Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection

An integrated framework for density-based cluster analysis, outlier detection, and data visualization is introduced in this article. The main module consists of an algorithm to compute hierarchical estimates of the level sets of a density, following Hartigan’s classic model of density-contour cluste...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on knowledge discovery from data Vol. 10; no. 1; pp. 1 - 51
Main Authors Campello, Ricardo J. G. B., Moulavi, Davoud, Zimek, Arthur, Sander, Jörg
Format Journal Article
LanguageEnglish
Published 01.07.2015
Subjects
Online AccessGet full text
ISSN1556-4681
1556-472X
1556-472X
DOI10.1145/2733381

Cover

Abstract An integrated framework for density-based cluster analysis, outlier detection, and data visualization is introduced in this article. The main module consists of an algorithm to compute hierarchical estimates of the level sets of a density, following Hartigan’s classic model of density-contour clusters and trees. Such an algorithm generalizes and improves existing density-based clustering techniques with respect to different aspects. It provides as a result a complete clustering hierarchy composed of all possible density-based clusters following the nonparametric model adopted, for an infinite range of density thresholds. The resulting hierarchy can be easily processed so as to provide multiple ways for data visualization and exploration. It can also be further postprocessed so that: (i) a normalized score of “outlierness” can be assigned to each data object, which unifies both the global and local perspectives of outliers into a single definition; and (ii) a “flat” (i.e., nonhierarchical) clustering solution composed of clusters extracted from local cuts through the cluster tree (possibly corresponding to different density thresholds) can be obtained, either in an unsupervised or in a semisupervised way. In the unsupervised scenario, the algorithm corresponding to this postprocessing module provides a global, optimal solution to the formal problem of maximizing the overall stability of the extracted clusters. If partially labeled objects or instance-level constraints are provided by the user, the algorithm can solve the problem by considering both constraints violations/satisfactions and cluster stability criteria. An asymptotic complexity analysis, both in terms of running time and memory space, is described. Experiments are reported that involve a variety of synthetic and real datasets, including comparisons with state-of-the-art, density-based clustering and (global and local) outlier detection methods.
AbstractList An integrated framework for density-based cluster analysis, outlier detection, and data visualization is introduced in this article. The main module consists of an algorithm to compute hierarchical estimates of the level sets of a density, following Hartigan's classic model of density-contour clusters and trees. Such an algorithm generalizes and improves existing density-based clustering techniques with respect to different aspects. It provides as a result a complete clustering hierarchy composed of all possible density-based clusters following the nonparametric model adopted, for an infinite range of density thresholds. The resulting hierarchy can be easily processed so as to provide multiple ways for data visualization and exploration. It can also be further postprocessed so that: (i) a normalized score of "outlierness" can be assigned to each data object, which unifies both the global and local perspectives of outliers into a single definition; and (ii) a "flat" (i.e., nonhierarchical) clustering solution composed of clusters extracted from local cuts through the cluster tree (possibly corresponding to different density thresholds) can be obtained, either in an unsupervised or in a semisupervised way. In the unsupervised scenario, the algorithm corresponding to this postprocessing module provides a global, optimal solution to the formal problem of maximizing the overall stability of the extracted clusters. If partially labeled objects or instance-level constraints are provided by the user, the algorithm can solve the problem by considering both constraints violations/satisfactions and cluster stability criteria. An asymptotic complexity analysis, both in terms of running time and memory space, is described. Experiments are reported that involve a variety of synthetic and real datasets, including comparisons with state-of-the-art, density-based clustering and (global and local) outlier detection methods.
Author Campello, Ricardo J. G. B.
Sander, Jörg
Zimek, Arthur
Moulavi, Davoud
Author_xml – sequence: 1
  givenname: Ricardo J. G. B.
  surname: Campello
  fullname: Campello, Ricardo J. G. B.
  organization: Department of Computer Sciences, University of São Paulo, Brazil
– sequence: 2
  givenname: Davoud
  surname: Moulavi
  fullname: Moulavi, Davoud
  organization: Department of Computing Science, University of Alberta, Canada
– sequence: 3
  givenname: Arthur
  surname: Zimek
  fullname: Zimek, Arthur
  organization: Ludwig-Maximilians-Universität München, Germany
– sequence: 4
  givenname: Jörg
  surname: Sander
  fullname: Sander, Jörg
  organization: Department of Computing Science, University of Alberta, Canada
BookMark eNp9kM1KAzEYRYNUsK3iK2Sni47mZ_LTpbTVCoVuVLob0kxGI2mmJhlkfHqntiIouPouH4fD5Q5Az9feAHCO0RXGObsmglIq8RHoY8Z4lguy6n1nLvEJGMT4ihBjGJM-WM2tCSroF6uVg1Pjo00tnMVkNyqZCKs6wKlKCk5cE5MJ1j-P4JONjXL2QyVb-xFUvoTLJrnO1BmS0bv3KTiulIvm7HCH4PF29jCZZ4vl3f3kZpFpykTK6BpxwnItFKEVzqnMRc7XmEumeaWZUKUpx4wbXJGxMCVHSEqD0bqkFFHJCB2Cy7238VvVvivnim3oyoe2wKjYLVIcFvlBt6F-a0xMxcZGbZxT3tRNLLDAcswI62oMwcUe1aGOMZjqH2n2i9Q2fQ2TgrLuD_8Jo9Z9bw
CitedBy_id crossref_primary_10_1109_JIOT_2023_3272334
crossref_primary_10_3390_app15052621
crossref_primary_10_32604_cmes_2024_054820
crossref_primary_10_1016_j_image_2019_02_009
crossref_primary_10_1021_acs_chemmater_2c02485
crossref_primary_10_3847_1538_4357_ac85b9
crossref_primary_10_1016_j_str_2025_02_004
crossref_primary_10_1016_j_ijar_2019_09_004
crossref_primary_10_1007_s11771_017_3535_4
crossref_primary_10_1080_13658816_2018_1563301
crossref_primary_10_1051_epjconf_202125104011
crossref_primary_10_1016_j_compenvurbsys_2020_101551
crossref_primary_10_1007_s40747_021_00583_8
crossref_primary_10_3390_app9245565
crossref_primary_10_3390_ani12162020
crossref_primary_10_1109_TIFS_2023_3329426
crossref_primary_10_1371_journal_pcbi_1006283
crossref_primary_10_1088_1674_4527_accbad
crossref_primary_10_1016_j_softx_2020_100642
crossref_primary_10_1021_acs_jpcb_0c10740
crossref_primary_10_1098_rsos_231713
crossref_primary_10_1098_rsta_2019_0600
crossref_primary_10_3390_math12182884
crossref_primary_10_3389_fmicb_2020_00395
crossref_primary_10_1016_j_ins_2023_119653
crossref_primary_10_1016_j_media_2022_102523
crossref_primary_10_1080_13658816_2024_2399144
crossref_primary_10_1155_2020_3650926
crossref_primary_10_21105_joss_00205
crossref_primary_10_3389_fncom_2021_657151
crossref_primary_10_1016_j_eswa_2020_113372
crossref_primary_10_1016_j_trc_2020_102737
crossref_primary_10_3847_1538_3881_ac93ff
crossref_primary_10_1016_j_is_2021_101871
crossref_primary_10_1016_j_knosys_2023_110929
crossref_primary_10_1038_s41598_019_46097_9
crossref_primary_10_1093_mnras_stac718
crossref_primary_10_1029_2019JB017519
crossref_primary_10_1093_mnras_stz1738
crossref_primary_10_1109_TETCI_2021_3136587
crossref_primary_10_1007_s42979_023_02244_8
crossref_primary_10_1107_S2059798324008519
crossref_primary_10_1007_s10337_019_03766_1
crossref_primary_10_1007_s10462_024_10745_y
crossref_primary_10_1016_j_ins_2020_08_052
crossref_primary_10_1109_TAES_2024_3367287
crossref_primary_10_1007_s11356_019_05473_8
crossref_primary_10_3390_ai5040143
crossref_primary_10_3390_cells11071231
crossref_primary_10_1073_pnas_2111769119
crossref_primary_10_7717_peerj_cs_1929
crossref_primary_10_1002_pro_3268
crossref_primary_10_1038_s41467_018_06972_x
crossref_primary_10_1145_3197517_3201314
crossref_primary_10_2139_ssrn_4121715
crossref_primary_10_3233_IDA_227263
crossref_primary_10_3389_fcosc_2024_1405243
crossref_primary_10_2118_201187_PA
crossref_primary_10_1109_ACCESS_2022_3196362
crossref_primary_10_1007_s10618_024_01086_z
crossref_primary_10_14258_izvasu_2021_4_16
crossref_primary_10_1109_TITS_2024_3432755
crossref_primary_10_3390_plants12112229
crossref_primary_10_1093_mnras_stad1817
crossref_primary_10_1002_cpe_5299
crossref_primary_10_1016_j_measurement_2024_114797
crossref_primary_10_1007_s10618_019_00651_1
crossref_primary_10_1093_mnras_stae2157
crossref_primary_10_1016_j_jenvman_2023_117840
crossref_primary_10_3389_frai_2024_1200949
crossref_primary_10_3390_su10072327
crossref_primary_10_1007_s41060_021_00275_z
crossref_primary_10_3389_fchem_2022_1087963
crossref_primary_10_1016_j_neucom_2023_127218
crossref_primary_10_1093_ve_veae087
crossref_primary_10_1109_TCSVT_2020_3043444
crossref_primary_10_1109_TSE_2023_3330982
crossref_primary_10_1007_s10618_023_00931_x
crossref_primary_10_1016_j_neucom_2024_127525
crossref_primary_10_1155_2021_6785580
crossref_primary_10_3390_rs16111911
crossref_primary_10_1038_s41524_018_0139_y
crossref_primary_10_1038_s41524_024_01392_6
crossref_primary_10_1007_s41060_023_00431_7
crossref_primary_10_1007_s11135_023_01681_0
crossref_primary_10_2139_ssrn_5086452
crossref_primary_10_1016_j_csbj_2023_09_019
crossref_primary_10_1088_1741_4326_ad85f4
crossref_primary_10_1145_3474842
crossref_primary_10_1016_j_patcog_2024_110298
crossref_primary_10_1093_mnras_stz1260
crossref_primary_10_3390_bdcc7010029
crossref_primary_10_1109_TPAMI_2019_2912970
crossref_primary_10_1080_20464177_2019_1633223
crossref_primary_10_1007_s00202_024_02738_5
crossref_primary_10_4108_eetsis_6758
crossref_primary_10_1080_01621459_2023_2174122
crossref_primary_10_3847_1538_3881_ac18cd
crossref_primary_10_3847_1538_4357_ac8426
crossref_primary_10_1038_s41598_021_98126_1
crossref_primary_10_1051_e3sconf_202126602001
crossref_primary_10_3390_app13106119
crossref_primary_10_1016_j_dsp_2019_04_011
crossref_primary_10_3390_su151813577
crossref_primary_10_1016_j_csbj_2022_08_059
crossref_primary_10_7717_peerj_cs_2286
crossref_primary_10_1093_gji_ggab196
crossref_primary_10_14778_3229863_3236259
crossref_primary_10_1016_j_future_2020_08_033
crossref_primary_10_1016_j_jneumeth_2019_01_019
crossref_primary_10_1515_opar_2022_0274
crossref_primary_10_1016_j_ymssp_2023_110485
crossref_primary_10_3390_a17050201
crossref_primary_10_1109_TKDE_2022_3150403
crossref_primary_10_1021_acs_chemrev_2c00141
crossref_primary_10_1080_23746149_2021_2006080
crossref_primary_10_3389_fpubh_2024_1413031
crossref_primary_10_1016_j_scitotenv_2023_169796
crossref_primary_10_1016_j_dss_2018_06_006
crossref_primary_10_1016_j_heliyon_2024_e27938
crossref_primary_10_1016_j_sigpro_2016_01_008
crossref_primary_10_1051_0004_6361_201935321
crossref_primary_10_1109_ACCESS_2019_2932769
crossref_primary_10_1007_s11042_020_08947_x
crossref_primary_10_1007_s41870_020_00427_7
crossref_primary_10_1038_s41467_018_04887_1
crossref_primary_10_1007_s40745_021_00362_9
crossref_primary_10_3390_s24010118
crossref_primary_10_1111_cgf_15238
crossref_primary_10_3390_a14120344
crossref_primary_10_1007_s10115_021_01650_9
crossref_primary_10_1016_j_eswa_2021_116212
crossref_primary_10_1016_j_patcog_2020_107731
crossref_primary_10_3847_1538_4357_abcb87
crossref_primary_10_3390_jmse12091672
crossref_primary_10_1002_widm_1280
crossref_primary_10_1016_j_energy_2019_04_075
crossref_primary_10_3390_aerospace8100291
crossref_primary_10_1007_s12040_023_02070_9
crossref_primary_10_1016_j_ymeth_2024_01_015
crossref_primary_10_3390_app11104523
crossref_primary_10_1016_j_etdah_2024_100160
crossref_primary_10_1021_acs_jctc_3c00604
crossref_primary_10_1016_j_patter_2020_100187
crossref_primary_10_1093_bib_bbz161
crossref_primary_10_1021_acs_est_8b05355
crossref_primary_10_1017_dap_2021_3
crossref_primary_10_1042_BSR20221181
crossref_primary_10_1016_j_neucom_2024_129172
crossref_primary_10_1007_s40295_022_00361_9
crossref_primary_10_1017_S1351324923000165
crossref_primary_10_1103_PhysRevLett_130_086401
crossref_primary_10_1109_TNSM_2016_2597443
crossref_primary_10_1109_TAI_2021_3117537
crossref_primary_10_1007_s13177_024_00432_1
crossref_primary_10_1007_s11634_019_00356_9
crossref_primary_10_1016_j_imu_2020_100481
crossref_primary_10_1557_s43577_022_00434_y
crossref_primary_10_1088_2632_2153_ac9bcb
crossref_primary_10_1093_nar_gkab1132
crossref_primary_10_1002_1878_0261_12502
crossref_primary_10_33111_nfmte_2023_067
crossref_primary_10_1109_TII_2023_3268777
crossref_primary_10_1093_mnras_stac1701
crossref_primary_10_3389_fmars_2024_1416247
crossref_primary_10_1111_sjos_12665
crossref_primary_10_1016_j_ins_2022_08_100
crossref_primary_10_1016_j_patcog_2023_109300
crossref_primary_10_1093_nar_gkaa1157
crossref_primary_10_1175_JCLI_D_19_0196_1
crossref_primary_10_1016_j_aichem_2024_100077
crossref_primary_10_1109_ACCESS_2018_2874502
crossref_primary_10_1016_j_compbiolchem_2024_108292
crossref_primary_10_1021_acs_jcim_4c01710
crossref_primary_10_3389_fncom_2023_1243092
crossref_primary_10_1002_dta_3329
crossref_primary_10_1016_j_neucom_2024_127329
crossref_primary_10_3389_fanim_2024_1421299
crossref_primary_10_1192_bjo_2021_985
crossref_primary_10_1162_tacl_a_00731
crossref_primary_10_1109_TPAMI_2020_3023125
crossref_primary_10_1007_s11053_024_10379_5
crossref_primary_10_1093_aje_kwae031
crossref_primary_10_1142_S2424862218500173
crossref_primary_10_1016_j_patcog_2019_06_014
crossref_primary_10_1039_C8SM02621A
crossref_primary_10_1016_j_isci_2022_104480
crossref_primary_10_1029_2024JD040830
crossref_primary_10_1051_0004_6361_202243273
crossref_primary_10_1016_j_is_2024_102507
crossref_primary_10_1016_j_ins_2020_05_021
crossref_primary_10_1051_0004_6361_202346035
crossref_primary_10_1088_1748_0221_14_06_P06022
crossref_primary_10_1136_jitc_2024_008875
crossref_primary_10_1109_TMI_2023_3249343
crossref_primary_10_1016_j_ascom_2024_100851
crossref_primary_10_1016_j_knosys_2020_106662
crossref_primary_10_1109_TVCG_2021_3111146
crossref_primary_10_1038_s41467_023_40859_w
crossref_primary_10_1007_s13131_020_1638_5
crossref_primary_10_1016_j_knosys_2025_113002
crossref_primary_10_1186_s13321_024_00894_1
crossref_primary_10_2514_1_G004857
crossref_primary_10_1186_s12859_021_04533_6
crossref_primary_10_1177_10943420241298296
crossref_primary_10_2139_ssrn_4168853
crossref_primary_10_3390_app122111220
crossref_primary_10_1007_s10489_022_03583_4
crossref_primary_10_1007_s10618_024_01077_0
crossref_primary_10_1016_j_jcyt_2023_08_011
crossref_primary_10_1109_TKDE_2019_2962412
crossref_primary_10_9728_dcs_2024_25_8_2165
crossref_primary_10_1021_acs_jctc_6b00757
crossref_primary_10_1016_j_ins_2020_06_034
crossref_primary_10_2903_sp_efsa_2023_EN_8212
crossref_primary_10_1021_jacs_8b07985
crossref_primary_10_1186_s13007_025_01357_w
crossref_primary_10_1016_j_procs_2021_05_032
crossref_primary_10_1371_journal_pcbi_1008885
crossref_primary_10_3390_s20113060
crossref_primary_10_1016_j_jer_2024_02_018
crossref_primary_10_1016_j_jvcir_2021_103357
crossref_primary_10_3390_rs17050784
crossref_primary_10_1016_j_asoc_2023_111029
crossref_primary_10_1109_TGRS_2018_2810124
crossref_primary_10_1016_j_eswa_2023_121652
crossref_primary_10_1145_3490032
crossref_primary_10_1016_j_nimb_2024_165469
crossref_primary_10_1038_s41598_023_39058_w
crossref_primary_10_1109_ACCESS_2019_2891933
crossref_primary_10_1016_j_im_2023_103773
crossref_primary_10_1016_j_rsma_2024_103923
crossref_primary_10_1016_j_autcon_2022_104167
crossref_primary_10_1021_acs_chemrev_0c01195
crossref_primary_10_1038_s41467_022_33628_8
crossref_primary_10_46520_bddkdergisi_986652
crossref_primary_10_1145_3487893
crossref_primary_10_1016_j_ijar_2020_12_003
crossref_primary_10_1093_mnras_stab2409
crossref_primary_10_1371_journal_pone_0316852
crossref_primary_10_1080_21680566_2024_2336037
crossref_primary_10_1016_j_ins_2024_121286
crossref_primary_10_1016_j_dss_2018_04_001
crossref_primary_10_1162_netn_a_00094
crossref_primary_10_12681_cclabs_8066
crossref_primary_10_1016_j_neucom_2020_11_059
crossref_primary_10_1109_TITS_2019_2923964
crossref_primary_10_1016_j_patcog_2023_109517
crossref_primary_10_1017_S1431927621013696
crossref_primary_10_3390_en14041164
crossref_primary_10_1002_tea_21903
crossref_primary_10_1093_mnras_staf115
crossref_primary_10_1063_5_0142797
crossref_primary_10_3390_ijgi8100442
crossref_primary_10_1007_s11277_021_08668_w
crossref_primary_10_1016_j_ins_2021_10_075
crossref_primary_10_1029_2022JB026237
crossref_primary_10_1177_00420980231207475
crossref_primary_10_1016_j_knosys_2020_105659
crossref_primary_10_1063_1_5034782
crossref_primary_10_3390_genes14020313
crossref_primary_10_1021_acs_analchem_7b01547
crossref_primary_10_1016_j_softx_2021_100722
crossref_primary_10_3390_electronics13193944
crossref_primary_10_1080_17452759_2020_1756086
crossref_primary_10_1051_itmconf_20182100028
crossref_primary_10_1016_j_ins_2025_121916
crossref_primary_10_3390_s20185159
crossref_primary_10_1016_j_jairtraman_2020_101787
crossref_primary_10_1186_s40537_025_01060_6
crossref_primary_10_1016_j_future_2025_107737
crossref_primary_10_3390_s22072775
crossref_primary_10_1007_s41060_022_00365_6
crossref_primary_10_1109_LRA_2022_3166544
crossref_primary_10_4153_S000843951900064X
crossref_primary_10_1016_j_matpr_2020_09_623
crossref_primary_10_1103_PhysRevD_111_023504
crossref_primary_10_1016_j_ultramic_2023_113828
crossref_primary_10_1063_5_0139010
crossref_primary_10_1103_PhysRevPhysEducRes_19_020123
crossref_primary_10_1016_j_media_2019_06_015
crossref_primary_10_1063_5_0196232
crossref_primary_10_3390_jimaging6090098
crossref_primary_10_1016_j_trac_2022_116535
crossref_primary_10_1109_TKDE_2024_3371460
crossref_primary_10_1038_s41592_023_01955_3
crossref_primary_10_1109_TBDATA_2019_2907624
crossref_primary_10_1016_j_mlwa_2021_100148
crossref_primary_10_1128_aac_01307_22
crossref_primary_10_3390_rs12060971
crossref_primary_10_1007_s11042_024_19767_8
crossref_primary_10_1016_j_ress_2024_110459
crossref_primary_10_3390_app131810068
crossref_primary_10_3390_bdcc8030020
crossref_primary_10_1109_MAES_2023_3268020
crossref_primary_10_1016_j_isci_2023_108354
crossref_primary_10_1016_j_isprsjprs_2020_05_007
crossref_primary_10_1142_S0219649220400134
crossref_primary_10_5194_gmd_18_939_2025
crossref_primary_10_1016_j_celrep_2022_111275
crossref_primary_10_3389_fcpxs_2023_1273741
crossref_primary_10_3847_1538_4357_ad3240
crossref_primary_10_1007_s00357_024_09483_1
crossref_primary_10_1016_j_segy_2023_100122
crossref_primary_10_3390_electronics8101094
crossref_primary_10_1051_0004_6361_202451361
crossref_primary_10_3233_JIFS_16254
crossref_primary_10_1016_j_enconman_2022_116411
crossref_primary_10_1109_ACCESS_2019_2960159
crossref_primary_10_1039_C7CP03479B
crossref_primary_10_3390_heritage7080211
crossref_primary_10_3390_math10050764
crossref_primary_10_1051_0004_6361_202450945
crossref_primary_10_1093_jcr_ucac014
crossref_primary_10_1109_TGCN_2020_2987304
crossref_primary_10_1155_2018_6291719
crossref_primary_10_3390_rs13204109
crossref_primary_10_1016_j_patrec_2021_06_017
crossref_primary_10_1051_0004_6361_202243798
crossref_primary_10_3390_fi13010006
crossref_primary_10_1109_ACCESS_2024_3395051
crossref_primary_10_1029_2023JE007753
crossref_primary_10_3390_ijgi10030177
crossref_primary_10_1007_s12517_022_10946_1
crossref_primary_10_1109_ACCESS_2023_3287195
crossref_primary_10_1088_1361_6501_ad0a5d
crossref_primary_10_1038_s41598_022_24736_y
crossref_primary_10_30748_soi_2022_168_04
crossref_primary_10_1093_mnras_stae1029
crossref_primary_10_1016_j_autcon_2024_105416
crossref_primary_10_1109_ACCESS_2018_2836389
crossref_primary_10_3847_1538_4357_adb72b
crossref_primary_10_1002_lom3_10665
crossref_primary_10_1002_ece3_9874
crossref_primary_10_1016_j_compenvurbsys_2019_101442
crossref_primary_10_3847_1538_4357_abf92b
crossref_primary_10_1016_j_compbiomed_2020_103935
crossref_primary_10_1088_1741_2552_ac7908
crossref_primary_10_46481_jnsps_2023_1364
crossref_primary_10_1002_widm_1343
crossref_primary_10_1038_s41598_023_45190_4
crossref_primary_10_1016_j_ymssp_2023_110514
crossref_primary_10_1038_s41467_019_11523_z
crossref_primary_10_3390_app13169055
crossref_primary_10_1109_TPAMI_2023_3337195
crossref_primary_10_1140_epjp_s13360_022_03146_z
crossref_primary_10_1016_j_media_2021_102048
Cites_doi 10.1007/s10618-008-0120-3
10.1007/s00357-003-0004-6
10.1016/S0003-2670(01)83197-4
10.1145/1353343.1353398
10.1007/s10618-013-0311-4
10.1145/342009.335437
10.1007/11875581_81
10.5555/1609942.1609946
10.1109/78.324744
10.1016/j.patcog.2012.05.011
10.1145/502512.502554
10.1007/s10618-012-0300-z
10.1007/978-3-642-01307-2_84
10.1080/01621459.1987.10478428
10.1093/bioinformatics/17.10.977
10.1093/biomet/28.3-4.308
10.1016/j.datak.2008.06.006
10.1109/ICDEW.2008.4498387
10.1145/2618243.2618257
10.1109/ICDM.2012.112
10.1007/BF01908075
10.1002/9780470382776
10.1145/2339530.2339669
10.1214/aoms/1177729885
10.1002/sam.11161
10.1002/wics.6
10.1016/S0169-7439(01)00111-3
10.1007/s007780050006
10.1023/B:VISI.0000042993.50813.60
10.1145/956750.956758
10.1145/1401890.1401946
10.1007/11731139_68
10.5555/1404506
10.5555/3120676.3120693
10.1145/233269.233324
10.1145/312129.312186
10.1080/13658810500399654
10.1002/9781118887486.ch6
10.1023/B:AIRE.0000045502.10941.a9
10.1016/S0167-8655(01)00103-9
10.1145/375663.375668
10.1109/TKDE.2003.1232271
10.1145/342009.335388
10.1109/ICDM.2012.21
10.14778/1920841.1921021
10.1109/TIT.1975.1055330
10.1145/1645953.1646195
10.1007/s100440050011
10.1109/ICDE.2011.5767916
10.2307/3315985
10.1007/s10115-011-0430-4
10.1186/gb-2003-4-5-r34
10.1007/978-3-642-01307-2_86
10.1145/2463676.2463696
10.1109/TPAMI.2005.113
10.2307/2347159
10.1145/1871437.1871690
10.1109/ICDM.2010.69
10.1016/S0167-9473(00)00052-9
10.1007/BF02289588
10.1111/j.2517-6161.1983.tb01262.x
10.1198/jcgs.2009.07049
10.1137/1.9781611972825.90
10.1109/TCBB.2008.32
10.1007/978-3-540-72530-5_25
10.1007/s10115-003-0086-9
10.1109/ICDE.2012.88
10.1145/2594473.2594476
10.5555/3121646.3121658
10.1145/1015330.1015360
10.1109/ICDM.2009.143
10.1109/ICDM.2010.151
10.1148/radiology.143.1.7063747
10.1002/widm.30
10.1145/1497577.1497581
10.1145/2487575.2487676
10.1145/2133360.2133363
10.1007/978-3-642-12026-8_29
10.1145/304182.304187
10.1109/TNN.2005.845141
10.1016/j.asoc.2010.06.010
10.1007/s10618-009-0157-y
10.1145/1150402.1150459
10.1145/1401890.1401983
10.1145/1081870.1081891
10.1099/00221287-17-1-184
10.1137/1.9781611973440.63
10.1109/ICDMW.2006.92
10.1145/375663.375672
10.1109/ICDM.2006.43
ContentType Journal Article
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1145/2733381
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1556-472X
EndPage 51
ExternalDocumentID 002709770
10_1145_2733381
GroupedDBID .4S
.DC
23M
4.4
5GY
5VS
8US
AAKMM
AALFJ
AAYFX
AAYXX
ABPPZ
ACM
ADBCU
ADL
ADMLS
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AFWIH
AFWXC
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BDXCO
CCLIF
CITATION
CS3
EBS
EDO
EJD
F5P
FEDTE
GUFHI
HGAVV
H~9
I07
LHSKQ
MK~
P1C
P2P
RNS
ROL
TUS
ZCA
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
AFFNX
UNPAY
XOL
ID FETCH-LOGICAL-c357t-3b06254c7a23f14384746b1685c6fc57aded956e1f297ed60088e10bd33038523
IEDL.DBID UNPAY
ISSN 1556-4681
1556-472X
IngestDate Sun Oct 26 04:11:19 EDT 2025
Fri Jul 11 11:24:41 EDT 2025
Wed Oct 01 05:52:26 EDT 2025
Thu Apr 24 23:08:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-3b06254c7a23f14384746b1685c6fc57aded956e1f297ed60088e10bd33038523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://dx.doi.org/10.1145/2733381
PQID 1718952514
PQPubID 23500
PageCount 51
ParticipantIDs unpaywall_primary_10_1145_2733381
proquest_miscellaneous_1718952514
crossref_primary_10_1145_2733381
crossref_citationtrail_10_1145_2733381
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationTitle ACM transactions on knowledge discovery from data
PublicationYear 2015
References Dang X. H. (e_1_2_1_27_1) 2014
e_1_2_1_119_1
e_1_2_1_111_1
Hartigan J. A. (e_1_2_1_49_1)
Papadimitriou S. (e_1_2_1_93_1) 2003
e_1_2_1_89_1
e_1_2_1_24_1
e_1_2_1_62_1
e_1_2_1_43_1
e_1_2_1_85_1
Ertöz L. (e_1_2_1_33_1)
Sander J. (e_1_2_1_103_1)
e_1_2_1_28_1
Muller D. W. (e_1_2_1_83_1) 1991; 86
e_1_2_1_92_1
e_1_2_1_122_1
e_1_2_1_126_1
e_1_2_1_31_1
e_1_2_1_77_1
e_1_2_1_8_1
e_1_2_1_12_1
e_1_2_1_50_1
e_1_2_1_96_1
e_1_2_1_4_1
e_1_2_1_110_1
e_1_2_1_39_1
e_1_2_1_58_1
Knorr E. M. (e_1_2_1_65_1) 2010
Hinneburg A. (e_1_2_1_53_1)
Kriegel H.-P. (e_1_2_1_73_1)
e_1_2_1_118_1
Foss A. (e_1_2_1_38_1)
e_1_2_1_40_1
Campello R. J. G. B. (e_1_2_1_20_1)
e_1_2_1_121_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_63_1
e_1_2_1_86_1
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_29_1
e_1_2_1_125_1
Micenková B. (e_1_2_1_82_1)
e_1_2_1_70_1
Knorr E. M. (e_1_2_1_67_1)
e_1_2_1_106_1
e_1_2_1_7_1
Beckman R. J. (e_1_2_1_13_1) 1983; 25
e_1_2_1_55_1
e_1_2_1_78_1
e_1_2_1_3_1
e_1_2_1_97_1
e_1_2_1_74_1
e_1_2_1_17_1
Ertöz L. (e_1_2_1_34_1)
Nguyen H. V. (e_1_2_1_91_1) 2014
e_1_2_1_59_1
Wong M. A. (e_1_2_1_117_1) 1983; 45
e_1_2_1_60_1
e_1_2_1_113_1
e_1_2_1_41_1
e_1_2_1_87_1
e_1_2_1_68_1
e_1_2_1_120_1
e_1_2_1_45_1
Bishop C. M. (e_1_2_1_15_1)
e_1_2_1_22_1
e_1_2_1_64_1
Silverman B. W. (e_1_2_1_107_1)
e_1_2_1_26_1
Hang S. (e_1_2_1_47_1); 5
Hinneburg A. (e_1_2_1_54_1)
e_1_2_1_101_1
e_1_2_1_124_1
e_1_2_1_71_1
e_1_2_1_90_1
e_1_2_1_105_1
e_1_2_1_128_1
e_1_2_1_56_1
e_1_2_1_79_1
e_1_2_1_98_1
Angiulli F. (e_1_2_1_6_1)
Tang J. (e_1_2_1_114_1)
e_1_2_1_10_1
e_1_2_1_52_1
e_1_2_1_75_1
e_1_2_1_94_1
e_1_2_1_2_1
e_1_2_1_14_1
Ester M. (e_1_2_1_36_1)
e_1_2_1_37_1
Sander J. (e_1_2_1_102_1)
e_1_2_1_18_1
e_1_2_1_80_1
e_1_2_1_112_1
Soler T. (e_1_2_1_109_1)
e_1_2_1_116_1
e_1_2_1_42_1
e_1_2_1_88_1
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_61_1
e_1_2_1_84_1
Ester M. (e_1_2_1_35_1)
e_1_2_1_69_1
e_1_2_1_108_1
Brecheisen S. (e_1_2_1_16_1)
e_1_2_1_100_1
e_1_2_1_123_1
e_1_2_1_104_1
e_1_2_1_127_1
e_1_2_1_30_1
e_1_2_1_76_1
e_1_2_1_5_1
e_1_2_1_57_1
e_1_2_1_99_1
e_1_2_1_72_1
e_1_2_1_1_1
e_1_2_1_11_1
e_1_2_1_95_1
Knorr E. M. (e_1_2_1_66_1) 2010
Liu P. (e_1_2_1_81_1)
e_1_2_1_9_1
Hawkins D. (e_1_2_1_51_1)
e_1_2_1_19_1
References_xml – ident: e_1_2_1_96_1
  doi: 10.1007/s10618-008-0120-3
– volume-title: Proceedings of the 2nd IEEE International Conference on Data Mining (ICDM), Maebashi City. Japan. 179--186
  ident: e_1_2_1_38_1
– ident: e_1_2_1_110_1
  doi: 10.1007/s00357-003-0004-6
– ident: e_1_2_1_24_1
  doi: 10.1016/S0003-2670(01)83197-4
– volume-title: Proceedings of the 13th IEEE International Conference on Data Mining (ICDM)
  ident: e_1_2_1_82_1
– volume-title: Proceedings of the 30th International Conference on Data Engineering (ICDE)
  year: 2014
  ident: e_1_2_1_27_1
– ident: e_1_2_1_19_1
  doi: 10.1145/1353343.1353398
– volume-title: Proceedings of the 7th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
  ident: e_1_2_1_103_1
– ident: e_1_2_1_21_1
  doi: 10.1007/s10618-013-0311-4
– ident: e_1_2_1_99_1
  doi: 10.1145/342009.335437
– ident: e_1_2_1_113_1
– ident: e_1_2_1_94_1
  doi: 10.1007/11875581_81
– ident: e_1_2_1_4_1
  doi: 10.5555/1609942.1609946
– ident: e_1_2_1_59_1
  doi: 10.1109/78.324744
– volume-title: Pattern Recognition and Machine Learning
  ident: e_1_2_1_15_1
– ident: e_1_2_1_57_1
  doi: 10.1016/j.patcog.2012.05.011
– ident: e_1_2_1_61_1
  doi: 10.1145/502512.502554
– ident: e_1_2_1_8_1
– ident: e_1_2_1_106_1
  doi: 10.1007/s10618-012-0300-z
– ident: e_1_2_1_123_1
  doi: 10.1007/978-3-642-01307-2_84
– ident: e_1_2_1_50_1
  doi: 10.1080/01621459.1987.10478428
– volume-title: Density Estimation for Statistics and Data Analysis
  ident: e_1_2_1_107_1
– ident: e_1_2_1_121_1
  doi: 10.1093/bioinformatics/17.10.977
– ident: e_1_2_1_95_1
  doi: 10.1093/biomet/28.3-4.308
– ident: e_1_2_1_22_1
  doi: 10.1016/j.datak.2008.06.006
– ident: e_1_2_1_85_1
  doi: 10.1109/ICDEW.2008.4498387
– volume-title: Proceedings of the 3rd SIAM International Conference on Data Mining (SDM)
  ident: e_1_2_1_34_1
– ident: e_1_2_1_126_1
  doi: 10.1145/2618243.2618257
– ident: e_1_2_1_84_1
  doi: 10.1109/ICDM.2012.112
– ident: e_1_2_1_58_1
  doi: 10.1007/BF01908075
– volume-title: Proceedings of the 4th SIAM International Conference on Data Mining (SDM). Lake Buena Vista, FL. 400--412
  ident: e_1_2_1_16_1
– ident: e_1_2_1_119_1
  doi: 10.1002/9780470382776
– volume-title: Proceedings of the conference of the Centre for Advanced Studies on Collaborative research (CASCON)
  year: 2010
  ident: e_1_2_1_65_1
– ident: e_1_2_1_98_1
  doi: 10.1145/2339530.2339669
– ident: e_1_2_1_43_1
  doi: 10.1214/aoms/1177729885
– volume-title: Proceedings of the 4th ACM International Conference on Knowledge Discovery and Data Mining (KDD)
  ident: e_1_2_1_54_1
– volume-title: Proceedings of the 19th International Conference on Data Engineering (ICDE)
  year: 2003
  ident: e_1_2_1_93_1
– ident: e_1_2_1_128_1
  doi: 10.1002/sam.11161
– ident: e_1_2_1_46_1
  doi: 10.1002/wics.6
– volume-title: Identification of Outliers
  ident: e_1_2_1_51_1
– volume-title: International Conference on Service Systems and Service Management (ICSSSM)
  ident: e_1_2_1_81_1
– ident: e_1_2_1_116_1
– ident: e_1_2_1_28_1
  doi: 10.1016/S0169-7439(01)00111-3
– ident: e_1_2_1_68_1
  doi: 10.1007/s007780050006
– ident: e_1_2_1_42_1
  doi: 10.1023/B:VISI.0000042993.50813.60
– ident: e_1_2_1_12_1
  doi: 10.1145/956750.956758
– volume-title: Clustering Algorithms
  ident: e_1_2_1_49_1
– ident: e_1_2_1_76_1
  doi: 10.1145/1401890.1401946
– ident: e_1_2_1_62_1
  doi: 10.1007/11731139_68
– volume: 25
  start-page: 119
  year: 1983
  ident: e_1_2_1_13_1
  article-title: Outlier..........s
  publication-title: Technometrics
– ident: e_1_2_1_11_1
  doi: 10.5555/1404506
– ident: e_1_2_1_29_1
  doi: 10.5555/3120676.3120693
– ident: e_1_2_1_124_1
  doi: 10.1145/233269.233324
– volume-title: Proceedings of the 3rd ACM International Conference on Knowledge Discovery and Data Mining (KDD)
  year: 2010
  ident: e_1_2_1_66_1
– ident: e_1_2_1_77_1
  doi: 10.1145/312129.312186
– ident: e_1_2_1_97_1
  doi: 10.1080/13658810500399654
– volume-title: Workshop on Clustering High Dimensional Data and its Applications at 2nd SIAM International Conference on Data Mining. 105--115
  ident: e_1_2_1_33_1
– volume-title: Encyclopedia of Machine Learning
  ident: e_1_2_1_102_1
– ident: e_1_2_1_37_1
  doi: 10.1002/9781118887486.ch6
– ident: e_1_2_1_56_1
  doi: 10.1023/B:AIRE.0000045502.10941.a9
– ident: e_1_2_1_52_1
  doi: 10.1016/S0167-8655(01)00103-9
– ident: e_1_2_1_60_1
– volume-title: Proceedings of the 11th SIAM International Conference on Data Mining (SDM) Mesa, AZ. 13--24
  ident: e_1_2_1_73_1
– volume-title: Proceedings of the 6th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
  ident: e_1_2_1_114_1
– ident: e_1_2_1_3_1
  doi: 10.1145/375663.375668
– volume-title: Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD)
  ident: e_1_2_1_6_1
– ident: e_1_2_1_69_1
  doi: 10.1109/TKDE.2003.1232271
– ident: e_1_2_1_18_1
  doi: 10.1145/342009.335388
– ident: e_1_2_1_74_1
  doi: 10.1109/ICDM.2012.21
– volume-title: Proceedings of the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
  ident: e_1_2_1_20_1
– volume-title: Proceedings of the 2nd ACM International Conference on Knowledge Discovery and Data Mining (KDD)
  ident: e_1_2_1_36_1
– volume-title: Proceedings of the 24th International Conference on Very Large Data Bases (VLDB)
  ident: e_1_2_1_67_1
– ident: e_1_2_1_92_1
  doi: 10.14778/1920841.1921021
– ident: e_1_2_1_40_1
  doi: 10.1109/TIT.1975.1055330
– ident: e_1_2_1_71_1
  doi: 10.1145/1645953.1646195
– ident: e_1_2_1_23_1
  doi: 10.1007/s100440050011
– ident: e_1_2_1_87_1
  doi: 10.1109/ICDE.2011.5767916
– ident: e_1_2_1_25_1
  doi: 10.2307/3315985
– ident: e_1_2_1_31_1
  doi: 10.1007/s10115-011-0430-4
– ident: e_1_2_1_122_1
  doi: 10.1186/gb-2003-4-5-r34
– ident: e_1_2_1_72_1
  doi: 10.1007/978-3-642-01307-2_86
– ident: e_1_2_1_2_1
  doi: 10.1145/2463676.2463696
– volume-title: Proceedings of the 16th International Conference on Database Systems for Advanced Applications (DASFAA)
  year: 2014
  ident: e_1_2_1_91_1
– ident: e_1_2_1_39_1
  doi: 10.1109/TPAMI.2005.113
– ident: e_1_2_1_9_1
  doi: 10.2307/2347159
– ident: e_1_2_1_86_1
  doi: 10.1145/1871437.1871690
– ident: e_1_2_1_112_1
  doi: 10.1109/ICDM.2010.69
– ident: e_1_2_1_75_1
– ident: e_1_2_1_26_1
  doi: 10.1016/S0167-9473(00)00052-9
– ident: e_1_2_1_63_1
  doi: 10.1007/BF02289588
– volume: 45
  start-page: 362
  year: 1983
  ident: e_1_2_1_117_1
  article-title: A kth nearest neighbour clustering procedure
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/j.2517-6161.1983.tb01262.x
– ident: e_1_2_1_111_1
  doi: 10.1198/jcgs.2009.07049
– ident: e_1_2_1_104_1
  doi: 10.1137/1.9781611972825.90
– volume: 5
  volume-title: 6th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)
  ident: e_1_2_1_47_1
– ident: e_1_2_1_45_1
  doi: 10.1109/TCBB.2008.32
– ident: e_1_2_1_100_1
  doi: 10.1007/978-3-540-72530-5_25
– ident: e_1_2_1_55_1
  doi: 10.1007/s10115-003-0086-9
– ident: e_1_2_1_10_1
– ident: e_1_2_1_64_1
  doi: 10.1109/ICDE.2012.88
– ident: e_1_2_1_125_1
  doi: 10.1145/2594473.2594476
– volume: 86
  start-page: 738
  year: 1991
  ident: e_1_2_1_83_1
  article-title: Excess mass estimates and tests for multimodality
  publication-title: J. Amer. Statist. Assoc.
– ident: e_1_2_1_90_1
  doi: 10.5555/3121646.3121658
– ident: e_1_2_1_14_1
  doi: 10.1145/1015330.1015360
– ident: e_1_2_1_79_1
  doi: 10.1109/ICDM.2009.143
– ident: e_1_2_1_30_1
  doi: 10.1109/ICDM.2010.151
– ident: e_1_2_1_48_1
  doi: 10.1148/radiology.143.1.7063747
– ident: e_1_2_1_70_1
  doi: 10.1002/widm.30
– ident: e_1_2_1_5_1
  doi: 10.1145/1497577.1497581
– ident: e_1_2_1_127_1
  doi: 10.1145/2487575.2487676
– ident: e_1_2_1_80_1
  doi: 10.1145/2133360.2133363
– ident: e_1_2_1_89_1
  doi: 10.1007/978-3-642-12026-8_29
– ident: e_1_2_1_7_1
  doi: 10.1145/304182.304187
– ident: e_1_2_1_118_1
  doi: 10.1109/TNN.2005.845141
– ident: e_1_2_1_88_1
  doi: 10.1016/j.asoc.2010.06.010
– ident: e_1_2_1_101_1
  doi: 10.1007/s10618-009-0157-y
– ident: e_1_2_1_1_1
  doi: 10.1145/1150402.1150459
– volume-title: Encyclopedia of Database Systems, L. Liu and M. T. Özsu (Eds.)
  ident: e_1_2_1_35_1
– volume-title: Proceedings of the 7th International Symposium on Intelligent Data Analysis (IDA)
  ident: e_1_2_1_53_1
– ident: e_1_2_1_120_1
  doi: 10.1145/1401890.1401983
– ident: e_1_2_1_78_1
  doi: 10.1145/1081870.1081891
– volume-title: ASP-ACSM Convention. 393--406
  ident: e_1_2_1_109_1
– ident: e_1_2_1_108_1
  doi: 10.1099/00221287-17-1-184
– ident: e_1_2_1_105_1
  doi: 10.1137/1.9781611973440.63
– ident: e_1_2_1_44_1
  doi: 10.1109/ICDMW.2006.92
– ident: e_1_2_1_17_1
  doi: 10.1145/375663.375672
– ident: e_1_2_1_41_1
  doi: 10.1109/ICDM.2006.43
SSID ssj0055112
Score 2.5836813
Snippet An integrated framework for density-based cluster analysis, outlier detection, and data visualization is introduced in this article. The main module consists...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Algorithms
Clustering
Clusters
Data analysis
Data visualization
Density
Estimates
Outliers (statistics)
Title Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection
URI https://www.proquest.com/docview/1718952514
http://dx.doi.org/10.1145/2733381
UnpaywallVersion submittedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1556-472X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055112
  issn: 1556-4681
  databaseCode: ADMLS
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5Ke9CLb_HNFsST0WYf2fRY2koRWwWt1FPY7AOKMYomiP56Z5u0VrTgbQ-TEHZ3-L7JzDeD0DFRnAvdoJ6QVHusqYgXc1iFwnJKtDVau18D_UHQG7LLER9VUP3vDL7P-DngK4RREODUAg50u4pqw8FN62HSB5UHHgtCf7YWZFQIY-ef_Ik43zRyKU9f5Me7TJI5RLlY_dblFIUkj2d5Fp-pz99tGhd_7BpaKfkkbhUXYB1VTLqBVqezGnDpupto1Bs7qfFk8kmCO65sPfvAXXDwJ8c2MXBX3JGZxO0kd70TANFO8f34zWkuC6XmKZapxtd5BqwVbE02KeJKt9DwonvX7nnlVAVPUS4yj8YNiHmYEpJQ64afM8GC2A9CrgKruJDaaAiajG9JUxgNhCgMjd-INaUui0joNqqmz6nZQZgKooRVk9QgoySMDQ8Js4CLTBNrw110Mt35SJUtx93kiyQq5NA8KvdrF-GZ4UvRZeO3SX16dBF4gEtryNQ852-RD_Da5MDTGNjMznTRe_b-YbOPloEX8aIq9wBVs9fcHAL3yOIjVGt1-le3R-Ut_AI0MdNE
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5Ke9CLb7G-2IJ4arTZRzY9ilaKYPVgpZ7CZh9QjLFogtRf72yTPqQWvO1hEsLuDt83mflmEDojinOhW9QTkmqPtRXxYg6rUFhOibZGa_dr4L4XdPvsbsAHFdT4O4PvM34J-AphFAQ4tYAD3a6iWr_3ePUy6YPKA48FoT9bCzIohLGLT_5GnDmNXMvTkRx_ySRZQJTbzbkupygkeb3Is_hCfS-3aVz9sVtoo-ST-Kq4ANuoYtIdtDmd1YBL191Fg-7QSY0nk08SfOPK1rMx7oCDvzm2iYG74huZSXyd5K53AiBaEz8PP53mslBqNrFMNX7IM2CtYGuySRFXuof6t52n665XTlXwFOUi82jcgpiHKSEJtW74ORMsiP0g5CqwigupjYagyfiWtIXRQIjC0PitWFPqsoiE7qNq-p6aA4SpIEpYNUkNMkrC2PCQMAu4yDSxNqyj8-nOR6psOe4mXyRRIYfmUblfdYRnhqOiy8aySWN6dBF4gEtryNS855-RD_Da5sDTGNjMznTVew7_YXOE1oEX8aIq9xhVs4_cnAD3yOLT8vb9AKHz0bA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Density+Estimates+for+Data+Clustering%2C+Visualization%2C+and+Outlier+Detection&rft.jtitle=ACM+transactions+on+knowledge+discovery+from+data&rft.au=Campello%2C+Ricardo+J.+G.+B.&rft.au=Moulavi%2C+Davoud&rft.au=Zimek%2C+Arthur&rft.au=Sander%2C+J%C3%B6rg&rft.date=2015-07-01&rft.issn=1556-4681&rft.eissn=1556-472X&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=51&rft_id=info:doi/10.1145%2F2733381&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_2733381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4681&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4681&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4681&client=summon