Measuring Political Sentiment on Twitter: Factor Optimal Design for Multinomial Inverse Regression
This article presents a short case study in text analysis: the scoring of Twitter posts for positive, negative, or neutral sentiment directed toward particular U.S. politicians. The study requires selection of a subsample of representative posts for sentiment scoring, a common and costly aspect of s...
Saved in:
| Published in | Technometrics Vol. 55; no. 4; pp. 415 - 425 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Alexandria
Taylor & Francis Group
01.11.2013
American Society for Quality and the American Statistical Association American Society for Quality |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0040-1706 1537-2723 |
| DOI | 10.1080/00401706.2013.778791 |
Cover
| Abstract | This article presents a short case study in text analysis: the scoring of Twitter posts for positive, negative, or neutral sentiment directed toward particular U.S. politicians. The study requires selection of a subsample of representative posts for sentiment scoring, a common and costly aspect of sentiment mining. As a general contribution, our application is preceded by a proposed algorithm for maximizing sampling efficiency. In particular, we outline and illustrate greedy selection of documents to build designs that are D-optimal in a topic-factor decomposition of the original text. The strategy is applied to our motivating dataset of political posts, and we outline a new technique for predicting both generic and subject-specific document sentiment through the use of variable interactions in multinomial inverse regression. Results are presented for analysis of 2.1 million Twitter posts collected around February 2012. Computer codes and data are provided as supplementary material online. |
|---|---|
| AbstractList | This article presents a short case study in text analysis: the scoring of Twitter posts for positive, negative, or neutral sentiment directed toward particular U.S. politicians. The study requires selection of a subsample of representative posts for sentiment scoring, a common and costly aspect of sentiment mining. As a general contribution, our application is preceded by a proposed algorithm for maximizing sampling efficiency. In particular, we outline and illustrate greedy selection of documents to build designs that are D-optimal in a topic-factor decomposition of the original text. The strategy is applied to our motivating dataset of political posts, and we outline a new technique for predicting both generic and subject-specific document sentiment through the use of variable interactions in multinomial inverse regression. Results are presented for analysis of 2.1 million Twitter posts collected around February 2012. Computer codes and data are provided as supplementary material online. This article presents a short case study in text analysis: the scoring of Twitter posts for positive, negative, or neutral sentiment directed toward particular U.S. politicians. The study requires selection of a subsample of representative posts for sentiment scoring, a common and costly aspect of sentiment mining. As a general contribution, our application is preceded by a proposed algorithm for maximizing sampling efficiency. In particular, we outline and illustrate greedy selection of documents to build designs that are D-optimal in a topic-factor decomposition of the original text. The strategy is applied to our motivating dataset of political posts, and we outline a new technique for predicting both generic and subject-specific document sentiment through the use of variable interactions in multinomial inverse regression. Results are presented for analysis of 2.1 million Twitter posts collected around February 2012. [PUBLICATION ABSTRACT] |
| Author | Taddy, Matt |
| Author_xml | – sequence: 1 givenname: Matt surname: Taddy fullname: Taddy, Matt organization: The University of Chicago Booth School of Business |
| BookMark | eNqFkEtLxDAUhYMoOKP-A4WC645J0ybNbER8g6L4WIc0vR0ydJIxyTj4781QdeFCN7lwzzk53G-Mtq2zgNAhwROCa3yCcYkJx2xSYEInnNdckC00IhXlecELuo1GG0u-8eyicQhznIxFzUeouQcVVt7YWfboehONVn32DDaaRXoyZ7OXtYkR_DS7Ujo6nz0sk5ZMFxDMzGZdWt2v-misW5i0vrXv4ANkTzDzEIJxdh_tdKoPcPA199Dr1eXL-U1-93B9e352l2ta8ZhT6IgmqmYcK6ybRoiGUK0xhUZUrKS8rQGrQgPjimnddW3dllyA0KootW7pHjoe_l1697aCEOXcrbxNlZKUrMK4rphIrnJwae9C8NDJpU_3-A9JsNzQlN805YamHGim2PRXTJuoYjovemX6_8JHQ3geEsGfwqKsaiYES_rpoBubcC7U2vm-lVF99M53XlltgqR_NnwCC-GajQ |
| CODEN | TCMTA2 |
| CitedBy_id | crossref_primary_10_2139_ssrn_2779532 crossref_primary_10_1177_0165551519886056 crossref_primary_10_54105_ijainn_B1044_123122 crossref_primary_10_1080_00401706_2022_2063187 crossref_primary_10_1177_21582440211031868 crossref_primary_10_2139_ssrn_4064337 crossref_primary_10_1007_s13042_017_0768_3 crossref_primary_10_1007_s00146_016_0672_5 crossref_primary_10_1017_pan_2023_19 crossref_primary_10_3233_EFI_211546 crossref_primary_10_1111_coep_12252 crossref_primary_10_1007_s10462_021_10030_2 crossref_primary_10_1016_j_osnem_2023_100242 crossref_primary_10_1080_00401706_2016_1142906 crossref_primary_10_1177_1461444818807133 crossref_primary_10_1002_jae_2550 crossref_primary_10_1007_s12197_019_09494_4 crossref_primary_10_2139_ssrn_3366294 crossref_primary_10_1111_joes_12370 crossref_primary_10_1257_jel_20181020 crossref_primary_10_1007_s11042_022_14112_3 crossref_primary_10_2139_ssrn_2652876 crossref_primary_10_2139_ssrn_2934001 crossref_primary_10_1214_15_AOAS831 crossref_primary_10_1016_j_knosys_2015_06_015 crossref_primary_10_1007_s10462_020_09884_9 |
| Cites_doi | 10.1108/eb046814 10.1080/00401706.1975.10489266 10.1080/01621459.1986.10478240 10.1080/01621459.1995.10476636 10.1145/1557019.1557119 10.1093/oso/9780198522546.001.0001 10.1198/jasa.2011.ap09769 10.1021/ie071206c 10.1021/ie0611406 10.1214/aoms/1177731454 |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis Group, LLC 2013 2013 American Statistical Association and the American Society for Quality Copyright Taylor & Francis Ltd. 2013 |
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2013 – notice: 2013 American Statistical Association and the American Society for Quality – notice: Copyright Taylor & Francis Ltd. 2013 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/00401706.2013.778791 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Mathematics |
| EISSN | 1537-2723 |
| EndPage | 425 |
| ExternalDocumentID | 3146443531 10_1080_00401706_2013_778791 24586996 778791 |
| Genre | Feature |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GroupedDBID | -ET -~X ..I .7F .DC .QJ 07G 0BK 0R~ 123 29Q 2AX 30N 4.4 5RE 7WY 85S 8FL 96U AAAVZ AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAWIL ABAWQ ABBHK ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABPAQ ABPEM ABPPZ ABQDR ABTAI ABXSQ ABXUL ABXYU ABYWD ACBEA ACDIW ACGFO ACGFS ACGOD ACHJO ACIWK ACMTB ACNCT ACTIO ACTMH ADCVX ADGTB ADODI ADULT AEGXH AEISY AELLO AENEX AEOZL AEPSL AEUPB AEYOC AFAZI AFRVT AFVYC AGDLA AGLNM AGMYJ AHDZW AIAGR AIHAF AIJEM AIYEW AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMVHM AMXXU AQRUH AQTUD AVBZW AWYRJ BCCOT BLEHA BPLKW C06 CCCUG CS3 DGEBU DKSSO DQDLB DSRWC DU5 DWIFK EBS ECEWR EJD E~A E~B F5P GTTXZ H13 HFX HF~ HQ6 HZ~ H~P I-F IHF IPNFZ IPSME J.P JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ KYCEM M4Z MS~ MW2 NA5 NY~ O9- P2P RIG RNANH ROSJB RTWRZ RWL S-T SA0 SNACF TAE TAQ TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UB9 UT5 UU3 WH7 WZA YNT ZE2 ZGOLN ~02 ~S~ .-4 .GJ 3R3 41~ 88I 8AO 8C1 8FE 8FG AAIKQ AAKBW AAYJJ AAYXX ABEFU ABJCF ABUWG ACAGQ ACGEE ACTCW ADBBV AEUMN AFKRA AGCQS AGLEN AGROQ AHMOU ALCKM AMATQ AMEWO AZQEC BENPR BES BEZIV BGLVJ BPHCQ CCPQU CITATION CRFIH DMQIW DWQXO FEDTE FRNLG FYUFA GIFXF GNUQQ HCIFZ HGD HVGLF IVXBP L6V LJTGL M0C M2P M7S MVM NHB NUSFT PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS PUEGO QCRFL S0X TFMCV UAP UKHRP VOH YHZ YXB YYP ZCG ZXP ZY4 ALIPV |
| ID | FETCH-LOGICAL-c357t-3ef1c1a8670a0cbb99b13cc03eb956437d8e0a2ce67a6ccffd8d479e9ca24ccd3 |
| ISSN | 0040-1706 |
| IngestDate | Wed Aug 13 05:56:36 EDT 2025 Wed Oct 01 03:06:54 EDT 2025 Thu Apr 24 22:51:49 EDT 2025 Sat Oct 25 06:56:50 EDT 2025 Mon Oct 20 23:41:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c357t-3ef1c1a8670a0cbb99b13cc03eb956437d8e0a2ce67a6ccffd8d479e9ca24ccd3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| PQID | 1465008569 |
| PQPubID | 24108 |
| PageCount | 11 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_00401706_2013_778791 jstor_primary_24586996 crossref_primary_10_1080_00401706_2013_778791 proquest_journals_1465008569 crossref_citationtrail_10_1080_00401706_2013_778791 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 11/1/2013 20131101 2013-11-00 |
| PublicationDateYYYYMMDD | 2013-11-01 |
| PublicationDate_xml | – month: 11 year: 2013 text: 11/1/2013 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Technometrics |
| PublicationYear | 2013 |
| Publisher | Taylor & Francis Group American Society for Quality and the American Statistical Association American Society for Quality |
| Publisher_xml | – name: Taylor & Francis Group – name: American Society for Quality and the American Statistical Association – name: American Society for Quality |
| References | Schohn G. (CIT0014) 2000 Blei D. M. (CIT0002) 2003; 3 Hu R. (CIT0009) 2010 Taddy M. (CIT0017) 2012 CIT0012 Wald A. (CIT0021) 1943; 14 Galvanin F. (CIT0005) 2007; 46 Gelman A. (CIT0006) 2012 Yang B. (CIT0022) 2009 Zhang Y. (CIT0023) 2008; 47 Tong S. (CIT0020) 2001; 2 Liere R. (CIT0010) 1997 Hoi S. C. H. (CIT0007) 2006 MacKay D. J. C. (CIT0011) 1992; 4 St. John R. C. (CIT0015) 1975; 17 Davy M. (CIT0004) 2007 Taddy M. (CIT0016) 2013; 108 CIT0018 Cohn D. A. (CIT0003) 1996 Holub A. (CIT0008) 2008 Porter M. F. (CIT0013) 1980; 14 Atkinson A. C. (CIT0001) 1992 CIT0019 |
| References_xml | – volume: 14 start-page: 130 year: 1980 ident: CIT0013 publication-title: Program doi: 10.1108/eb046814 – volume-title: Arm: Data Analysis Using Regression and Multilevel/Hierarchical Models year: 2012 ident: CIT0006 – volume: 4 start-page: 589 issue: 4 year: 1992 ident: CIT0011 publication-title: Neural Computation – volume: 108 start-page: 755–770 year: 2013 ident: CIT0016 publication-title: Journal of the American Statistical Association – volume: 3 start-page: 993 year: 2003 ident: CIT0002 publication-title: Journal of Machine Learning Research – start-page: 1 volume-title: International World Wide Web Conference (WWW) year: 2006 ident: CIT0007 – start-page: 1 volume-title: Computer Vision and Pattern Recognition year: 2008 ident: CIT0008 – start-page: 1 volume-title: Proceedings of the 14th National Congerence on Artificial Intelligence year: 1997 ident: CIT0010 – volume: 2 start-page: 45 year: 2001 ident: CIT0020 publication-title: Journal of Machine Learning Research – start-page: 1 volume-title: AISTATS 2010 Poster Highlight Papers year: 2010 ident: CIT0009 – volume: 17 start-page: 15 year: 1975 ident: CIT0015 publication-title: Technometrics doi: 10.1080/00401706.1975.10489266 – start-page: 1 volume-title: Proceedings of the 15th International Conference on Artificial Intelligence and Statistics (AISTATS 2012) year: 2012 ident: CIT0017 – ident: CIT0019 doi: 10.1080/01621459.1986.10478240 – ident: CIT0012 doi: 10.1080/01621459.1995.10476636 – start-page: 679 volume-title: Neural Information Processing Systems year: 1996 ident: CIT0003 – start-page: 917 volume-title: KDD 09 year: 2009 ident: CIT0022 doi: 10.1145/1557019.1557119 – volume-title: Optimum Experiment Design year: 1992 ident: CIT0001 doi: 10.1093/oso/9780198522546.001.0001 – start-page: 1 volume-title: International Conference on Machine Learning and Applications year: 2007 ident: CIT0004 – ident: CIT0018 doi: 10.1198/jasa.2011.ap09769 – volume: 47 start-page: 7772 year: 2008 ident: CIT0023 publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie071206c – volume: 46 start-page: 871 year: 2007 ident: CIT0005 publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie0611406 – start-page: 1 volume-title: Proceedings of the 17th International Conference on Machine Learning year: 2000 ident: CIT0014 – volume: 14 start-page: 134 year: 1943 ident: CIT0021 publication-title: The Annals of Mathematical Statistics doi: 10.1214/aoms/1177731454 |
| SSID | ssj0013287 |
| Score | 2.2272353 |
| Snippet | This article presents a short case study in text analysis: the scoring of Twitter posts for positive, negative, or neutral sentiment directed toward particular... |
| SourceID | proquest crossref jstor informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 415 |
| SubjectTerms | Active learning Algorithms Design optimization Inverse problems Multinomial logistic regression Politicians Regression analysis Sentiment mining Social networks Text analysis Topic models Variable interaction |
| Title | Measuring Political Sentiment on Twitter: Factor Optimal Design for Multinomial Inverse Regression |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00401706.2013.778791 https://www.jstor.org/stable/24586996 https://www.proquest.com/docview/1465008569 |
| Volume | 55 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1537-2723 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0013287 issn: 0040-1706 databaseCode: AMVHM dateStart: 20130201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1537-2723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013287 issn: 0040-1706 databaseCode: AHDZW dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1537-2723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013287 issn: 0040-1706 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeBkPCAYThYH8wNuUqYkdO9nbBFTlRwsSnbS3KHZsNIllY800wV_Pne2krjaNHy9RmzSp1e96vrO_-46Q1xCCGoiLm8TK2ibcpjwphIUDb4zhmbKNa9M5X4jZMf9wkp-MRjZiLV116kD_urWu5H9QhXOAK1bJ_gOyw0PhBLwGfOEICMPxrzCeuwU-TPYDjQ2lPZD-43f42_3l9SlW62DaP3WNdfY_g4s4Q1fnmBuOZOhqcLE6OchuXK6wl8M3T5Bt4-jVr8OfYROuNUd-Cb7rpy_76bp4ESFloZpugL3fHYqpol7EI3ZIyD5EuR0_d_QOUyaZ9DXDvUf1wrvBcnjkHrkv3bzhtnueI3dqPki4YwcSXIlv5LWpkj07-lp9eTutPr1ffNy86mdlcP0cYkCYWy5-JNhdDHfhQ6uVe-R-Bt4fW3ywySLabSpkz67EAfQllqjBfsuYNkKYDYHbntR6Y2J30cryEXkY0gx65G3mMRmZdoc8iMQn4d18UOxd7ZBtzDq8aPcTogbDooNh0cGw6HlLg2EdUm9WNJgV9WZFYaw0MisazIquzeopOZ6-W76ZJaEZR6JZLruEGZvqtC6EnNQTrVRZqpRpPWFGQYrNmWwKM6kzbYSshdbWNkXDZWlKXWdc64btkq32vDXPCG0KnXJjMq6Q1qpypVMtGtukSklRl3pMWP_7Vjoo1WPDlO9VOgjaelQqRKXyqIxJMtx14ZVa_vD5Ioau6twKmfXtbCp29627DubhezKeF6IsxZjs9bhXwU-sMLnOMbMR5fO7L78g2-v_5h7Z6i6vzEsIeTv1ytnrbziaqWA |
| linkProvider | Taylor & Francis |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwEB2h9kA50FKoWNqCD1yzSmLHTnqr2q4W6C4SbCVuUTy2KwSkqJsKia-vx05WWypAgkukJHYsj8f2ePLmDcBrb4JabxebxKnGJcJlIiml8xdhrBW5diak6ZzN5fRCvP1UDGjCZQ-rpDO0i0QRYa2myU3O6AESR4Q8gfaFkFl8rLzOUfz6ZuFtfUpiwNP52o-EUg3AOaoyRM_95it3dqc73KUDXvHemh02osk26KELEX_yZXzT6TH-_IXd8b_6uAOPezOVHUe9egIPbLsLj9bIC_3dbMX4utyFLbJaI-nzU9Cz4Hn0xViPr_Pf-ki4JPJFsquWLX58pjCiIzYJ-X7Ye79yffOFTgOghHmBsBAaTEHT_jGxgVwvLftgLyNut30GF5Ozxck06ZM5JMgL1SXcugyzppQqbVLUuqp0xhFTbrUfNsGVKW3a5GilaiSic6Y0QlW2wiYXiIbvwUZ71drnwEyJmbA2F5pgkbrQmKE0zmRaK9lUOAI-DGKNPdM5Jdz4WmcrQtQo3JqEW0fhjiBZ1foemT7-Ur5c14-6Cx4WF9Oh1PzPVfeCLq3ayUVRSn_yHMHBoFx1v5Ys6XBWkGUsqxf_3uQreDhdzM7r8zfzd_uwRW9iROUBbHTXN_bQm1adfhkmzy2eHxZq |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9UwFD4hmBh8QESJFwH74OtutrVrN98McAPIvRqFhLdlPW2NUQfhjpjw6-lpt5sLRk30Zcm2dk3PTttz2u98B-CNN0Gtt4tN4lTjEuEykZTS-Ysw1opcOxPSdE5n8uhcnFwUF0tR_ASrJB_aRaKIMFfT4L4ybkDEER9PYH0hYBYfK69yFL7-SNKhGAVxpLOlc4RSDbg5qjIEz_3mK_cWp3vUpQNc8ZcpO6xDk6fQDD2I8JNv45tOj_H2Abnj_3RxA9Z7I5W9i1r1DFZsuwlPlqgL_d10wfc634Q1slkj5fNz0NOw7-iLsR5d57_1mVBJtBPJLlt29vMrBRG9ZZOQ7Yd98PPWD1_oIMBJmJcHC4HBFDLtHxMXyPXcsk_2S0Ttti_gfHJ4tn-U9KkcEuSF6hJuXYZZU0qVNilqXVU644gpt9o7aIIrU9q0ydFK1UhE50xphKpshU0uEA3fgtX2srUvgZkSM2FtLjSBInWhMUNpnMm0VrKpcAR8-Ic19jznlG7je50t6FCjcGsSbh2FO4JkUesq8nz8pXy5rB51F_ZXXEyGUvM_V90KqrRoJxdFKb3fOYKdQbfqfiaZk2tWkF0sq-1_b_I1PP54MKlPj2fvX8EavYjhlDuw2l3f2F1vV3V6LwydOxhtFQ4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+Political+Sentiment+on+Twitter%3A+Factor+Optimal+Design+for+Multinomial+Inverse+Regression&rft.jtitle=Technometrics&rft.au=Taddy%2C+Matt&rft.date=2013-11-01&rft.pub=American+Society+for+Quality&rft.issn=0040-1706&rft.eissn=1537-2723&rft.volume=55&rft.issue=4&rft.spage=415&rft_id=info:doi/10.1080%2F00401706.2013.778791&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3146443531 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-1706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-1706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-1706&client=summon |