Measuring Political Sentiment on Twitter: Factor Optimal Design for Multinomial Inverse Regression

This article presents a short case study in text analysis: the scoring of Twitter posts for positive, negative, or neutral sentiment directed toward particular U.S. politicians. The study requires selection of a subsample of representative posts for sentiment scoring, a common and costly aspect of s...

Full description

Saved in:
Bibliographic Details
Published inTechnometrics Vol. 55; no. 4; pp. 415 - 425
Main Author Taddy, Matt
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis Group 01.11.2013
American Society for Quality and the American Statistical Association
American Society for Quality
Subjects
Online AccessGet full text
ISSN0040-1706
1537-2723
DOI10.1080/00401706.2013.778791

Cover

Abstract This article presents a short case study in text analysis: the scoring of Twitter posts for positive, negative, or neutral sentiment directed toward particular U.S. politicians. The study requires selection of a subsample of representative posts for sentiment scoring, a common and costly aspect of sentiment mining. As a general contribution, our application is preceded by a proposed algorithm for maximizing sampling efficiency. In particular, we outline and illustrate greedy selection of documents to build designs that are D-optimal in a topic-factor decomposition of the original text. The strategy is applied to our motivating dataset of political posts, and we outline a new technique for predicting both generic and subject-specific document sentiment through the use of variable interactions in multinomial inverse regression. Results are presented for analysis of 2.1 million Twitter posts collected around February 2012. Computer codes and data are provided as supplementary material online.
AbstractList This article presents a short case study in text analysis: the scoring of Twitter posts for positive, negative, or neutral sentiment directed toward particular U.S. politicians. The study requires selection of a subsample of representative posts for sentiment scoring, a common and costly aspect of sentiment mining. As a general contribution, our application is preceded by a proposed algorithm for maximizing sampling efficiency. In particular, we outline and illustrate greedy selection of documents to build designs that are D-optimal in a topic-factor decomposition of the original text. The strategy is applied to our motivating dataset of political posts, and we outline a new technique for predicting both generic and subject-specific document sentiment through the use of variable interactions in multinomial inverse regression. Results are presented for analysis of 2.1 million Twitter posts collected around February 2012. Computer codes and data are provided as supplementary material online.
This article presents a short case study in text analysis: the scoring of Twitter posts for positive, negative, or neutral sentiment directed toward particular U.S. politicians. The study requires selection of a subsample of representative posts for sentiment scoring, a common and costly aspect of sentiment mining. As a general contribution, our application is preceded by a proposed algorithm for maximizing sampling efficiency. In particular, we outline and illustrate greedy selection of documents to build designs that are D-optimal in a topic-factor decomposition of the original text. The strategy is applied to our motivating dataset of political posts, and we outline a new technique for predicting both generic and subject-specific document sentiment through the use of variable interactions in multinomial inverse regression. Results are presented for analysis of 2.1 million Twitter posts collected around February 2012. [PUBLICATION ABSTRACT]
Author Taddy, Matt
Author_xml – sequence: 1
  givenname: Matt
  surname: Taddy
  fullname: Taddy, Matt
  organization: The University of Chicago Booth School of Business
BookMark eNqFkEtLxDAUhYMoOKP-A4WC645J0ybNbER8g6L4WIc0vR0ydJIxyTj4781QdeFCN7lwzzk53G-Mtq2zgNAhwROCa3yCcYkJx2xSYEInnNdckC00IhXlecELuo1GG0u-8eyicQhznIxFzUeouQcVVt7YWfboehONVn32DDaaRXoyZ7OXtYkR_DS7Ujo6nz0sk5ZMFxDMzGZdWt2v-misW5i0vrXv4ANkTzDzEIJxdh_tdKoPcPA199Dr1eXL-U1-93B9e352l2ta8ZhT6IgmqmYcK6ybRoiGUK0xhUZUrKS8rQGrQgPjimnddW3dllyA0KootW7pHjoe_l1697aCEOXcrbxNlZKUrMK4rphIrnJwae9C8NDJpU_3-A9JsNzQlN805YamHGim2PRXTJuoYjovemX6_8JHQ3geEsGfwqKsaiYES_rpoBubcC7U2vm-lVF99M53XlltgqR_NnwCC-GajQ
CODEN TCMTA2
CitedBy_id crossref_primary_10_2139_ssrn_2779532
crossref_primary_10_1177_0165551519886056
crossref_primary_10_54105_ijainn_B1044_123122
crossref_primary_10_1080_00401706_2022_2063187
crossref_primary_10_1177_21582440211031868
crossref_primary_10_2139_ssrn_4064337
crossref_primary_10_1007_s13042_017_0768_3
crossref_primary_10_1007_s00146_016_0672_5
crossref_primary_10_1017_pan_2023_19
crossref_primary_10_3233_EFI_211546
crossref_primary_10_1111_coep_12252
crossref_primary_10_1007_s10462_021_10030_2
crossref_primary_10_1016_j_osnem_2023_100242
crossref_primary_10_1080_00401706_2016_1142906
crossref_primary_10_1177_1461444818807133
crossref_primary_10_1002_jae_2550
crossref_primary_10_1007_s12197_019_09494_4
crossref_primary_10_2139_ssrn_3366294
crossref_primary_10_1111_joes_12370
crossref_primary_10_1257_jel_20181020
crossref_primary_10_1007_s11042_022_14112_3
crossref_primary_10_2139_ssrn_2652876
crossref_primary_10_2139_ssrn_2934001
crossref_primary_10_1214_15_AOAS831
crossref_primary_10_1016_j_knosys_2015_06_015
crossref_primary_10_1007_s10462_020_09884_9
Cites_doi 10.1108/eb046814
10.1080/00401706.1975.10489266
10.1080/01621459.1986.10478240
10.1080/01621459.1995.10476636
10.1145/1557019.1557119
10.1093/oso/9780198522546.001.0001
10.1198/jasa.2011.ap09769
10.1021/ie071206c
10.1021/ie0611406
10.1214/aoms/1177731454
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2013
2013 American Statistical Association and the American Society for Quality
Copyright Taylor & Francis Ltd. 2013
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2013
– notice: 2013 American Statistical Association and the American Society for Quality
– notice: Copyright Taylor & Francis Ltd. 2013
DBID AAYXX
CITATION
DOI 10.1080/00401706.2013.778791
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1537-2723
EndPage 425
ExternalDocumentID 3146443531
10_1080_00401706_2013_778791
24586996
778791
Genre Feature
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID -ET
-~X
..I
.7F
.DC
.QJ
07G
0BK
0R~
123
29Q
2AX
30N
4.4
5RE
7WY
85S
8FL
96U
AAAVZ
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABPPZ
ABQDR
ABTAI
ABXSQ
ABXUL
ABXYU
ABYWD
ACBEA
ACDIW
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
ADODI
ADULT
AEGXH
AEISY
AELLO
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFAZI
AFRVT
AFVYC
AGDLA
AGLNM
AGMYJ
AHDZW
AIAGR
AIHAF
AIJEM
AIYEW
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMVHM
AMXXU
AQRUH
AQTUD
AVBZW
AWYRJ
BCCOT
BLEHA
BPLKW
C06
CCCUG
CS3
DGEBU
DKSSO
DQDLB
DSRWC
DU5
DWIFK
EBS
ECEWR
EJD
E~A
E~B
F5P
GTTXZ
H13
HFX
HF~
HQ6
HZ~
H~P
I-F
IHF
IPNFZ
IPSME
J.P
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
M4Z
MS~
MW2
NA5
NY~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
S-T
SA0
SNACF
TAE
TAQ
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UB9
UT5
UU3
WH7
WZA
YNT
ZE2
ZGOLN
~02
~S~
.-4
.GJ
3R3
41~
88I
8AO
8C1
8FE
8FG
AAIKQ
AAKBW
AAYJJ
AAYXX
ABEFU
ABJCF
ABUWG
ACAGQ
ACGEE
ACTCW
ADBBV
AEUMN
AFKRA
AGCQS
AGLEN
AGROQ
AHMOU
ALCKM
AMATQ
AMEWO
AZQEC
BENPR
BES
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
CRFIH
DMQIW
DWQXO
FEDTE
FRNLG
FYUFA
GIFXF
GNUQQ
HCIFZ
HGD
HVGLF
IVXBP
L6V
LJTGL
M0C
M2P
M7S
MVM
NHB
NUSFT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
QCRFL
S0X
TFMCV
UAP
UKHRP
VOH
YHZ
YXB
YYP
ZCG
ZXP
ZY4
ALIPV
ID FETCH-LOGICAL-c357t-3ef1c1a8670a0cbb99b13cc03eb956437d8e0a2ce67a6ccffd8d479e9ca24ccd3
ISSN 0040-1706
IngestDate Wed Aug 13 05:56:36 EDT 2025
Wed Oct 01 03:06:54 EDT 2025
Thu Apr 24 22:51:49 EDT 2025
Sat Oct 25 06:56:50 EDT 2025
Mon Oct 20 23:41:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c357t-3ef1c1a8670a0cbb99b13cc03eb956437d8e0a2ce67a6ccffd8d479e9ca24ccd3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1465008569
PQPubID 24108
PageCount 11
ParticipantIDs informaworld_taylorfrancis_310_1080_00401706_2013_778791
jstor_primary_24586996
crossref_primary_10_1080_00401706_2013_778791
proquest_journals_1465008569
crossref_citationtrail_10_1080_00401706_2013_778791
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 11/1/2013
20131101
2013-11-00
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 11/1/2013
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Technometrics
PublicationYear 2013
Publisher Taylor & Francis Group
American Society for Quality and the American Statistical Association
American Society for Quality
Publisher_xml – name: Taylor & Francis Group
– name: American Society for Quality and the American Statistical Association
– name: American Society for Quality
References Schohn G. (CIT0014) 2000
Blei D. M. (CIT0002) 2003; 3
Hu R. (CIT0009) 2010
Taddy M. (CIT0017) 2012
CIT0012
Wald A. (CIT0021) 1943; 14
Galvanin F. (CIT0005) 2007; 46
Gelman A. (CIT0006) 2012
Yang B. (CIT0022) 2009
Zhang Y. (CIT0023) 2008; 47
Tong S. (CIT0020) 2001; 2
Liere R. (CIT0010) 1997
Hoi S. C. H. (CIT0007) 2006
MacKay D. J. C. (CIT0011) 1992; 4
St. John R. C. (CIT0015) 1975; 17
Davy M. (CIT0004) 2007
Taddy M. (CIT0016) 2013; 108
CIT0018
Cohn D. A. (CIT0003) 1996
Holub A. (CIT0008) 2008
Porter M. F. (CIT0013) 1980; 14
Atkinson A. C. (CIT0001) 1992
CIT0019
References_xml – volume: 14
  start-page: 130
  year: 1980
  ident: CIT0013
  publication-title: Program
  doi: 10.1108/eb046814
– volume-title: Arm: Data Analysis Using Regression and Multilevel/Hierarchical Models
  year: 2012
  ident: CIT0006
– volume: 4
  start-page: 589
  issue: 4
  year: 1992
  ident: CIT0011
  publication-title: Neural Computation
– volume: 108
  start-page: 755–770
  year: 2013
  ident: CIT0016
  publication-title: Journal of the American Statistical Association
– volume: 3
  start-page: 993
  year: 2003
  ident: CIT0002
  publication-title: Journal of Machine Learning Research
– start-page: 1
  volume-title: International World Wide Web Conference (WWW)
  year: 2006
  ident: CIT0007
– start-page: 1
  volume-title: Computer Vision and Pattern Recognition
  year: 2008
  ident: CIT0008
– start-page: 1
  volume-title: Proceedings of the 14th National Congerence on Artificial Intelligence
  year: 1997
  ident: CIT0010
– volume: 2
  start-page: 45
  year: 2001
  ident: CIT0020
  publication-title: Journal of Machine Learning Research
– start-page: 1
  volume-title: AISTATS 2010 Poster Highlight Papers
  year: 2010
  ident: CIT0009
– volume: 17
  start-page: 15
  year: 1975
  ident: CIT0015
  publication-title: Technometrics
  doi: 10.1080/00401706.1975.10489266
– start-page: 1
  volume-title: Proceedings of the 15th International Conference on Artificial Intelligence and Statistics (AISTATS 2012)
  year: 2012
  ident: CIT0017
– ident: CIT0019
  doi: 10.1080/01621459.1986.10478240
– ident: CIT0012
  doi: 10.1080/01621459.1995.10476636
– start-page: 679
  volume-title: Neural Information Processing Systems
  year: 1996
  ident: CIT0003
– start-page: 917
  volume-title: KDD 09
  year: 2009
  ident: CIT0022
  doi: 10.1145/1557019.1557119
– volume-title: Optimum Experiment Design
  year: 1992
  ident: CIT0001
  doi: 10.1093/oso/9780198522546.001.0001
– start-page: 1
  volume-title: International Conference on Machine Learning and Applications
  year: 2007
  ident: CIT0004
– ident: CIT0018
  doi: 10.1198/jasa.2011.ap09769
– volume: 47
  start-page: 7772
  year: 2008
  ident: CIT0023
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/ie071206c
– volume: 46
  start-page: 871
  year: 2007
  ident: CIT0005
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/ie0611406
– start-page: 1
  volume-title: Proceedings of the 17th International Conference on Machine Learning
  year: 2000
  ident: CIT0014
– volume: 14
  start-page: 134
  year: 1943
  ident: CIT0021
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177731454
SSID ssj0013287
Score 2.2272353
Snippet This article presents a short case study in text analysis: the scoring of Twitter posts for positive, negative, or neutral sentiment directed toward particular...
SourceID proquest
crossref
jstor
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 415
SubjectTerms Active learning
Algorithms
Design optimization
Inverse problems
Multinomial logistic regression
Politicians
Regression analysis
Sentiment mining
Social networks
Text analysis
Topic models
Variable interaction
Title Measuring Political Sentiment on Twitter: Factor Optimal Design for Multinomial Inverse Regression
URI https://www.tandfonline.com/doi/abs/10.1080/00401706.2013.778791
https://www.jstor.org/stable/24586996
https://www.proquest.com/docview/1465008569
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1537-2723
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0013287
  issn: 0040-1706
  databaseCode: AMVHM
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1537-2723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013287
  issn: 0040-1706
  databaseCode: AHDZW
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1537-2723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013287
  issn: 0040-1706
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeBkPCAYThYH8wNuUqYkdO9nbBFTlRwsSnbS3KHZsNIllY800wV_Pne2krjaNHy9RmzSp1e96vrO_-46Q1xCCGoiLm8TK2ibcpjwphIUDb4zhmbKNa9M5X4jZMf9wkp-MRjZiLV116kD_urWu5H9QhXOAK1bJ_gOyw0PhBLwGfOEICMPxrzCeuwU-TPYDjQ2lPZD-43f42_3l9SlW62DaP3WNdfY_g4s4Q1fnmBuOZOhqcLE6OchuXK6wl8M3T5Bt4-jVr8OfYROuNUd-Cb7rpy_76bp4ESFloZpugL3fHYqpol7EI3ZIyD5EuR0_d_QOUyaZ9DXDvUf1wrvBcnjkHrkv3bzhtnueI3dqPki4YwcSXIlv5LWpkj07-lp9eTutPr1ffNy86mdlcP0cYkCYWy5-JNhdDHfhQ6uVe-R-Bt4fW3ywySLabSpkz67EAfQllqjBfsuYNkKYDYHbntR6Y2J30cryEXkY0gx65G3mMRmZdoc8iMQn4d18UOxd7ZBtzDq8aPcTogbDooNh0cGw6HlLg2EdUm9WNJgV9WZFYaw0MisazIquzeopOZ6-W76ZJaEZR6JZLruEGZvqtC6EnNQTrVRZqpRpPWFGQYrNmWwKM6kzbYSshdbWNkXDZWlKXWdc64btkq32vDXPCG0KnXJjMq6Q1qpypVMtGtukSklRl3pMWP_7Vjoo1WPDlO9VOgjaelQqRKXyqIxJMtx14ZVa_vD5Ioau6twKmfXtbCp29627DubhezKeF6IsxZjs9bhXwU-sMLnOMbMR5fO7L78g2-v_5h7Z6i6vzEsIeTv1ytnrbziaqWA
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwEB2h9kA50FKoWNqCD1yzSmLHTnqr2q4W6C4SbCVuUTy2KwSkqJsKia-vx05WWypAgkukJHYsj8f2ePLmDcBrb4JabxebxKnGJcJlIiml8xdhrBW5diak6ZzN5fRCvP1UDGjCZQ-rpDO0i0QRYa2myU3O6AESR4Q8gfaFkFl8rLzOUfz6ZuFtfUpiwNP52o-EUg3AOaoyRM_95it3dqc73KUDXvHemh02osk26KELEX_yZXzT6TH-_IXd8b_6uAOPezOVHUe9egIPbLsLj9bIC_3dbMX4utyFLbJaI-nzU9Cz4Hn0xViPr_Pf-ki4JPJFsquWLX58pjCiIzYJ-X7Ye79yffOFTgOghHmBsBAaTEHT_jGxgVwvLftgLyNut30GF5Ozxck06ZM5JMgL1SXcugyzppQqbVLUuqp0xhFTbrUfNsGVKW3a5GilaiSic6Y0QlW2wiYXiIbvwUZ71drnwEyJmbA2F5pgkbrQmKE0zmRaK9lUOAI-DGKNPdM5Jdz4WmcrQtQo3JqEW0fhjiBZ1foemT7-Ur5c14-6Cx4WF9Oh1PzPVfeCLq3ayUVRSn_yHMHBoFx1v5Ys6XBWkGUsqxf_3uQreDhdzM7r8zfzd_uwRW9iROUBbHTXN_bQm1adfhkmzy2eHxZq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9UwFD4hmBh8QESJFwH74OtutrVrN98McAPIvRqFhLdlPW2NUQfhjpjw6-lpt5sLRk30Zcm2dk3PTttz2u98B-CNN0Gtt4tN4lTjEuEykZTS-Ysw1opcOxPSdE5n8uhcnFwUF0tR_ASrJB_aRaKIMFfT4L4ybkDEER9PYH0hYBYfK69yFL7-SNKhGAVxpLOlc4RSDbg5qjIEz_3mK_cWp3vUpQNc8ZcpO6xDk6fQDD2I8JNv45tOj_H2Abnj_3RxA9Z7I5W9i1r1DFZsuwlPlqgL_d10wfc634Q1slkj5fNz0NOw7-iLsR5d57_1mVBJtBPJLlt29vMrBRG9ZZOQ7Yd98PPWD1_oIMBJmJcHC4HBFDLtHxMXyPXcsk_2S0Ttti_gfHJ4tn-U9KkcEuSF6hJuXYZZU0qVNilqXVU644gpt9o7aIIrU9q0ydFK1UhE50xphKpshU0uEA3fgtX2srUvgZkSM2FtLjSBInWhMUNpnMm0VrKpcAR8-Ic19jznlG7je50t6FCjcGsSbh2FO4JkUesq8nz8pXy5rB51F_ZXXEyGUvM_V90KqrRoJxdFKb3fOYKdQbfqfiaZk2tWkF0sq-1_b_I1PP54MKlPj2fvX8EavYjhlDuw2l3f2F1vV3V6LwydOxhtFQ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+Political+Sentiment+on+Twitter%3A+Factor+Optimal+Design+for+Multinomial+Inverse+Regression&rft.jtitle=Technometrics&rft.au=Taddy%2C+Matt&rft.date=2013-11-01&rft.pub=American+Society+for+Quality&rft.issn=0040-1706&rft.eissn=1537-2723&rft.volume=55&rft.issue=4&rft.spage=415&rft_id=info:doi/10.1080%2F00401706.2013.778791&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3146443531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-1706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-1706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-1706&client=summon