A heliospheric density and magnetic field model
Context. The radial evolution of the density of the plasma and the magnetic field in the heliosphere, especially in the region between the solar corona and the Earth’s orbit, has been a topic of active research for several decades. Both remote-sensing observations and in situ measurements by spacecr...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 679; p. A64 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
EDP Sciences
01.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0004-6361 1432-0746 |
DOI | 10.1051/0004-6361/202245050 |
Cover
Abstract | Context.
The radial evolution of the density of the plasma and the magnetic field in the heliosphere, especially in the region between the solar corona and the Earth’s orbit, has been a topic of active research for several decades. Both remote-sensing observations and in situ measurements by spacecraft such as HELIOS, Ulysses, and WIND have provided critical data on this subject. The NASA space mission Parker Solar Probe (PSP), which will approach the Sun down to a distance of 9.9 solar radii on December 24, 2024, gives new insights into the structure of the plasma density and magnetic field in the heliosphere, especially in the near-Sun interplanetary space. This region is of particular interest because the launch and evolution of coronal mass ejections (CMEs), which can influence the environment of our Earth (usually called space weather), takes place there.
Aims.
Because of the new data from PSP, it is time to revisit the subject of the radial evolution of the plasma density and magnetic field in the heliosphere. To do this, we derive a radial heliospheric density and magnetic field model in the vicinity of the ecliptic plane above quiet equatorial regions. The model agrees well with the measurements in the sense of a global long-term average.
Methods.
The radial evolution of the density and solar wind velocity is described in terms of Parker’s wind equation. A special solution of this equation includes two integration constants that are fitted by the measurements. For the magnetic field, we employed a previous model in which the magnetic field is describe by a superposition of the magnetic fields of a dipole and a quadrupole of the quiet Sun and a current sheet in the heliosphere.
Results.
We find the radial evolution of the electron and proton number density as well as the radial component of the magnetic field and the total field strength in the heliosphere from the bottom of the corona up to a heliocentric distance of 250 solar radii. The modelled values are consistent with coronal observations, measurements at 1 AU, and with the recent data from the inner heliosphere provided by PSP.
Conclusions.
With the knowledge of the radial evolution of the plasma density and the magnetic field in the heliosphere the radial behaviour of the local Alfvén speed can be calculated. It can can reach a local maximum of 392 km s
−1
at a distance of approximately 4 solar radii, and it exceeds the local solar wind speed at distances in the range of 3.6−13.7 solar radii from the centre of the Sun. |
---|---|
AbstractList | Context. The radial evolution of the density of the plasma and the magnetic field in the heliosphere, especially in the region between the solar corona and the Earth's orbit, has been a topic of active research for several decades. Both remote-sensing observations and in situ measurements by spacecraft such as HELIOS, Ulysses, and WIND have provided critical data on this subject. The NASA space mission Parker Solar Probe (PSP), which will approach the Sun down to a distance of 9.9 solar radii on December 24, 2024, gives new insights into the structure of the plasma density and magnetic field in the heliosphere, especially in the near-Sun interplanetary space. This region is of particular interest because the launch and evolution of coronal mass ejections (CMEs), which can influence the environment of our Earth (usually called space weather), takes place there. Aims: Because of the new data from PSP, it is time to revisit the subject of the radial evolution of the plasma density and magnetic field in the heliosphere. To do this, we derive a radial heliospheric density and magnetic field model in the vicinity of the ecliptic plane above quiet equatorial regions. The model agrees well with the measurements in the sense of a global long-term average. Methods: The radial evolution of the density and solar wind velocity is described in terms of Parker's wind equation. A special solution of this equation includes two integration constants that are fitted by the measurements. For the magnetic field, we employed a previous model in which the magnetic field is describe by a superposition of the magnetic fields of a dipole and a quadrupole of the quiet Sun and a current sheet in the heliosphere. Results: We find the radial evolution of the electron and proton number density as well as the radial component of the magnetic field and the total field strength in the heliosphere from the bottom of the corona up to a heliocentric distance of 250 solar radii. The modelled values are consistent with coronal observations, measurements at 1 AU, and with the recent data from the inner heliosphere provided by PSP. Conclusions: With the knowledge of the radial evolution of the plasma density and the magnetic field in the heliosphere the radial behaviour of the local Alfvén speed can be calculated. It can can reach a local maximum of 392 km s−1 at a distance of approximately 4 solar radii, and it exceeds the local solar wind speed at distances in the range of 3.6−13.7 solar radii from the centre of the Sun. Full Table 8 is available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/679/A64 Context. The radial evolution of the density of the plasma and the magnetic field in the heliosphere, especially in the region between the solar corona and the Earth’s orbit, has been a topic of active research for several decades. Both remote-sensing observations and in situ measurements by spacecraft such as HELIOS, Ulysses, and WIND have provided critical data on this subject. The NASA space mission Parker Solar Probe (PSP), which will approach the Sun down to a distance of 9.9 solar radii on December 24, 2024, gives new insights into the structure of the plasma density and magnetic field in the heliosphere, especially in the near-Sun interplanetary space. This region is of particular interest because the launch and evolution of coronal mass ejections (CMEs), which can influence the environment of our Earth (usually called space weather), takes place there. Aims. Because of the new data from PSP, it is time to revisit the subject of the radial evolution of the plasma density and magnetic field in the heliosphere. To do this, we derive a radial heliospheric density and magnetic field model in the vicinity of the ecliptic plane above quiet equatorial regions. The model agrees well with the measurements in the sense of a global long-term average. Methods. The radial evolution of the density and solar wind velocity is described in terms of Parker’s wind equation. A special solution of this equation includes two integration constants that are fitted by the measurements. For the magnetic field, we employed a previous model in which the magnetic field is describe by a superposition of the magnetic fields of a dipole and a quadrupole of the quiet Sun and a current sheet in the heliosphere. Results. We find the radial evolution of the electron and proton number density as well as the radial component of the magnetic field and the total field strength in the heliosphere from the bottom of the corona up to a heliocentric distance of 250 solar radii. The modelled values are consistent with coronal observations, measurements at 1 AU, and with the recent data from the inner heliosphere provided by PSP. Conclusions. With the knowledge of the radial evolution of the plasma density and the magnetic field in the heliosphere the radial behaviour of the local Alfvén speed can be calculated. It can can reach a local maximum of 392 km s −1 at a distance of approximately 4 solar radii, and it exceeds the local solar wind speed at distances in the range of 3.6−13.7 solar radii from the centre of the Sun. Context. The radial evolution of the density of the plasma and the magnetic field in the heliosphere, especially in the region between the solar corona and the Earth’s orbit, has been a topic of active research for several decades. Both remote-sensing observations and in situ measurements by spacecraft such as HELIOS, Ulysses, and WIND have provided critical data on this subject. The NASA space mission Parker Solar Probe (PSP), which will approach the Sun down to a distance of 9.9 solar radii on December 24, 2024, gives new insights into the structure of the plasma density and magnetic field in the heliosphere, especially in the near-Sun interplanetary space. This region is of particular interest because the launch and evolution of coronal mass ejections (CMEs), which can influence the environment of our Earth (usually called space weather), takes place there. Aims. Because of the new data from PSP, it is time to revisit the subject of the radial evolution of the plasma density and magnetic field in the heliosphere. To do this, we derive a radial heliospheric density and magnetic field model in the vicinity of the ecliptic plane above quiet equatorial regions. The model agrees well with the measurements in the sense of a global long-term average. Methods. The radial evolution of the density and solar wind velocity is described in terms of Parker’s wind equation. A special solution of this equation includes two integration constants that are fitted by the measurements. For the magnetic field, we employed a previous model in which the magnetic field is describe by a superposition of the magnetic fields of a dipole and a quadrupole of the quiet Sun and a current sheet in the heliosphere. Results. We find the radial evolution of the electron and proton number density as well as the radial component of the magnetic field and the total field strength in the heliosphere from the bottom of the corona up to a heliocentric distance of 250 solar radii. The modelled values are consistent with coronal observations, measurements at 1 AU, and with the recent data from the inner heliosphere provided by PSP. Conclusions. With the knowledge of the radial evolution of the plasma density and the magnetic field in the heliosphere the radial behaviour of the local Alfvén speed can be calculated. It can can reach a local maximum of 392 km s−1 at a distance of approximately 4 solar radii, and it exceeds the local solar wind speed at distances in the range of 3.6−13.7 solar radii from the centre of the Sun. |
Author | Mann, G. Vocks, C. Warmuth, A. Rouillard, A. P. |
Author_xml | – sequence: 1 givenname: G. surname: Mann fullname: Mann, G. – sequence: 2 givenname: A. orcidid: 0000-0003-1439-3610 surname: Warmuth fullname: Warmuth, A. – sequence: 3 givenname: C. orcidid: 0000-0001-8583-8619 surname: Vocks fullname: Vocks, C. – sequence: 4 givenname: A. P. surname: Rouillard fullname: Rouillard, A. P. |
BackLink | https://insu.hal.science/insu-04473141$$DView record in HAL |
BookMark | eNp9kE9LAzEQxYNUsK1-Ai8L3oS1-beb5FiKtkLBi55DmkxtyjapyVbotzel0oMHT8Mbfm_m8UZoEGIAhO4JfiK4IROMMa9b1pIJxZTyBjf4Cg0JZ7TGgrcDNLwQN2iU87ZISiQbosm02kDnY95vIHlbOQjZ98fKBFftzGeAvizXHroio4PuFl2vTZfh7neO0cfL8_tsUS_f5q-z6bK2rBF9zZV1QlHLW2dpSWQ5MWolV0YBllaCM8qU_5K5komJ1jaCEODC8BVzCiQbo8fz3Y3p9D75nUlHHY3Xi-lS-5APGnMuGOHkmxT44QzvU_w6QO71Nh5SKPk0laoRQkjJC8XOlE0x5wTry12C9alGfSpJn0rSlxqLS_1xWd-b3sfQJ-O7f70_Lkd1iw |
CitedBy_id | crossref_primary_10_1093_mnras_staf369 crossref_primary_10_4236_ijaa_2024_144016 |
Cites_doi | 10.1007/BF00153449 10.1023/A:1005049730506 10.1051/0004-6361:20010019 10.1007/BF00150879 10.1007/978-94-009-7958-1 10.1016/0273-1177(94)90156-2 10.1051/0004-6361:20021593 10.1007/978-3-642-75361-9_3 10.1002/asna.19372630602 10.1007/s11207-012-0035-4 10.3847/1538-4357/ac1799 10.1051/0004-6361/201322650 10.1086/147865 10.1007/BF00152812 10.1088/1674-4527/14/7/003 10.1126/science.268.5213.1007 10.3847/1538-4357/abe309 10.1023/A:1005082526237 10.1103/PhysRevLett.127.255101 10.1007/978-3-642-75361-9_2 10.1086/307036 10.1086/192332 10.1007/BF00751328 10.3847/1538-4365/ab6610 10.1007/BF00222313 10.1029/JA081i019p03403 10.1007/BF00167401 10.1023/A:1004908601144 10.3847/1538-4357/ac90c2 10.1029/2000GL012764 10.1007/s11214-015-0206-3 10.1007/978-3-642-75361-9_4 10.3847/1538-4365/ab5a84 10.1086/174073 10.1086/376682 10.1007/BF00751331 10.1007/BF00160102 10.1051/0004-6361/202141919 10.1086/147104 10.1086/146579 10.1051/0004-6361/201937257 10.1126/science.abb4462 10.1086/312309 10.1029/2000JA000024 10.1051/0004-6361:20030791 10.1007/s11214-016-0244-5 10.1007/BF00173965 10.12942/lrsp-2013-5 |
ContentType | Journal Article |
Copyright | 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 8FD H8D L7M 1XC VOOES |
DOI | 10.1051/0004-6361/202245050 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | oai_HAL_insu_04473141v1 10_1051_0004_6361_202245050 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AEILP AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 8FD H8D L7M 1XC VOOES |
ID | FETCH-LOGICAL-c357t-49cd792c46dc2224c41a9b8ba9e08c8eda9a18383d636376c5711e47a4b3d9e83 |
ISSN | 0004-6361 |
IngestDate | Wed Sep 10 06:20:26 EDT 2025 Sun Jun 29 15:50:59 EDT 2025 Tue Jul 01 03:54:12 EDT 2025 Thu Apr 24 22:58:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | solar-terrestrial relations Sun: heliosphere Sun: corona Sun: magnetic fields solar wind |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c357t-49cd792c46dc2224c41a9b8ba9e08c8eda9a18383d636376c5711e47a4b3d9e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1439-3610 0000-0001-8583-8619 |
OpenAccessLink | https://insu.hal.science/insu-04473141 |
PQID | 2895777884 |
PQPubID | 1796397 |
ParticipantIDs | hal_primary_oai_HAL_insu_04473141v1 proquest_journals_2895777884 crossref_primary_10_1051_0004_6361_202245050 crossref_citationtrail_10_1051_0004_6361_202245050 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2023 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Landi (R29) 1998; 340 Mann (R35) 2003; 400 Erickson (R16) 1964; 139 Van de Hulst (R54) 1950; 11 Balogh (R6) 1995; 268 Glessen (R18) 1974; 55 Morgan (R39) 2021; 922 Owens (R41) 2013; 10 R2 Pätzold (R42) 1987; 109 Koutchmy (R27) 1994; 14 Rouillard (R48) 2020; 246 Gritton (R20) 2021; 910 Tu (R53) 2001; 106 Bougeret (R11) 1984; 90 Reid (R47) 2014; 14 R9 Gallagher (R17) 1999; 524 Issautier (R24) 1997; 172 Moncuquet (R38) 2020; 246 Vocks (R55) 2001; 28 Badman (R4) 2022; 938 R34 Leblanc (R32) 1998; 183 R36 Glessen (R19) 1976; 81 Newkirk (R40) 1961; 133 Brosius (R13) 1996; 106 Alvarez (R1) 1973; 29 Kasper (R25) 2016; 204 Leblanc (R31) 1973; 31 Marsch (R37) 2006; 3 Mann (R33) 1999; 348 Tu (R52) 2001; 368 R43 Vocks (R56) 2003; 593 Parker (R44) 1958; 128 Saito (R49) 1977; 55 Kasper (R26) 2021; 127 R46 Stone (R51) 1998; 86 Aschwanden (R3) 1999; 515 Banaszkiewisz (R7) 1998; 337 Hofmeister (R23) 2022; 659 Horbury (R22) 2020; 642 Bale (R5) 2016; 204 Lin (R30) 1995; 71 Wild (R58) 1950; 3 Dulk (R15) 1978; 57 Hackenberg (R21) 2000; 360 R50 Baumbach (R8) 1937; 263 Bougeret (R12) 1995; 71 Vršnak (R57) 2013; 285 Zucca (R60) 2014; 564 Koutchmy (R28) 1992; 61 Del Zanna (R14) 2003; 406 Porsche (R45) 1977; 42 Yang (R59) 2020; 369 Bird (R10) 1994; 426 |
References_xml | – volume: 55 start-page: 404 year: 1974 ident: R18 publication-title: EOS Trans. AGU – volume: 360 start-page: 1139 year: 2000 ident: R21 publication-title: A&A – volume: 3 start-page: 100 year: 2006 ident: R37 publication-title: Liv. Rev. Sol. Phys. – volume: 29 start-page: 197 year: 1973 ident: R1 publication-title: Sol. Phys. doi: 10.1007/BF00153449 – volume: 183 start-page: 165 year: 1998 ident: R32 publication-title: Sol. Phys. doi: 10.1023/A:1005049730506 – volume: 368 start-page: 1071 year: 2001 ident: R52 publication-title: A&A doi: 10.1051/0004-6361:20010019 – volume: 55 start-page: 121 year: 1977 ident: R49 publication-title: Sol. Phys. doi: 10.1007/BF00150879 – ident: R46 doi: 10.1007/978-94-009-7958-1 – volume: 14 start-page: 243 year: 1994 ident: R27 publication-title: Adv. Space Res. doi: 10.1016/0273-1177(94)90156-2 – volume: 400 start-page: 329 year: 2003 ident: R35 publication-title: A&A doi: 10.1051/0004-6361:20021593 – ident: R50 doi: 10.1007/978-3-642-75361-9_3 – volume: 263 start-page: 121 year: 1937 ident: R8 publication-title: Astron. Nachr. doi: 10.1002/asna.19372630602 – volume: 285 start-page: 295 year: 2013 ident: R57 publication-title: Sol. Phys. doi: 10.1007/s11207-012-0035-4 – volume: 922 start-page: 165 year: 2021 ident: R39 publication-title: ApJ doi: 10.3847/1538-4357/ac1799 – volume: 564 start-page: A47 year: 2014 ident: R60 publication-title: A&A doi: 10.1051/0004-6361/201322650 – volume: 139 start-page: 1290 year: 1964 ident: R16 publication-title: ApJ doi: 10.1086/147865 – volume: 31 start-page: 343 year: 1973 ident: R31 publication-title: Sol. Phys. doi: 10.1007/BF00152812 – volume: 14 start-page: 773 year: 2014 ident: R47 publication-title: Res. Astron. Astrophys. doi: 10.1088/1674-4527/14/7/003 – volume: 337 start-page: 940 year: 1998 ident: R7 publication-title: A&A – volume: 268 start-page: 1007 year: 1995 ident: R6 publication-title: Science doi: 10.1126/science.268.5213.1007 – volume: 910 start-page: 63 year: 2021 ident: R20 publication-title: ApJ doi: 10.3847/1538-4357/abe309 – volume: 86 start-page: 1 year: 1998 ident: R51 publication-title: Space Sci. Rev. doi: 10.1023/A:1005082526237 – volume: 127 start-page: 255101 year: 2021 ident: R26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.255101 – ident: R43 – ident: R9 doi: 10.1007/978-3-642-75361-9_2 – volume: 515 start-page: 842 year: 1999 ident: R3 publication-title: ApJ doi: 10.1086/307036 – volume: 106 start-page: 143 year: 1996 ident: R13 publication-title: ApJS doi: 10.1086/192332 – volume: 71 start-page: 246 year: 1995 ident: R30 publication-title: Space Sci. Rev. doi: 10.1007/BF00751328 – volume: 246 start-page: 72 year: 2020 ident: R48 publication-title: ApJS doi: 10.3847/1538-4365/ab6610 – ident: R2 – volume: 61 start-page: 393 year: 1992 ident: R28 publication-title: Space Sci. Rev. doi: 10.1007/BF00222313 – volume: 81 start-page: 3403 year: 1976 ident: R19 publication-title: J. Geophys. Res. doi: 10.1029/JA081i019p03403 – volume: 109 start-page: 91 year: 1987 ident: R42 publication-title: Sol. Phys. doi: 10.1007/BF00167401 – volume: 172 start-page: 335 year: 1997 ident: R24 publication-title: Sol. Phys. doi: 10.1023/A:1004908601144 – volume: 938 start-page: 95 year: 2022 ident: R4 publication-title: ApJ doi: 10.3847/1538-4357/ac90c2 – volume: 28 start-page: 1817 year: 2001 ident: R55 publication-title: Geophys. Res. Lett. doi: 10.1029/2000GL012764 – volume: 3 start-page: 541 year: 1950 ident: R58 publication-title: Austr. J. Sci. Res. Ser. A – volume: 204 start-page: 131 year: 2016 ident: R25 publication-title: Space Sci. Rev. doi: 10.1007/s11214-015-0206-3 – ident: R36 doi: 10.1007/978-3-642-75361-9_4 – volume: 246 start-page: 44 year: 2020 ident: R38 publication-title: ApJS doi: 10.3847/1538-4365/ab5a84 – volume: 426 start-page: 373 year: 1994 ident: R10 publication-title: ApJ doi: 10.1086/174073 – volume: 11 start-page: 135 year: 1950 ident: R54 publication-title: Bull. Astron. Inst. Neth. – volume: 593 start-page: 1134 year: 2003 ident: R56 publication-title: ApJ doi: 10.1086/376682 – volume: 71 start-page: 231 year: 1995 ident: R12 publication-title: Space Sci. Rev. doi: 10.1007/BF00751331 – volume: 57 start-page: 279 year: 1978 ident: R15 publication-title: Solar Phys. doi: 10.1007/BF00160102 – volume: 659 start-page: A190 year: 2022 ident: R23 publication-title: A&A doi: 10.1051/0004-6361/202141919 – volume: 133 start-page: 983 year: 1961 ident: R40 publication-title: ApJ doi: 10.1086/147104 – volume: 128 start-page: 664 year: 1958 ident: R44 publication-title: ApJ doi: 10.1086/146579 – volume: 340 start-page: 265 year: 1998 ident: R29 publication-title: A&A – volume: 348 start-page: 614 year: 1999 ident: R33 publication-title: A&A – volume: 642 start-page: A9 year: 2020 ident: R22 publication-title: A&A doi: 10.1051/0004-6361/201937257 – volume: 369 start-page: 694 year: 2020 ident: R59 publication-title: Science doi: 10.1126/science.abb4462 – volume: 524 start-page: L133 year: 1999 ident: R17 publication-title: ApJ doi: 10.1086/312309 – volume: 106 start-page: 8233 year: 2001 ident: R53 publication-title: J. Geophys. Res. doi: 10.1029/2000JA000024 – volume: 406 start-page: 1089 year: 2003 ident: R14 publication-title: A&A doi: 10.1051/0004-6361:20030791 – volume: 42 start-page: 551 year: 1977 ident: R45 publication-title: J. Geophys. Res. – volume: 204 start-page: 49 year: 2016 ident: R5 publication-title: Space Sci. Rev. doi: 10.1007/s11214-016-0244-5 – volume: 90 start-page: 401 year: 1984 ident: R11 publication-title: Sol. Phys. doi: 10.1007/BF00173965 – volume: 10 start-page: 5 year: 2013 ident: R41 publication-title: Living Rev. Solar Phys. doi: 10.12942/lrsp-2013-5 – ident: R34 |
SSID | ssj0002183 |
Score | 2.4593272 |
Snippet | Context.
The radial evolution of the density of the plasma and the magnetic field in the heliosphere, especially in the region between the solar corona and the... Context. The radial evolution of the density of the plasma and the magnetic field in the heliosphere, especially in the region between the solar corona and the... |
SourceID | hal proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | A64 |
SubjectTerms | Coronal mass ejection Current sheets Dipoles Equatorial regions Evolution Field strength Heliosphere In situ measurement Interplanetary space Magnetic fields Plasma Plasma density Quadrupoles Remote sensing Sciences of the Universe Solar corona Solar physics Solar probes Solar wind Solar wind velocity Space missions Sun Wind speed |
Title | A heliospheric density and magnetic field model |
URI | https://www.proquest.com/docview/2895777884 https://insu.hal.science/insu-04473141 |
Volume | 679 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAHI databaseName: EDP Open customDbUrl: eissn: 1432-0746 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002183 issn: 0004-6361 databaseCode: GI~ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.edp-open.org/ providerName: EDP |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYEBIvCAZohYEsgXgpSZvEie3HCMEKAjShDe0t8kcKk9YWrSkPPPC3c5dL3DDQxHiJ0pN7UXLn8_l89zvGnlsrjM9lEs2117BBsTbSSphIGp-mLgO1nmO848PHYnYi3p3mp9t2qW11SWNj9-OvdSX_I1WggVyxSvYakg1MgQD3IF-4goTh-k8yLsHPOz9brREa4MyNPSajNwSotDBfllifOG5T1KjhzdARLdcYA18taLTBXxTkaKOwBII1iBL0vZQP420E_mKxoaBMGYifwboSZkEgfVptsLERZdCX8fgoHgYa0qyruBsaTxEVGWGnxzXZS5Fh8moXRewMakHtYTqTWBJK-R-mGqwB5TYSU6xMQX8CPLLpdm3qz-MvLVkhkbA9Qs8TPEIXFbKpApMddjOVRYFdLQ7f_gyrM7qEtCWi5_ZIVHkyCbRJYPKbt7LzFXNlLy3ZrR9yfJfd6TYQvCRtuMdu1Ms9th_EyV_wciDMPXbriO7us0nJh-rCO3XhoAC8Vxfeqgtv1eUBO3nz-vjVLOr6ZUQuy2UTCe281KkThXfg9gknEqOtskbXU-VU7Y028PYq8_CSsLA4mKNJLaQRNvO6VtlDtrtcLet9xkVu5Bw2_9Z7K6zOjarB8QW2Dqa2zNMRS_vvUrkOTB57mpxXV0hkxF6GP30jLJWrhz-DDx5GIg76rHxfYY1GNRVCZolIvicjdtALpOqm5rpKlc6llEqJR9d75mN2e6v6B2y3udjUT8DrbOzTVo1-AQgBc-Q |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+heliospheric+density+and+magnetic+field+model&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Mann%2C+G.&rft.au=Warmuth%2C+A.&rft.au=Vocks%2C+C.&rft.au=Rouillard%2C+A.+P.&rft.date=2023-11-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=679&rft.spage=A64&rft_id=info:doi/10.1051%2F0004-6361%2F202245050&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202245050 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |