Fuzzy logic-based prediction and parametric optimizing using particle swarm optimization for performance improvement in pyramid solar still

The primary objective of this study is to develop a robust model that employs a fuzzy logic interface (FL) and particle swarm optimization (PSO) to forecast the optimal parameters of a pyramid solar still (PSS). The model considers a range of environmental variables and varying levels of silver nano...

Full description

Saved in:
Bibliographic Details
Published inWater science and technology Vol. 90; no. 4; pp. 1321 - 1337
Main Authors Senthilkumar, N., Yuvaperiyasamy, M., Deepanraj, B., Sabari, K.
Format Journal Article
LanguageEnglish
Published England IWA Publishing 15.08.2024
Subjects
Online AccessGet full text
ISSN0273-1223
1996-9732
1996-9732
DOI10.2166/wst.2024.277

Cover

Abstract The primary objective of this study is to develop a robust model that employs a fuzzy logic interface (FL) and particle swarm optimization (PSO) to forecast the optimal parameters of a pyramid solar still (PSS). The model considers a range of environmental variables and varying levels of silver nanoparticles (Ag) mixed with paraffin wax, serving as a phase change material (PCM). The study focuses on three key factors: solar intensity ranging from 350 to 950 W/m2, water depth varying between 4 and 8 cm, and silver (Ag) nanoparticle concentration ranging from 0.5 to 1.5% and corresponding output responses are productivity (P), glass temperature (Tg), and basin water temperature (Tw). The experimental design is based on Taguchi's L9 orthogonal array. A technique for ordering preference by similarity to the ideal solution (TOPSIS) is utilized to optimize the process parameters of PSS. Incorporating a fuzzy inference system (FIS) aims to minimize the uncertainty within the system, and the particle swarm optimization algorithm is employed to fine-tune the optimal settings. These methodologies are employed to forecast the optimal conditions required to enhance the productivity of the PSS.
AbstractList The primary objective of this study is to develop a robust model that employs a fuzzy logic interface (FL) and particle swarm optimization (PSO) to forecast the optimal parameters of a pyramid solar still (PSS). The model considers a range of environmental variables and varying levels of silver nanoparticles (Ag) mixed with paraffin wax, serving as a phase change material (PCM). The study focuses on three key factors: solar intensity ranging from 350 to 950 W/m2, water depth varying between 4 and 8 cm, and silver (Ag) nanoparticle concentration ranging from 0.5 to 1.5% and corresponding output responses are productivity (P), glass temperature (Tg), and basin water temperature (Tw). The experimental design is based on Taguchi's L9 orthogonal array. A technique for ordering preference by similarity to the ideal solution (TOPSIS) is utilized to optimize the process parameters of PSS. Incorporating a fuzzy inference system (FIS) aims to minimize the uncertainty within the system, and the particle swarm optimization algorithm is employed to fine-tune the optimal settings. These methodologies are employed to forecast the optimal conditions required to enhance the productivity of the PSS.The primary objective of this study is to develop a robust model that employs a fuzzy logic interface (FL) and particle swarm optimization (PSO) to forecast the optimal parameters of a pyramid solar still (PSS). The model considers a range of environmental variables and varying levels of silver nanoparticles (Ag) mixed with paraffin wax, serving as a phase change material (PCM). The study focuses on three key factors: solar intensity ranging from 350 to 950 W/m2, water depth varying between 4 and 8 cm, and silver (Ag) nanoparticle concentration ranging from 0.5 to 1.5% and corresponding output responses are productivity (P), glass temperature (Tg), and basin water temperature (Tw). The experimental design is based on Taguchi's L9 orthogonal array. A technique for ordering preference by similarity to the ideal solution (TOPSIS) is utilized to optimize the process parameters of PSS. Incorporating a fuzzy inference system (FIS) aims to minimize the uncertainty within the system, and the particle swarm optimization algorithm is employed to fine-tune the optimal settings. These methodologies are employed to forecast the optimal conditions required to enhance the productivity of the PSS.
The primary objective of this study is to develop a robust model that employs a fuzzy logic interface (FL) and particle swarm optimization (PSO) to forecast the optimal parameters of a pyramid solar still (PSS). The model considers a range of environmental variables and varying levels of silver nanoparticles (Ag) mixed with paraffin wax, serving as a phase change material (PCM). The study focuses on three key factors: solar intensity ranging from 350 to 950 W/m2, water depth varying between 4 and 8 cm, and silver (Ag) nanoparticle concentration ranging from 0.5 to 1.5% and corresponding output responses are productivity (P), glass temperature (Tg), and basin water temperature (Tw). The experimental design is based on Taguchi's L9 orthogonal array. A technique for ordering preference by similarity to the ideal solution (TOPSIS) is utilized to optimize the process parameters of PSS. Incorporating a fuzzy inference system (FIS) aims to minimize the uncertainty within the system, and the particle swarm optimization algorithm is employed to fine-tune the optimal settings. These methodologies are employed to forecast the optimal conditions required to enhance the productivity of the PSS.
The primary objective of this study is to develop a robust model that employs a fuzzy logic interface (FL) and particle swarm optimization (PSO) to forecast the optimal parameters of a pyramid solar still (PSS). The model considers a range of environmental variables and varying levels of silver nanoparticles (Ag) mixed with paraffin wax, serving as a phase change material (PCM). The study focuses on three key factors: solar intensity ranging from 350 to 950 W/m , water depth varying between 4 and 8 cm, and silver (Ag) nanoparticle concentration ranging from 0.5 to 1.5% and corresponding output responses are productivity ( ), glass temperature ( ), and basin water temperature ( ). The experimental design is based on Taguchi's L9 orthogonal array. A technique for ordering preference by similarity to the ideal solution (TOPSIS) is utilized to optimize the process parameters of PSS. Incorporating a fuzzy inference system (FIS) aims to minimize the uncertainty within the system, and the particle swarm optimization algorithm is employed to fine-tune the optimal settings. These methodologies are employed to forecast the optimal conditions required to enhance the productivity of the PSS
Author Yuvaperiyasamy, M.
Senthilkumar, N.
Sabari, K.
Deepanraj, B.
Author_xml – sequence: 1
  givenname: N.
  surname: Senthilkumar
  fullname: Senthilkumar, N.
– sequence: 2
  givenname: M.
  surname: Yuvaperiyasamy
  fullname: Yuvaperiyasamy, M.
– sequence: 3
  givenname: B.
  surname: Deepanraj
  fullname: Deepanraj, B.
– sequence: 4
  givenname: K.
  surname: Sabari
  fullname: Sabari, K.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39215741$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtvFDEUhS0URDaBjhpZoqFgFj9m7HGJIgJIkWigtjy2J3Lkx2B7WO3-Bf403mxCEQkaX1nnu_f6HF-As5iiBeA1RluCGfuwK3VLEOm3hPNnYIOFYJ3glJyBDSKcdpgQeg4uSrlDCHHaoxfgnAqCB97jDfh9vR4Oe-jTrdPdpIo1cMnWOF1dilDFdlVZBVuz0zAt1QV3cPEWruV4Nq067S0sO5XDo67ue-eU4WJzK0FFbaELS06_bLCxQhfhsm9jnYEleZVhqc77l-D5rHyxrx7qJfhx_en71Zfu5tvnr1cfbzpNB167Ac296BEzZp74yGaLZzsLPQqtR8UGYwZGLTcj09wgPY2jpvOgGFXTgCgaBL0E3WnuGhe13ynv5ZJdUHkvMZLHUGULVR5DlS3Uxr878c3Az9U2Kbiirfcq2rQWSZEQI2Kixw19-wS9S2uOzY2kGBFBhCB9o948UOsUrPm7_fFbGkBOgM6plGxnqV29j7Vm5fy_nvn-SdN_Xf0B65KzTg
CitedBy_id crossref_primary_10_1016_j_rineng_2025_104421
Cites_doi 10.3390/w15040704
10.1007/s40033-023-00554-y
10.3390/app13137719
10.1007/s11356-022-24104-3
10.2166/aqua.2024.290
10.14710/ijred.2023.57327
10.3233/JIFS-223650
10.1080/14786451.2023.2251610
10.4028/www.scientific.net/AMR.214.329
10.2507/IJSIMM19-4-524
10.1016/j.matpr.2020.06.275
10.1016/j.desal.2015.11.031
10.1016/j.rineng.2023.101301
10.1007/s12008-024-01762-w
10.1016/j.scitotenv.2024.170978
10.1016/j.compositesb.2023.110758
10.1016/j.desal.2023.116477
10.1016/j.csite.2022.101966
10.14710/ijred.2013.5644
10.2166/wrd.2023.065
10.2166/wrd.2023.102
10.1088/1757-899X/691/1/012090
10.1029/2023WR034653
10.1016/j.est.2021.103947
10.1016/j.jclepro.2022.132432
10.1016/j.watres.2024.121856
10.1016/j.resconrec.2024.107578
10.1016/j.measurement.2019.07.025
10.2174/0122127976288061240228045000
10.1002/9781119755074.ch41
10.1016/j.desal.2004.06.180
10.1038/s41598-023-35189-2
10.1016/j.rineng.2023.101722
10.2166/aqua.2024.227
10.1016/j.desal.2016.02.039
10.30501/jree.2024.411088.1651
10.1007/s40815-022-01431-8
10.1016/j.jclepro.2023.135875
10.14445/22315381/IJETT-V68I10P206
10.1016/j.egypro.2018.11.102
10.1016/j.aej.2023.07.002
10.1007/s10973-021-10799-y
10.1016/j.desal.2013.01.018
10.1016/j.matpr.2021.04.479
10.1016/j.mtcomm.2023.105743
10.3390/su151310122
10.1016/j.solener.2023.111808
10.1016/j.est.2023.106875
10.1016/j.energy.2023.128165
10.1016/j.solener.2018.02.049
10.1201/9781351228466-11
ContentType Journal Article
Copyright 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
Copyright IWA Publishing 2024
Copyright_xml – notice: 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
– notice: Copyright IWA Publishing 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QH
7UA
7X7
7XB
88E
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FYUFA
GHDGH
H96
H97
HCIFZ
K9.
L.G
L6V
M0S
M1P
M7S
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
ADTOC
UNPAY
DOI 10.2166/wst.2024.277
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aqualine
Water Resources Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Health Research Premium Collection
Health Research Premium Collection (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
Aqualine
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1996-9732
EndPage 1337
ExternalDocumentID 10.2166/wst.2024.277
39215741
10_2166_wst_2024_277
Genre Journal Article
GroupedDBID ---
-~X
0R~
123
4.4
53G
7X7
88E
8CJ
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJVE
AAYXX
ABFYC
ABJCF
ABLGR
ABUWG
ACGFO
ACIWK
AECGI
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AJXRC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
BHPHI
BKSAR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1J
DU5
F5P
FDB
FYUFA
GEUZO
GROUPED_DOAJ
H13
HCIFZ
HFPTO
HMCUK
HZ~
L6V
L7B
M1P
M7S
O9-
OK1
P2P
PCBAR
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
R0Z
RHI
SJN
TN5
UKHRP
Y6R
~02
--K
1B1
29R
AAEDT
AALRI
AAQXK
AAXUO
ABWVN
ACRPL
ADMUD
ADNMO
AGQPQ
AGVJA
AITUG
ALIPV
CGR
CUY
CVF
EBS
ECM
EIF
EJD
FEDTE
FGOYB
HVGLF
IHE
M41
NPM
NQ-
R2-
RIG
ROL
RPZ
UHS
~KM
3V.
7QH
7UA
7XB
8FK
C1K
DWQXO
F1W
H96
H97
K9.
L.G
PKEHL
PQEST
PQUKI
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c357t-50f49406ddfb786fe1fef9c89cc8a65dd563e7d86c7d0cb88c3f5a63ab5030593
IEDL.DBID UNPAY
ISSN 0273-1223
1996-9732
IngestDate Sun Sep 07 10:56:24 EDT 2025
Thu Oct 02 09:55:02 EDT 2025
Tue Oct 07 07:15:46 EDT 2025
Mon Jul 21 06:05:22 EDT 2025
Thu Apr 24 22:54:24 EDT 2025
Wed Oct 01 00:23:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords paraffin wax
silver nanoparticles
TOPSIS
distillate productivity
fuzzy rules
Language English
License 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-50f49406ddfb786fe1fef9c89cc8a65dd563e7d86c7d0cb88c3f5a63ab5030593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.2166/wst.2024.277
PMID 39215741
PQID 3102929924
PQPubID 2044520
PageCount 17
ParticipantIDs unpaywall_primary_10_2166_wst_2024_277
proquest_miscellaneous_3099806941
proquest_journals_3102929924
pubmed_primary_39215741
crossref_citationtrail_10_2166_wst_2024_277
crossref_primary_10_2166_wst_2024_277
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-15
PublicationDateYYYYMMDD 2024-08-15
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Water science and technology
PublicationTitleAlternate Water Sci Technol
PublicationYear 2024
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References key-10.2166/wst.2024.277-49
key-10.2166/wst.2024.277-48
key-10.2166/wst.2024.277-6
key-10.2166/wst.2024.277-41
key-10.2166/wst.2024.277-7
key-10.2166/wst.2024.277-40
key-10.2166/wst.2024.277-4
key-10.2166/wst.2024.277-43
key-10.2166/wst.2024.277-5
key-10.2166/wst.2024.277-42
key-10.2166/wst.2024.277-45
key-10.2166/wst.2024.277-44
key-10.2166/wst.2024.277-8
key-10.2166/wst.2024.277-47
key-10.2166/wst.2024.277-9
key-10.2166/wst.2024.277-46
key-10.2166/wst.2024.277-2
key-10.2166/wst.2024.277-3
key-10.2166/wst.2024.277-50
key-10.2166/wst.2024.277-1
key-10.2166/wst.2024.277-38
key-10.2166/wst.2024.277-37
key-10.2166/wst.2024.277-39
key-10.2166/wst.2024.277-30
key-10.2166/wst.2024.277-32
key-10.2166/wst.2024.277-31
key-10.2166/wst.2024.277-34
key-10.2166/wst.2024.277-33
key-10.2166/wst.2024.277-36
key-10.2166/wst.2024.277-35
key-10.2166/wst.2024.277-27
key-10.2166/wst.2024.277-26
key-10.2166/wst.2024.277-29
key-10.2166/wst.2024.277-28
key-10.2166/wst.2024.277-21
key-10.2166/wst.2024.277-20
key-10.2166/wst.2024.277-23
key-10.2166/wst.2024.277-22
key-10.2166/wst.2024.277-25
key-10.2166/wst.2024.277-24
key-10.2166/wst.2024.277-16
key-10.2166/wst.2024.277-15
key-10.2166/wst.2024.277-18
key-10.2166/wst.2024.277-17
key-10.2166/wst.2024.277-19
key-10.2166/wst.2024.277-51
key-10.2166/wst.2024.277-10
key-10.2166/wst.2024.277-12
key-10.2166/wst.2024.277-11
key-10.2166/wst.2024.277-14
key-10.2166/wst.2024.277-13
References_xml – ident: key-10.2166/wst.2024.277-6
  doi: 10.3390/w15040704
– ident: key-10.2166/wst.2024.277-24
  doi: 10.1007/s40033-023-00554-y
– ident: key-10.2166/wst.2024.277-45
  doi: 10.3390/app13137719
– ident: key-10.2166/wst.2024.277-36
  doi: 10.1007/s11356-022-24104-3
– ident: key-10.2166/wst.2024.277-38
  doi: 10.2166/aqua.2024.290
– ident: key-10.2166/wst.2024.277-47
  doi: 10.14710/ijred.2023.57327
– ident: key-10.2166/wst.2024.277-35
  doi: 10.3233/JIFS-223650
– ident: key-10.2166/wst.2024.277-12
  doi: 10.1080/14786451.2023.2251610
– ident: key-10.2166/wst.2024.277-11
  doi: 10.4028/www.scientific.net/AMR.214.329
– ident: key-10.2166/wst.2024.277-17
  doi: 10.2507/IJSIMM19-4-524
– ident: key-10.2166/wst.2024.277-27
  doi: 10.1016/j.matpr.2020.06.275
– ident: key-10.2166/wst.2024.277-10
  doi: 10.1016/j.desal.2015.11.031
– ident: key-10.2166/wst.2024.277-2
  doi: 10.1016/j.rineng.2023.101301
– ident: key-10.2166/wst.2024.277-21
  doi: 10.1007/s12008-024-01762-w
– ident: key-10.2166/wst.2024.277-44
  doi: 10.1016/j.scitotenv.2024.170978
– ident: key-10.2166/wst.2024.277-19
  doi: 10.1016/j.compositesb.2023.110758
– ident: key-10.2166/wst.2024.277-4
  doi: 10.1016/j.desal.2023.116477
– ident: key-10.2166/wst.2024.277-18
  doi: 10.1016/j.csite.2022.101966
– ident: key-10.2166/wst.2024.277-31
  doi: 10.14710/ijred.2013.5644
– ident: key-10.2166/wst.2024.277-41
  doi: 10.2166/wrd.2023.065
– ident: key-10.2166/wst.2024.277-48
  doi: 10.2166/wrd.2023.102
– ident: key-10.2166/wst.2024.277-30
  doi: 10.1088/1757-899X/691/1/012090
– ident: key-10.2166/wst.2024.277-42
  doi: 10.1029/2023WR034653
– ident: key-10.2166/wst.2024.277-22
  doi: 10.1016/j.est.2021.103947
– ident: key-10.2166/wst.2024.277-28
  doi: 10.1016/j.jclepro.2022.132432
– ident: key-10.2166/wst.2024.277-43
  doi: 10.1016/j.watres.2024.121856
– ident: key-10.2166/wst.2024.277-20
  doi: 10.1016/j.resconrec.2024.107578
– ident: key-10.2166/wst.2024.277-7
  doi: 10.1016/j.measurement.2019.07.025
– ident: key-10.2166/wst.2024.277-50
  doi: 10.2174/0122127976288061240228045000
– ident: key-10.2166/wst.2024.277-14
  doi: 10.1002/9781119755074.ch41
– ident: key-10.2166/wst.2024.277-40
  doi: 10.1016/j.desal.2004.06.180
– ident: key-10.2166/wst.2024.277-33
  doi: 10.1038/s41598-023-35189-2
– ident: key-10.2166/wst.2024.277-3
  doi: 10.1016/j.rineng.2023.101722
– ident: key-10.2166/wst.2024.277-23
  doi: 10.2166/aqua.2024.227
– ident: key-10.2166/wst.2024.277-32
  doi: 10.1016/j.desal.2016.02.039
– ident: key-10.2166/wst.2024.277-49
  doi: 10.30501/jree.2024.411088.1651
– ident: key-10.2166/wst.2024.277-16
  doi: 10.1007/s40815-022-01431-8
– ident: key-10.2166/wst.2024.277-25
  doi: 10.1016/j.jclepro.2023.135875
– ident: key-10.2166/wst.2024.277-37
  doi: 10.14445/22315381/IJETT-V68I10P206
– ident: key-10.2166/wst.2024.277-46
  doi: 10.1016/j.egypro.2018.11.102
– ident: key-10.2166/wst.2024.277-1
  doi: 10.1016/j.aej.2023.07.002
– ident: key-10.2166/wst.2024.277-8
  doi: 10.1007/s10973-021-10799-y
– ident: key-10.2166/wst.2024.277-9
  doi: 10.1016/j.desal.2013.01.018
– ident: key-10.2166/wst.2024.277-39
  doi: 10.1016/j.matpr.2021.04.479
– ident: key-10.2166/wst.2024.277-26
  doi: 10.1016/j.mtcomm.2023.105743
– ident: key-10.2166/wst.2024.277-5
  doi: 10.3390/su151310122
– ident: key-10.2166/wst.2024.277-34
  doi: 10.1016/j.solener.2023.111808
– ident: key-10.2166/wst.2024.277-51
  doi: 10.1016/j.est.2023.106875
– ident: key-10.2166/wst.2024.277-15
  doi: 10.1016/j.energy.2023.128165
– ident: key-10.2166/wst.2024.277-13
  doi: 10.1016/j.solener.2018.02.049
– ident: key-10.2166/wst.2024.277-29
  doi: 10.1201/9781351228466-11
SSID ssj0007340
Score 2.4711483
Snippet The primary objective of this study is to develop a robust model that employs a fuzzy logic interface (FL) and particle swarm optimization (PSO) to forecast...
SourceID unpaywall
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1321
SubjectTerms Algorithms
Alternative energy sources
Desalination
Design of experiments
Efficiency
Experimental design
Fossil fuels
Fuzzy Logic
Heat
Impact strength
Metal Nanoparticles - chemistry
Models, Theoretical
Morphology
Nanocomposites
Nanoparticles
Orthogonal arrays
Paraffin wax
Parameters
Particle swarm optimization
Phase change materials
Process parameters
Productivity
Radiation
Renewable resources
Silver
Silver - chemistry
Solar Energy
Temperature preferences
Thermal energy
Water depth
Water temperature
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6N7gH2gGAwKAxkJOAFhSVxbCcPCAFqNSFRIcSkvUW2E0-VsjQ0rar2X-Cf5i6_OoTYY-KLY-mz7z6fz3cAr8PYWRsYH5d4EuEGRUWewVeedUieI-072RSD-TaT5xfR10txeQCz_i4MhVX2OrFR1NnCko_8DGlIiKYctwsfq18eVY2i09W-hIbuSitkH5oUY3fgMKTMWCM4_DyZff8x6GbFo9brorgXoGVsQ-HDQMqzTU2hlWH0PlTqbyP1D_M8grvrstLbjS6KG9Zo-gDudzSSfWpxfwgHeXkMRzeSCx7DyWR_hw1Fu0VcP4Lf0_Vut2WN0vPIimWsWtJ5DWHEdImPmkK2KHc_W6BKuZ7vsEdGIfJX1Nb8k9Ubvbzu2xt8GRJgVu1vIrB547FoHJBsXrJqi93OM1bTdpqhbimKx3Axnfz8cu51NRk8y4VaecJ3UYIkIMucUbF0eeByl9g4sTbWUmSZkDxXWSytynxr4thyJ7Tk2ghSLQk_gVG5KPOnwHjom0hx5YTjkU3wc4Pk0NfWSON8o8fwrgchtV3CcqqbUaS4cSHIUoQsJchShGwMbwbpqk3U8R-50x7PtFuudbqfXGN4NTTjQqPTE13mizXKIJeO6ZpwMIYn7TwYfoQkMxCKWt4OE-PWUTy7fRTP4R5Jku86EKcwWi3X-QskPyvzspvRfwB4QwgH
  priority: 102
  providerName: ProQuest
Title Fuzzy logic-based prediction and parametric optimizing using particle swarm optimization for performance improvement in pyramid solar still
URI https://www.ncbi.nlm.nih.gov/pubmed/39215741
https://www.proquest.com/docview/3102929924
https://www.proquest.com/docview/3099806941
https://doi.org/10.2166/wst.2024.277
UnpaywallVersion publishedVersion
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-9732
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0007340
  issn: 0273-1223
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1996-9732
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0007340
  issn: 0273-1223
  databaseCode: 7X7
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1996-9732
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0007340
  issn: 0273-1223
  databaseCode: BENPR
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1996-9732
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0007340
  issn: 0273-1223
  databaseCode: 8FG
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9t7QPsYcBgrDAqIw1eUEq-bCePA7VMSFQTolJ5imwnRhVZWjWNqvZf4J_m7CRdYeLjJUpy5w-dffbP5_MZ4MKPtFKedFHF4xAXKDx0JP5ylEbwHApXM3sZzKcxu5qEH6d0egAX7VmYvf1732Ps7bo0Do9-OPA5P4Quo4i4O9CdjK8vv1rzCQ8cz7e3uFl_WhN8pvZvv5P815nnDpw8gntVsRCbtcjzvSlm9ACGbeVqz5Lvg2olB2r7W9zGf9X-IRw3GJNc1p3iERxkxQkc7UUePIHT4e0BN2RtNLx8DD9G1Xa7IXZEdMwUl5LF0mzmmAYkosBPYfy5TGB_Msfx5ma2xRyJ8Z__Zmi2TFKuxfKmpdvGJ4iOyeL2mAKZWXOGtU6SWUEWG8x2lpLSrLUJDjx5_gQmo-GX91dOc2GDowLKVw51dRgjQkhTLXnEdObpTMcqipWKBKNpSlmQ8TRiiqeuklGkAk0FC4SkZtyJg1PoFPMiOwMS-K4MecA11UGoYkwuETm6QkkmtStFD960jZmoJpq5uVQjT3BVY2SfoOwTI_sEZd-DVzvuRR3F4w98522_SBpdLhMEwD6CSFyo9uDljoxaaLZWRJHNK-RBoB2ZM8ReD57W_WlXECJQj3JDeb3rYH-txbP_ZXwO982rMXF79Bw6q2WVvUCMtJJ9OORTjs9o9KEP3XfD8fXnvrU39Bvl-QmxUBT_
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7aH0gKBQCBRYJMoFmfqx3rUPFeKRKKVthFAr9ebuw4siuY6JE0XJX-A_8duY8StFiN56tHe9a2lmZ76ZnQchb_zIau0pF454zMBAEcxR8MrRFsAzk67lVTOYsxEfXrCvl-HlBvnd5sJgWGUrEytBbSYafeSHAEN8UOVgLnwofjrYNQpvV9sWGrJprWCOqhJjTWLHSbpcgAlXHh1_AXof-P6gf_556DRdBhwdhGLmhK5lMag1Y6wSEbepZ1Mb6yjWOpI8NCbkQSpMxLUwrlZRpAMbSh5IFeJhwWJMoAK2WMBiMP62PvVH3753ukAErPbyiMDxQBPXofe-x_nhosRQTp-994X4Wyn-g3R3yPY8L-RyIbPshvYbPCD3G9hKP9Z89pBspPku2blRzHCX7PXXOXMwtREa5SPyazBfrZa0ErIOak1DiyneDyFPUJnDo8QQMewVQCcgwq7HK1iRYkj-Dxyr9qTlQk6v2_GKnygAblqsMx_ouPKQVA5POs5psYRlx4aWaL5TkGVZ9phc3Al19shmPsnTp4QGvquYCIQNbcB0DJ8rAKOu1Ior6yrZI-9aIiS6KZCOfTqyBAwlJFkCJEuQZAmQrEcOutlFXRjkP_P2W3omjXgokzUz98jrbhgONt7WyDydzGEOYPcI05K9HnlS80G3EYBaLxQ48rZjjFv_4tntf_GKbA_Pz06T0-PRyXNyD79Cv7kX7pPN2XSevgDgNVMvG-6m5OquD9QfCVdGLQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRQJ6QFAoBAosEuWC3Nhee9c-IIRoo5ZCxYFKuZndtRdFch0TJ4qSv8A_4tcx41eKEL31aO9Tmtc3s7M7AK_9yBrjaRdFPA7QQZGBo_GXYyyC50C5VtTFYL6ci5OL4NM4HG_B7-4uDKVVdjqxVtTp1FCMfIgwxEdTju7C0LZpEV-PRu_Lnw5VkKKT1q6cRsMiZ9lqie5b9e70CGl94Puj428fT5y2woBjeCjnTujaIEaTlqZWy0jYzLOZjU0UGxMpEaZpKHgm00gYmbpGR5HhNlSCKx2SoNBDTKj-b0nOY0onlOPe2UPJCZr4juSOhza4Sbr3PSGGy4qSOP3g0Jfyb3P4D8bdgTuLolSrpcrzK3ZvdB_utYCVfWg47AFsZcUu7Fx5xnAX9o43t-Wwa6suqofwa7RYr1esVq8O2cuUlTM6GSJuYKrAT0XJYVQlgE1ReV1O1jgjo2T8H9RWr8mqpZpddu01JzGE2qzc3Hlgkzo2Uoc62aRg5QqnnaSsIsedoRbL80dwcSO02YPtYlpkT4Bx39WB5NKGlgcmxuEaYairjBbauloN4G1HhMS0T6NThY48QReJSJYgyRIiWYIkG8BB37tsngT5T7_9jp5JqxiqZMPGA3jVN6NI0zmNKrLpAvsgao_oQrI3gMcNH_QLIZz1Qkktb3rGuHYXT6_fxUu4jWKUfD49P3sGd2kQBcy9cB-257NF9hwR11y_qFmbwfeblqU_NR1Dxw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7gH2wGAwKAxkpMELSsmX7eRxmlpNSEw8UGk8RbYTo4osjZpGVfsv8E9zl4-ubBrwluTOsXX22T-f784Ap35kjfG0iyoeh7hBkaGj8ZNjLILnULlWNJfBfLkUF9Pw8xW_2oPTPhZm5_ze94T4tKrI4dEPR76UD2BfcETcA9ifXn49-96YT2TgeH5zi1vjT0vJZ1r_9jvF_1x57sDJA3hYF6Var1Se7ywxk0MY941rPUt-juqlHpnNrbyN_2r9E3jcYUx21g6Kp7CXFUdwsJN58AiOxzcBbsjaaXj1DH5N6s1mzZoZ0aElLmXlgg5zqAOZKvBVkT8XJfZnc5xvrmcb_CMj__kfRGvqZNVKLa57etP5DNExK2_CFNisMWc01kk2K1i5xt_OUlbRXpvhxJPnz2E6GX87v3C6CxscE3C5dLhrwxgRQppaLSNhM89mNjZRbEykBE9TLoJMppEwMnWNjiITWK5EoDSneScOjmFQzIvsJbDAd3UoA2m5DUITY3GNyNFVRgttXa2G8LHvzMR02czpUo08wV0NyT5B2Sck-wRlP4T3W-6yzeJxD99JPy6STperBAGwjyASN6pDeLcloxbS0YoqsnmNPAi0I4oh9obwoh1P24oQgXpcEuXDdoD9tRWv_pfxNTyiRzJxe_wEBstFnb1BjLTUbzsV-Q3VLhCj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+logic-based+prediction+and+parametric+optimizing+using+particle+swarm+optimization+for+performance+improvement+in+pyramid+solar+still&rft.jtitle=Water+science+and+technology&rft.au=Senthilkumar%2C+N&rft.au=Yuvaperiyasamy%2C+M&rft.au=Deepanraj%2C+B&rft.au=Sabari%2C+K&rft.date=2024-08-15&rft.issn=0273-1223&rft.volume=90&rft.issue=4&rft.spage=1321&rft_id=info:doi/10.2166%2Fwst.2024.277&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1223&client=summon