Fuzzy logic-based prediction and parametric optimizing using particle swarm optimization for performance improvement in pyramid solar still
The primary objective of this study is to develop a robust model that employs a fuzzy logic interface (FL) and particle swarm optimization (PSO) to forecast the optimal parameters of a pyramid solar still (PSS). The model considers a range of environmental variables and varying levels of silver nano...
Saved in:
| Published in | Water science and technology Vol. 90; no. 4; pp. 1321 - 1337 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
IWA Publishing
15.08.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0273-1223 1996-9732 1996-9732 |
| DOI | 10.2166/wst.2024.277 |
Cover
| Abstract | The primary objective of this study is to develop a robust model that employs a fuzzy logic interface (FL) and particle swarm optimization (PSO) to forecast the optimal parameters of a pyramid solar still (PSS). The model considers a range of environmental variables and varying levels of silver nanoparticles (Ag) mixed with paraffin wax, serving as a phase change material (PCM). The study focuses on three key factors: solar intensity ranging from 350 to 950 W/m2, water depth varying between 4 and 8 cm, and silver (Ag) nanoparticle concentration ranging from 0.5 to 1.5% and corresponding output responses are productivity (P), glass temperature (Tg), and basin water temperature (Tw). The experimental design is based on Taguchi's L9 orthogonal array. A technique for ordering preference by similarity to the ideal solution (TOPSIS) is utilized to optimize the process parameters of PSS. Incorporating a fuzzy inference system (FIS) aims to minimize the uncertainty within the system, and the particle swarm optimization algorithm is employed to fine-tune the optimal settings. These methodologies are employed to forecast the optimal conditions required to enhance the productivity of the PSS. |
|---|---|
| AbstractList | The primary objective of this study is to develop a robust model that employs a fuzzy logic interface (FL) and particle swarm optimization (PSO) to forecast the optimal parameters of a pyramid solar still (PSS). The model considers a range of environmental variables and varying levels of silver nanoparticles (Ag) mixed with paraffin wax, serving as a phase change material (PCM). The study focuses on three key factors: solar intensity ranging from 350 to 950 W/m2, water depth varying between 4 and 8 cm, and silver (Ag) nanoparticle concentration ranging from 0.5 to 1.5% and corresponding output responses are productivity (P), glass temperature (Tg), and basin water temperature (Tw). The experimental design is based on Taguchi's L9 orthogonal array. A technique for ordering preference by similarity to the ideal solution (TOPSIS) is utilized to optimize the process parameters of PSS. Incorporating a fuzzy inference system (FIS) aims to minimize the uncertainty within the system, and the particle swarm optimization algorithm is employed to fine-tune the optimal settings. These methodologies are employed to forecast the optimal conditions required to enhance the productivity of the PSS.The primary objective of this study is to develop a robust model that employs a fuzzy logic interface (FL) and particle swarm optimization (PSO) to forecast the optimal parameters of a pyramid solar still (PSS). The model considers a range of environmental variables and varying levels of silver nanoparticles (Ag) mixed with paraffin wax, serving as a phase change material (PCM). The study focuses on three key factors: solar intensity ranging from 350 to 950 W/m2, water depth varying between 4 and 8 cm, and silver (Ag) nanoparticle concentration ranging from 0.5 to 1.5% and corresponding output responses are productivity (P), glass temperature (Tg), and basin water temperature (Tw). The experimental design is based on Taguchi's L9 orthogonal array. A technique for ordering preference by similarity to the ideal solution (TOPSIS) is utilized to optimize the process parameters of PSS. Incorporating a fuzzy inference system (FIS) aims to minimize the uncertainty within the system, and the particle swarm optimization algorithm is employed to fine-tune the optimal settings. These methodologies are employed to forecast the optimal conditions required to enhance the productivity of the PSS. The primary objective of this study is to develop a robust model that employs a fuzzy logic interface (FL) and particle swarm optimization (PSO) to forecast the optimal parameters of a pyramid solar still (PSS). The model considers a range of environmental variables and varying levels of silver nanoparticles (Ag) mixed with paraffin wax, serving as a phase change material (PCM). The study focuses on three key factors: solar intensity ranging from 350 to 950 W/m2, water depth varying between 4 and 8 cm, and silver (Ag) nanoparticle concentration ranging from 0.5 to 1.5% and corresponding output responses are productivity (P), glass temperature (Tg), and basin water temperature (Tw). The experimental design is based on Taguchi's L9 orthogonal array. A technique for ordering preference by similarity to the ideal solution (TOPSIS) is utilized to optimize the process parameters of PSS. Incorporating a fuzzy inference system (FIS) aims to minimize the uncertainty within the system, and the particle swarm optimization algorithm is employed to fine-tune the optimal settings. These methodologies are employed to forecast the optimal conditions required to enhance the productivity of the PSS. The primary objective of this study is to develop a robust model that employs a fuzzy logic interface (FL) and particle swarm optimization (PSO) to forecast the optimal parameters of a pyramid solar still (PSS). The model considers a range of environmental variables and varying levels of silver nanoparticles (Ag) mixed with paraffin wax, serving as a phase change material (PCM). The study focuses on three key factors: solar intensity ranging from 350 to 950 W/m , water depth varying between 4 and 8 cm, and silver (Ag) nanoparticle concentration ranging from 0.5 to 1.5% and corresponding output responses are productivity ( ), glass temperature ( ), and basin water temperature ( ). The experimental design is based on Taguchi's L9 orthogonal array. A technique for ordering preference by similarity to the ideal solution (TOPSIS) is utilized to optimize the process parameters of PSS. Incorporating a fuzzy inference system (FIS) aims to minimize the uncertainty within the system, and the particle swarm optimization algorithm is employed to fine-tune the optimal settings. These methodologies are employed to forecast the optimal conditions required to enhance the productivity of the PSS |
| Author | Yuvaperiyasamy, M. Senthilkumar, N. Sabari, K. Deepanraj, B. |
| Author_xml | – sequence: 1 givenname: N. surname: Senthilkumar fullname: Senthilkumar, N. – sequence: 2 givenname: M. surname: Yuvaperiyasamy fullname: Yuvaperiyasamy, M. – sequence: 3 givenname: B. surname: Deepanraj fullname: Deepanraj, B. – sequence: 4 givenname: K. surname: Sabari fullname: Sabari, K. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39215741$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kTtvFDEUhS0URDaBjhpZoqFgFj9m7HGJIgJIkWigtjy2J3Lkx2B7WO3-Bf403mxCEQkaX1nnu_f6HF-As5iiBeA1RluCGfuwK3VLEOm3hPNnYIOFYJ3glJyBDSKcdpgQeg4uSrlDCHHaoxfgnAqCB97jDfh9vR4Oe-jTrdPdpIo1cMnWOF1dilDFdlVZBVuz0zAt1QV3cPEWruV4Nq067S0sO5XDo67ue-eU4WJzK0FFbaELS06_bLCxQhfhsm9jnYEleZVhqc77l-D5rHyxrx7qJfhx_en71Zfu5tvnr1cfbzpNB167Ac296BEzZp74yGaLZzsLPQqtR8UGYwZGLTcj09wgPY2jpvOgGFXTgCgaBL0E3WnuGhe13ynv5ZJdUHkvMZLHUGULVR5DlS3Uxr878c3Az9U2Kbiirfcq2rQWSZEQI2Kixw19-wS9S2uOzY2kGBFBhCB9o948UOsUrPm7_fFbGkBOgM6plGxnqV29j7Vm5fy_nvn-SdN_Xf0B65KzTg |
| CitedBy_id | crossref_primary_10_1016_j_rineng_2025_104421 |
| Cites_doi | 10.3390/w15040704 10.1007/s40033-023-00554-y 10.3390/app13137719 10.1007/s11356-022-24104-3 10.2166/aqua.2024.290 10.14710/ijred.2023.57327 10.3233/JIFS-223650 10.1080/14786451.2023.2251610 10.4028/www.scientific.net/AMR.214.329 10.2507/IJSIMM19-4-524 10.1016/j.matpr.2020.06.275 10.1016/j.desal.2015.11.031 10.1016/j.rineng.2023.101301 10.1007/s12008-024-01762-w 10.1016/j.scitotenv.2024.170978 10.1016/j.compositesb.2023.110758 10.1016/j.desal.2023.116477 10.1016/j.csite.2022.101966 10.14710/ijred.2013.5644 10.2166/wrd.2023.065 10.2166/wrd.2023.102 10.1088/1757-899X/691/1/012090 10.1029/2023WR034653 10.1016/j.est.2021.103947 10.1016/j.jclepro.2022.132432 10.1016/j.watres.2024.121856 10.1016/j.resconrec.2024.107578 10.1016/j.measurement.2019.07.025 10.2174/0122127976288061240228045000 10.1002/9781119755074.ch41 10.1016/j.desal.2004.06.180 10.1038/s41598-023-35189-2 10.1016/j.rineng.2023.101722 10.2166/aqua.2024.227 10.1016/j.desal.2016.02.039 10.30501/jree.2024.411088.1651 10.1007/s40815-022-01431-8 10.1016/j.jclepro.2023.135875 10.14445/22315381/IJETT-V68I10P206 10.1016/j.egypro.2018.11.102 10.1016/j.aej.2023.07.002 10.1007/s10973-021-10799-y 10.1016/j.desal.2013.01.018 10.1016/j.matpr.2021.04.479 10.1016/j.mtcomm.2023.105743 10.3390/su151310122 10.1016/j.solener.2023.111808 10.1016/j.est.2023.106875 10.1016/j.energy.2023.128165 10.1016/j.solener.2018.02.049 10.1201/9781351228466-11 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/). Copyright IWA Publishing 2024 |
| Copyright_xml | – notice: 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/). – notice: Copyright IWA Publishing 2024 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QH 7UA 7X7 7XB 88E 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FYUFA GHDGH H96 H97 HCIFZ K9. L.G L6V M0S M1P M7S PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 ADTOC UNPAY |
| DOI | 10.2166/wst.2024.277 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aqualine Water Resources Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Health Research Premium Collection Health Research Premium Collection (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Health & Medical Collection (Alumni Edition) Medical Database Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection Aqualine ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1996-9732 |
| EndPage | 1337 |
| ExternalDocumentID | 10.2166/wst.2024.277 39215741 10_2166_wst_2024_277 |
| Genre | Journal Article |
| GroupedDBID | --- -~X 0R~ 123 4.4 53G 7X7 88E 8CJ 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJVE AAYXX ABFYC ABJCF ABLGR ABUWG ACGFO ACIWK AECGI AENEX AEUYN AFKRA AFPKN AFRAH AJXRC ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ BHPHI BKSAR BPHCQ BVXVI CCPQU CITATION CS3 D1J DU5 F5P FDB FYUFA GEUZO GROUPED_DOAJ H13 HCIFZ HFPTO HMCUK HZ~ L6V L7B M1P M7S O9- OK1 P2P PCBAR PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO R0Z RHI SJN TN5 UKHRP Y6R ~02 --K 1B1 29R AAEDT AALRI AAQXK AAXUO ABWVN ACRPL ADMUD ADNMO AGQPQ AGVJA AITUG ALIPV CGR CUY CVF EBS ECM EIF EJD FEDTE FGOYB HVGLF IHE M41 NPM NQ- R2- RIG ROL RPZ UHS ~KM 3V. 7QH 7UA 7XB 8FK C1K DWQXO F1W H96 H97 K9. L.G PKEHL PQEST PQUKI 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c357t-50f49406ddfb786fe1fef9c89cc8a65dd563e7d86c7d0cb88c3f5a63ab5030593 |
| IEDL.DBID | UNPAY |
| ISSN | 0273-1223 1996-9732 |
| IngestDate | Sun Sep 07 10:56:24 EDT 2025 Thu Oct 02 09:55:02 EDT 2025 Tue Oct 07 07:15:46 EDT 2025 Mon Jul 21 06:05:22 EDT 2025 Thu Apr 24 22:54:24 EDT 2025 Wed Oct 01 00:23:02 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | paraffin wax silver nanoparticles TOPSIS distillate productivity fuzzy rules |
| Language | English |
| License | 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-50f49406ddfb786fe1fef9c89cc8a65dd563e7d86c7d0cb88c3f5a63ab5030593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.2166/wst.2024.277 |
| PMID | 39215741 |
| PQID | 3102929924 |
| PQPubID | 2044520 |
| PageCount | 17 |
| ParticipantIDs | unpaywall_primary_10_2166_wst_2024_277 proquest_miscellaneous_3099806941 proquest_journals_3102929924 pubmed_primary_39215741 crossref_citationtrail_10_2166_wst_2024_277 crossref_primary_10_2166_wst_2024_277 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-15 |
| PublicationDateYYYYMMDD | 2024-08-15 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | Water science and technology |
| PublicationTitleAlternate | Water Sci Technol |
| PublicationYear | 2024 |
| Publisher | IWA Publishing |
| Publisher_xml | – name: IWA Publishing |
| References | key-10.2166/wst.2024.277-49 key-10.2166/wst.2024.277-48 key-10.2166/wst.2024.277-6 key-10.2166/wst.2024.277-41 key-10.2166/wst.2024.277-7 key-10.2166/wst.2024.277-40 key-10.2166/wst.2024.277-4 key-10.2166/wst.2024.277-43 key-10.2166/wst.2024.277-5 key-10.2166/wst.2024.277-42 key-10.2166/wst.2024.277-45 key-10.2166/wst.2024.277-44 key-10.2166/wst.2024.277-8 key-10.2166/wst.2024.277-47 key-10.2166/wst.2024.277-9 key-10.2166/wst.2024.277-46 key-10.2166/wst.2024.277-2 key-10.2166/wst.2024.277-3 key-10.2166/wst.2024.277-50 key-10.2166/wst.2024.277-1 key-10.2166/wst.2024.277-38 key-10.2166/wst.2024.277-37 key-10.2166/wst.2024.277-39 key-10.2166/wst.2024.277-30 key-10.2166/wst.2024.277-32 key-10.2166/wst.2024.277-31 key-10.2166/wst.2024.277-34 key-10.2166/wst.2024.277-33 key-10.2166/wst.2024.277-36 key-10.2166/wst.2024.277-35 key-10.2166/wst.2024.277-27 key-10.2166/wst.2024.277-26 key-10.2166/wst.2024.277-29 key-10.2166/wst.2024.277-28 key-10.2166/wst.2024.277-21 key-10.2166/wst.2024.277-20 key-10.2166/wst.2024.277-23 key-10.2166/wst.2024.277-22 key-10.2166/wst.2024.277-25 key-10.2166/wst.2024.277-24 key-10.2166/wst.2024.277-16 key-10.2166/wst.2024.277-15 key-10.2166/wst.2024.277-18 key-10.2166/wst.2024.277-17 key-10.2166/wst.2024.277-19 key-10.2166/wst.2024.277-51 key-10.2166/wst.2024.277-10 key-10.2166/wst.2024.277-12 key-10.2166/wst.2024.277-11 key-10.2166/wst.2024.277-14 key-10.2166/wst.2024.277-13 |
| References_xml | – ident: key-10.2166/wst.2024.277-6 doi: 10.3390/w15040704 – ident: key-10.2166/wst.2024.277-24 doi: 10.1007/s40033-023-00554-y – ident: key-10.2166/wst.2024.277-45 doi: 10.3390/app13137719 – ident: key-10.2166/wst.2024.277-36 doi: 10.1007/s11356-022-24104-3 – ident: key-10.2166/wst.2024.277-38 doi: 10.2166/aqua.2024.290 – ident: key-10.2166/wst.2024.277-47 doi: 10.14710/ijred.2023.57327 – ident: key-10.2166/wst.2024.277-35 doi: 10.3233/JIFS-223650 – ident: key-10.2166/wst.2024.277-12 doi: 10.1080/14786451.2023.2251610 – ident: key-10.2166/wst.2024.277-11 doi: 10.4028/www.scientific.net/AMR.214.329 – ident: key-10.2166/wst.2024.277-17 doi: 10.2507/IJSIMM19-4-524 – ident: key-10.2166/wst.2024.277-27 doi: 10.1016/j.matpr.2020.06.275 – ident: key-10.2166/wst.2024.277-10 doi: 10.1016/j.desal.2015.11.031 – ident: key-10.2166/wst.2024.277-2 doi: 10.1016/j.rineng.2023.101301 – ident: key-10.2166/wst.2024.277-21 doi: 10.1007/s12008-024-01762-w – ident: key-10.2166/wst.2024.277-44 doi: 10.1016/j.scitotenv.2024.170978 – ident: key-10.2166/wst.2024.277-19 doi: 10.1016/j.compositesb.2023.110758 – ident: key-10.2166/wst.2024.277-4 doi: 10.1016/j.desal.2023.116477 – ident: key-10.2166/wst.2024.277-18 doi: 10.1016/j.csite.2022.101966 – ident: key-10.2166/wst.2024.277-31 doi: 10.14710/ijred.2013.5644 – ident: key-10.2166/wst.2024.277-41 doi: 10.2166/wrd.2023.065 – ident: key-10.2166/wst.2024.277-48 doi: 10.2166/wrd.2023.102 – ident: key-10.2166/wst.2024.277-30 doi: 10.1088/1757-899X/691/1/012090 – ident: key-10.2166/wst.2024.277-42 doi: 10.1029/2023WR034653 – ident: key-10.2166/wst.2024.277-22 doi: 10.1016/j.est.2021.103947 – ident: key-10.2166/wst.2024.277-28 doi: 10.1016/j.jclepro.2022.132432 – ident: key-10.2166/wst.2024.277-43 doi: 10.1016/j.watres.2024.121856 – ident: key-10.2166/wst.2024.277-20 doi: 10.1016/j.resconrec.2024.107578 – ident: key-10.2166/wst.2024.277-7 doi: 10.1016/j.measurement.2019.07.025 – ident: key-10.2166/wst.2024.277-50 doi: 10.2174/0122127976288061240228045000 – ident: key-10.2166/wst.2024.277-14 doi: 10.1002/9781119755074.ch41 – ident: key-10.2166/wst.2024.277-40 doi: 10.1016/j.desal.2004.06.180 – ident: key-10.2166/wst.2024.277-33 doi: 10.1038/s41598-023-35189-2 – ident: key-10.2166/wst.2024.277-3 doi: 10.1016/j.rineng.2023.101722 – ident: key-10.2166/wst.2024.277-23 doi: 10.2166/aqua.2024.227 – ident: key-10.2166/wst.2024.277-32 doi: 10.1016/j.desal.2016.02.039 – ident: key-10.2166/wst.2024.277-49 doi: 10.30501/jree.2024.411088.1651 – ident: key-10.2166/wst.2024.277-16 doi: 10.1007/s40815-022-01431-8 – ident: key-10.2166/wst.2024.277-25 doi: 10.1016/j.jclepro.2023.135875 – ident: key-10.2166/wst.2024.277-37 doi: 10.14445/22315381/IJETT-V68I10P206 – ident: key-10.2166/wst.2024.277-46 doi: 10.1016/j.egypro.2018.11.102 – ident: key-10.2166/wst.2024.277-1 doi: 10.1016/j.aej.2023.07.002 – ident: key-10.2166/wst.2024.277-8 doi: 10.1007/s10973-021-10799-y – ident: key-10.2166/wst.2024.277-9 doi: 10.1016/j.desal.2013.01.018 – ident: key-10.2166/wst.2024.277-39 doi: 10.1016/j.matpr.2021.04.479 – ident: key-10.2166/wst.2024.277-26 doi: 10.1016/j.mtcomm.2023.105743 – ident: key-10.2166/wst.2024.277-5 doi: 10.3390/su151310122 – ident: key-10.2166/wst.2024.277-34 doi: 10.1016/j.solener.2023.111808 – ident: key-10.2166/wst.2024.277-51 doi: 10.1016/j.est.2023.106875 – ident: key-10.2166/wst.2024.277-15 doi: 10.1016/j.energy.2023.128165 – ident: key-10.2166/wst.2024.277-13 doi: 10.1016/j.solener.2018.02.049 – ident: key-10.2166/wst.2024.277-29 doi: 10.1201/9781351228466-11 |
| SSID | ssj0007340 |
| Score | 2.4711483 |
| Snippet | The primary objective of this study is to develop a robust model that employs a fuzzy logic interface (FL) and particle swarm optimization (PSO) to forecast... |
| SourceID | unpaywall proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1321 |
| SubjectTerms | Algorithms Alternative energy sources Desalination Design of experiments Efficiency Experimental design Fossil fuels Fuzzy Logic Heat Impact strength Metal Nanoparticles - chemistry Models, Theoretical Morphology Nanocomposites Nanoparticles Orthogonal arrays Paraffin wax Parameters Particle swarm optimization Phase change materials Process parameters Productivity Radiation Renewable resources Silver Silver - chemistry Solar Energy Temperature preferences Thermal energy Water depth Water temperature |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6N7gH2gGAwKAxkJOAFhSVxbCcPCAFqNSFRIcSkvUW2E0-VsjQ0rar2X-Cf5i6_OoTYY-KLY-mz7z6fz3cAr8PYWRsYH5d4EuEGRUWewVeedUieI-072RSD-TaT5xfR10txeQCz_i4MhVX2OrFR1NnCko_8DGlIiKYctwsfq18eVY2i09W-hIbuSitkH5oUY3fgMKTMWCM4_DyZff8x6GbFo9brorgXoGVsQ-HDQMqzTU2hlWH0PlTqbyP1D_M8grvrstLbjS6KG9Zo-gDudzSSfWpxfwgHeXkMRzeSCx7DyWR_hw1Fu0VcP4Lf0_Vut2WN0vPIimWsWtJ5DWHEdImPmkK2KHc_W6BKuZ7vsEdGIfJX1Nb8k9Ubvbzu2xt8GRJgVu1vIrB547FoHJBsXrJqi93OM1bTdpqhbimKx3Axnfz8cu51NRk8y4VaecJ3UYIkIMucUbF0eeByl9g4sTbWUmSZkDxXWSytynxr4thyJ7Tk2ghSLQk_gVG5KPOnwHjom0hx5YTjkU3wc4Pk0NfWSON8o8fwrgchtV3CcqqbUaS4cSHIUoQsJchShGwMbwbpqk3U8R-50x7PtFuudbqfXGN4NTTjQqPTE13mizXKIJeO6ZpwMIYn7TwYfoQkMxCKWt4OE-PWUTy7fRTP4R5Jku86EKcwWi3X-QskPyvzspvRfwB4QwgH priority: 102 providerName: ProQuest |
| Title | Fuzzy logic-based prediction and parametric optimizing using particle swarm optimization for performance improvement in pyramid solar still |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39215741 https://www.proquest.com/docview/3102929924 https://www.proquest.com/docview/3099806941 https://doi.org/10.2166/wst.2024.277 |
| UnpaywallVersion | publishedVersion |
| Volume | 90 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-9732 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0007340 issn: 0273-1223 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1996-9732 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0007340 issn: 0273-1223 databaseCode: 7X7 dateStart: 19820101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1996-9732 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0007340 issn: 0273-1223 databaseCode: BENPR dateStart: 19820101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1996-9732 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0007340 issn: 0273-1223 databaseCode: 8FG dateStart: 19820101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9t7QPsYcBgrDAqIw1eUEq-bCePA7VMSFQTolJ5imwnRhVZWjWNqvZf4J_m7CRdYeLjJUpy5w-dffbP5_MZ4MKPtFKedFHF4xAXKDx0JP5ylEbwHApXM3sZzKcxu5qEH6d0egAX7VmYvf1732Ps7bo0Do9-OPA5P4Quo4i4O9CdjK8vv1rzCQ8cz7e3uFl_WhN8pvZvv5P815nnDpw8gntVsRCbtcjzvSlm9ACGbeVqz5Lvg2olB2r7W9zGf9X-IRw3GJNc1p3iERxkxQkc7UUePIHT4e0BN2RtNLx8DD9G1Xa7IXZEdMwUl5LF0mzmmAYkosBPYfy5TGB_Msfx5ma2xRyJ8Z__Zmi2TFKuxfKmpdvGJ4iOyeL2mAKZWXOGtU6SWUEWG8x2lpLSrLUJDjx5_gQmo-GX91dOc2GDowLKVw51dRgjQkhTLXnEdObpTMcqipWKBKNpSlmQ8TRiiqeuklGkAk0FC4SkZtyJg1PoFPMiOwMS-K4MecA11UGoYkwuETm6QkkmtStFD960jZmoJpq5uVQjT3BVY2SfoOwTI_sEZd-DVzvuRR3F4w98522_SBpdLhMEwD6CSFyo9uDljoxaaLZWRJHNK-RBoB2ZM8ReD57W_WlXECJQj3JDeb3rYH-txbP_ZXwO982rMXF79Bw6q2WVvUCMtJJ9OORTjs9o9KEP3XfD8fXnvrU39Bvl-QmxUBT_ |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7aH0gKBQCBRYJMoFmfqx3rUPFeKRKKVthFAr9ebuw4siuY6JE0XJX-A_8duY8StFiN56tHe9a2lmZ76ZnQchb_zIau0pF454zMBAEcxR8MrRFsAzk67lVTOYsxEfXrCvl-HlBvnd5sJgWGUrEytBbSYafeSHAEN8UOVgLnwofjrYNQpvV9sWGrJprWCOqhJjTWLHSbpcgAlXHh1_AXof-P6gf_556DRdBhwdhGLmhK5lMag1Y6wSEbepZ1Mb6yjWOpI8NCbkQSpMxLUwrlZRpAMbSh5IFeJhwWJMoAK2WMBiMP62PvVH3753ukAErPbyiMDxQBPXofe-x_nhosRQTp-994X4Wyn-g3R3yPY8L-RyIbPshvYbPCD3G9hKP9Z89pBspPku2blRzHCX7PXXOXMwtREa5SPyazBfrZa0ErIOak1DiyneDyFPUJnDo8QQMewVQCcgwq7HK1iRYkj-Dxyr9qTlQk6v2_GKnygAblqsMx_ouPKQVA5POs5psYRlx4aWaL5TkGVZ9phc3Al19shmPsnTp4QGvquYCIQNbcB0DJ8rAKOu1Ior6yrZI-9aIiS6KZCOfTqyBAwlJFkCJEuQZAmQrEcOutlFXRjkP_P2W3omjXgokzUz98jrbhgONt7WyDydzGEOYPcI05K9HnlS80G3EYBaLxQ48rZjjFv_4tntf_GKbA_Pz06T0-PRyXNyD79Cv7kX7pPN2XSevgDgNVMvG-6m5OquD9QfCVdGLQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRQJ6QFAoBAosEuWC3Nhee9c-IIRoo5ZCxYFKuZndtRdFch0TJ4qSv8A_4tcx41eKEL31aO9Tmtc3s7M7AK_9yBrjaRdFPA7QQZGBo_GXYyyC50C5VtTFYL6ci5OL4NM4HG_B7-4uDKVVdjqxVtTp1FCMfIgwxEdTju7C0LZpEV-PRu_Lnw5VkKKT1q6cRsMiZ9lqie5b9e70CGl94Puj428fT5y2woBjeCjnTujaIEaTlqZWy0jYzLOZjU0UGxMpEaZpKHgm00gYmbpGR5HhNlSCKx2SoNBDTKj-b0nOY0onlOPe2UPJCZr4juSOhza4Sbr3PSGGy4qSOP3g0Jfyb3P4D8bdgTuLolSrpcrzK3ZvdB_utYCVfWg47AFsZcUu7Fx5xnAX9o43t-Wwa6suqofwa7RYr1esVq8O2cuUlTM6GSJuYKrAT0XJYVQlgE1ReV1O1jgjo2T8H9RWr8mqpZpddu01JzGE2qzc3Hlgkzo2Uoc62aRg5QqnnaSsIsedoRbL80dwcSO02YPtYlpkT4Bx39WB5NKGlgcmxuEaYairjBbauloN4G1HhMS0T6NThY48QReJSJYgyRIiWYIkG8BB37tsngT5T7_9jp5JqxiqZMPGA3jVN6NI0zmNKrLpAvsgao_oQrI3gMcNH_QLIZz1Qkktb3rGuHYXT6_fxUu4jWKUfD49P3sGd2kQBcy9cB-257NF9hwR11y_qFmbwfeblqU_NR1Dxw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7gH2wGAwKAxkpMELSsmX7eRxmlpNSEw8UGk8RbYTo4osjZpGVfsv8E9zl4-ubBrwluTOsXX22T-f784Ap35kjfG0iyoeh7hBkaGj8ZNjLILnULlWNJfBfLkUF9Pw8xW_2oPTPhZm5_ze94T4tKrI4dEPR76UD2BfcETcA9ifXn49-96YT2TgeH5zi1vjT0vJZ1r_9jvF_1x57sDJA3hYF6Var1Se7ywxk0MY941rPUt-juqlHpnNrbyN_2r9E3jcYUx21g6Kp7CXFUdwsJN58AiOxzcBbsjaaXj1DH5N6s1mzZoZ0aElLmXlgg5zqAOZKvBVkT8XJfZnc5xvrmcb_CMj__kfRGvqZNVKLa57etP5DNExK2_CFNisMWc01kk2K1i5xt_OUlbRXpvhxJPnz2E6GX87v3C6CxscE3C5dLhrwxgRQppaLSNhM89mNjZRbEykBE9TLoJMppEwMnWNjiITWK5EoDSneScOjmFQzIvsJbDAd3UoA2m5DUITY3GNyNFVRgttXa2G8LHvzMR02czpUo08wV0NyT5B2Sck-wRlP4T3W-6yzeJxD99JPy6STperBAGwjyASN6pDeLcloxbS0YoqsnmNPAi0I4oh9obwoh1P24oQgXpcEuXDdoD9tRWv_pfxNTyiRzJxe_wEBstFnb1BjLTUbzsV-Q3VLhCj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+logic-based+prediction+and+parametric+optimizing+using+particle+swarm+optimization+for+performance+improvement+in+pyramid+solar+still&rft.jtitle=Water+science+and+technology&rft.au=Senthilkumar%2C+N&rft.au=Yuvaperiyasamy%2C+M&rft.au=Deepanraj%2C+B&rft.au=Sabari%2C+K&rft.date=2024-08-15&rft.issn=0273-1223&rft.volume=90&rft.issue=4&rft.spage=1321&rft_id=info:doi/10.2166%2Fwst.2024.277&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1223&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1223&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1223&client=summon |