Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection
An integrated framework for density-based cluster analysis, outlier detection, and data visualization is introduced in this article. The main module consists of an algorithm to compute hierarchical estimates of the level sets of a density, following Hartigan’s classic model of density-contour cluste...
        Saved in:
      
    
          | Published in | ACM transactions on knowledge discovery from data Vol. 10; no. 1; pp. 1 - 51 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
          
        01.07.2015
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1556-4681 1556-472X 1556-472X  | 
| DOI | 10.1145/2733381 | 
Cover
| Abstract | An integrated framework for density-based cluster analysis, outlier detection, and data visualization is introduced in this article. The main module consists of an algorithm to compute hierarchical estimates of the level sets of a density, following Hartigan’s classic model of density-contour clusters and trees. Such an algorithm generalizes and improves existing density-based clustering techniques with respect to different aspects. It provides as a result a complete clustering hierarchy composed of all possible density-based clusters following the nonparametric model adopted, for an infinite range of density thresholds. The resulting hierarchy can be easily processed so as to provide multiple ways for data visualization and exploration. It can also be further postprocessed so that: (i) a normalized score of “outlierness” can be assigned to each data object, which unifies both the global and local perspectives of outliers into a single definition; and (ii) a “flat” (i.e., nonhierarchical) clustering solution composed of clusters extracted from local cuts through the cluster tree (possibly corresponding to different density thresholds) can be obtained, either in an unsupervised or in a semisupervised way. In the unsupervised scenario, the algorithm corresponding to this postprocessing module provides a global, optimal solution to the formal problem of maximizing the overall stability of the extracted clusters. If partially labeled objects or instance-level constraints are provided by the user, the algorithm can solve the problem by considering both constraints violations/satisfactions and cluster stability criteria. An asymptotic complexity analysis, both in terms of running time and memory space, is described. Experiments are reported that involve a variety of synthetic and real datasets, including comparisons with state-of-the-art, density-based clustering and (global and local) outlier detection methods. | 
    
|---|---|
| AbstractList | An integrated framework for density-based cluster analysis, outlier detection, and data visualization is introduced in this article. The main module consists of an algorithm to compute hierarchical estimates of the level sets of a density, following Hartigan's classic model of density-contour clusters and trees. Such an algorithm generalizes and improves existing density-based clustering techniques with respect to different aspects. It provides as a result a complete clustering hierarchy composed of all possible density-based clusters following the nonparametric model adopted, for an infinite range of density thresholds. The resulting hierarchy can be easily processed so as to provide multiple ways for data visualization and exploration. It can also be further postprocessed so that: (i) a normalized score of "outlierness" can be assigned to each data object, which unifies both the global and local perspectives of outliers into a single definition; and (ii) a "flat" (i.e., nonhierarchical) clustering solution composed of clusters extracted from local cuts through the cluster tree (possibly corresponding to different density thresholds) can be obtained, either in an unsupervised or in a semisupervised way. In the unsupervised scenario, the algorithm corresponding to this postprocessing module provides a global, optimal solution to the formal problem of maximizing the overall stability of the extracted clusters. If partially labeled objects or instance-level constraints are provided by the user, the algorithm can solve the problem by considering both constraints violations/satisfactions and cluster stability criteria. An asymptotic complexity analysis, both in terms of running time and memory space, is described. Experiments are reported that involve a variety of synthetic and real datasets, including comparisons with state-of-the-art, density-based clustering and (global and local) outlier detection methods. | 
    
| Author | Campello, Ricardo J. G. B. Sander, Jörg Zimek, Arthur Moulavi, Davoud  | 
    
| Author_xml | – sequence: 1 givenname: Ricardo J. G. B. surname: Campello fullname: Campello, Ricardo J. G. B. organization: Department of Computer Sciences, University of São Paulo, Brazil – sequence: 2 givenname: Davoud surname: Moulavi fullname: Moulavi, Davoud organization: Department of Computing Science, University of Alberta, Canada – sequence: 3 givenname: Arthur surname: Zimek fullname: Zimek, Arthur organization: Ludwig-Maximilians-Universität München, Germany – sequence: 4 givenname: Jörg surname: Sander fullname: Sander, Jörg organization: Department of Computing Science, University of Alberta, Canada  | 
    
| BookMark | eNp9kM1KAzEYRYNUsK3iK2Sni47mZ_LTpbTVCoVuVLob0kxGI2mmJhlkfHqntiIouPouH4fD5Q5Az9feAHCO0RXGObsmglIq8RHoY8Z4lguy6n1nLvEJGMT4ihBjGJM-WM2tCSroF6uVg1Pjo00tnMVkNyqZCKs6wKlKCk5cE5MJ1j-P4JONjXL2QyVb-xFUvoTLJrnO1BmS0bv3KTiulIvm7HCH4PF29jCZZ4vl3f3kZpFpykTK6BpxwnItFKEVzqnMRc7XmEumeaWZUKUpx4wbXJGxMCVHSEqD0bqkFFHJCB2Cy7238VvVvivnim3oyoe2wKjYLVIcFvlBt6F-a0xMxcZGbZxT3tRNLLDAcswI62oMwcUe1aGOMZjqH2n2i9Q2fQ2TgrLuD_8Jo9Z9bw | 
    
| CitedBy_id | crossref_primary_10_1109_JIOT_2023_3272334 crossref_primary_10_3390_app15052621 crossref_primary_10_32604_cmes_2024_054820 crossref_primary_10_1016_j_image_2019_02_009 crossref_primary_10_1021_acs_chemmater_2c02485 crossref_primary_10_3847_1538_4357_ac85b9 crossref_primary_10_1016_j_str_2025_02_004 crossref_primary_10_1016_j_ijar_2019_09_004 crossref_primary_10_1007_s11771_017_3535_4 crossref_primary_10_1080_13658816_2018_1563301 crossref_primary_10_1051_epjconf_202125104011 crossref_primary_10_1016_j_compenvurbsys_2020_101551 crossref_primary_10_1007_s40747_021_00583_8 crossref_primary_10_3390_app9245565 crossref_primary_10_3390_ani12162020 crossref_primary_10_1109_TIFS_2023_3329426 crossref_primary_10_1371_journal_pcbi_1006283 crossref_primary_10_1088_1674_4527_accbad crossref_primary_10_1016_j_softx_2020_100642 crossref_primary_10_1021_acs_jpcb_0c10740 crossref_primary_10_1098_rsos_231713 crossref_primary_10_1098_rsta_2019_0600 crossref_primary_10_3390_math12182884 crossref_primary_10_3389_fmicb_2020_00395 crossref_primary_10_1016_j_ins_2023_119653 crossref_primary_10_1016_j_media_2022_102523 crossref_primary_10_1080_13658816_2024_2399144 crossref_primary_10_1155_2020_3650926 crossref_primary_10_21105_joss_00205 crossref_primary_10_3389_fncom_2021_657151 crossref_primary_10_1016_j_eswa_2020_113372 crossref_primary_10_1016_j_trc_2020_102737 crossref_primary_10_3847_1538_3881_ac93ff crossref_primary_10_1016_j_is_2021_101871 crossref_primary_10_1016_j_knosys_2023_110929 crossref_primary_10_1038_s41598_019_46097_9 crossref_primary_10_1093_mnras_stac718 crossref_primary_10_1029_2019JB017519 crossref_primary_10_1093_mnras_stz1738 crossref_primary_10_1109_TETCI_2021_3136587 crossref_primary_10_1007_s42979_023_02244_8 crossref_primary_10_1107_S2059798324008519 crossref_primary_10_1007_s10337_019_03766_1 crossref_primary_10_1007_s10462_024_10745_y crossref_primary_10_1016_j_ins_2020_08_052 crossref_primary_10_1109_TAES_2024_3367287 crossref_primary_10_1007_s11356_019_05473_8 crossref_primary_10_3390_ai5040143 crossref_primary_10_3390_cells11071231 crossref_primary_10_1073_pnas_2111769119 crossref_primary_10_7717_peerj_cs_1929 crossref_primary_10_1002_pro_3268 crossref_primary_10_1038_s41467_018_06972_x crossref_primary_10_1145_3197517_3201314 crossref_primary_10_2139_ssrn_4121715 crossref_primary_10_3233_IDA_227263 crossref_primary_10_3389_fcosc_2024_1405243 crossref_primary_10_2118_201187_PA crossref_primary_10_1109_ACCESS_2022_3196362 crossref_primary_10_1007_s10618_024_01086_z crossref_primary_10_14258_izvasu_2021_4_16 crossref_primary_10_1109_TITS_2024_3432755 crossref_primary_10_3390_plants12112229 crossref_primary_10_1093_mnras_stad1817 crossref_primary_10_1002_cpe_5299 crossref_primary_10_1016_j_measurement_2024_114797 crossref_primary_10_1007_s10618_019_00651_1 crossref_primary_10_1093_mnras_stae2157 crossref_primary_10_1016_j_jenvman_2023_117840 crossref_primary_10_3389_frai_2024_1200949 crossref_primary_10_3390_su10072327 crossref_primary_10_1007_s41060_021_00275_z crossref_primary_10_3389_fchem_2022_1087963 crossref_primary_10_1016_j_neucom_2023_127218 crossref_primary_10_1093_ve_veae087 crossref_primary_10_1109_TCSVT_2020_3043444 crossref_primary_10_1109_TSE_2023_3330982 crossref_primary_10_1007_s10618_023_00931_x crossref_primary_10_1016_j_neucom_2024_127525 crossref_primary_10_1155_2021_6785580 crossref_primary_10_3390_rs16111911 crossref_primary_10_1038_s41524_018_0139_y crossref_primary_10_1038_s41524_024_01392_6 crossref_primary_10_1007_s41060_023_00431_7 crossref_primary_10_1007_s11135_023_01681_0 crossref_primary_10_2139_ssrn_5086452 crossref_primary_10_1016_j_csbj_2023_09_019 crossref_primary_10_1088_1741_4326_ad85f4 crossref_primary_10_1145_3474842 crossref_primary_10_1016_j_patcog_2024_110298 crossref_primary_10_1093_mnras_stz1260 crossref_primary_10_3390_bdcc7010029 crossref_primary_10_1109_TPAMI_2019_2912970 crossref_primary_10_1080_20464177_2019_1633223 crossref_primary_10_1007_s00202_024_02738_5 crossref_primary_10_4108_eetsis_6758 crossref_primary_10_1080_01621459_2023_2174122 crossref_primary_10_3847_1538_3881_ac18cd crossref_primary_10_3847_1538_4357_ac8426 crossref_primary_10_1038_s41598_021_98126_1 crossref_primary_10_1051_e3sconf_202126602001 crossref_primary_10_3390_app13106119 crossref_primary_10_1016_j_dsp_2019_04_011 crossref_primary_10_3390_su151813577 crossref_primary_10_1016_j_csbj_2022_08_059 crossref_primary_10_7717_peerj_cs_2286 crossref_primary_10_1093_gji_ggab196 crossref_primary_10_14778_3229863_3236259 crossref_primary_10_1016_j_future_2020_08_033 crossref_primary_10_1016_j_jneumeth_2019_01_019 crossref_primary_10_1515_opar_2022_0274 crossref_primary_10_1016_j_ymssp_2023_110485 crossref_primary_10_3390_a17050201 crossref_primary_10_1109_TKDE_2022_3150403 crossref_primary_10_1021_acs_chemrev_2c00141 crossref_primary_10_1080_23746149_2021_2006080 crossref_primary_10_3389_fpubh_2024_1413031 crossref_primary_10_1016_j_scitotenv_2023_169796 crossref_primary_10_1016_j_dss_2018_06_006 crossref_primary_10_1016_j_heliyon_2024_e27938 crossref_primary_10_1016_j_sigpro_2016_01_008 crossref_primary_10_1051_0004_6361_201935321 crossref_primary_10_1109_ACCESS_2019_2932769 crossref_primary_10_1007_s11042_020_08947_x crossref_primary_10_1007_s41870_020_00427_7 crossref_primary_10_1038_s41467_018_04887_1 crossref_primary_10_1007_s40745_021_00362_9 crossref_primary_10_3390_s24010118 crossref_primary_10_1111_cgf_15238 crossref_primary_10_3390_a14120344 crossref_primary_10_1007_s10115_021_01650_9 crossref_primary_10_1016_j_eswa_2021_116212 crossref_primary_10_1016_j_patcog_2020_107731 crossref_primary_10_3847_1538_4357_abcb87 crossref_primary_10_3390_jmse12091672 crossref_primary_10_1002_widm_1280 crossref_primary_10_1016_j_energy_2019_04_075 crossref_primary_10_3390_aerospace8100291 crossref_primary_10_1007_s12040_023_02070_9 crossref_primary_10_1016_j_ymeth_2024_01_015 crossref_primary_10_3390_app11104523 crossref_primary_10_1016_j_etdah_2024_100160 crossref_primary_10_1021_acs_jctc_3c00604 crossref_primary_10_1016_j_patter_2020_100187 crossref_primary_10_1093_bib_bbz161 crossref_primary_10_1021_acs_est_8b05355 crossref_primary_10_1017_dap_2021_3 crossref_primary_10_1042_BSR20221181 crossref_primary_10_1016_j_neucom_2024_129172 crossref_primary_10_1007_s40295_022_00361_9 crossref_primary_10_1017_S1351324923000165 crossref_primary_10_1103_PhysRevLett_130_086401 crossref_primary_10_1109_TNSM_2016_2597443 crossref_primary_10_1109_TAI_2021_3117537 crossref_primary_10_1007_s13177_024_00432_1 crossref_primary_10_1007_s11634_019_00356_9 crossref_primary_10_1016_j_imu_2020_100481 crossref_primary_10_1557_s43577_022_00434_y crossref_primary_10_1088_2632_2153_ac9bcb crossref_primary_10_1093_nar_gkab1132 crossref_primary_10_1002_1878_0261_12502 crossref_primary_10_33111_nfmte_2023_067 crossref_primary_10_1109_TII_2023_3268777 crossref_primary_10_1093_mnras_stac1701 crossref_primary_10_3389_fmars_2024_1416247 crossref_primary_10_1111_sjos_12665 crossref_primary_10_1016_j_ins_2022_08_100 crossref_primary_10_1016_j_patcog_2023_109300 crossref_primary_10_1093_nar_gkaa1157 crossref_primary_10_1175_JCLI_D_19_0196_1 crossref_primary_10_1016_j_aichem_2024_100077 crossref_primary_10_1109_ACCESS_2018_2874502 crossref_primary_10_1016_j_compbiolchem_2024_108292 crossref_primary_10_1021_acs_jcim_4c01710 crossref_primary_10_3389_fncom_2023_1243092 crossref_primary_10_1002_dta_3329 crossref_primary_10_1016_j_neucom_2024_127329 crossref_primary_10_3389_fanim_2024_1421299 crossref_primary_10_1192_bjo_2021_985 crossref_primary_10_1162_tacl_a_00731 crossref_primary_10_1109_TPAMI_2020_3023125 crossref_primary_10_1007_s11053_024_10379_5 crossref_primary_10_1093_aje_kwae031 crossref_primary_10_1142_S2424862218500173 crossref_primary_10_1016_j_patcog_2019_06_014 crossref_primary_10_1039_C8SM02621A crossref_primary_10_1016_j_isci_2022_104480 crossref_primary_10_1029_2024JD040830 crossref_primary_10_1051_0004_6361_202243273 crossref_primary_10_1016_j_is_2024_102507 crossref_primary_10_1016_j_ins_2020_05_021 crossref_primary_10_1051_0004_6361_202346035 crossref_primary_10_1088_1748_0221_14_06_P06022 crossref_primary_10_1136_jitc_2024_008875 crossref_primary_10_1109_TMI_2023_3249343 crossref_primary_10_1016_j_ascom_2024_100851 crossref_primary_10_1016_j_knosys_2020_106662 crossref_primary_10_1109_TVCG_2021_3111146 crossref_primary_10_1038_s41467_023_40859_w crossref_primary_10_1007_s13131_020_1638_5 crossref_primary_10_1016_j_knosys_2025_113002 crossref_primary_10_1186_s13321_024_00894_1 crossref_primary_10_2514_1_G004857 crossref_primary_10_1186_s12859_021_04533_6 crossref_primary_10_1177_10943420241298296 crossref_primary_10_2139_ssrn_4168853 crossref_primary_10_3390_app122111220 crossref_primary_10_1007_s10489_022_03583_4 crossref_primary_10_1007_s10618_024_01077_0 crossref_primary_10_1016_j_jcyt_2023_08_011 crossref_primary_10_1109_TKDE_2019_2962412 crossref_primary_10_9728_dcs_2024_25_8_2165 crossref_primary_10_1021_acs_jctc_6b00757 crossref_primary_10_1016_j_ins_2020_06_034 crossref_primary_10_2903_sp_efsa_2023_EN_8212 crossref_primary_10_1021_jacs_8b07985 crossref_primary_10_1186_s13007_025_01357_w crossref_primary_10_1016_j_procs_2021_05_032 crossref_primary_10_1371_journal_pcbi_1008885 crossref_primary_10_3390_s20113060 crossref_primary_10_1016_j_jer_2024_02_018 crossref_primary_10_1016_j_jvcir_2021_103357 crossref_primary_10_3390_rs17050784 crossref_primary_10_1016_j_asoc_2023_111029 crossref_primary_10_1109_TGRS_2018_2810124 crossref_primary_10_1016_j_eswa_2023_121652 crossref_primary_10_1145_3490032 crossref_primary_10_1016_j_nimb_2024_165469 crossref_primary_10_1038_s41598_023_39058_w crossref_primary_10_1109_ACCESS_2019_2891933 crossref_primary_10_1016_j_im_2023_103773 crossref_primary_10_1016_j_rsma_2024_103923 crossref_primary_10_1016_j_autcon_2022_104167 crossref_primary_10_1021_acs_chemrev_0c01195 crossref_primary_10_1038_s41467_022_33628_8 crossref_primary_10_46520_bddkdergisi_986652 crossref_primary_10_1145_3487893 crossref_primary_10_1016_j_ijar_2020_12_003 crossref_primary_10_1093_mnras_stab2409 crossref_primary_10_1371_journal_pone_0316852 crossref_primary_10_1080_21680566_2024_2336037 crossref_primary_10_1016_j_ins_2024_121286 crossref_primary_10_1016_j_dss_2018_04_001 crossref_primary_10_1162_netn_a_00094 crossref_primary_10_12681_cclabs_8066 crossref_primary_10_1016_j_neucom_2020_11_059 crossref_primary_10_1109_TITS_2019_2923964 crossref_primary_10_1016_j_patcog_2023_109517 crossref_primary_10_1017_S1431927621013696 crossref_primary_10_3390_en14041164 crossref_primary_10_1002_tea_21903 crossref_primary_10_1093_mnras_staf115 crossref_primary_10_1063_5_0142797 crossref_primary_10_3390_ijgi8100442 crossref_primary_10_1007_s11277_021_08668_w crossref_primary_10_1016_j_ins_2021_10_075 crossref_primary_10_1029_2022JB026237 crossref_primary_10_1177_00420980231207475 crossref_primary_10_1016_j_knosys_2020_105659 crossref_primary_10_1063_1_5034782 crossref_primary_10_3390_genes14020313 crossref_primary_10_1021_acs_analchem_7b01547 crossref_primary_10_1016_j_softx_2021_100722 crossref_primary_10_3390_electronics13193944 crossref_primary_10_1080_17452759_2020_1756086 crossref_primary_10_1051_itmconf_20182100028 crossref_primary_10_1016_j_ins_2025_121916 crossref_primary_10_3390_s20185159 crossref_primary_10_1016_j_jairtraman_2020_101787 crossref_primary_10_1186_s40537_025_01060_6 crossref_primary_10_1016_j_future_2025_107737 crossref_primary_10_3390_s22072775 crossref_primary_10_1007_s41060_022_00365_6 crossref_primary_10_1109_LRA_2022_3166544 crossref_primary_10_4153_S000843951900064X crossref_primary_10_1016_j_matpr_2020_09_623 crossref_primary_10_1103_PhysRevD_111_023504 crossref_primary_10_1016_j_ultramic_2023_113828 crossref_primary_10_1063_5_0139010 crossref_primary_10_1103_PhysRevPhysEducRes_19_020123 crossref_primary_10_1016_j_media_2019_06_015 crossref_primary_10_1063_5_0196232 crossref_primary_10_3390_jimaging6090098 crossref_primary_10_1016_j_trac_2022_116535 crossref_primary_10_1109_TKDE_2024_3371460 crossref_primary_10_1038_s41592_023_01955_3 crossref_primary_10_1109_TBDATA_2019_2907624 crossref_primary_10_1016_j_mlwa_2021_100148 crossref_primary_10_1128_aac_01307_22 crossref_primary_10_3390_rs12060971 crossref_primary_10_1007_s11042_024_19767_8 crossref_primary_10_1016_j_ress_2024_110459 crossref_primary_10_3390_app131810068 crossref_primary_10_3390_bdcc8030020 crossref_primary_10_1109_MAES_2023_3268020 crossref_primary_10_1016_j_isci_2023_108354 crossref_primary_10_1016_j_isprsjprs_2020_05_007 crossref_primary_10_1142_S0219649220400134 crossref_primary_10_5194_gmd_18_939_2025 crossref_primary_10_1016_j_celrep_2022_111275 crossref_primary_10_3389_fcpxs_2023_1273741 crossref_primary_10_3847_1538_4357_ad3240 crossref_primary_10_1007_s00357_024_09483_1 crossref_primary_10_1016_j_segy_2023_100122 crossref_primary_10_3390_electronics8101094 crossref_primary_10_1051_0004_6361_202451361 crossref_primary_10_3233_JIFS_16254 crossref_primary_10_1016_j_enconman_2022_116411 crossref_primary_10_1109_ACCESS_2019_2960159 crossref_primary_10_1039_C7CP03479B crossref_primary_10_3390_heritage7080211 crossref_primary_10_3390_math10050764 crossref_primary_10_1051_0004_6361_202450945 crossref_primary_10_1093_jcr_ucac014 crossref_primary_10_1109_TGCN_2020_2987304 crossref_primary_10_1155_2018_6291719 crossref_primary_10_3390_rs13204109 crossref_primary_10_1016_j_patrec_2021_06_017 crossref_primary_10_1051_0004_6361_202243798 crossref_primary_10_3390_fi13010006 crossref_primary_10_1109_ACCESS_2024_3395051 crossref_primary_10_1029_2023JE007753 crossref_primary_10_3390_ijgi10030177 crossref_primary_10_1007_s12517_022_10946_1 crossref_primary_10_1109_ACCESS_2023_3287195 crossref_primary_10_1088_1361_6501_ad0a5d crossref_primary_10_1038_s41598_022_24736_y crossref_primary_10_30748_soi_2022_168_04 crossref_primary_10_1093_mnras_stae1029 crossref_primary_10_1016_j_autcon_2024_105416 crossref_primary_10_1109_ACCESS_2018_2836389 crossref_primary_10_3847_1538_4357_adb72b crossref_primary_10_1002_lom3_10665 crossref_primary_10_1002_ece3_9874 crossref_primary_10_1016_j_compenvurbsys_2019_101442 crossref_primary_10_3847_1538_4357_abf92b crossref_primary_10_1016_j_compbiomed_2020_103935 crossref_primary_10_1088_1741_2552_ac7908 crossref_primary_10_46481_jnsps_2023_1364 crossref_primary_10_1002_widm_1343 crossref_primary_10_1038_s41598_023_45190_4 crossref_primary_10_1016_j_ymssp_2023_110514 crossref_primary_10_1038_s41467_019_11523_z crossref_primary_10_3390_app13169055 crossref_primary_10_1109_TPAMI_2023_3337195 crossref_primary_10_1140_epjp_s13360_022_03146_z crossref_primary_10_1016_j_media_2021_102048  | 
    
| Cites_doi | 10.1007/s10618-008-0120-3 10.1007/s00357-003-0004-6 10.1016/S0003-2670(01)83197-4 10.1145/1353343.1353398 10.1007/s10618-013-0311-4 10.1145/342009.335437 10.1007/11875581_81 10.5555/1609942.1609946 10.1109/78.324744 10.1016/j.patcog.2012.05.011 10.1145/502512.502554 10.1007/s10618-012-0300-z 10.1007/978-3-642-01307-2_84 10.1080/01621459.1987.10478428 10.1093/bioinformatics/17.10.977 10.1093/biomet/28.3-4.308 10.1016/j.datak.2008.06.006 10.1109/ICDEW.2008.4498387 10.1145/2618243.2618257 10.1109/ICDM.2012.112 10.1007/BF01908075 10.1002/9780470382776 10.1145/2339530.2339669 10.1214/aoms/1177729885 10.1002/sam.11161 10.1002/wics.6 10.1016/S0169-7439(01)00111-3 10.1007/s007780050006 10.1023/B:VISI.0000042993.50813.60 10.1145/956750.956758 10.1145/1401890.1401946 10.1007/11731139_68 10.5555/1404506 10.5555/3120676.3120693 10.1145/233269.233324 10.1145/312129.312186 10.1080/13658810500399654 10.1002/9781118887486.ch6 10.1023/B:AIRE.0000045502.10941.a9 10.1016/S0167-8655(01)00103-9 10.1145/375663.375668 10.1109/TKDE.2003.1232271 10.1145/342009.335388 10.1109/ICDM.2012.21 10.14778/1920841.1921021 10.1109/TIT.1975.1055330 10.1145/1645953.1646195 10.1007/s100440050011 10.1109/ICDE.2011.5767916 10.2307/3315985 10.1007/s10115-011-0430-4 10.1186/gb-2003-4-5-r34 10.1007/978-3-642-01307-2_86 10.1145/2463676.2463696 10.1109/TPAMI.2005.113 10.2307/2347159 10.1145/1871437.1871690 10.1109/ICDM.2010.69 10.1016/S0167-9473(00)00052-9 10.1007/BF02289588 10.1111/j.2517-6161.1983.tb01262.x 10.1198/jcgs.2009.07049 10.1137/1.9781611972825.90 10.1109/TCBB.2008.32 10.1007/978-3-540-72530-5_25 10.1007/s10115-003-0086-9 10.1109/ICDE.2012.88 10.1145/2594473.2594476 10.5555/3121646.3121658 10.1145/1015330.1015360 10.1109/ICDM.2009.143 10.1109/ICDM.2010.151 10.1148/radiology.143.1.7063747 10.1002/widm.30 10.1145/1497577.1497581 10.1145/2487575.2487676 10.1145/2133360.2133363 10.1007/978-3-642-12026-8_29 10.1145/304182.304187 10.1109/TNN.2005.845141 10.1016/j.asoc.2010.06.010 10.1007/s10618-009-0157-y 10.1145/1150402.1150459 10.1145/1401890.1401983 10.1145/1081870.1081891 10.1099/00221287-17-1-184 10.1137/1.9781611973440.63 10.1109/ICDMW.2006.92 10.1145/375663.375672 10.1109/ICDM.2006.43  | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| DOI | 10.1145/2733381 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1556-472X | 
    
| EndPage | 51 | 
    
| ExternalDocumentID | 002709770 10_1145_2733381  | 
    
| GroupedDBID | .4S .DC 23M 4.4 5GY 5VS 8US AAKMM AALFJ AAYFX AAYXX ABPPZ ACM ADBCU ADL ADMLS AEBYY AEFXT AEJOY AENEX AENSD AFWIH AFWXC AIKLT AKRVB ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF BDXCO CCLIF CITATION CS3 EBS EDO EJD F5P FEDTE GUFHI HGAVV H~9 I07 LHSKQ MK~ P1C P2P RNS ROL TUS ZCA 7SC 8FD JQ2 L7M L~C L~D ADTOC AFFNX UNPAY XOL  | 
    
| ID | FETCH-LOGICAL-c357t-3b06254c7a23f14384746b1685c6fc57aded956e1f297ed60088e10bd33038523 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1556-4681 1556-472X  | 
    
| IngestDate | Sun Oct 26 04:11:19 EDT 2025 Fri Jul 11 11:24:41 EDT 2025 Wed Oct 01 05:52:26 EDT 2025 Thu Apr 24 23:08:17 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | other-oa | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c357t-3b06254c7a23f14384746b1685c6fc57aded956e1f297ed60088e10bd33038523 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://dx.doi.org/10.1145/2733381 | 
    
| PQID | 1718952514 | 
    
| PQPubID | 23500 | 
    
| PageCount | 51 | 
    
| ParticipantIDs | unpaywall_primary_10_1145_2733381 proquest_miscellaneous_1718952514 crossref_primary_10_1145_2733381 crossref_citationtrail_10_1145_2733381  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-07-01 | 
    
| PublicationDateYYYYMMDD | 2015-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | ACM transactions on knowledge discovery from data | 
    
| PublicationYear | 2015 | 
    
| References | Dang X. H. (e_1_2_1_27_1) 2014 e_1_2_1_119_1 e_1_2_1_111_1 Hartigan J. A. (e_1_2_1_49_1) Papadimitriou S. (e_1_2_1_93_1) 2003 e_1_2_1_89_1 e_1_2_1_24_1 e_1_2_1_62_1 e_1_2_1_43_1 e_1_2_1_85_1 Ertöz L. (e_1_2_1_33_1) Sander J. (e_1_2_1_103_1) e_1_2_1_28_1 Muller D. W. (e_1_2_1_83_1) 1991; 86 e_1_2_1_92_1 e_1_2_1_122_1 e_1_2_1_126_1 e_1_2_1_31_1 e_1_2_1_77_1 e_1_2_1_8_1 e_1_2_1_12_1 e_1_2_1_50_1 e_1_2_1_96_1 e_1_2_1_4_1 e_1_2_1_110_1 e_1_2_1_39_1 e_1_2_1_58_1 Knorr E. M. (e_1_2_1_65_1) 2010 Hinneburg A. (e_1_2_1_53_1) Kriegel H.-P. (e_1_2_1_73_1) e_1_2_1_118_1 Foss A. (e_1_2_1_38_1) e_1_2_1_40_1 Campello R. J. G. B. (e_1_2_1_20_1) e_1_2_1_121_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_63_1 e_1_2_1_86_1 e_1_2_1_25_1 e_1_2_1_48_1 e_1_2_1_29_1 e_1_2_1_125_1 Micenková B. (e_1_2_1_82_1) e_1_2_1_70_1 Knorr E. M. (e_1_2_1_67_1) e_1_2_1_106_1 e_1_2_1_7_1 Beckman R. J. (e_1_2_1_13_1) 1983; 25 e_1_2_1_55_1 e_1_2_1_78_1 e_1_2_1_3_1 e_1_2_1_97_1 e_1_2_1_74_1 e_1_2_1_17_1 Ertöz L. (e_1_2_1_34_1) Nguyen H. V. (e_1_2_1_91_1) 2014 e_1_2_1_59_1 Wong M. A. (e_1_2_1_117_1) 1983; 45 e_1_2_1_60_1 e_1_2_1_113_1 e_1_2_1_41_1 e_1_2_1_87_1 e_1_2_1_68_1 e_1_2_1_120_1 e_1_2_1_45_1 Bishop C. M. (e_1_2_1_15_1) e_1_2_1_22_1 e_1_2_1_64_1 Silverman B. W. (e_1_2_1_107_1) e_1_2_1_26_1 Hang S. (e_1_2_1_47_1); 5 Hinneburg A. (e_1_2_1_54_1) e_1_2_1_101_1 e_1_2_1_124_1 e_1_2_1_71_1 e_1_2_1_90_1 e_1_2_1_105_1 e_1_2_1_128_1 e_1_2_1_56_1 e_1_2_1_79_1 e_1_2_1_98_1 Angiulli F. (e_1_2_1_6_1) Tang J. (e_1_2_1_114_1) e_1_2_1_10_1 e_1_2_1_52_1 e_1_2_1_75_1 e_1_2_1_94_1 e_1_2_1_2_1 e_1_2_1_14_1 Ester M. (e_1_2_1_36_1) e_1_2_1_37_1 Sander J. (e_1_2_1_102_1) e_1_2_1_18_1 e_1_2_1_80_1 e_1_2_1_112_1 Soler T. (e_1_2_1_109_1) e_1_2_1_116_1 e_1_2_1_42_1 e_1_2_1_88_1 e_1_2_1_23_1 e_1_2_1_46_1 e_1_2_1_61_1 e_1_2_1_84_1 Ester M. (e_1_2_1_35_1) e_1_2_1_69_1 e_1_2_1_108_1 Brecheisen S. (e_1_2_1_16_1) e_1_2_1_100_1 e_1_2_1_123_1 e_1_2_1_104_1 e_1_2_1_127_1 e_1_2_1_30_1 e_1_2_1_76_1 e_1_2_1_5_1 e_1_2_1_57_1 e_1_2_1_99_1 e_1_2_1_72_1 e_1_2_1_1_1 e_1_2_1_11_1 e_1_2_1_95_1 Knorr E. M. (e_1_2_1_66_1) 2010 Liu P. (e_1_2_1_81_1) e_1_2_1_9_1 Hawkins D. (e_1_2_1_51_1) e_1_2_1_19_1  | 
    
| References_xml | – ident: e_1_2_1_96_1 doi: 10.1007/s10618-008-0120-3 – volume-title: Proceedings of the 2nd IEEE International Conference on Data Mining (ICDM), Maebashi City. Japan. 179--186 ident: e_1_2_1_38_1 – ident: e_1_2_1_110_1 doi: 10.1007/s00357-003-0004-6 – ident: e_1_2_1_24_1 doi: 10.1016/S0003-2670(01)83197-4 – volume-title: Proceedings of the 13th IEEE International Conference on Data Mining (ICDM) ident: e_1_2_1_82_1 – volume-title: Proceedings of the 30th International Conference on Data Engineering (ICDE) year: 2014 ident: e_1_2_1_27_1 – ident: e_1_2_1_19_1 doi: 10.1145/1353343.1353398 – volume-title: Proceedings of the 7th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) ident: e_1_2_1_103_1 – ident: e_1_2_1_21_1 doi: 10.1007/s10618-013-0311-4 – ident: e_1_2_1_99_1 doi: 10.1145/342009.335437 – ident: e_1_2_1_113_1 – ident: e_1_2_1_94_1 doi: 10.1007/11875581_81 – ident: e_1_2_1_4_1 doi: 10.5555/1609942.1609946 – ident: e_1_2_1_59_1 doi: 10.1109/78.324744 – volume-title: Pattern Recognition and Machine Learning ident: e_1_2_1_15_1 – ident: e_1_2_1_57_1 doi: 10.1016/j.patcog.2012.05.011 – ident: e_1_2_1_61_1 doi: 10.1145/502512.502554 – ident: e_1_2_1_8_1 – ident: e_1_2_1_106_1 doi: 10.1007/s10618-012-0300-z – ident: e_1_2_1_123_1 doi: 10.1007/978-3-642-01307-2_84 – ident: e_1_2_1_50_1 doi: 10.1080/01621459.1987.10478428 – volume-title: Density Estimation for Statistics and Data Analysis ident: e_1_2_1_107_1 – ident: e_1_2_1_121_1 doi: 10.1093/bioinformatics/17.10.977 – ident: e_1_2_1_95_1 doi: 10.1093/biomet/28.3-4.308 – ident: e_1_2_1_22_1 doi: 10.1016/j.datak.2008.06.006 – ident: e_1_2_1_85_1 doi: 10.1109/ICDEW.2008.4498387 – volume-title: Proceedings of the 3rd SIAM International Conference on Data Mining (SDM) ident: e_1_2_1_34_1 – ident: e_1_2_1_126_1 doi: 10.1145/2618243.2618257 – ident: e_1_2_1_84_1 doi: 10.1109/ICDM.2012.112 – ident: e_1_2_1_58_1 doi: 10.1007/BF01908075 – volume-title: Proceedings of the 4th SIAM International Conference on Data Mining (SDM). Lake Buena Vista, FL. 400--412 ident: e_1_2_1_16_1 – ident: e_1_2_1_119_1 doi: 10.1002/9780470382776 – volume-title: Proceedings of the conference of the Centre for Advanced Studies on Collaborative research (CASCON) year: 2010 ident: e_1_2_1_65_1 – ident: e_1_2_1_98_1 doi: 10.1145/2339530.2339669 – ident: e_1_2_1_43_1 doi: 10.1214/aoms/1177729885 – volume-title: Proceedings of the 4th ACM International Conference on Knowledge Discovery and Data Mining (KDD) ident: e_1_2_1_54_1 – volume-title: Proceedings of the 19th International Conference on Data Engineering (ICDE) year: 2003 ident: e_1_2_1_93_1 – ident: e_1_2_1_128_1 doi: 10.1002/sam.11161 – ident: e_1_2_1_46_1 doi: 10.1002/wics.6 – volume-title: Identification of Outliers ident: e_1_2_1_51_1 – volume-title: International Conference on Service Systems and Service Management (ICSSSM) ident: e_1_2_1_81_1 – ident: e_1_2_1_116_1 – ident: e_1_2_1_28_1 doi: 10.1016/S0169-7439(01)00111-3 – ident: e_1_2_1_68_1 doi: 10.1007/s007780050006 – ident: e_1_2_1_42_1 doi: 10.1023/B:VISI.0000042993.50813.60 – ident: e_1_2_1_12_1 doi: 10.1145/956750.956758 – volume-title: Clustering Algorithms ident: e_1_2_1_49_1 – ident: e_1_2_1_76_1 doi: 10.1145/1401890.1401946 – ident: e_1_2_1_62_1 doi: 10.1007/11731139_68 – volume: 25 start-page: 119 year: 1983 ident: e_1_2_1_13_1 article-title: Outlier..........s publication-title: Technometrics – ident: e_1_2_1_11_1 doi: 10.5555/1404506 – ident: e_1_2_1_29_1 doi: 10.5555/3120676.3120693 – ident: e_1_2_1_124_1 doi: 10.1145/233269.233324 – volume-title: Proceedings of the 3rd ACM International Conference on Knowledge Discovery and Data Mining (KDD) year: 2010 ident: e_1_2_1_66_1 – ident: e_1_2_1_77_1 doi: 10.1145/312129.312186 – ident: e_1_2_1_97_1 doi: 10.1080/13658810500399654 – volume-title: Workshop on Clustering High Dimensional Data and its Applications at 2nd SIAM International Conference on Data Mining. 105--115 ident: e_1_2_1_33_1 – volume-title: Encyclopedia of Machine Learning ident: e_1_2_1_102_1 – ident: e_1_2_1_37_1 doi: 10.1002/9781118887486.ch6 – ident: e_1_2_1_56_1 doi: 10.1023/B:AIRE.0000045502.10941.a9 – ident: e_1_2_1_52_1 doi: 10.1016/S0167-8655(01)00103-9 – ident: e_1_2_1_60_1 – volume-title: Proceedings of the 11th SIAM International Conference on Data Mining (SDM) Mesa, AZ. 13--24 ident: e_1_2_1_73_1 – volume-title: Proceedings of the 6th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) ident: e_1_2_1_114_1 – ident: e_1_2_1_3_1 doi: 10.1145/375663.375668 – volume-title: Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD) ident: e_1_2_1_6_1 – ident: e_1_2_1_69_1 doi: 10.1109/TKDE.2003.1232271 – ident: e_1_2_1_18_1 doi: 10.1145/342009.335388 – ident: e_1_2_1_74_1 doi: 10.1109/ICDM.2012.21 – volume-title: Proceedings of the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) ident: e_1_2_1_20_1 – volume-title: Proceedings of the 2nd ACM International Conference on Knowledge Discovery and Data Mining (KDD) ident: e_1_2_1_36_1 – volume-title: Proceedings of the 24th International Conference on Very Large Data Bases (VLDB) ident: e_1_2_1_67_1 – ident: e_1_2_1_92_1 doi: 10.14778/1920841.1921021 – ident: e_1_2_1_40_1 doi: 10.1109/TIT.1975.1055330 – ident: e_1_2_1_71_1 doi: 10.1145/1645953.1646195 – ident: e_1_2_1_23_1 doi: 10.1007/s100440050011 – ident: e_1_2_1_87_1 doi: 10.1109/ICDE.2011.5767916 – ident: e_1_2_1_25_1 doi: 10.2307/3315985 – ident: e_1_2_1_31_1 doi: 10.1007/s10115-011-0430-4 – ident: e_1_2_1_122_1 doi: 10.1186/gb-2003-4-5-r34 – ident: e_1_2_1_72_1 doi: 10.1007/978-3-642-01307-2_86 – ident: e_1_2_1_2_1 doi: 10.1145/2463676.2463696 – volume-title: Proceedings of the 16th International Conference on Database Systems for Advanced Applications (DASFAA) year: 2014 ident: e_1_2_1_91_1 – ident: e_1_2_1_39_1 doi: 10.1109/TPAMI.2005.113 – ident: e_1_2_1_9_1 doi: 10.2307/2347159 – ident: e_1_2_1_86_1 doi: 10.1145/1871437.1871690 – ident: e_1_2_1_112_1 doi: 10.1109/ICDM.2010.69 – ident: e_1_2_1_75_1 – ident: e_1_2_1_26_1 doi: 10.1016/S0167-9473(00)00052-9 – ident: e_1_2_1_63_1 doi: 10.1007/BF02289588 – volume: 45 start-page: 362 year: 1983 ident: e_1_2_1_117_1 article-title: A kth nearest neighbour clustering procedure publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/j.2517-6161.1983.tb01262.x – ident: e_1_2_1_111_1 doi: 10.1198/jcgs.2009.07049 – ident: e_1_2_1_104_1 doi: 10.1137/1.9781611972825.90 – volume: 5 volume-title: 6th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) ident: e_1_2_1_47_1 – ident: e_1_2_1_45_1 doi: 10.1109/TCBB.2008.32 – ident: e_1_2_1_100_1 doi: 10.1007/978-3-540-72530-5_25 – ident: e_1_2_1_55_1 doi: 10.1007/s10115-003-0086-9 – ident: e_1_2_1_10_1 – ident: e_1_2_1_64_1 doi: 10.1109/ICDE.2012.88 – ident: e_1_2_1_125_1 doi: 10.1145/2594473.2594476 – volume: 86 start-page: 738 year: 1991 ident: e_1_2_1_83_1 article-title: Excess mass estimates and tests for multimodality publication-title: J. Amer. Statist. Assoc. – ident: e_1_2_1_90_1 doi: 10.5555/3121646.3121658 – ident: e_1_2_1_14_1 doi: 10.1145/1015330.1015360 – ident: e_1_2_1_79_1 doi: 10.1109/ICDM.2009.143 – ident: e_1_2_1_30_1 doi: 10.1109/ICDM.2010.151 – ident: e_1_2_1_48_1 doi: 10.1148/radiology.143.1.7063747 – ident: e_1_2_1_70_1 doi: 10.1002/widm.30 – ident: e_1_2_1_5_1 doi: 10.1145/1497577.1497581 – ident: e_1_2_1_127_1 doi: 10.1145/2487575.2487676 – ident: e_1_2_1_80_1 doi: 10.1145/2133360.2133363 – ident: e_1_2_1_89_1 doi: 10.1007/978-3-642-12026-8_29 – ident: e_1_2_1_7_1 doi: 10.1145/304182.304187 – ident: e_1_2_1_118_1 doi: 10.1109/TNN.2005.845141 – ident: e_1_2_1_88_1 doi: 10.1016/j.asoc.2010.06.010 – ident: e_1_2_1_101_1 doi: 10.1007/s10618-009-0157-y – ident: e_1_2_1_1_1 doi: 10.1145/1150402.1150459 – volume-title: Encyclopedia of Database Systems, L. Liu and M. T. Özsu (Eds.) ident: e_1_2_1_35_1 – volume-title: Proceedings of the 7th International Symposium on Intelligent Data Analysis (IDA) ident: e_1_2_1_53_1 – ident: e_1_2_1_120_1 doi: 10.1145/1401890.1401983 – ident: e_1_2_1_78_1 doi: 10.1145/1081870.1081891 – volume-title: ASP-ACSM Convention. 393--406 ident: e_1_2_1_109_1 – ident: e_1_2_1_108_1 doi: 10.1099/00221287-17-1-184 – ident: e_1_2_1_105_1 doi: 10.1137/1.9781611973440.63 – ident: e_1_2_1_44_1 doi: 10.1109/ICDMW.2006.92 – ident: e_1_2_1_17_1 doi: 10.1145/375663.375672 – ident: e_1_2_1_41_1 doi: 10.1109/ICDM.2006.43  | 
    
| SSID | ssj0055112 | 
    
| Score | 2.5836813 | 
    
| Snippet | An integrated framework for density-based cluster analysis, outlier detection, and data visualization is introduced in this article. The main module consists... | 
    
| SourceID | unpaywall proquest crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Algorithms Clustering Clusters Data analysis Data visualization Density Estimates Outliers (statistics)  | 
    
| Title | Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection | 
    
| URI | https://www.proquest.com/docview/1718952514 http://dx.doi.org/10.1145/2733381  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 10 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1556-472X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055112 issn: 1556-4681 databaseCode: ADMLS dateStart: 20070301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5Ke9CLb_HNFsST0WYf2fRY2koRWwWt1FPY7AOKMYomiP56Z5u0VrTgbQ-TEHZ3-L7JzDeD0DFRnAvdoJ6QVHusqYgXc1iFwnJKtDVau18D_UHQG7LLER9VUP3vDL7P-DngK4RREODUAg50u4pqw8FN62HSB5UHHgtCf7YWZFQIY-ef_Ik43zRyKU9f5Me7TJI5RLlY_dblFIUkj2d5Fp-pz99tGhd_7BpaKfkkbhUXYB1VTLqBVqezGnDpupto1Bs7qfFk8kmCO65sPfvAXXDwJ8c2MXBX3JGZxO0kd70TANFO8f34zWkuC6XmKZapxtd5BqwVbE02KeJKt9DwonvX7nnlVAVPUS4yj8YNiHmYEpJQ64afM8GC2A9CrgKruJDaaAiajG9JUxgNhCgMjd-INaUui0joNqqmz6nZQZgKooRVk9QgoySMDQ8Js4CLTBNrw110Mt35SJUtx93kiyQq5NA8KvdrF-GZ4UvRZeO3SX16dBF4gEtryNQ852-RD_Da5MDTGNjMznTRe_b-YbOPloEX8aIq9wBVs9fcHAL3yOIjVGt1-le3R-Ut_AI0MdNE | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5Ke9CLb7G-2IJ4arTZRzY9ilaKYPVgpZ7CZh9QjLFogtRf72yTPqQWvO1hEsLuDt83mflmEDojinOhW9QTkmqPtRXxYg6rUFhOibZGa_dr4L4XdPvsbsAHFdT4O4PvM34J-AphFAQ4tYAD3a6iWr_3ePUy6YPKA48FoT9bCzIohLGLT_5GnDmNXMvTkRx_ySRZQJTbzbkupygkeb3Is_hCfS-3aVz9sVtoo-ST-Kq4ANuoYtIdtDmd1YBL191Fg-7QSY0nk08SfOPK1rMx7oCDvzm2iYG74huZSXyd5K53AiBaEz8PP53mslBqNrFMNX7IM2CtYGuySRFXuof6t52n665XTlXwFOUi82jcgpiHKSEJtW74ORMsiP0g5CqwigupjYagyfiWtIXRQIjC0PitWFPqsoiE7qNq-p6aA4SpIEpYNUkNMkrC2PCQMAu4yDSxNqyj8-nOR6psOe4mXyRRIYfmUblfdYRnhqOiy8aySWN6dBF4gEtryNS855-RD_Da5sDTGNjMznTVew7_YXOE1oEX8aIq9xhVs4_cnAD3yOLT8vb9AKHz0bA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Density+Estimates+for+Data+Clustering%2C+Visualization%2C+and+Outlier+Detection&rft.jtitle=ACM+transactions+on+knowledge+discovery+from+data&rft.au=Campello%2C+Ricardo+J.+G.+B.&rft.au=Moulavi%2C+Davoud&rft.au=Zimek%2C+Arthur&rft.au=Sander%2C+J%C3%B6rg&rft.date=2015-07-01&rft.issn=1556-4681&rft.eissn=1556-472X&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=51&rft_id=info:doi/10.1145%2F2733381&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_2733381 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4681&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4681&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4681&client=summon |