Advances in Metaphotonics Empowered Single Photon Emission
Spontaneous photon emission can be drastically modified by placing quantum emitters (QEs) in nanostructured environment, resulting in dramatically enhanced emission rates due to the Purcell effect along with generation of collimated single‐photon beams propagating in design directions and featuring...
Saved in:
Published in | Advanced optical materials Vol. 11; no. 10 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2195-1071 2195-1071 |
DOI | 10.1002/adom.202202759 |
Cover
Abstract | Spontaneous photon emission can be drastically modified by placing quantum emitters (QEs) in nanostructured environment, resulting in dramatically enhanced emission rates due to the Purcell effect along with generation of collimated single‐photon beams propagating in design directions and featuring well‐defined polarization states. Recent advances in single‐photon generation engineering demonstrate fascinating possibilities for the directional emission of photons with designed spin and orbital angular momenta, a development that is crucial for exploiting the full potential of QEs within quantum information technologies. Although many different nanostructured configurations are considered for hosting QEs to mold single‐photon beams, collimating of the latter requires relatively large interaction areas to be involved, thus making the use of metasurfaces preferential. Furthermore, optical metasurfaces consisting of planar arrays of resonant nanoscale elements offer complete control over optical fields and thereby design freedom in shaping single‐photon emission. Here, recent advances in exploiting quantum optical metasurfaces for achieving enhanced and directional emission of single photons with specified polarization properties are overviewed. Special attention is paid to hybrid plasmon–QE coupled metasurfaces based on efficient QE coupling to surface plasmon modes that are subsequently outcoupled by designed dielectric nanoarrays into free propagating photon emission. Perspectives for future developments of metasurface empowered QEs are also discussed.
State‐of‐the‐art progress of single‐photon generation engineering with metaphotonics empowered single photon emission is reviewed with emphasis on hybrid plasmon‐quantum emitter (QE) coupled metasurfaces for exploiting full potential of photon emission freedoms. Recent advances in generation of entangled photon pairs with nonlinear metasurfaces are also presented. Furthermore, perspectives for future developments of metasurface empowered QEs are discussed. |
---|---|
AbstractList | Spontaneous photon emission can be drastically modified by placing quantum emitters (QEs) in nanostructured environment, resulting in dramatically enhanced emission rates due to the Purcell effect along with generation of collimated single‐photon beams propagating in design directions and featuring well‐defined polarization states. Recent advances in single‐photon generation engineering demonstrate fascinating possibilities for the directional emission of photons with designed spin and orbital angular momenta, a development that is crucial for exploiting the full potential of QEs within quantum information technologies. Although many different nanostructured configurations are considered for hosting QEs to mold single‐photon beams, collimating of the latter requires relatively large interaction areas to be involved, thus making the use of metasurfaces preferential. Furthermore, optical metasurfaces consisting of planar arrays of resonant nanoscale elements offer complete control over optical fields and thereby design freedom in shaping single‐photon emission. Here, recent advances in exploiting quantum optical metasurfaces for achieving enhanced and directional emission of single photons with specified polarization properties are overviewed. Special attention is paid to hybrid plasmon–QE coupled metasurfaces based on efficient QE coupling to surface plasmon modes that are subsequently outcoupled by designed dielectric nanoarrays into free propagating photon emission. Perspectives for future developments of metasurface empowered QEs are also discussed. Spontaneous photon emission can be drastically modified by placing quantum emitters (QEs) in nanostructured environment, resulting in dramatically enhanced emission rates due to the Purcell effect along with generation of collimated single‐photon beams propagating in design directions and featuring well‐defined polarization states. Recent advances in single‐photon generation engineering demonstrate fascinating possibilities for the directional emission of photons with designed spin and orbital angular momenta, a development that is crucial for exploiting the full potential of QEs within quantum information technologies. Although many different nanostructured configurations are considered for hosting QEs to mold single‐photon beams, collimating of the latter requires relatively large interaction areas to be involved, thus making the use of metasurfaces preferential. Furthermore, optical metasurfaces consisting of planar arrays of resonant nanoscale elements offer complete control over optical fields and thereby design freedom in shaping single‐photon emission. Here, recent advances in exploiting quantum optical metasurfaces for achieving enhanced and directional emission of single photons with specified polarization properties are overviewed. Special attention is paid to hybrid plasmon–QE coupled metasurfaces based on efficient QE coupling to surface plasmon modes that are subsequently outcoupled by designed dielectric nanoarrays into free propagating photon emission. Perspectives for future developments of metasurface empowered QEs are also discussed. State‐of‐the‐art progress of single‐photon generation engineering with metaphotonics empowered single photon emission is reviewed with emphasis on hybrid plasmon‐quantum emitter (QE) coupled metasurfaces for exploiting full potential of photon emission freedoms. Recent advances in generation of entangled photon pairs with nonlinear metasurfaces are also presented. Furthermore, perspectives for future developments of metasurface empowered QEs are discussed. |
Author | Kan, Yinhui Bozhevolnyi, Sergey I. |
Author_xml | – sequence: 1 givenname: Yinhui surname: Kan fullname: Kan, Yinhui email: yk@mci.sdu.dk organization: University of Southern Denmark – sequence: 2 givenname: Sergey I. orcidid: 0000-0002-0393-4859 surname: Bozhevolnyi fullname: Bozhevolnyi, Sergey I. email: seib@mci.sdu.dk organization: University of Southern Denmark |
BookMark | eNqFkE1LAzEQhoNUsNZePS943pqv_Yi3UlsVWirYe0izs5qym6zJ1tJ_79aKiiBCYDIz7zMzvOeoZ50FhC4JHhGM6bUqXD2imHYvS8QJ6lMikpjgjPR-_M_QMIQNxrhLmOBZH92MizdlNYTI2GgBrWpeXOus0SGa1o3bgYciejL2uYLo8aPV1U0IxtkLdFqqKsDwMw7QajZdTe7j-fLuYTKex5olmYg1EKo4cK5Emug1Z4UCLURCida4YCIrS6H1muYYipTSUjFKU0KwEExDSdgAXR3HNt69biG0cuO23nYbJc1JkvM0IwcVP6q0dyF4KKU2rWq7M1uvTCUJlgef5MEn-eVTh41-YY03tfL7vwFxBHamgv0_ajm-XS6-2XcbdnyR |
CitedBy_id | crossref_primary_10_1039_D4RA03726J crossref_primary_10_1007_s12596_023_01322_7 crossref_primary_10_1103_PhysRevA_111_013511 crossref_primary_10_1126_sciadv_adq6298 crossref_primary_10_1063_5_0204694 crossref_primary_10_1002_adma_202313589 crossref_primary_10_1364_AOP_510826 crossref_primary_10_1364_OE_494389 crossref_primary_10_1021_acs_nanolett_3c02055 crossref_primary_10_1088_1361_6633_ad8eda crossref_primary_10_1002_qute_202300196 crossref_primary_10_1103_PhysRevA_110_023522 crossref_primary_10_1063_5_0201107 crossref_primary_10_1002_qute_202300123 crossref_primary_10_1021_acsnano_3c10092 crossref_primary_10_1016_j_mattod_2023_07_021 crossref_primary_10_1021_acsphotonics_3c01745 crossref_primary_10_1021_acsnano_3c06309 crossref_primary_10_1515_nanoph_2024_0300 crossref_primary_10_1515_nanoph_2024_0122 crossref_primary_10_1021_acs_nanolett_4c03258 crossref_primary_10_1038_s41467_024_54262_6 crossref_primary_10_1364_OE_553233 crossref_primary_10_1038_s41467_023_42046_3 crossref_primary_10_3390_photonics11050442 |
Cites_doi | 10.1021/acs.nanolett.7b00444 10.1103/RevModPhys.87.347 10.1021/acsphotonics.9b00570 10.1103/PhysRevB.97.205418 10.1126/science.aax3766 10.1103/PhysRevA.92.053811 10.1039/D1NR05951C 10.1364/OL.402781 10.1103/PhysRevLett.106.096801 10.1038/nphoton.2017.103 10.1126/science.aag2472 10.1364/OPTICA.463481 10.1364/OPTICA.453527 10.1103/PhysRevLett.115.025501 10.1126/science.aad8532 10.1021/acsphotonics.8b00852 10.1038/nphoton.2009.187 10.1364/OPTICA.5.001128 10.1021/acs.nanolett.8b01533 10.1126/science.1191922 10.1126/science.aba9779 10.1126/science.1142892 10.1038/nature07127 10.1038/s41467-018-08057-1 10.1364/OE.15.010869 10.1088/1367-2630/13/5/055017 10.1364/OE.27.030773 10.1038/ncomms8788 10.1021/acs.nanolett.8b01415 10.1038/s42254-020-0164-x 10.1063/1.3519847 10.1103/PhysRevLett.115.173601 10.1038/s41565-019-0611-y 10.1038/nphoton.2010.34 10.1021/acsphotonics.5b00433 10.1038/nphoton.2015.103 10.1103/PhysRevB.97.195448 10.1364/OL.385741 10.1126/sciadv.abq4240 10.1021/nl5037808 10.1039/D1NR05379E 10.1021/nl071084d 10.1021/acsphotonics.7b00061 10.1063/1.4982164 10.1021/nl202825s 10.1038/s41467-018-03155-6 10.1038/s41565-017-0003-0 10.1038/nature17974 10.1088/1367-2630/13/2/025020 10.1002/adom.201900724 10.1002/adom.202000854 10.1126/science.1237861 10.1038/s41467-019-10238-5 10.1017/CBO9780511794193 10.1038/nphoton.2010.237 10.1021/acs.nanolett.5b03724 10.1515/nanoph-2020-0208 10.1364/OPTICA.6.001416 10.1038/s41565-022-01217-x 10.1038/nphoton.2015.247 10.1021/acs.nanolett.7b01436 10.1103/PhysRevLett.95.017402 10.1126/science.abj0039 10.1038/nphoton.2013.377 10.1038/s41565-020-00827-7 10.1038/s41565-022-01197-y 10.1038/ncomms11183 10.1021/acs.nanolett.1c01125 10.1038/s41377-019-0182-6 10.1002/adma.201202783 10.1002/qute.201900087 10.1021/acs.nanolett.1c00828 10.1002/adom.202200510 10.1126/science.aat8196 10.1021/acsphotonics.1c00849 10.1103/PhysRevApplied.7.024031 10.1021/nn303907r 10.1021/nl501976f 10.1103/PhysRevLett.75.4337 10.1002/adma.201907832 10.1364/OPTICA.4.001006 10.1103/PhysRevLett.126.223602 10.1364/OPTICA.382841 10.1021/acs.nanolett.6b01987 10.1002/adfm.202100889 10.1021/acsphotonics.7b00717 10.1063/5.0033507 10.1002/lpor.201900025 10.1002/adom.202102697 10.1088/1361-6633/aa8732 10.1021/acs.nanolett.6b00082 10.1103/PhysRevB.65.195315 10.1002/lpor.202200179 10.1126/science.1226528 10.1126/science.abq8684 10.1016/B978-0-12-369470-6.00002-2 10.1038/s41566-021-00793-z 10.1093/oso/9780198566724.001.0001 10.1038/lsa.2016.245 10.1109/JRPROC.1928.221464 10.1364/OL.35.004208 10.1364/OE.21.027438 10.1126/sciadv.abd9450 10.1021/acsnano.7b04810 10.1126/sciadv.aba8761 10.1038/s41566-019-0532-1 10.1126/science.aat9042 10.1038/nnano.2015.242 10.1126/science.aao5392 10.1021/acsphotonics.7b01194 10.1038/nphoton.2014.228 10.1021/nl401791v 10.1021/acs.nanolett.1c01843 10.1088/2040-8986/ab05a8 10.1021/acsnano.6b03602 10.1038/ncomms6298 10.1002/adma.202106692 10.1021/acsphotonics.0c00196 10.1038/s41563-019-0290-y 10.1063/1.3573870 10.1103/PhysRevLett.107.123602 10.1038/s41598-018-21664-8 10.1021/nl503451j 10.1038/nnano.2015.159 10.1038/nature14246 10.1038/s41567-020-0845-5 10.1021/acs.nanolett.7b03248 10.1038/nphoton.2009.229 10.1038/nphoton.2008.32 10.1103/PhysRevA.100.053815 10.1021/acsphotonics.7b01139 10.1021/acsphotonics.7b01142 10.1021/acsphotonics.9b01358 10.1021/ph5003472 10.1021/acs.nanolett.8b02808 10.1364/OPTICA.3.001418 10.1021/acsphotonics.1c00459 10.1021/acsphotonics.8b01225 10.1126/science.1232009 10.1038/nature03119 10.1021/ph500379p 10.1088/1612-2011/13/11/115204 10.1126/sciadv.abk3075 10.1103/PhysRevLett.127.043603 10.1038/s41467-022-29798-0 10.1126/science.aah5243 10.1021/acs.nanolett.6b03268 10.1038/nphoton.2009.215 10.1126/science.aax5961 10.1038/nphoton.2016.186 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1002/adom.202202759 |
DatabaseName | Wiley Online Library Open Access CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2195-1071 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adom_202202759 ADOM202202759 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 62105150 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20210289 – fundername: State Key Laboratory of Advanced Optical Communication Systems Networks of China funderid: 2022GZKF023 – fundername: Villum Kann Rasmussen Foundation – fundername: European Union's Horizon Europe research and innovation programme under the Marie Skłodowska‐Curie Action funderid: 101064471 |
GroupedDBID | 0R~ 1OC 24P 33P 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZFZN AZVAB BFHJK BMXJE BRXPI D-B DCZOG DPXWK EBS G-S HGLYW HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW 31~ AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION EJD GODZA 7SP 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY H8D L7M |
ID | FETCH-LOGICAL-c3579-ce12a4e44a965cb43daec99521cc0d397ff9ccb280ed622fa3226110993cef13 |
IEDL.DBID | 24P |
ISSN | 2195-1071 |
IngestDate | Fri Jul 25 12:05:39 EDT 2025 Tue Jul 01 00:35:57 EDT 2025 Thu Apr 24 23:06:56 EDT 2025 Wed Jan 22 16:23:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3579-ce12a4e44a965cb43daec99521cc0d397ff9ccb280ed622fa3226110993cef13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0393-4859 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202202759 |
PQID | 2815846711 |
PQPubID | 2034581 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2815846711 crossref_citationtrail_10_1002_adom_202202759 crossref_primary_10_1002_adom_202202759 wiley_primary_10_1002_adom_202202759_ADOM202202759 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced optical materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 97 2019; 10 2019; 13 2020; 16 2020; 15 2020; 14 2019; 18 2018; 9 2018; 8 2018; 5 2019; 21 2015; 87 2019; 27 2014; 14 2007; 7 2021; 154 2012; 24 2010; 4 2019; 8 2019; 7 2019; 6 2010; 329 2010; 35 1928; 16 2016; 10 2020; 32 2013; 340 2016; 16 2011; 5 2019; 100 2016; 13 2007; 15 2018; 18 2016; 7 2016; 3 2004; 432 2015; 115 2013; 339 2022; 8 2022; 9 2002; 65 2005; 95 2022; 13 2022; 14 2015; 518 2022; 10 2021; 374 2007; 318 2018; 97 2022; 16 2022; 17 2018; 13 1995; 75 2017; 6 2018; 361 2017; 7 2021; 21 2017; 4 2013; 21 2021; 126 2021; 127 2018; 81 2020; 368 2011; 11 2011; 98 2011; 13 2017; 110 2008; 2 2019; 364 2017; 358 2019; 365 2022; 377 2020; 8 2020; 7 2020; 6 2014; 5 2021; 31 2020; 3 2020; 2 2013; 13 2020; 9 2016; 354 2020; 45 2014; 8 2012; 338 2016; 351 2015; 2 2021; 8 2015; 15 2021; 7 2015; 6 2012 2015; 92 2015; 11 2015; 10 2008 2006 2015; 9 2021; 13 2021; 16 2021; 15 2011; 107 2011; 106 2022 2017; 17 2017; 11 2016; 535 2008; 453 2009; 3 2012; 6 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_117_1 e_1_2_9_136_1 e_1_2_9_28_1 e_1_2_9_47_1 Fox M. (e_1_2_9_48_1) 2006 e_1_2_9_132_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_29_1 e_1_2_9_150_1 |
References_xml | – volume: 2 start-page: 234 year: 2008 publication-title: Nat. Photonics – volume: 18 start-page: 6906 year: 2018 publication-title: Nano Lett. – volume: 15 start-page: 327 year: 2021 publication-title: Nat. Photonics – volume: 368 start-page: 1487 year: 2020 publication-title: Science – volume: 16 start-page: 270 year: 2016 publication-title: Nano Lett. – volume: 45 start-page: 4794 year: 2020 publication-title: Opt. Lett. – volume: 100 year: 2019 publication-title: Phys. Rev. A – volume: 95 year: 2005 publication-title: Phys. Rev. Lett. – volume: 15 start-page: 1493 year: 2015 publication-title: Nano Lett. – volume: 21 start-page: 6549 year: 2021 publication-title: Nano Lett. – volume: 97 year: 2018 publication-title: Phys. Rev. B – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 75 start-page: 4337 year: 1995 publication-title: Phys. Rev. Lett. – volume: 11 start-page: 4907 year: 2011 publication-title: Nano Lett. – volume: 358 start-page: 896 year: 2017 publication-title: Science – volume: 8 start-page: 2190 year: 2021 publication-title: ACS Photonics – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 15 start-page: 125 year: 2020 publication-title: Nat. Nanotechnol. – volume: 17 start-page: 2634 year: 2017 publication-title: Nano Lett. – volume: 92 year: 2015 publication-title: Phys. Rev. A – volume: 8 start-page: 3119 year: 2021 publication-title: ACS Photonics – volume: 6 start-page: 2073 year: 2019 publication-title: ACS Photonics – volume: 9 start-page: 427 year: 2015 publication-title: Nat. Photonics – volume: 15 year: 2007 publication-title: Opt. Express – volume: 453 start-page: 1023 year: 2008 publication-title: Nature – volume: 10 start-page: 60 year: 2016 publication-title: Nat. Photonics – volume: 17 start-page: 1178 year: 2022 publication-title: Nat. Nanotechnol. – volume: 17 start-page: 6886 year: 2017 publication-title: Nano Lett. – year: 2022 publication-title: Adv. Mater. – volume: 106 year: 2011 publication-title: Phys. Rev. Lett. – volume: 535 start-page: 127 year: 2016 publication-title: Nature – volume: 318 start-page: 1567 year: 2007 publication-title: Science – year: 2008 – volume: 7 year: 2017 publication-title: Phys. Rev. Appl. – volume: 97 year: 2010 publication-title: Appl. Phys. Lett. – volume: 15 start-page: 464 year: 2015 publication-title: Nano Lett. – volume: 3 start-page: 724 year: 2009 publication-title: Nat. Photonics – volume: 10 start-page: 2392 year: 2019 publication-title: Nat. Commun. – volume: 65 year: 2002 publication-title: Phys. Rev. B – volume: 354 year: 2016 publication-title: Science – volume: 16 year: 2022 publication-title: Laser Photonics Rev. – volume: 13 start-page: 3807 year: 2013 publication-title: Nano Lett. – volume: 8 start-page: 835 year: 2014 publication-title: Nat. Photonics – volume: 13 start-page: 59 year: 2018 publication-title: Nat. Nanotechnol. – volume: 24 year: 2012 publication-title: Adv. Mater. – volume: 10 start-page: 775 year: 2015 publication-title: Nat. Nanotechnol. – volume: 154 year: 2021 publication-title: J. Chem. Phys. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 18 start-page: 5396 year: 2018 publication-title: Nano Lett. – volume: 361 start-page: 1101 year: 2018 publication-title: Science – volume: 2 start-page: 172 year: 2015 publication-title: ACS Photonics – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 2 start-page: 228 year: 2015 publication-title: ACS Photonics – volume: 518 start-page: 516 year: 2015 publication-title: Nature – volume: 432 start-page: 200 year: 2004 publication-title: Nature – volume: 21 year: 2013 publication-title: Opt. Express – volume: 16 start-page: 676 year: 2020 publication-title: Nat. Phys. – volume: 45 start-page: 1244 year: 2020 publication-title: Opt. Lett. – volume: 127 year: 2021 publication-title: Phys. Rev. Lett. – volume: 21 year: 2019 publication-title: J. Opt. – volume: 16 start-page: 302 year: 2021 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 5296 year: 2014 publication-title: Nat. Commun. – volume: 354 start-page: 726 year: 2016 publication-title: Science – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 5 start-page: 1128 year: 2018 publication-title: Optica – volume: 18 start-page: 668 year: 2019 publication-title: Nat. Mater. – volume: 5 start-page: 897 year: 2018 publication-title: ACS Photonics – volume: 361 start-page: 1104 year: 2018 publication-title: Science – volume: 2 start-page: 175 year: 2020 publication-title: Nat. Rev. Phys. – volume: 81 year: 2018 publication-title: Rep. Prog. Phys. – volume: 338 start-page: 363 year: 2012 publication-title: Science – volume: 17 start-page: 1097 year: 2022 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 953 year: 2022 publication-title: Optica – volume: 5 start-page: 3447 year: 2018 publication-title: ACS Photonics – volume: 9 start-page: 812 year: 2018 publication-title: Nat. Commun. – volume: 6 start-page: 3024 year: 2019 publication-title: ACS Photonics – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 4 start-page: 1006 year: 2017 publication-title: Optica – volume: 13 year: 2019 publication-title: Laser Photonics Rev. – volume: 4 start-page: 312 year: 2010 publication-title: Nat. Photonics – volume: 7 start-page: 2101 year: 2007 publication-title: Nano Lett. – volume: 3 start-page: 1418 year: 2016 publication-title: Optica – volume: 16 start-page: 6052 year: 2016 publication-title: Nano Lett. – volume: 11 year: 2017 publication-title: ACS Nano – volume: 364 start-page: 532 year: 2019 publication-title: Science – volume: 21 start-page: 5461 year: 2021 publication-title: Nano Lett. – volume: 110 year: 2017 publication-title: Appl. Phys. Lett. – volume: 329 start-page: 930 year: 2010 publication-title: Science – volume: 35 start-page: 4208 year: 2010 publication-title: Opt. Lett. – volume: 13 year: 2011 publication-title: New J. Phys. – volume: 351 start-page: 1176 year: 2016 publication-title: Science – volume: 6 start-page: 7788 year: 2015 publication-title: Nat. Commumn. – volume: 3 year: 2020 publication-title: Adv. Quantum Technol. – volume: 4 start-page: 710 year: 2017 publication-title: ACS Photonics – volume: 5 start-page: 43 year: 2018 publication-title: ACS Photonics – volume: 6 year: 2012 publication-title: ACS Nano – volume: 374 year: 2021 publication-title: Science – volume: 10 start-page: 7331 year: 2016 publication-title: ACS Nano – volume: 13 year: 2021 publication-title: Nanoscale – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 8 start-page: 224 year: 2014 publication-title: Nat. Photonics – volume: 27 year: 2019 publication-title: Opt. Express – volume: 7 start-page: 1111 year: 2020 publication-title: ACS Photonics – volume: 13 start-page: 2071 year: 2022 publication-title: Nat. Commun. – volume: 115 year: 2015 publication-title: Phys. Rev. Lett. – volume: 14 start-page: 4797 year: 2014 publication-title: Nano Lett. – volume: 10 start-page: 396 year: 2019 publication-title: Nat. Commun. – volume: 14 start-page: 273 year: 2020 publication-title: Nat. Photonics – volume: 21 start-page: 4423 year: 2021 publication-title: Nano Lett. – volume: 9 start-page: 445 year: 2022 publication-title: Optica – volume: 5 start-page: 240 year: 2018 publication-title: ACS Photonics – volume: 7 start-page: 9450 year: 2021 publication-title: Sci. Adv. – volume: 3 start-page: 654 year: 2009 publication-title: Nat. Photonics – volume: 126 year: 2021 publication-title: Phys. Rev. Lett. – volume: 16 start-page: 7037 year: 2016 publication-title: Nano Lett. – volume: 8 start-page: 70 year: 2019 publication-title: Light: Sci. Appl. – volume: 10 start-page: 631 year: 2016 publication-title: Nat. Photonics – volume: 377 start-page: 991 year: 2022 publication-title: Science – volume: 339 year: 2013 publication-title: Science – volume: 17 start-page: 3889 year: 2017 publication-title: Nano Lett. – volume: 6 start-page: 1416 year: 2019 publication-title: Optica – volume: 87 start-page: 347 year: 2015 publication-title: Rev. Mod. Phys. – volume: 6 start-page: 23 year: 2019 publication-title: ACS Photonics – volume: 365 start-page: 257 year: 2019 publication-title: Science – volume: 7 start-page: 463 year: 2020 publication-title: Optica – volume: 3 start-page: 687 year: 2009 publication-title: Nat. Photonics – year: 2012 – volume: 16 start-page: 2527 year: 2016 publication-title: Nano Lett. – volume: 5 start-page: 83 year: 2011 publication-title: Nat. Photonics – volume: 11 start-page: 398 year: 2017 publication-title: Nat. Photonics – volume: 18 start-page: 4837 year: 2018 publication-title: Nano Lett. – volume: 340 start-page: 1545 year: 2013 publication-title: Science – volume: 9 start-page: 3557 year: 2020 publication-title: Nanophotonics – volume: 6 year: 2017 publication-title: Light: Sci. Appl. – year: 2006 – volume: 98 year: 2011 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 3415 year: 2018 publication-title: Sci. Rep. – volume: 16 start-page: 715 year: 1928 publication-title: Proc. IRE – volume: 13 year: 2016 publication-title: Laser Phys. Lett. – volume: 14 start-page: 2287 year: 2022 publication-title: Nanoscale – volume: 107 year: 2011 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 692 year: 2018 publication-title: ACS Photonics – volume: 2 start-page: 1669 year: 2015 publication-title: ACS Photonics – volume: 11 start-page: 37 year: 2015 publication-title: Nat. Nanotechnol. – ident: e_1_2_9_80_1 doi: 10.1021/acs.nanolett.7b00444 – ident: e_1_2_9_25_1 doi: 10.1103/RevModPhys.87.347 – ident: e_1_2_9_27_1 doi: 10.1021/acsphotonics.9b00570 – ident: e_1_2_9_30_1 doi: 10.1103/PhysRevB.97.205418 – ident: e_1_2_9_29_1 doi: 10.1126/science.aax3766 – ident: e_1_2_9_64_1 doi: 10.1103/PhysRevA.92.053811 – ident: e_1_2_9_34_1 doi: 10.1039/D1NR05951C – ident: e_1_2_9_50_1 doi: 10.1364/OL.402781 – ident: e_1_2_9_3_1 doi: 10.1103/PhysRevLett.106.096801 – ident: e_1_2_9_52_1 doi: 10.1038/nphoton.2017.103 – ident: e_1_2_9_118_1 doi: 10.1126/science.aag2472 – ident: e_1_2_9_106_1 doi: 10.1364/OPTICA.463481 – ident: e_1_2_9_150_1 doi: 10.1364/OPTICA.453527 – ident: e_1_2_9_120_1 doi: 10.1103/PhysRevLett.115.025501 – ident: e_1_2_9_128_1 doi: 10.1126/science.aad8532 – ident: e_1_2_9_17_1 doi: 10.1021/acsphotonics.8b00852 – ident: e_1_2_9_66_1 doi: 10.1038/nphoton.2009.187 – ident: e_1_2_9_81_1 doi: 10.1364/OPTICA.5.001128 – ident: e_1_2_9_115_1 doi: 10.1021/acs.nanolett.8b01533 – ident: e_1_2_9_88_1 doi: 10.1126/science.1191922 – ident: e_1_2_9_140_1 doi: 10.1126/science.aba9779 – ident: e_1_2_9_4_1 doi: 10.1126/science.1142892 – ident: e_1_2_9_5_1 doi: 10.1038/nature07127 – ident: e_1_2_9_144_1 doi: 10.1038/s41467-018-08057-1 – ident: e_1_2_9_53_1 doi: 10.1364/OE.15.010869 – ident: e_1_2_9_84_1 doi: 10.1088/1367-2630/13/5/055017 – ident: e_1_2_9_134_1 doi: 10.1364/OE.27.030773 – ident: e_1_2_9_56_1 doi: 10.1038/ncomms8788 – ident: e_1_2_9_61_1 doi: 10.1021/acs.nanolett.8b01415 – ident: e_1_2_9_112_1 doi: 10.1038/s42254-020-0164-x – ident: e_1_2_9_82_1 doi: 10.1063/1.3519847 – ident: e_1_2_9_18_1 doi: 10.1103/PhysRevLett.115.173601 – ident: e_1_2_9_93_1 doi: 10.1038/s41565-019-0611-y – ident: e_1_2_9_90_1 doi: 10.1038/nphoton.2010.34 – ident: e_1_2_9_24_1 doi: 10.1021/acsphotonics.5b00433 – ident: e_1_2_9_10_1 doi: 10.1038/nphoton.2015.103 – ident: e_1_2_9_111_1 doi: 10.1103/PhysRevB.97.195448 – ident: e_1_2_9_136_1 doi: 10.1364/OL.385741 – ident: e_1_2_9_139_1 doi: 10.1126/sciadv.abq4240 – ident: e_1_2_9_14_1 doi: 10.1021/nl5037808 – ident: e_1_2_9_138_1 doi: 10.1039/D1NR05379E – ident: e_1_2_9_65_1 doi: 10.1021/nl071084d – ident: e_1_2_9_68_1 doi: 10.1021/acsphotonics.7b00061 – ident: e_1_2_9_124_1 doi: 10.1063/1.4982164 – ident: e_1_2_9_63_1 doi: 10.1021/nl202825s – ident: e_1_2_9_147_1 doi: 10.1038/s41467-018-03155-6 – ident: e_1_2_9_13_1 doi: 10.1038/s41565-017-0003-0 – ident: e_1_2_9_28_1 doi: 10.1038/nature17974 – ident: e_1_2_9_91_1 doi: 10.1088/1367-2630/13/2/025020 – ident: e_1_2_9_97_1 doi: 10.1002/adom.201900724 – ident: e_1_2_9_108_1 doi: 10.1002/adom.202000854 – ident: e_1_2_9_102_1 doi: 10.1126/science.1237861 – ident: e_1_2_9_92_1 doi: 10.1038/s41467-019-10238-5 – ident: e_1_2_9_16_1 doi: 10.1017/CBO9780511794193 – ident: e_1_2_9_44_1 doi: 10.1038/nphoton.2010.237 – ident: e_1_2_9_60_1 doi: 10.1021/acs.nanolett.5b03724 – ident: e_1_2_9_101_1 doi: 10.1515/nanoph-2020-0208 – ident: e_1_2_9_137_1 doi: 10.1364/OPTICA.6.001416 – ident: e_1_2_9_109_1 doi: 10.1038/s41565-022-01217-x – ident: e_1_2_9_143_1 doi: 10.1038/nphoton.2015.247 – ident: e_1_2_9_99_1 doi: 10.1021/acs.nanolett.7b01436 – ident: e_1_2_9_11_1 doi: 10.1103/PhysRevLett.95.017402 – ident: e_1_2_9_95_1 doi: 10.1126/science.abj0039 – ident: e_1_2_9_126_1 doi: 10.1038/nphoton.2013.377 – ident: e_1_2_9_105_1 doi: 10.1038/s41565-020-00827-7 – ident: e_1_2_9_149_1 doi: 10.1038/s41565-022-01197-y – ident: e_1_2_9_107_1 doi: 10.1038/ncomms11183 – ident: e_1_2_9_141_1 doi: 10.1021/acs.nanolett.1c01125 – ident: e_1_2_9_125_1 doi: 10.1038/s41377-019-0182-6 – ident: e_1_2_9_45_1 doi: 10.1002/adma.201202783 – ident: e_1_2_9_49_1 doi: 10.1002/qute.201900087 – ident: e_1_2_9_36_1 doi: 10.1021/acs.nanolett.1c00828 – ident: e_1_2_9_55_1 doi: 10.1002/adom.202200510 – ident: e_1_2_9_121_1 doi: 10.1126/science.aat8196 – ident: e_1_2_9_8_1 doi: 10.1021/acsphotonics.1c00849 – ident: e_1_2_9_20_1 doi: 10.1103/PhysRevApplied.7.024031 – ident: e_1_2_9_87_1 doi: 10.1021/nn303907r – ident: e_1_2_9_58_1 doi: 10.1021/nl501976f – ident: e_1_2_9_130_1 doi: 10.1103/PhysRevLett.75.4337 – ident: e_1_2_9_38_1 doi: 10.1002/adma.201907832 – ident: e_1_2_9_103_1 doi: 10.1364/OPTICA.4.001006 – ident: e_1_2_9_22_1 doi: 10.1103/PhysRevLett.126.223602 – ident: e_1_2_9_31_1 doi: 10.1364/OPTICA.382841 – ident: e_1_2_9_77_1 doi: 10.1021/acs.nanolett.6b01987 – ident: e_1_2_9_32_1 doi: 10.1002/adfm.202100889 – ident: e_1_2_9_47_1 doi: 10.1021/acsphotonics.7b00717 – ident: e_1_2_9_70_1 doi: 10.1063/5.0033507 – ident: e_1_2_9_67_1 doi: 10.1002/lpor.201900025 – ident: e_1_2_9_43_1 doi: 10.1002/adom.202102697 – ident: e_1_2_9_35_1 doi: 10.1088/1361-6633/aa8732 – ident: e_1_2_9_26_1 doi: 10.1021/acs.nanolett.6b00082 – ident: e_1_2_9_110_1 doi: 10.1103/PhysRevB.65.195315 – ident: e_1_2_9_117_1 doi: 10.1002/lpor.202200179 – ident: e_1_2_9_113_1 doi: 10.1126/science.1226528 – ident: e_1_2_9_142_1 doi: 10.1126/science.abq8684 – ident: e_1_2_9_131_1 doi: 10.1016/B978-0-12-369470-6.00002-2 – ident: e_1_2_9_37_1 doi: 10.1038/s41566-021-00793-z – volume-title: Quantum Optics: An Introduction year: 2006 ident: e_1_2_9_48_1 doi: 10.1093/oso/9780198566724.001.0001 – ident: e_1_2_9_12_1 doi: 10.1038/lsa.2016.245 – ident: e_1_2_9_89_1 doi: 10.1109/JRPROC.1928.221464 – ident: e_1_2_9_19_1 doi: 10.1364/OL.35.004208 – ident: e_1_2_9_54_1 doi: 10.1364/OE.21.027438 – ident: e_1_2_9_146_1 doi: 10.1126/sciadv.abd9450 – ident: e_1_2_9_73_1 doi: 10.1021/acsnano.7b04810 – ident: e_1_2_9_94_1 doi: 10.1126/sciadv.aba8761 – ident: e_1_2_9_2_1 doi: 10.1038/s41566-019-0532-1 – ident: e_1_2_9_122_1 doi: 10.1126/science.aat9042 – ident: e_1_2_9_76_1 doi: 10.1038/nnano.2015.242 – ident: e_1_2_9_114_1 doi: 10.1126/science.aao5392 – ident: e_1_2_9_86_1 doi: 10.1021/acsphotonics.7b01194 – ident: e_1_2_9_23_1 doi: 10.1038/nphoton.2014.228 – ident: e_1_2_9_9_1 doi: 10.1021/nl401791v – ident: e_1_2_9_116_1 doi: 10.1021/acs.nanolett.1c01843 – ident: e_1_2_9_133_1 doi: 10.1088/2040-8986/ab05a8 – ident: e_1_2_9_78_1 doi: 10.1021/acsnano.6b03602 – ident: e_1_2_9_127_1 doi: 10.1038/ncomms6298 – ident: e_1_2_9_96_1 doi: 10.1002/adma.202106692 – ident: e_1_2_9_42_1 doi: 10.1021/acsphotonics.0c00196 – ident: e_1_2_9_57_1 doi: 10.1038/s41563-019-0290-y – ident: e_1_2_9_83_1 doi: 10.1063/1.3573870 – ident: e_1_2_9_21_1 doi: 10.1103/PhysRevLett.107.123602 – ident: e_1_2_9_46_1 doi: 10.1038/s41598-018-21664-8 – ident: e_1_2_9_85_1 doi: 10.1021/nl503451j – ident: e_1_2_9_98_1 doi: 10.1038/nnano.2015.159 – ident: e_1_2_9_104_1 doi: 10.1038/nature14246 – ident: e_1_2_9_123_1 doi: 10.1038/s41567-020-0845-5 – ident: e_1_2_9_72_1 doi: 10.1021/acs.nanolett.7b03248 – ident: e_1_2_9_129_1 doi: 10.1038/nphoton.2009.229 – ident: e_1_2_9_6_1 doi: 10.1038/nphoton.2008.32 – ident: e_1_2_9_135_1 doi: 10.1103/PhysRevA.100.053815 – ident: e_1_2_9_69_1 doi: 10.1021/acsphotonics.7b01139 – ident: e_1_2_9_75_1 doi: 10.1021/acsphotonics.7b01142 – ident: e_1_2_9_33_1 doi: 10.1021/acsphotonics.9b01358 – ident: e_1_2_9_59_1 doi: 10.1021/ph5003472 – ident: e_1_2_9_74_1 doi: 10.1021/acs.nanolett.8b02808 – ident: e_1_2_9_15_1 doi: 10.1364/OPTICA.3.001418 – ident: e_1_2_9_41_1 doi: 10.1021/acsphotonics.1c00459 – ident: e_1_2_9_100_1 doi: 10.1021/acsphotonics.8b01225 – ident: e_1_2_9_119_1 doi: 10.1126/science.1232009 – ident: e_1_2_9_51_1 doi: 10.1038/nature03119 – ident: e_1_2_9_71_1 doi: 10.1021/ph500379p – ident: e_1_2_9_132_1 doi: 10.1088/1612-2011/13/11/115204 – ident: e_1_2_9_39_1 doi: 10.1126/sciadv.abk3075 – ident: e_1_2_9_40_1 doi: 10.1103/PhysRevLett.127.043603 – ident: e_1_2_9_148_1 doi: 10.1038/s41467-022-29798-0 – ident: e_1_2_9_62_1 doi: 10.1126/science.aah5243 – ident: e_1_2_9_79_1 doi: 10.1021/acs.nanolett.6b03268 – ident: e_1_2_9_7_1 doi: 10.1038/nphoton.2009.215 – ident: e_1_2_9_145_1 doi: 10.1126/science.aax5961 – ident: e_1_2_9_1_1 doi: 10.1038/nphoton.2016.186 |
SSID | ssj0001073947 |
Score | 2.4599476 |
SecondaryResourceType | review_article |
Snippet | Spontaneous photon emission can be drastically modified by placing quantum emitters (QEs) in nanostructured environment, resulting in dramatically enhanced... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Collimation Design Emitters Materials science Metasurfaces Nanostructure Optics Photon beams Photon emission Photons Plasmons Polarization Purcell effect quantum emitters Quantum phenomena single‐photon generation spontaneous emission surface plasmons |
Title | Advances in Metaphotonics Empowered Single Photon Emission |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202202759 https://www.proquest.com/docview/2815846711 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2195-1071 dateEnd: 20240930 omitProxy: false ssIdentifier: ssj0001073947 issn: 2195-1071 databaseCode: ADMLS dateStart: 20191203 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEJ0oXLz4bUSR9GDiqYFut5X11giEGKskYsKt2c9IgoXY-v_daUuBgzHxuO10D687ndeZ3TcAt9QIYwNB4CplQpf2A2ldiiqXGamE8KTsGUzoxy_h-J0-zYLZ1in-Uh-iTrihZxTfa3RwLrLuRjSUqyWeJCf49x6wfWh6GPpR25lONlkWLEQVXcYINiW0Q2-t3Ngj3d0pdiPThm5uk9Yi6oyO4bCii05Uvt8T2NPpKRxV1NGpHDM7g4eorOVnzjx1Yp3z1ccyR9XbzBl-rrATGprbMLXQzqS4Za_PcQdseg7T0XD6OHartgiu9IN75krtEU41pZyFgRTUV1xLxmwctsgqyy-MYVIK0u9pFRJiuPXZEIVFmS-18fwLaKTLVF-Co5g2WFb0sbxmQsF1KEK_x_tSaMs8ZAvcNSKJrCTDsXPFIinFjkmCCCY1gi24q-1XpVjGr5btNcBJ5TRZQuyaQTrkeS0gBeh_zJJEg9e4Hl3956FrOMAG8uUWxjY08q9vfWNpRi46xUrqQDMaxM9vP5YRypY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDLDwRhQKZEBiipo4jqnZKmhVoCkdisRm-SkqlbQi4f_jy6OlA0JidHLxcLnLfbk7f4fQNbHSukAQ-1pb6pNOrJxLEe0zq7SUoVKBhYR-MqKDV_L0FtfdhHAWpuSHWCbcwDOK7zU4OCSk2yvWUKHncJQcw-97zDbRFqE4AMPGZLxKs0AlqhgzhmEqoVuGNXVjgNvrW6yHphXe_Ilai7DT30e7FV70uuULPkAbJj1EexV29CrPzI7QXbcs5mfeNPUSk4vF-zwH2tvM630sYBQaiLs4NTPeuLjlrk-hBTY9RpN-b3I_8Ku5CL6K4lvmKxNiQQwhgtFYSRJpYRRjLhA71WoHMKxlSkncCYymGFvhnJYCsyiLlLFhdIIa6Tw1p8jTzFioK0ZQX7NUCkMljQLRUdI46KGayK81wlXFGQ6jK2a8ZDvGHDTIlxpsopul_KJky_hVslUrmFdek3HsjAbwUBg2ES6U_scuvPvwkixXZ_956AptDybJkA8fR8_naAemyZf9jC3UyD-_zIXDHLm8LKzqGz89zHE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oJsaLbyOK2oOJpwa63a6sNyIQfIAcMOG22WckwdLY-v_daUuBgzHxuO10D193Ol9ndr9B6JZYaV0giHytLfVJO1LOpYj2mVVaykCploWE_nBEB-_keRpN107xF_oQVcINPCP_XoODJ9o2V6KhQi_gJDmGv_eIbaMdArotoO1MxqssCxSi8i5jGJoSumGwVG5s4ebmFJuRaUU310lrHnX6h2i_pItep3i_R2jLxMfooKSOXumY6Ql66BS1_NSbxd7QZCL5WGSgept6vc8EOqGBuQtTc-ON81vu-gx2wManaNLvTR4HftkWwVdhdM98ZQIsiCFEMBopSUItjGLMxWGHrHb8wlqmlMTtltEUYyucz1IQFmWhMjYIz1AtXsTmHHmaGQtlxRDKa5ZKYaikYUu0lTSOeag68peIcFVKhkPnijkvxI4xBwR5hWAd3VX2SSGW8atlYwkwL50m5ditGaBDQVBHOAf9j1l4p_s2rEYX_3noBu2Ou33--jR6uUR70Eu-2M3YQLXs69tcOcaRyet8Uf0AM9rLow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Metaphotonics+Empowered+Single+Photon+Emission&rft.jtitle=Advanced+optical+materials&rft.au=Kan%2C+Yinhui&rft.au=Bozhevolnyi%2C+Sergey+I&rft.date=2023-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2195-1071&rft.volume=11&rft.issue=10&rft_id=info:doi/10.1002%2Fadom.202202759&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon |