.166
– volume: 7
  start-page: 25613
  year: 2022
  ident: B18
  article-title: Investigation of pyrolysis and mild oxidation characteristics of tar-rich coal via thermogravimetric experiments
  publication-title: Acs Omega
  doi: 10.1021/acsomega.2c02786
– volume: 209
  start-page: 109844
  ident: B10
  article-title: Oil generation model of the liptinite-rich coals: Palaeogene in the xihu sag, east China sea shelf basin
  publication-title: J. Petroleum Sci. Eng.
  doi: 10.1016/j.petrol.2021.109844
– volume: 13
  start-page: 3230
  year: 2023
  ident: B23
  article-title: Reactor temperature prediction method based on CPSO-RBF-BP neural network
  publication-title: Appl. Sciences-Basel
  doi: 10.3390/app13053230
– volume: 42
  start-page: 2616
  ident: B9
  article-title: Raman spectroscopic characterization and surface graphitization degree of coal-based graphite with the number of aromatic layers
  publication-title: Spectrosc. Spectr. Analysis
  doi: 10.3964/j.issn.1000-0593(2022)08-2616-08
– volume: 46
  start-page: 1365
  year: 2021
  ident: B26
  article-title: Effects of glycated glutenin heat-processing conditions on its digestibility and induced inflammation levels in cells
  publication-title: J. China Coal Soc.
  doi: 10.3390/foods10061365
– volume: 35
  start-page: 012009
  ident: B17
  article-title: Nuclear magnetic resonance study on the influence of liquid nitrogen cold soaking on the pore structure of different coals
  publication-title: Phys. Fluids
  doi: 10.1063/5.0135290
– volume: 30
  start-page: 36080
  year: 2023
  ident: B15
  article-title: Experimental study on the effect of cold soaking with liquid nitrogen on the coal chemical and microstructural characteristics
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-022-24821-9
– volume: 2023
  start-page: 1
  year: 2023
  ident: B29
  article-title: Research on vibration fatigue damage locations of offshore oil and gas pipelines based on the GA-improved BP neural network
  publication-title: Shock Vib.
  doi: 10.1155/2023/2530651
– year: 2023
  ident: B32
  article-title: Reinforcement-learning-based parameter adaptation method for particle swarm optimization
  publication-title: Complex and Intelligent Syst.
  doi: 10.1007/s40747-023-01012-8
– volume: 111
  start-page: 113
  year: 2017
  ident: B1
  article-title: Main oil generating macerals for coal-derived oil: A case study from the jurassic coal-bearing turpan basin, NW China
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2017.05.004
– volume: 18
  start-page: 1527
  year: 2006
  ident: B6
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 14
  start-page: 880
  year: 2022
  ident: B24
  article-title: An image recognition method for coal gangue based on ASGS-CWOA and BP neural network
  publication-title: Symmetry-Basel
  doi: 10.3390/sym14050880
– volume: 152
  start-page: 122
  year: 2015
  ident: B30
  article-title: Recent development in converting coal to clean fuels in China
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.11.059
– volume: 133
  start-page: 64
  year: 2020
  ident: B28
  article-title: Prediction of coal and gas outburst: A method based on the BP neural network optimized by gasa
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2019.10.002
– volume: 628
  start-page: 70
  year: 2023
  ident: B20
  article-title: PSO-ELPM: PSO with elite learning, enhanced parameter updating, and exponential mutation operator
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.01.103
– volume: 7
  start-page: 523
  year: 2021
  ident: B8
  article-title: Microwave pyrolysis and its applications to the in-situ recovery and conversion of oil from tar-rich coal: An overview on fundamentals, methods, and challenges
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.01.021
– volume: 39
  start-page: 2503
  ident: B33
  article-title: Prediction of three-dimensional fractal dimension of hematite flocs based on particle swarm optimization optimized back propagation neural network
  publication-title: Min. Metallurgy Explor.
  doi: 10.1007/s42461-022-00684-z
– volume: 45
  start-page: 8
  year: 2020
  ident: B25
  article-title: Geological guarantee of coal green mining
  publication-title: J. China Coal Soc.
  doi: 10.13225/j.cnki.jccs.YG19.1758
– volume: 8
  start-page: 12805
  year: 2023
  ident: B3
  article-title: Thermodynamic analysis on in situ underground pyrolysis of tar- rich coal: Secondary reactions
  publication-title: Acs Omega
  doi: 10.1021/acsomega.2c08033
– volume: 20
  start-page: 227
  ident: B36
  article-title: Abutment pressure distribution law and support analysis of super large mining height face
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph20010227
– volume: 260
  start-page: 116324
  year: 2020
  ident: B13
  article-title: Application of BP neural network to the prediction of coal ash melting characteristic temperature
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116324
– volume: 47
  start-page: 2057
  year: 2022
  ident: B21
  article-title: Multi-source identification and internal relationship of tar-rich coal of the Yan'an Formation in the south of Shenfu
  publication-title: J. China Coal Soc.
  doi: 10.13225/j.cnki.jccs.2021.1046
– volume: 20
  start-page: 624
  year: 2023
  ident: B38
  article-title: Research on coal dust wettability identification based on GA-BP model
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph20010624
– volume: 115
  start-page: 2531
  year: 2023
  ident: B39
  article-title: Evaluation of deep coal and gas outburst based on RS-GA-BP
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-022-05652-w
– volume: 25
  start-page: 273
  year: 2023
  ident: B4
  article-title: Recognition of rock materials after high-temperature deterioration based on SEM images via deep learning
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2023.05.271
– volume: 2023
  start-page: 1
  year: 2023
  ident: B22
  article-title: Energy dispatching based on an improved PSO-aco algorithm
  publication-title: Int. J. Intelligent Syst.
  doi: 10.1155/2023/3160184
– volume: 275
  start-page: 127470
  ident: B16
  article-title: Experimental study of effect of liquid nitrogen cold soaking on coal pore structure and fractal characteristics
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127470
SSID ssj0001325409
Score 2.2838714
Snippet There are abundant deep coal resources in northern Shaanxi, but the fragile natural environment in this area hinders the large-scale exploitation of oil-rich...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
SubjectTerms BP neural network
machine learning
oil-rich coal
particle swarm optimization (PSO)
tar yield prediction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqpKrtAZVS1G0B-dAbDSTrsRMfAZWuKnW7EiBxi_yESvvSKiu0p_51Zpx0u1wKh97y8CPyN4pn7M_fMPZZu4iGUxJVKqgMQOaZllplsXTRVaIKLq13_BiqwTV8v5E3G6m-iBPWygO3A3eSx8pIr2zE3y2Q-LqAoIyyUlhZeZ_OkeeV3gim0uqKwMAn1-0pGYzC9ElEwyHuZF8cF_1-WUh4NBMlwf437NVyOjerezMeb8wyF2_Zduce8tP2s3bYizB9x15-S-l3V7vs9-nf_Wbe6fTccbxGN47PF7Tpkl7NIm_Mgq-InkY3PoQ5dzNsGatM-CRlheCGCOmc5jFPbYwuf2Zno-GQTxLBMvAuowQWHN_OFr-au8l7dn3x9ep8kHUpFDInZNlkUuQxN8oXJXouWnoppTWx1CYqqyoHBYZbHpy0ABY8el8QtLFO4XNp-mUUe2xrOpuGD4wHmYcIAryHgJhCpUTUsRJG06ZyiD1W_BnO2nX64pTmYlxjnEEQ1AmCmiCoOwh67GhdZ96qa_yz9BmhtC5JytjpAdpL3dlL_ZS99NiXNcbP6PPj_-jzE3tNbSaWL-yzrWaxDAfoyzT2MJntA25U73g
  priority: 102
  providerName: Directory of Open Access Journals
Title Application research on the prediction of tar yield of deep coal seam mining areas based on PSO-BPNN machine learning algorithm
URI https://www.frontiersin.org/articles/10.3389/feart.2023.1227154/pdf
https://doaj.org/article/0f8a5d6bf3414757834e6a6b53b58dd7
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2296-6463
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325409
  issn: 2296-6463
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-6463
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325409
  issn: 2296-6463
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-6463
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325409
  issn: 2296-6463
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tXSGWA2-05bHygRukm8aPJMfuimWFRKkElZZT5Ce7ok2jKhUqF_46M25aHhIIxC12xnYyHstj-_N8AM9KG9BwcoJKeZUIIdOklKVKQm6DLXjhbdzveDNW51Px-kJe7MHp9i4MwSoDXd0nIuirehMpuIOI0QjHFVV5HNAICAeZ8cEwy3L0Ao4bF67BvsJm0h7sT8eT0QeilcuwWSUU31yX-U3hn6akGLn_JtxY1Y1ef9az2Q_TzdltcNsP3aBMPg1WrRnYL7_EcPzPP7kDtzp3lI02Je7Cnq_vwfVXke53fR--jr6fb7MuLtAlw2d0G1mzpEOe-GoRWKuXbE1wOEo47xtmF1gzFpmzeWShYJoA8IzmTUd1TN69TU4m4zGbR0CnZx2DBQrOPi6WV-3l_AFMz16-Pz1POsqGxHKZt4nkaUi1csMcPaVSOiml0SEvdVBGFVYMcXnnhJVGCCMcenvCl9pYhflSZ3ngD6FXL2p_CMzL1AfBhXPCow2JQvFQhoLrkg6xfejDcNtrle3imROtxqzCdQ0pt4rKrUi5VafcPjzflWk20Tz-KH1CxrCTpEjcMQO7suq6skpDoaVTJqA7IIgcgAuvtDKSG1k4l_fhxc6U_qLNR_8m_hgOKBnxw-IJ9Nrlyj9FL6k1R3F34agbC98Aj2sPWw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VVAg48EZNW9AeuIFTx_uwfUwrSoVEiASRysnaZ1uROFbkqAoX_jozthOgEgjEzWvP7Nqzs9pZ77fzAbzMbUDHSQkq5VUkhIyjXOYqCqkNNuOZt83_jvdjdTYV787l-Q6cbM7CEKwy0NF9IoK-KttMwR1EjEY4rqjyo4BOQDjIhA-GSZJiFHBUuXALdhU2E_dgdzqejD4TrVyCzSqheHtc5jfKv0xJTeb-e3BnVVZ6fa1ns5-mm9MH4DYv2qJMvgxWtRnYrzdyOP7nlzyE-104ykatxiPY8eVjuP22oftdP4Fvox_726zLC3TJ8BrDRlYtaZOnebQIrNZLtiY4HBWc9xWzC6wZVeZs3rBQME0AeEbzpqM6Jh8_RMeT8ZjNG0CnZx2DBQrOLhbLq_py_hSmp28-nZxFHWVDZLlM60jyOMRauWGKkVIunZTS6JDmOiijMiuGuLxzwkojhBEOoz3hc22swvtSJ2ngz6BXLkq_B8zL2AfBhXPCow-JTPGQh4zrnDaxfejDcNNrhe3ymROtxqzAdQ0Zt2iMW5Bxi864fXi11anabB5_lD4mZ9hKUibu5gZ2ZdF1ZRGHTEunTMBwQBA5ABdeaWUkNzJzLu3D660r_UWb-_8mfgB3qdjgh8Uh9Orlyj_HKKk2L7pR8B05FA5m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+research+on+the+prediction+of+tar+yield+of+deep+coal+seam+mining+areas+based+on+PSO-BPNN+machine+learning+algorithm&rft.jtitle=Frontiers+in+earth+science+%28Lausanne%29&rft.au=Junwei+Qiao&rft.au=Junwei+Qiao&rft.au=Junwei+Qiao&rft.au=Changjian+Wang&rft.date=2023-07-04&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-6463&rft.volume=11&rft_id=info:doi/10.3389%2Ffeart.2023.1227154&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0f8a5d6bf3414757834e6a6b53b58dd7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-6463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-6463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-6463&client=summon