Application research on the prediction of tar yield of deep coal seam mining areas based on PSO-BPNN machine learning algorithm
There are abundant deep coal resources in northern Shaanxi, but the fragile natural environment in this area hinders the large-scale exploitation of oil-rich coal. In-situ thermal conversion of deep coal to oil and gas will become an environmentally friendly technology for oil-rich coal mining. Accu...
Saved in:
| Published in | Frontiers in earth science (Lausanne) Vol. 11 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Frontiers Media S.A
04.07.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2296-6463 2296-6463 |
| DOI | 10.3389/feart.2023.1227154 |
Cover
| Abstract | There are abundant deep coal resources in northern Shaanxi, but the fragile natural environment in this area hinders the large-scale exploitation of oil-rich coal.
In-situ
thermal conversion of deep coal to oil and gas will become an environmentally friendly technology for oil-rich coal mining. Accurate prediction of oil-rich coal tar yield in various regions is a prerequisite. Based on a particle swarm optimization algorithm and two machine learning algorithms, BP neural network and random forest, a prediction model of tar yield from oil-rich coal is constructed in this paper. Combined with the particle swarm optimization method, the problem of slow convergence speed and possibly falling into local minimum value of BP neural network is solved and optimized. The results showed that the PSO-BP had a convergence speed about five times faster than that of the BP neural network. Furthermore, the predicted value of the PSO-BP was consistent with the measured value, and the average relative error was 4.56% lower than that of the random forest model. The advantages of fast convergence and high accuracy of the prediction model are obviously apparent. Accurate prediction of tar yield would facilitate the research process of
in-situ
fluidized mining of deep coal seams. |
|---|---|
| AbstractList | There are abundant deep coal resources in northern Shaanxi, but the fragile natural environment in this area hinders the large-scale exploitation of oil-rich coal.
In-situ
thermal conversion of deep coal to oil and gas will become an environmentally friendly technology for oil-rich coal mining. Accurate prediction of oil-rich coal tar yield in various regions is a prerequisite. Based on a particle swarm optimization algorithm and two machine learning algorithms, BP neural network and random forest, a prediction model of tar yield from oil-rich coal is constructed in this paper. Combined with the particle swarm optimization method, the problem of slow convergence speed and possibly falling into local minimum value of BP neural network is solved and optimized. The results showed that the PSO-BP had a convergence speed about five times faster than that of the BP neural network. Furthermore, the predicted value of the PSO-BP was consistent with the measured value, and the average relative error was 4.56% lower than that of the random forest model. The advantages of fast convergence and high accuracy of the prediction model are obviously apparent. Accurate prediction of tar yield would facilitate the research process of
in-situ
fluidized mining of deep coal seams. There are abundant deep coal resources in northern Shaanxi, but the fragile natural environment in this area hinders the large-scale exploitation of oil-rich coal. In-situ thermal conversion of deep coal to oil and gas will become an environmentally friendly technology for oil-rich coal mining. Accurate prediction of oil-rich coal tar yield in various regions is a prerequisite. Based on a particle swarm optimization algorithm and two machine learning algorithms, BP neural network and random forest, a prediction model of tar yield from oil-rich coal is constructed in this paper. Combined with the particle swarm optimization method, the problem of slow convergence speed and possibly falling into local minimum value of BP neural network is solved and optimized. The results showed that the PSO-BP had a convergence speed about five times faster than that of the BP neural network. Furthermore, the predicted value of the PSO-BP was consistent with the measured value, and the average relative error was 4.56% lower than that of the random forest model. The advantages of fast convergence and high accuracy of the prediction model are obviously apparent. Accurate prediction of tar yield would facilitate the research process of in-situ fluidized mining of deep coal seams. |
| Author | Dong, Shenpei Wang, Changjian Zhang, Yu Liang, Xiangyang Qiao, Junwei Jiang, Yi Su, Gang |
| Author_xml | – sequence: 1 givenname: Junwei surname: Qiao fullname: Qiao, Junwei – sequence: 2 givenname: Changjian surname: Wang fullname: Wang, Changjian – sequence: 3 givenname: Gang surname: Su fullname: Su, Gang – sequence: 4 givenname: Xiangyang surname: Liang fullname: Liang, Xiangyang – sequence: 5 givenname: Shenpei surname: Dong fullname: Dong, Shenpei – sequence: 6 givenname: Yi surname: Jiang fullname: Jiang, Yi – sequence: 7 givenname: Yu surname: Zhang fullname: Zhang, Yu |
| BookMark | eNqNkctu2zAQRYkiAZo6-YGs-ANy-Za0TI0-AhhxgCRrYviyGVCiQKkovOqvV7aDIOgiyIrDmTlnMfcLOutz7xG6pmTJedN-DR7KtGSE8SVlrKZSfEIXjLWqUkLxszf1Z3Q1js-EEMqZFKS9QH9vhiFFC1PMPS5-nFV2h-d62nk8FO-iPY5ywBMUvI8-ucPHeT9gmyHhGelwF_vYbzEUDyM2MHp3cNw_bKpv93d3uAO7i73HadafFtM2lzjtukt0HiCN_urlXaCnH98fV7-q9ebn7epmXVku66mSnAQCytFaUdlKJ6U0EOoWgjKqsYI2beuElUYII1wjqfAtGKvmvgRWB75Atyevy_CshxI7KHudIepjI5etno8YbfKahAakUyZwQUUt64YLr0AZyY1snKtnFz-5fvcD7P9ASq9CSvQhEn2MRB8i0S-RzBQ7UbbkcSw-fAxq_oNsnI5hTQVieg_9B1mVpQk |
| CitedBy_id | crossref_primary_10_1016_j_cageo_2024_105848 crossref_primary_10_3389_feart_2023_1308175 crossref_primary_10_2118_223940_PA crossref_primary_10_1016_j_fuel_2024_132827 crossref_primary_10_1038_s41598_025_89871_8 |
| Cites_doi | 10.1016/j.jaap.2020.104805 10.1007/s10064-023-03185-5 10.3969/j.issn.1001-1986.2021.01.009 10.3390/ijerph20010868 10.3969/j.issn.1674-1803.2022.10.05 10.1016/j.csite.2022.102596 10.1016/j.coal.2015.03.006 10.3389/fenrg.2021.824691 10.3390/en15093292 10.3390/catal12040376 10.1016/j.apenergy.2016.08.166 10.1021/acsomega.2c02786 10.1016/j.petrol.2021.109844 10.3390/app13053230 10.3964/j.issn.1000-0593(2022)08-2616-08 10.3390/foods10061365 10.1063/5.0135290 10.1007/s11356-022-24821-9 10.1155/2023/2530651 10.1007/s40747-023-01012-8 10.1016/j.orggeochem.2017.05.004 10.1162/neco.2006.18.7.1527 10.3390/sym14050880 10.1016/j.fuel.2014.11.059 10.1016/j.psep.2019.10.002 10.1016/j.ins.2023.01.103 10.1016/j.egyr.2021.01.021 10.1007/s42461-022-00684-z 10.13225/j.cnki.jccs.YG19.1758 10.1021/acsomega.2c08033 10.3390/ijerph20010227 10.1016/j.fuel.2019.116324 10.13225/j.cnki.jccs.2021.1046 10.3390/ijerph20010624 10.1007/s11069-022-05652-w 10.1016/j.jmrt.2023.05.271 10.1155/2023/3160184 10.1016/j.energy.2023.127470 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.3389/feart.2023.1227154 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2296-6463 |
| ExternalDocumentID | oai_doaj_org_article_0f8a5d6bf3414757834e6a6b53b58dd7 10.3389/feart.2023.1227154 10_3389_feart_2023_1227154 |
| GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c357t-530f0a6d1761595d555baf79af6b68c41899d4c5b44b4d8514e9abc61895a27f3 |
| IEDL.DBID | UNPAY |
| ISSN | 2296-6463 |
| IngestDate | Fri Oct 03 12:43:42 EDT 2025 Wed Oct 01 15:26:33 EDT 2025 Thu Apr 24 22:51:30 EDT 2025 Wed Oct 01 02:41:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-530f0a6d1761595d555baf79af6b68c41899d4c5b44b4d8514e9abc61895a27f3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.frontiersin.org/articles/10.3389/feart.2023.1227154/pdf |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0f8a5d6bf3414757834e6a6b53b58dd7 unpaywall_primary_10_3389_feart_2023_1227154 crossref_primary_10_3389_feart_2023_1227154 crossref_citationtrail_10_3389_feart_2023_1227154 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-04 |
| PublicationDateYYYYMMDD | 2023-07-04 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in earth science (Lausanne) |
| PublicationYear | 2023 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Chen (B1) 2017; 111 Liang (B13) 2020; 260 Moazen (B20) 2023; 628 Hinton (B6) 2006; 18 Liu (B15) 2023; 30 Liu (B17); 35 Zhang (B35); 15 Wu (B28) 2020; 133 Xie (B29) 2023; 2023 Liu (B14) 2016; 183 Shi (B21) 2022; 47 Tang (B23) 2023; 13 Wang (B25) 2020; 45 Yan (B31) 2022; 34 Guo (B5) 2021; 49 Liu (B16); 275 Gao (B4) 2023; 25 Zhang (B34); 82 Li (B12); 9 Li (B10); 209 Wang (B26) 2021; 46 Wang (B27) 2023; 41 Zhang (B33); 39 Li (B9); 42 Marshall (B19) 2015; 143 Li (B11) 2023; 20 Xu (B30) 2015; 152 Du (B2) 2022; 12 Zhang (B36); 20 Ju (B8) 2021; 7 Wang (B24) 2022; 14 Yin (B32) 2023 Zhao (B37) 2021; 2021 Zhu (B39) 2023; 115 Zheng (B38) 2023; 20 Ma (B18) 2022; 7 Song (B22) 2023; 2023 Jiang (B7) 2020; 147 Fu (B3) 2023; 8 |
| References_xml | – volume: 147 start-page: 104805 year: 2020 ident: B7 article-title: Integrated coal pyrolysis with steam reforming of propane to improve tar yield publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2020.104805 – volume: 2021 start-page: 1 year: 2021 ident: B37 article-title: The Research on coal tar productivity prediction method based on logging information publication-title: Prog. Geophys. – volume: 82 start-page: 142 ident: B34 article-title: Study on overlying strata movement patterns and mechanisms in super-large mining height stopes publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-023-03185-5 – volume: 49 start-page: 87 year: 2021 ident: B5 article-title: Chemical compositions and technological properties of low-rank coals in the south Shenfu mining area: Characteristics, relationship and practice publication-title: Coal Geol. Explor. doi: 10.3969/j.issn.1001-1986.2021.01.009 – volume: 20 start-page: 868 year: 2023 ident: B11 article-title: Research on the mechanism and control technology of coal wall sloughing in the ultra-large mining height working face publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph20010868 – volume: 34 start-page: 25 year: 2022 ident: B31 article-title: Study on the relationship model between oil-rich coal tar yield and compensation density in huangling mining area publication-title: Coal Geol. China doi: 10.3969/j.issn.1674-1803.2022.10.05 – volume: 41 start-page: 102596 year: 2023 ident: B27 article-title: Economic and heating efficiency analysis of double-shell downhole electric heater for tar-rich coal in-situ conversion publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2022.102596 – volume: 143 start-page: 22 year: 2015 ident: B19 article-title: Geochemistry and petrology of Palaeocene coals from Spitsbergen - Part 1: Oil potential and depositional environment publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2015.03.006 – volume: 9 start-page: 824691 ident: B12 article-title: Short-term power generation forecasting of a photovoltaic plant based on PSO-BP and GA-BP neural networks publication-title: Front. Energy Res. doi: 10.3389/fenrg.2021.824691 – volume: 15 start-page: 3292 ident: B35 article-title: Research on intelligent comprehensive evaluation of coal seam impact risk based on BP neural network model publication-title: Energies doi: 10.3390/en15093292 – volume: 12 start-page: 376 year: 2022 ident: B2 article-title: The catalytic effect from alkaline elements on the tar-rich coal pyrolysis publication-title: Catalysts doi: 10.3390/catal12040376 – volume: 183 start-page: 470 year: 2016 ident: B14 article-title: Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.08.166 – volume: 7 start-page: 25613 year: 2022 ident: B18 article-title: Investigation of pyrolysis and mild oxidation characteristics of tar-rich coal via thermogravimetric experiments publication-title: Acs Omega doi: 10.1021/acsomega.2c02786 – volume: 209 start-page: 109844 ident: B10 article-title: Oil generation model of the liptinite-rich coals: Palaeogene in the xihu sag, east China sea shelf basin publication-title: J. Petroleum Sci. Eng. doi: 10.1016/j.petrol.2021.109844 – volume: 13 start-page: 3230 year: 2023 ident: B23 article-title: Reactor temperature prediction method based on CPSO-RBF-BP neural network publication-title: Appl. Sciences-Basel doi: 10.3390/app13053230 – volume: 42 start-page: 2616 ident: B9 article-title: Raman spectroscopic characterization and surface graphitization degree of coal-based graphite with the number of aromatic layers publication-title: Spectrosc. Spectr. Analysis doi: 10.3964/j.issn.1000-0593(2022)08-2616-08 – volume: 46 start-page: 1365 year: 2021 ident: B26 article-title: Effects of glycated glutenin heat-processing conditions on its digestibility and induced inflammation levels in cells publication-title: J. China Coal Soc. doi: 10.3390/foods10061365 – volume: 35 start-page: 012009 ident: B17 article-title: Nuclear magnetic resonance study on the influence of liquid nitrogen cold soaking on the pore structure of different coals publication-title: Phys. Fluids doi: 10.1063/5.0135290 – volume: 30 start-page: 36080 year: 2023 ident: B15 article-title: Experimental study on the effect of cold soaking with liquid nitrogen on the coal chemical and microstructural characteristics publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-24821-9 – volume: 2023 start-page: 1 year: 2023 ident: B29 article-title: Research on vibration fatigue damage locations of offshore oil and gas pipelines based on the GA-improved BP neural network publication-title: Shock Vib. doi: 10.1155/2023/2530651 – year: 2023 ident: B32 article-title: Reinforcement-learning-based parameter adaptation method for particle swarm optimization publication-title: Complex and Intelligent Syst. doi: 10.1007/s40747-023-01012-8 – volume: 111 start-page: 113 year: 2017 ident: B1 article-title: Main oil generating macerals for coal-derived oil: A case study from the jurassic coal-bearing turpan basin, NW China publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2017.05.004 – volume: 18 start-page: 1527 year: 2006 ident: B6 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 14 start-page: 880 year: 2022 ident: B24 article-title: An image recognition method for coal gangue based on ASGS-CWOA and BP neural network publication-title: Symmetry-Basel doi: 10.3390/sym14050880 – volume: 152 start-page: 122 year: 2015 ident: B30 article-title: Recent development in converting coal to clean fuels in China publication-title: Fuel doi: 10.1016/j.fuel.2014.11.059 – volume: 133 start-page: 64 year: 2020 ident: B28 article-title: Prediction of coal and gas outburst: A method based on the BP neural network optimized by gasa publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2019.10.002 – volume: 628 start-page: 70 year: 2023 ident: B20 article-title: PSO-ELPM: PSO with elite learning, enhanced parameter updating, and exponential mutation operator publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.01.103 – volume: 7 start-page: 523 year: 2021 ident: B8 article-title: Microwave pyrolysis and its applications to the in-situ recovery and conversion of oil from tar-rich coal: An overview on fundamentals, methods, and challenges publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.01.021 – volume: 39 start-page: 2503 ident: B33 article-title: Prediction of three-dimensional fractal dimension of hematite flocs based on particle swarm optimization optimized back propagation neural network publication-title: Min. Metallurgy Explor. doi: 10.1007/s42461-022-00684-z – volume: 45 start-page: 8 year: 2020 ident: B25 article-title: Geological guarantee of coal green mining publication-title: J. China Coal Soc. doi: 10.13225/j.cnki.jccs.YG19.1758 – volume: 8 start-page: 12805 year: 2023 ident: B3 article-title: Thermodynamic analysis on in situ underground pyrolysis of tar- rich coal: Secondary reactions publication-title: Acs Omega doi: 10.1021/acsomega.2c08033 – volume: 20 start-page: 227 ident: B36 article-title: Abutment pressure distribution law and support analysis of super large mining height face publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph20010227 – volume: 260 start-page: 116324 year: 2020 ident: B13 article-title: Application of BP neural network to the prediction of coal ash melting characteristic temperature publication-title: Fuel doi: 10.1016/j.fuel.2019.116324 – volume: 47 start-page: 2057 year: 2022 ident: B21 article-title: Multi-source identification and internal relationship of tar-rich coal of the Yan'an Formation in the south of Shenfu publication-title: J. China Coal Soc. doi: 10.13225/j.cnki.jccs.2021.1046 – volume: 20 start-page: 624 year: 2023 ident: B38 article-title: Research on coal dust wettability identification based on GA-BP model publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph20010624 – volume: 115 start-page: 2531 year: 2023 ident: B39 article-title: Evaluation of deep coal and gas outburst based on RS-GA-BP publication-title: Nat. Hazards doi: 10.1007/s11069-022-05652-w – volume: 25 start-page: 273 year: 2023 ident: B4 article-title: Recognition of rock materials after high-temperature deterioration based on SEM images via deep learning publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2023.05.271 – volume: 2023 start-page: 1 year: 2023 ident: B22 article-title: Energy dispatching based on an improved PSO-aco algorithm publication-title: Int. J. Intelligent Syst. doi: 10.1155/2023/3160184 – volume: 275 start-page: 127470 ident: B16 article-title: Experimental study of effect of liquid nitrogen cold soaking on coal pore structure and fractal characteristics publication-title: Energy doi: 10.1016/j.energy.2023.127470 |
| SSID | ssj0001325409 |
| Score | 2.2838714 |
| Snippet | There are abundant deep coal resources in northern Shaanxi, but the fragile natural environment in this area hinders the large-scale exploitation of oil-rich... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| SubjectTerms | BP neural network machine learning oil-rich coal particle swarm optimization (PSO) tar yield prediction |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqpKrtAZVS1G0B-dAbDSTrsRMfAZWuKnW7EiBxi_yESvvSKiu0p_51Zpx0u1wKh97y8CPyN4pn7M_fMPZZu4iGUxJVKqgMQOaZllplsXTRVaIKLq13_BiqwTV8v5E3G6m-iBPWygO3A3eSx8pIr2zE3y2Q-LqAoIyyUlhZeZ_OkeeV3gim0uqKwMAn1-0pGYzC9ElEwyHuZF8cF_1-WUh4NBMlwf437NVyOjerezMeb8wyF2_Zduce8tP2s3bYizB9x15-S-l3V7vs9-nf_Wbe6fTccbxGN47PF7Tpkl7NIm_Mgq-InkY3PoQ5dzNsGatM-CRlheCGCOmc5jFPbYwuf2Zno-GQTxLBMvAuowQWHN_OFr-au8l7dn3x9ep8kHUpFDInZNlkUuQxN8oXJXouWnoppTWx1CYqqyoHBYZbHpy0ABY8el8QtLFO4XNp-mUUe2xrOpuGD4wHmYcIAryHgJhCpUTUsRJG06ZyiD1W_BnO2nX64pTmYlxjnEEQ1AmCmiCoOwh67GhdZ96qa_yz9BmhtC5JytjpAdpL3dlL_ZS99NiXNcbP6PPj_-jzE3tNbSaWL-yzrWaxDAfoyzT2MJntA25U73g priority: 102 providerName: Directory of Open Access Journals |
| Title | Application research on the prediction of tar yield of deep coal seam mining areas based on PSO-BPNN machine learning algorithm |
| URI | https://www.frontiersin.org/articles/10.3389/feart.2023.1227154/pdf https://doaj.org/article/0f8a5d6bf3414757834e6a6b53b58dd7 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2296-6463 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325409 issn: 2296-6463 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2296-6463 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325409 issn: 2296-6463 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2296-6463 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325409 issn: 2296-6463 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tXSGWA2-05bHygRukm8aPJMfuimWFRKkElZZT5Ce7ok2jKhUqF_46M25aHhIIxC12xnYyHstj-_N8AM9KG9BwcoJKeZUIIdOklKVKQm6DLXjhbdzveDNW51Px-kJe7MHp9i4MwSoDXd0nIuirehMpuIOI0QjHFVV5HNAICAeZ8cEwy3L0Ao4bF67BvsJm0h7sT8eT0QeilcuwWSUU31yX-U3hn6akGLn_JtxY1Y1ef9az2Q_TzdltcNsP3aBMPg1WrRnYL7_EcPzPP7kDtzp3lI02Je7Cnq_vwfVXke53fR--jr6fb7MuLtAlw2d0G1mzpEOe-GoRWKuXbE1wOEo47xtmF1gzFpmzeWShYJoA8IzmTUd1TN69TU4m4zGbR0CnZx2DBQrOPi6WV-3l_AFMz16-Pz1POsqGxHKZt4nkaUi1csMcPaVSOiml0SEvdVBGFVYMcXnnhJVGCCMcenvCl9pYhflSZ3ngD6FXL2p_CMzL1AfBhXPCow2JQvFQhoLrkg6xfejDcNtrle3imROtxqzCdQ0pt4rKrUi5VafcPjzflWk20Tz-KH1CxrCTpEjcMQO7suq6skpDoaVTJqA7IIgcgAuvtDKSG1k4l_fhxc6U_qLNR_8m_hgOKBnxw-IJ9Nrlyj9FL6k1R3F34agbC98Aj2sPWw |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VVAg48EZNW9AeuIFTx_uwfUwrSoVEiASRysnaZ1uROFbkqAoX_jozthOgEgjEzWvP7Nqzs9pZ77fzAbzMbUDHSQkq5VUkhIyjXOYqCqkNNuOZt83_jvdjdTYV787l-Q6cbM7CEKwy0NF9IoK-KttMwR1EjEY4rqjyo4BOQDjIhA-GSZJiFHBUuXALdhU2E_dgdzqejD4TrVyCzSqheHtc5jfKv0xJTeb-e3BnVVZ6fa1ns5-mm9MH4DYv2qJMvgxWtRnYrzdyOP7nlzyE-104ykatxiPY8eVjuP22oftdP4Fvox_726zLC3TJ8BrDRlYtaZOnebQIrNZLtiY4HBWc9xWzC6wZVeZs3rBQME0AeEbzpqM6Jh8_RMeT8ZjNG0CnZx2DBQrOLhbLq_py_hSmp28-nZxFHWVDZLlM60jyOMRauWGKkVIunZTS6JDmOiijMiuGuLxzwkojhBEOoz3hc22swvtSJ2ngz6BXLkq_B8zL2AfBhXPCow-JTPGQh4zrnDaxfejDcNNrhe3ymROtxqzAdQ0Zt2iMW5Bxi864fXi11anabB5_lD4mZ9hKUibu5gZ2ZdF1ZRGHTEunTMBwQBA5ABdeaWUkNzJzLu3D660r_UWb-_8mfgB3qdjgh8Uh9Orlyj_HKKk2L7pR8B05FA5m |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+research+on+the+prediction+of+tar+yield+of+deep+coal+seam+mining+areas+based+on+PSO-BPNN+machine+learning+algorithm&rft.jtitle=Frontiers+in+earth+science+%28Lausanne%29&rft.au=Junwei+Qiao&rft.au=Junwei+Qiao&rft.au=Junwei+Qiao&rft.au=Changjian+Wang&rft.date=2023-07-04&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-6463&rft.volume=11&rft_id=info:doi/10.3389%2Ffeart.2023.1227154&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0f8a5d6bf3414757834e6a6b53b58dd7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-6463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-6463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-6463&client=summon |