A heliospheric density and magnetic field model

Context. The radial evolution of the density of the plasma and the magnetic field in the heliosphere, especially in the region between the solar corona and the Earth’s orbit, has been a topic of active research for several decades. Both remote-sensing observations and in situ measurements by spacecr...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 679; p. A64
Main Authors Mann, G., Warmuth, A., Vocks, C., Rouillard, A. P.
Format Journal Article
LanguageEnglish
Published Heidelberg EDP Sciences 01.11.2023
Subjects
Online AccessGet full text
ISSN0004-6361
1432-0746
DOI10.1051/0004-6361/202245050

Cover

Abstract Context. The radial evolution of the density of the plasma and the magnetic field in the heliosphere, especially in the region between the solar corona and the Earth’s orbit, has been a topic of active research for several decades. Both remote-sensing observations and in situ measurements by spacecraft such as HELIOS, Ulysses, and WIND have provided critical data on this subject. The NASA space mission Parker Solar Probe (PSP), which will approach the Sun down to a distance of 9.9 solar radii on December 24, 2024, gives new insights into the structure of the plasma density and magnetic field in the heliosphere, especially in the near-Sun interplanetary space. This region is of particular interest because the launch and evolution of coronal mass ejections (CMEs), which can influence the environment of our Earth (usually called space weather), takes place there. Aims. Because of the new data from PSP, it is time to revisit the subject of the radial evolution of the plasma density and magnetic field in the heliosphere. To do this, we derive a radial heliospheric density and magnetic field model in the vicinity of the ecliptic plane above quiet equatorial regions. The model agrees well with the measurements in the sense of a global long-term average. Methods. The radial evolution of the density and solar wind velocity is described in terms of Parker’s wind equation. A special solution of this equation includes two integration constants that are fitted by the measurements. For the magnetic field, we employed a previous model in which the magnetic field is describe by a superposition of the magnetic fields of a dipole and a quadrupole of the quiet Sun and a current sheet in the heliosphere. Results. We find the radial evolution of the electron and proton number density as well as the radial component of the magnetic field and the total field strength in the heliosphere from the bottom of the corona up to a heliocentric distance of 250 solar radii. The modelled values are consistent with coronal observations, measurements at 1 AU, and with the recent data from the inner heliosphere provided by PSP. Conclusions. With the knowledge of the radial evolution of the plasma density and the magnetic field in the heliosphere the radial behaviour of the local Alfvén speed can be calculated. It can can reach a local maximum of 392 km s −1 at a distance of approximately 4 solar radii, and it exceeds the local solar wind speed at distances in the range of 3.6−13.7 solar radii from the centre of the Sun.
AbstractList Context. The radial evolution of the density of the plasma and the magnetic field in the heliosphere, especially in the region between the solar corona and the Earth's orbit, has been a topic of active research for several decades. Both remote-sensing observations and in situ measurements by spacecraft such as HELIOS, Ulysses, and WIND have provided critical data on this subject. The NASA space mission Parker Solar Probe (PSP), which will approach the Sun down to a distance of 9.9 solar radii on December 24, 2024, gives new insights into the structure of the plasma density and magnetic field in the heliosphere, especially in the near-Sun interplanetary space. This region is of particular interest because the launch and evolution of coronal mass ejections (CMEs), which can influence the environment of our Earth (usually called space weather), takes place there. Aims: Because of the new data from PSP, it is time to revisit the subject of the radial evolution of the plasma density and magnetic field in the heliosphere. To do this, we derive a radial heliospheric density and magnetic field model in the vicinity of the ecliptic plane above quiet equatorial regions. The model agrees well with the measurements in the sense of a global long-term average. Methods: The radial evolution of the density and solar wind velocity is described in terms of Parker's wind equation. A special solution of this equation includes two integration constants that are fitted by the measurements. For the magnetic field, we employed a previous model in which the magnetic field is describe by a superposition of the magnetic fields of a dipole and a quadrupole of the quiet Sun and a current sheet in the heliosphere. Results: We find the radial evolution of the electron and proton number density as well as the radial component of the magnetic field and the total field strength in the heliosphere from the bottom of the corona up to a heliocentric distance of 250 solar radii. The modelled values are consistent with coronal observations, measurements at 1 AU, and with the recent data from the inner heliosphere provided by PSP. Conclusions: With the knowledge of the radial evolution of the plasma density and the magnetic field in the heliosphere the radial behaviour of the local Alfvén speed can be calculated. It can can reach a local maximum of 392 km s−1 at a distance of approximately 4 solar radii, and it exceeds the local solar wind speed at distances in the range of 3.6−13.7 solar radii from the centre of the Sun. Full Table 8 is available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/679/A64
Context. The radial evolution of the density of the plasma and the magnetic field in the heliosphere, especially in the region between the solar corona and the Earth’s orbit, has been a topic of active research for several decades. Both remote-sensing observations and in situ measurements by spacecraft such as HELIOS, Ulysses, and WIND have provided critical data on this subject. The NASA space mission Parker Solar Probe (PSP), which will approach the Sun down to a distance of 9.9 solar radii on December 24, 2024, gives new insights into the structure of the plasma density and magnetic field in the heliosphere, especially in the near-Sun interplanetary space. This region is of particular interest because the launch and evolution of coronal mass ejections (CMEs), which can influence the environment of our Earth (usually called space weather), takes place there. Aims. Because of the new data from PSP, it is time to revisit the subject of the radial evolution of the plasma density and magnetic field in the heliosphere. To do this, we derive a radial heliospheric density and magnetic field model in the vicinity of the ecliptic plane above quiet equatorial regions. The model agrees well with the measurements in the sense of a global long-term average. Methods. The radial evolution of the density and solar wind velocity is described in terms of Parker’s wind equation. A special solution of this equation includes two integration constants that are fitted by the measurements. For the magnetic field, we employed a previous model in which the magnetic field is describe by a superposition of the magnetic fields of a dipole and a quadrupole of the quiet Sun and a current sheet in the heliosphere. Results. We find the radial evolution of the electron and proton number density as well as the radial component of the magnetic field and the total field strength in the heliosphere from the bottom of the corona up to a heliocentric distance of 250 solar radii. The modelled values are consistent with coronal observations, measurements at 1 AU, and with the recent data from the inner heliosphere provided by PSP. Conclusions. With the knowledge of the radial evolution of the plasma density and the magnetic field in the heliosphere the radial behaviour of the local Alfvén speed can be calculated. It can can reach a local maximum of 392 km s −1 at a distance of approximately 4 solar radii, and it exceeds the local solar wind speed at distances in the range of 3.6−13.7 solar radii from the centre of the Sun.
Context. The radial evolution of the density of the plasma and the magnetic field in the heliosphere, especially in the region between the solar corona and the Earth’s orbit, has been a topic of active research for several decades. Both remote-sensing observations and in situ measurements by spacecraft such as HELIOS, Ulysses, and WIND have provided critical data on this subject. The NASA space mission Parker Solar Probe (PSP), which will approach the Sun down to a distance of 9.9 solar radii on December 24, 2024, gives new insights into the structure of the plasma density and magnetic field in the heliosphere, especially in the near-Sun interplanetary space. This region is of particular interest because the launch and evolution of coronal mass ejections (CMEs), which can influence the environment of our Earth (usually called space weather), takes place there. Aims. Because of the new data from PSP, it is time to revisit the subject of the radial evolution of the plasma density and magnetic field in the heliosphere. To do this, we derive a radial heliospheric density and magnetic field model in the vicinity of the ecliptic plane above quiet equatorial regions. The model agrees well with the measurements in the sense of a global long-term average. Methods. The radial evolution of the density and solar wind velocity is described in terms of Parker’s wind equation. A special solution of this equation includes two integration constants that are fitted by the measurements. For the magnetic field, we employed a previous model in which the magnetic field is describe by a superposition of the magnetic fields of a dipole and a quadrupole of the quiet Sun and a current sheet in the heliosphere. Results. We find the radial evolution of the electron and proton number density as well as the radial component of the magnetic field and the total field strength in the heliosphere from the bottom of the corona up to a heliocentric distance of 250 solar radii. The modelled values are consistent with coronal observations, measurements at 1 AU, and with the recent data from the inner heliosphere provided by PSP. Conclusions. With the knowledge of the radial evolution of the plasma density and the magnetic field in the heliosphere the radial behaviour of the local Alfvén speed can be calculated. It can can reach a local maximum of 392 km s−1 at a distance of approximately 4 solar radii, and it exceeds the local solar wind speed at distances in the range of 3.6−13.7 solar radii from the centre of the Sun.
Author Mann, G.
Vocks, C.
Warmuth, A.
Rouillard, A. P.
Author_xml – sequence: 1
  givenname: G.
  surname: Mann
  fullname: Mann, G.
– sequence: 2
  givenname: A.
  orcidid: 0000-0003-1439-3610
  surname: Warmuth
  fullname: Warmuth, A.
– sequence: 3
  givenname: C.
  orcidid: 0000-0001-8583-8619
  surname: Vocks
  fullname: Vocks, C.
– sequence: 4
  givenname: A. P.
  surname: Rouillard
  fullname: Rouillard, A. P.
BackLink https://insu.hal.science/insu-04473141$$DView record in HAL
BookMark eNp9kE9LAzEQxYNUsK1-Ai8L3oS1-beb5FiKtkLBi55DmkxtyjapyVbotzel0oMHT8Mbfm_m8UZoEGIAhO4JfiK4IROMMa9b1pIJxZTyBjf4Cg0JZ7TGgrcDNLwQN2iU87ZISiQbosm02kDnY95vIHlbOQjZ98fKBFftzGeAvizXHroio4PuFl2vTZfh7neO0cfL8_tsUS_f5q-z6bK2rBF9zZV1QlHLW2dpSWQ5MWolV0YBllaCM8qU_5K5komJ1jaCEODC8BVzCiQbo8fz3Y3p9D75nUlHHY3Xi-lS-5APGnMuGOHkmxT44QzvU_w6QO71Nh5SKPk0laoRQkjJC8XOlE0x5wTry12C9alGfSpJn0rSlxqLS_1xWd-b3sfQJ-O7f70_Lkd1iw
CitedBy_id crossref_primary_10_1093_mnras_staf369
crossref_primary_10_4236_ijaa_2024_144016
Cites_doi 10.1007/BF00153449
10.1023/A:1005049730506
10.1051/0004-6361:20010019
10.1007/BF00150879
10.1007/978-94-009-7958-1
10.1016/0273-1177(94)90156-2
10.1051/0004-6361:20021593
10.1007/978-3-642-75361-9_3
10.1002/asna.19372630602
10.1007/s11207-012-0035-4
10.3847/1538-4357/ac1799
10.1051/0004-6361/201322650
10.1086/147865
10.1007/BF00152812
10.1088/1674-4527/14/7/003
10.1126/science.268.5213.1007
10.3847/1538-4357/abe309
10.1023/A:1005082526237
10.1103/PhysRevLett.127.255101
10.1007/978-3-642-75361-9_2
10.1086/307036
10.1086/192332
10.1007/BF00751328
10.3847/1538-4365/ab6610
10.1007/BF00222313
10.1029/JA081i019p03403
10.1007/BF00167401
10.1023/A:1004908601144
10.3847/1538-4357/ac90c2
10.1029/2000GL012764
10.1007/s11214-015-0206-3
10.1007/978-3-642-75361-9_4
10.3847/1538-4365/ab5a84
10.1086/174073
10.1086/376682
10.1007/BF00751331
10.1007/BF00160102
10.1051/0004-6361/202141919
10.1086/147104
10.1086/146579
10.1051/0004-6361/201937257
10.1126/science.abb4462
10.1086/312309
10.1029/2000JA000024
10.1051/0004-6361:20030791
10.1007/s11214-016-0244-5
10.1007/BF00173965
10.12942/lrsp-2013-5
ContentType Journal Article
Copyright 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
8FD
H8D
L7M
1XC
VOOES
DOI 10.1051/0004-6361/202245050
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID oai_HAL_insu_04473141v1
10_1051_0004_6361_202245050
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AEILP
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
8FD
H8D
L7M
1XC
VOOES
ID FETCH-LOGICAL-c357t-49cd792c46dc2224c41a9b8ba9e08c8eda9a18383d636376c5711e47a4b3d9e83
ISSN 0004-6361
IngestDate Wed Sep 10 06:20:26 EDT 2025
Sun Jun 29 15:50:59 EDT 2025
Tue Jul 01 03:54:12 EDT 2025
Thu Apr 24 22:58:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords solar-terrestrial relations
Sun: heliosphere
Sun: corona
Sun: magnetic fields
solar wind
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c357t-49cd792c46dc2224c41a9b8ba9e08c8eda9a18383d636376c5711e47a4b3d9e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1439-3610
0000-0001-8583-8619
OpenAccessLink https://insu.hal.science/insu-04473141
PQID 2895777884
PQPubID 1796397
ParticipantIDs hal_primary_oai_HAL_insu_04473141v1
proquest_journals_2895777884
crossref_primary_10_1051_0004_6361_202245050
crossref_citationtrail_10_1051_0004_6361_202245050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2023
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Landi (R29) 1998; 340
Mann (R35) 2003; 400
Erickson (R16) 1964; 139
Van de Hulst (R54) 1950; 11
Balogh (R6) 1995; 268
Glessen (R18) 1974; 55
Morgan (R39) 2021; 922
Owens (R41) 2013; 10
R2
Pätzold (R42) 1987; 109
Koutchmy (R27) 1994; 14
Rouillard (R48) 2020; 246
Gritton (R20) 2021; 910
Tu (R53) 2001; 106
Bougeret (R11) 1984; 90
Reid (R47) 2014; 14
R9
Gallagher (R17) 1999; 524
Issautier (R24) 1997; 172
Moncuquet (R38) 2020; 246
Vocks (R55) 2001; 28
Badman (R4) 2022; 938
R34
Leblanc (R32) 1998; 183
R36
Glessen (R19) 1976; 81
Newkirk (R40) 1961; 133
Brosius (R13) 1996; 106
Alvarez (R1) 1973; 29
Kasper (R25) 2016; 204
Leblanc (R31) 1973; 31
Marsch (R37) 2006; 3
Mann (R33) 1999; 348
Tu (R52) 2001; 368
R43
Vocks (R56) 2003; 593
Parker (R44) 1958; 128
Saito (R49) 1977; 55
Kasper (R26) 2021; 127
R46
Stone (R51) 1998; 86
Aschwanden (R3) 1999; 515
Banaszkiewisz (R7) 1998; 337
Hofmeister (R23) 2022; 659
Horbury (R22) 2020; 642
Bale (R5) 2016; 204
Lin (R30) 1995; 71
Wild (R58) 1950; 3
Dulk (R15) 1978; 57
Hackenberg (R21) 2000; 360
R50
Baumbach (R8) 1937; 263
Bougeret (R12) 1995; 71
Vršnak (R57) 2013; 285
Zucca (R60) 2014; 564
Koutchmy (R28) 1992; 61
Del Zanna (R14) 2003; 406
Porsche (R45) 1977; 42
Yang (R59) 2020; 369
Bird (R10) 1994; 426
References_xml – volume: 55
  start-page: 404
  year: 1974
  ident: R18
  publication-title: EOS Trans. AGU
– volume: 360
  start-page: 1139
  year: 2000
  ident: R21
  publication-title: A&A
– volume: 3
  start-page: 100
  year: 2006
  ident: R37
  publication-title: Liv. Rev. Sol. Phys.
– volume: 29
  start-page: 197
  year: 1973
  ident: R1
  publication-title: Sol. Phys.
  doi: 10.1007/BF00153449
– volume: 183
  start-page: 165
  year: 1998
  ident: R32
  publication-title: Sol. Phys.
  doi: 10.1023/A:1005049730506
– volume: 368
  start-page: 1071
  year: 2001
  ident: R52
  publication-title: A&A
  doi: 10.1051/0004-6361:20010019
– volume: 55
  start-page: 121
  year: 1977
  ident: R49
  publication-title: Sol. Phys.
  doi: 10.1007/BF00150879
– ident: R46
  doi: 10.1007/978-94-009-7958-1
– volume: 14
  start-page: 243
  year: 1994
  ident: R27
  publication-title: Adv. Space Res.
  doi: 10.1016/0273-1177(94)90156-2
– volume: 400
  start-page: 329
  year: 2003
  ident: R35
  publication-title: A&A
  doi: 10.1051/0004-6361:20021593
– ident: R50
  doi: 10.1007/978-3-642-75361-9_3
– volume: 263
  start-page: 121
  year: 1937
  ident: R8
  publication-title: Astron. Nachr.
  doi: 10.1002/asna.19372630602
– volume: 285
  start-page: 295
  year: 2013
  ident: R57
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-012-0035-4
– volume: 922
  start-page: 165
  year: 2021
  ident: R39
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac1799
– volume: 564
  start-page: A47
  year: 2014
  ident: R60
  publication-title: A&A
  doi: 10.1051/0004-6361/201322650
– volume: 139
  start-page: 1290
  year: 1964
  ident: R16
  publication-title: ApJ
  doi: 10.1086/147865
– volume: 31
  start-page: 343
  year: 1973
  ident: R31
  publication-title: Sol. Phys.
  doi: 10.1007/BF00152812
– volume: 14
  start-page: 773
  year: 2014
  ident: R47
  publication-title: Res. Astron. Astrophys.
  doi: 10.1088/1674-4527/14/7/003
– volume: 337
  start-page: 940
  year: 1998
  ident: R7
  publication-title: A&A
– volume: 268
  start-page: 1007
  year: 1995
  ident: R6
  publication-title: Science
  doi: 10.1126/science.268.5213.1007
– volume: 910
  start-page: 63
  year: 2021
  ident: R20
  publication-title: ApJ
  doi: 10.3847/1538-4357/abe309
– volume: 86
  start-page: 1
  year: 1998
  ident: R51
  publication-title: Space Sci. Rev.
  doi: 10.1023/A:1005082526237
– volume: 127
  start-page: 255101
  year: 2021
  ident: R26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.255101
– ident: R43
– ident: R9
  doi: 10.1007/978-3-642-75361-9_2
– volume: 515
  start-page: 842
  year: 1999
  ident: R3
  publication-title: ApJ
  doi: 10.1086/307036
– volume: 106
  start-page: 143
  year: 1996
  ident: R13
  publication-title: ApJS
  doi: 10.1086/192332
– volume: 71
  start-page: 246
  year: 1995
  ident: R30
  publication-title: Space Sci. Rev.
  doi: 10.1007/BF00751328
– volume: 246
  start-page: 72
  year: 2020
  ident: R48
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab6610
– ident: R2
– volume: 61
  start-page: 393
  year: 1992
  ident: R28
  publication-title: Space Sci. Rev.
  doi: 10.1007/BF00222313
– volume: 81
  start-page: 3403
  year: 1976
  ident: R19
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA081i019p03403
– volume: 109
  start-page: 91
  year: 1987
  ident: R42
  publication-title: Sol. Phys.
  doi: 10.1007/BF00167401
– volume: 172
  start-page: 335
  year: 1997
  ident: R24
  publication-title: Sol. Phys.
  doi: 10.1023/A:1004908601144
– volume: 938
  start-page: 95
  year: 2022
  ident: R4
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac90c2
– volume: 28
  start-page: 1817
  year: 2001
  ident: R55
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2000GL012764
– volume: 3
  start-page: 541
  year: 1950
  ident: R58
  publication-title: Austr. J. Sci. Res. Ser. A
– volume: 204
  start-page: 131
  year: 2016
  ident: R25
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-015-0206-3
– ident: R36
  doi: 10.1007/978-3-642-75361-9_4
– volume: 246
  start-page: 44
  year: 2020
  ident: R38
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab5a84
– volume: 426
  start-page: 373
  year: 1994
  ident: R10
  publication-title: ApJ
  doi: 10.1086/174073
– volume: 11
  start-page: 135
  year: 1950
  ident: R54
  publication-title: Bull. Astron. Inst. Neth.
– volume: 593
  start-page: 1134
  year: 2003
  ident: R56
  publication-title: ApJ
  doi: 10.1086/376682
– volume: 71
  start-page: 231
  year: 1995
  ident: R12
  publication-title: Space Sci. Rev.
  doi: 10.1007/BF00751331
– volume: 57
  start-page: 279
  year: 1978
  ident: R15
  publication-title: Solar Phys.
  doi: 10.1007/BF00160102
– volume: 659
  start-page: A190
  year: 2022
  ident: R23
  publication-title: A&A
  doi: 10.1051/0004-6361/202141919
– volume: 133
  start-page: 983
  year: 1961
  ident: R40
  publication-title: ApJ
  doi: 10.1086/147104
– volume: 128
  start-page: 664
  year: 1958
  ident: R44
  publication-title: ApJ
  doi: 10.1086/146579
– volume: 340
  start-page: 265
  year: 1998
  ident: R29
  publication-title: A&A
– volume: 348
  start-page: 614
  year: 1999
  ident: R33
  publication-title: A&A
– volume: 642
  start-page: A9
  year: 2020
  ident: R22
  publication-title: A&A
  doi: 10.1051/0004-6361/201937257
– volume: 369
  start-page: 694
  year: 2020
  ident: R59
  publication-title: Science
  doi: 10.1126/science.abb4462
– volume: 524
  start-page: L133
  year: 1999
  ident: R17
  publication-title: ApJ
  doi: 10.1086/312309
– volume: 106
  start-page: 8233
  year: 2001
  ident: R53
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JA000024
– volume: 406
  start-page: 1089
  year: 2003
  ident: R14
  publication-title: A&A
  doi: 10.1051/0004-6361:20030791
– volume: 42
  start-page: 551
  year: 1977
  ident: R45
  publication-title: J. Geophys. Res.
– volume: 204
  start-page: 49
  year: 2016
  ident: R5
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-016-0244-5
– volume: 90
  start-page: 401
  year: 1984
  ident: R11
  publication-title: Sol. Phys.
  doi: 10.1007/BF00173965
– volume: 10
  start-page: 5
  year: 2013
  ident: R41
  publication-title: Living Rev. Solar Phys.
  doi: 10.12942/lrsp-2013-5
– ident: R34
SSID ssj0002183
Score 2.4593272
Snippet Context. The radial evolution of the density of the plasma and the magnetic field in the heliosphere, especially in the region between the solar corona and the...
Context. The radial evolution of the density of the plasma and the magnetic field in the heliosphere, especially in the region between the solar corona and the...
SourceID hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage A64
SubjectTerms Coronal mass ejection
Current sheets
Dipoles
Equatorial regions
Evolution
Field strength
Heliosphere
In situ measurement
Interplanetary space
Magnetic fields
Plasma
Plasma density
Quadrupoles
Remote sensing
Sciences of the Universe
Solar corona
Solar physics
Solar probes
Solar wind
Solar wind velocity
Space missions
Sun
Wind speed
Title A heliospheric density and magnetic field model
URI https://www.proquest.com/docview/2895777884
https://insu.hal.science/insu-04473141
Volume 679
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAHI
  databaseName: EDP Open
  customDbUrl:
  eissn: 1432-0746
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002183
  issn: 0004-6361
  databaseCode: GI~
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.edp-open.org/
  providerName: EDP
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYEBIvCAZohYEsgXgpSZvEie3HCMEKAjShDe0t8kcKk9YWrSkPPPC3c5dL3DDQxHiJ0pN7UXLn8_l89zvGnlsrjM9lEs2117BBsTbSSphIGp-mLgO1nmO848PHYnYi3p3mp9t2qW11SWNj9-OvdSX_I1WggVyxSvYakg1MgQD3IF-4goTh-k8yLsHPOz9brREa4MyNPSajNwSotDBfllifOG5T1KjhzdARLdcYA18taLTBXxTkaKOwBII1iBL0vZQP420E_mKxoaBMGYifwboSZkEgfVptsLERZdCX8fgoHgYa0qyruBsaTxEVGWGnxzXZS5Fh8moXRewMakHtYTqTWBJK-R-mGqwB5TYSU6xMQX8CPLLpdm3qz-MvLVkhkbA9Qs8TPEIXFbKpApMddjOVRYFdLQ7f_gyrM7qEtCWi5_ZIVHkyCbRJYPKbt7LzFXNlLy3ZrR9yfJfd6TYQvCRtuMdu1Ms9th_EyV_wciDMPXbriO7us0nJh-rCO3XhoAC8Vxfeqgtv1eUBO3nz-vjVLOr6ZUQuy2UTCe281KkThXfg9gknEqOtskbXU-VU7Y028PYq8_CSsLA4mKNJLaQRNvO6VtlDtrtcLet9xkVu5Bw2_9Z7K6zOjarB8QW2Dqa2zNMRS_vvUrkOTB57mpxXV0hkxF6GP30jLJWrhz-DDx5GIg76rHxfYY1GNRVCZolIvicjdtALpOqm5rpKlc6llEqJR9d75mN2e6v6B2y3udjUT8DrbOzTVo1-AQgBc-Q
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+heliospheric+density+and+magnetic+field+model&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Mann%2C+G.&rft.au=Warmuth%2C+A.&rft.au=Vocks%2C+C.&rft.au=Rouillard%2C+A.+P.&rft.date=2023-11-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=679&rft.spage=A64&rft_id=info:doi/10.1051%2F0004-6361%2F202245050&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202245050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon