Advances in Metaphotonics Empowered Single Photon Emission

Spontaneous photon emission can be drastically modified by placing quantum emitters (QEs) in nanostructured environment, resulting in dramatically enhanced emission rates due to the Purcell effect along with generation of collimated single‐photon beams propagating in design directions and featuring...

Full description

Saved in:
Bibliographic Details
Published inAdvanced optical materials Vol. 11; no. 10
Main Authors Kan, Yinhui, Bozhevolnyi, Sergey I.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.05.2023
Subjects
Online AccessGet full text
ISSN2195-1071
2195-1071
DOI10.1002/adom.202202759

Cover

Abstract Spontaneous photon emission can be drastically modified by placing quantum emitters (QEs) in nanostructured environment, resulting in dramatically enhanced emission rates due to the Purcell effect along with generation of collimated single‐photon beams propagating in design directions and featuring well‐defined polarization states. Recent advances in single‐photon generation engineering demonstrate fascinating possibilities for the directional emission of photons with designed spin and orbital angular momenta, a development that is crucial for exploiting the full potential of QEs within quantum information technologies. Although many different nanostructured configurations are considered for hosting QEs to mold single‐photon beams, collimating of the latter requires relatively large interaction areas to be involved, thus making the use of metasurfaces preferential. Furthermore, optical metasurfaces consisting of planar arrays of resonant nanoscale elements offer complete control over optical fields and thereby design freedom in shaping single‐photon emission. Here, recent advances in exploiting quantum optical metasurfaces for achieving enhanced and directional emission of single photons with specified polarization properties are overviewed. Special attention is paid to hybrid plasmon–QE coupled metasurfaces based on efficient QE coupling to surface plasmon modes that are subsequently outcoupled by designed dielectric nanoarrays into free propagating photon emission. Perspectives for future developments of metasurface empowered QEs are also discussed. State‐of‐the‐art progress of single‐photon generation engineering with metaphotonics empowered single photon emission is reviewed with emphasis on hybrid plasmon‐quantum emitter (QE) coupled metasurfaces for exploiting full potential of photon emission freedoms. Recent advances in generation of entangled photon pairs with nonlinear metasurfaces are also presented. Furthermore, perspectives for future developments of metasurface empowered QEs are discussed.
AbstractList Spontaneous photon emission can be drastically modified by placing quantum emitters (QEs) in nanostructured environment, resulting in dramatically enhanced emission rates due to the Purcell effect along with generation of collimated single‐photon beams propagating in design directions and featuring well‐defined polarization states. Recent advances in single‐photon generation engineering demonstrate fascinating possibilities for the directional emission of photons with designed spin and orbital angular momenta, a development that is crucial for exploiting the full potential of QEs within quantum information technologies. Although many different nanostructured configurations are considered for hosting QEs to mold single‐photon beams, collimating of the latter requires relatively large interaction areas to be involved, thus making the use of metasurfaces preferential. Furthermore, optical metasurfaces consisting of planar arrays of resonant nanoscale elements offer complete control over optical fields and thereby design freedom in shaping single‐photon emission. Here, recent advances in exploiting quantum optical metasurfaces for achieving enhanced and directional emission of single photons with specified polarization properties are overviewed. Special attention is paid to hybrid plasmon–QE coupled metasurfaces based on efficient QE coupling to surface plasmon modes that are subsequently outcoupled by designed dielectric nanoarrays into free propagating photon emission. Perspectives for future developments of metasurface empowered QEs are also discussed.
Spontaneous photon emission can be drastically modified by placing quantum emitters (QEs) in nanostructured environment, resulting in dramatically enhanced emission rates due to the Purcell effect along with generation of collimated single‐photon beams propagating in design directions and featuring well‐defined polarization states. Recent advances in single‐photon generation engineering demonstrate fascinating possibilities for the directional emission of photons with designed spin and orbital angular momenta, a development that is crucial for exploiting the full potential of QEs within quantum information technologies. Although many different nanostructured configurations are considered for hosting QEs to mold single‐photon beams, collimating of the latter requires relatively large interaction areas to be involved, thus making the use of metasurfaces preferential. Furthermore, optical metasurfaces consisting of planar arrays of resonant nanoscale elements offer complete control over optical fields and thereby design freedom in shaping single‐photon emission. Here, recent advances in exploiting quantum optical metasurfaces for achieving enhanced and directional emission of single photons with specified polarization properties are overviewed. Special attention is paid to hybrid plasmon–QE coupled metasurfaces based on efficient QE coupling to surface plasmon modes that are subsequently outcoupled by designed dielectric nanoarrays into free propagating photon emission. Perspectives for future developments of metasurface empowered QEs are also discussed. State‐of‐the‐art progress of single‐photon generation engineering with metaphotonics empowered single photon emission is reviewed with emphasis on hybrid plasmon‐quantum emitter (QE) coupled metasurfaces for exploiting full potential of photon emission freedoms. Recent advances in generation of entangled photon pairs with nonlinear metasurfaces are also presented. Furthermore, perspectives for future developments of metasurface empowered QEs are discussed.
Author Kan, Yinhui
Bozhevolnyi, Sergey I.
Author_xml – sequence: 1
  givenname: Yinhui
  surname: Kan
  fullname: Kan, Yinhui
  email: yk@mci.sdu.dk
  organization: University of Southern Denmark
– sequence: 2
  givenname: Sergey I.
  orcidid: 0000-0002-0393-4859
  surname: Bozhevolnyi
  fullname: Bozhevolnyi, Sergey I.
  email: seib@mci.sdu.dk
  organization: University of Southern Denmark
BookMark eNqFkE1LAzEQhoNUsNZePS943pqv_Yi3UlsVWirYe0izs5qym6zJ1tJ_79aKiiBCYDIz7zMzvOeoZ50FhC4JHhGM6bUqXD2imHYvS8QJ6lMikpjgjPR-_M_QMIQNxrhLmOBZH92MizdlNYTI2GgBrWpeXOus0SGa1o3bgYciejL2uYLo8aPV1U0IxtkLdFqqKsDwMw7QajZdTe7j-fLuYTKex5olmYg1EKo4cK5Emug1Z4UCLURCida4YCIrS6H1muYYipTSUjFKU0KwEExDSdgAXR3HNt69biG0cuO23nYbJc1JkvM0IwcVP6q0dyF4KKU2rWq7M1uvTCUJlgef5MEn-eVTh41-YY03tfL7vwFxBHamgv0_ajm-XS6-2XcbdnyR
CitedBy_id crossref_primary_10_1039_D4RA03726J
crossref_primary_10_1007_s12596_023_01322_7
crossref_primary_10_1103_PhysRevA_111_013511
crossref_primary_10_1126_sciadv_adq6298
crossref_primary_10_1063_5_0204694
crossref_primary_10_1002_adma_202313589
crossref_primary_10_1364_AOP_510826
crossref_primary_10_1364_OE_494389
crossref_primary_10_1021_acs_nanolett_3c02055
crossref_primary_10_1088_1361_6633_ad8eda
crossref_primary_10_1002_qute_202300196
crossref_primary_10_1103_PhysRevA_110_023522
crossref_primary_10_1063_5_0201107
crossref_primary_10_1002_qute_202300123
crossref_primary_10_1021_acsnano_3c10092
crossref_primary_10_1016_j_mattod_2023_07_021
crossref_primary_10_1021_acsphotonics_3c01745
crossref_primary_10_1021_acsnano_3c06309
crossref_primary_10_1515_nanoph_2024_0300
crossref_primary_10_1515_nanoph_2024_0122
crossref_primary_10_1021_acs_nanolett_4c03258
crossref_primary_10_1038_s41467_024_54262_6
crossref_primary_10_1364_OE_553233
crossref_primary_10_1038_s41467_023_42046_3
crossref_primary_10_3390_photonics11050442
Cites_doi 10.1021/acs.nanolett.7b00444
10.1103/RevModPhys.87.347
10.1021/acsphotonics.9b00570
10.1103/PhysRevB.97.205418
10.1126/science.aax3766
10.1103/PhysRevA.92.053811
10.1039/D1NR05951C
10.1364/OL.402781
10.1103/PhysRevLett.106.096801
10.1038/nphoton.2017.103
10.1126/science.aag2472
10.1364/OPTICA.463481
10.1364/OPTICA.453527
10.1103/PhysRevLett.115.025501
10.1126/science.aad8532
10.1021/acsphotonics.8b00852
10.1038/nphoton.2009.187
10.1364/OPTICA.5.001128
10.1021/acs.nanolett.8b01533
10.1126/science.1191922
10.1126/science.aba9779
10.1126/science.1142892
10.1038/nature07127
10.1038/s41467-018-08057-1
10.1364/OE.15.010869
10.1088/1367-2630/13/5/055017
10.1364/OE.27.030773
10.1038/ncomms8788
10.1021/acs.nanolett.8b01415
10.1038/s42254-020-0164-x
10.1063/1.3519847
10.1103/PhysRevLett.115.173601
10.1038/s41565-019-0611-y
10.1038/nphoton.2010.34
10.1021/acsphotonics.5b00433
10.1038/nphoton.2015.103
10.1103/PhysRevB.97.195448
10.1364/OL.385741
10.1126/sciadv.abq4240
10.1021/nl5037808
10.1039/D1NR05379E
10.1021/nl071084d
10.1021/acsphotonics.7b00061
10.1063/1.4982164
10.1021/nl202825s
10.1038/s41467-018-03155-6
10.1038/s41565-017-0003-0
10.1038/nature17974
10.1088/1367-2630/13/2/025020
10.1002/adom.201900724
10.1002/adom.202000854
10.1126/science.1237861
10.1038/s41467-019-10238-5
10.1017/CBO9780511794193
10.1038/nphoton.2010.237
10.1021/acs.nanolett.5b03724
10.1515/nanoph-2020-0208
10.1364/OPTICA.6.001416
10.1038/s41565-022-01217-x
10.1038/nphoton.2015.247
10.1021/acs.nanolett.7b01436
10.1103/PhysRevLett.95.017402
10.1126/science.abj0039
10.1038/nphoton.2013.377
10.1038/s41565-020-00827-7
10.1038/s41565-022-01197-y
10.1038/ncomms11183
10.1021/acs.nanolett.1c01125
10.1038/s41377-019-0182-6
10.1002/adma.201202783
10.1002/qute.201900087
10.1021/acs.nanolett.1c00828
10.1002/adom.202200510
10.1126/science.aat8196
10.1021/acsphotonics.1c00849
10.1103/PhysRevApplied.7.024031
10.1021/nn303907r
10.1021/nl501976f
10.1103/PhysRevLett.75.4337
10.1002/adma.201907832
10.1364/OPTICA.4.001006
10.1103/PhysRevLett.126.223602
10.1364/OPTICA.382841
10.1021/acs.nanolett.6b01987
10.1002/adfm.202100889
10.1021/acsphotonics.7b00717
10.1063/5.0033507
10.1002/lpor.201900025
10.1002/adom.202102697
10.1088/1361-6633/aa8732
10.1021/acs.nanolett.6b00082
10.1103/PhysRevB.65.195315
10.1002/lpor.202200179
10.1126/science.1226528
10.1126/science.abq8684
10.1016/B978-0-12-369470-6.00002-2
10.1038/s41566-021-00793-z
10.1093/oso/9780198566724.001.0001
10.1038/lsa.2016.245
10.1109/JRPROC.1928.221464
10.1364/OL.35.004208
10.1364/OE.21.027438
10.1126/sciadv.abd9450
10.1021/acsnano.7b04810
10.1126/sciadv.aba8761
10.1038/s41566-019-0532-1
10.1126/science.aat9042
10.1038/nnano.2015.242
10.1126/science.aao5392
10.1021/acsphotonics.7b01194
10.1038/nphoton.2014.228
10.1021/nl401791v
10.1021/acs.nanolett.1c01843
10.1088/2040-8986/ab05a8
10.1021/acsnano.6b03602
10.1038/ncomms6298
10.1002/adma.202106692
10.1021/acsphotonics.0c00196
10.1038/s41563-019-0290-y
10.1063/1.3573870
10.1103/PhysRevLett.107.123602
10.1038/s41598-018-21664-8
10.1021/nl503451j
10.1038/nnano.2015.159
10.1038/nature14246
10.1038/s41567-020-0845-5
10.1021/acs.nanolett.7b03248
10.1038/nphoton.2009.229
10.1038/nphoton.2008.32
10.1103/PhysRevA.100.053815
10.1021/acsphotonics.7b01139
10.1021/acsphotonics.7b01142
10.1021/acsphotonics.9b01358
10.1021/ph5003472
10.1021/acs.nanolett.8b02808
10.1364/OPTICA.3.001418
10.1021/acsphotonics.1c00459
10.1021/acsphotonics.8b01225
10.1126/science.1232009
10.1038/nature03119
10.1021/ph500379p
10.1088/1612-2011/13/11/115204
10.1126/sciadv.abk3075
10.1103/PhysRevLett.127.043603
10.1038/s41467-022-29798-0
10.1126/science.aah5243
10.1021/acs.nanolett.6b03268
10.1038/nphoton.2009.215
10.1126/science.aax5961
10.1038/nphoton.2016.186
ContentType Journal Article
Copyright 2023 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1002/adom.202202759
DatabaseName Wiley Online Library Open Access
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef

Aerospace Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2195-1071
EndPage n/a
ExternalDocumentID 10_1002_adom_202202759
ADOM202202759
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62105150
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20210289
– fundername: State Key Laboratory of Advanced Optical Communication Systems Networks of China
  funderid: 2022GZKF023
– fundername: Villum Kann Rasmussen Foundation
– fundername: European Union's Horizon Europe research and innovation programme under the Marie Skłodowska‐Curie Action
  funderid: 101064471
GroupedDBID 0R~
1OC
24P
33P
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
D-B
DCZOG
DPXWK
EBS
G-S
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
31~
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
EJD
GODZA
7SP
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
H8D
L7M
ID FETCH-LOGICAL-c3579-ce12a4e44a965cb43daec99521cc0d397ff9ccb280ed622fa3226110993cef13
IEDL.DBID 24P
ISSN 2195-1071
IngestDate Fri Jul 25 12:05:39 EDT 2025
Tue Jul 01 00:35:57 EDT 2025
Thu Apr 24 23:06:56 EDT 2025
Wed Jan 22 16:23:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3579-ce12a4e44a965cb43daec99521cc0d397ff9ccb280ed622fa3226110993cef13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0393-4859
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202202759
PQID 2815846711
PQPubID 2034581
PageCount 15
ParticipantIDs proquest_journals_2815846711
crossref_citationtrail_10_1002_adom_202202759
crossref_primary_10_1002_adom_202202759
wiley_primary_10_1002_adom_202202759_ADOM202202759
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced optical materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 97
2019; 10
2019; 13
2020; 16
2020; 15
2020; 14
2019; 18
2018; 9
2018; 8
2018; 5
2019; 21
2015; 87
2019; 27
2014; 14
2007; 7
2021; 154
2012; 24
2010; 4
2019; 8
2019; 7
2019; 6
2010; 329
2010; 35
1928; 16
2016; 10
2020; 32
2013; 340
2016; 16
2011; 5
2019; 100
2016; 13
2007; 15
2018; 18
2016; 7
2016; 3
2004; 432
2015; 115
2013; 339
2022; 8
2022; 9
2002; 65
2005; 95
2022; 13
2022; 14
2015; 518
2022; 10
2021; 374
2007; 318
2018; 97
2022; 16
2022; 17
2018; 13
1995; 75
2017; 6
2018; 361
2017; 7
2021; 21
2017; 4
2013; 21
2021; 126
2021; 127
2018; 81
2020; 368
2011; 11
2011; 98
2011; 13
2017; 110
2008; 2
2019; 364
2017; 358
2019; 365
2022; 377
2020; 8
2020; 7
2020; 6
2014; 5
2021; 31
2020; 3
2020; 2
2013; 13
2020; 9
2016; 354
2020; 45
2014; 8
2012; 338
2016; 351
2015; 2
2021; 8
2015; 15
2021; 7
2015; 6
2012
2015; 92
2015; 11
2015; 10
2008
2006
2015; 9
2021; 13
2021; 16
2021; 15
2011; 107
2011; 106
2022
2017; 17
2017; 11
2016; 535
2008; 453
2009; 3
2012; 6
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_117_1
e_1_2_9_136_1
e_1_2_9_28_1
e_1_2_9_47_1
Fox M. (e_1_2_9_48_1) 2006
e_1_2_9_132_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_29_1
e_1_2_9_150_1
References_xml – volume: 2
  start-page: 234
  year: 2008
  publication-title: Nat. Photonics
– volume: 18
  start-page: 6906
  year: 2018
  publication-title: Nano Lett.
– volume: 15
  start-page: 327
  year: 2021
  publication-title: Nat. Photonics
– volume: 368
  start-page: 1487
  year: 2020
  publication-title: Science
– volume: 16
  start-page: 270
  year: 2016
  publication-title: Nano Lett.
– volume: 45
  start-page: 4794
  year: 2020
  publication-title: Opt. Lett.
– volume: 100
  year: 2019
  publication-title: Phys. Rev. A
– volume: 95
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 15
  start-page: 1493
  year: 2015
  publication-title: Nano Lett.
– volume: 21
  start-page: 6549
  year: 2021
  publication-title: Nano Lett.
– volume: 97
  year: 2018
  publication-title: Phys. Rev. B
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 75
  start-page: 4337
  year: 1995
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 4907
  year: 2011
  publication-title: Nano Lett.
– volume: 358
  start-page: 896
  year: 2017
  publication-title: Science
– volume: 8
  start-page: 2190
  year: 2021
  publication-title: ACS Photonics
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 15
  start-page: 125
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 17
  start-page: 2634
  year: 2017
  publication-title: Nano Lett.
– volume: 92
  year: 2015
  publication-title: Phys. Rev. A
– volume: 8
  start-page: 3119
  year: 2021
  publication-title: ACS Photonics
– volume: 6
  start-page: 2073
  year: 2019
  publication-title: ACS Photonics
– volume: 9
  start-page: 427
  year: 2015
  publication-title: Nat. Photonics
– volume: 15
  year: 2007
  publication-title: Opt. Express
– volume: 453
  start-page: 1023
  year: 2008
  publication-title: Nature
– volume: 10
  start-page: 60
  year: 2016
  publication-title: Nat. Photonics
– volume: 17
  start-page: 1178
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 17
  start-page: 6886
  year: 2017
  publication-title: Nano Lett.
– year: 2022
  publication-title: Adv. Mater.
– volume: 106
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 535
  start-page: 127
  year: 2016
  publication-title: Nature
– volume: 318
  start-page: 1567
  year: 2007
  publication-title: Science
– year: 2008
– volume: 7
  year: 2017
  publication-title: Phys. Rev. Appl.
– volume: 97
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: 464
  year: 2015
  publication-title: Nano Lett.
– volume: 3
  start-page: 724
  year: 2009
  publication-title: Nat. Photonics
– volume: 10
  start-page: 2392
  year: 2019
  publication-title: Nat. Commun.
– volume: 65
  year: 2002
  publication-title: Phys. Rev. B
– volume: 354
  year: 2016
  publication-title: Science
– volume: 16
  year: 2022
  publication-title: Laser Photonics Rev.
– volume: 13
  start-page: 3807
  year: 2013
  publication-title: Nano Lett.
– volume: 8
  start-page: 835
  year: 2014
  publication-title: Nat. Photonics
– volume: 13
  start-page: 59
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 24
  year: 2012
  publication-title: Adv. Mater.
– volume: 10
  start-page: 775
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 154
  year: 2021
  publication-title: J. Chem. Phys.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 18
  start-page: 5396
  year: 2018
  publication-title: Nano Lett.
– volume: 361
  start-page: 1101
  year: 2018
  publication-title: Science
– volume: 2
  start-page: 172
  year: 2015
  publication-title: ACS Photonics
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 2
  start-page: 228
  year: 2015
  publication-title: ACS Photonics
– volume: 518
  start-page: 516
  year: 2015
  publication-title: Nature
– volume: 432
  start-page: 200
  year: 2004
  publication-title: Nature
– volume: 21
  year: 2013
  publication-title: Opt. Express
– volume: 16
  start-page: 676
  year: 2020
  publication-title: Nat. Phys.
– volume: 45
  start-page: 1244
  year: 2020
  publication-title: Opt. Lett.
– volume: 127
  year: 2021
  publication-title: Phys. Rev. Lett.
– volume: 21
  year: 2019
  publication-title: J. Opt.
– volume: 16
  start-page: 302
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 5296
  year: 2014
  publication-title: Nat. Commun.
– volume: 354
  start-page: 726
  year: 2016
  publication-title: Science
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1128
  year: 2018
  publication-title: Optica
– volume: 18
  start-page: 668
  year: 2019
  publication-title: Nat. Mater.
– volume: 5
  start-page: 897
  year: 2018
  publication-title: ACS Photonics
– volume: 361
  start-page: 1104
  year: 2018
  publication-title: Science
– volume: 2
  start-page: 175
  year: 2020
  publication-title: Nat. Rev. Phys.
– volume: 81
  year: 2018
  publication-title: Rep. Prog. Phys.
– volume: 338
  start-page: 363
  year: 2012
  publication-title: Science
– volume: 17
  start-page: 1097
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 953
  year: 2022
  publication-title: Optica
– volume: 5
  start-page: 3447
  year: 2018
  publication-title: ACS Photonics
– volume: 9
  start-page: 812
  year: 2018
  publication-title: Nat. Commun.
– volume: 6
  start-page: 3024
  year: 2019
  publication-title: ACS Photonics
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 4
  start-page: 1006
  year: 2017
  publication-title: Optica
– volume: 13
  year: 2019
  publication-title: Laser Photonics Rev.
– volume: 4
  start-page: 312
  year: 2010
  publication-title: Nat. Photonics
– volume: 7
  start-page: 2101
  year: 2007
  publication-title: Nano Lett.
– volume: 3
  start-page: 1418
  year: 2016
  publication-title: Optica
– volume: 16
  start-page: 6052
  year: 2016
  publication-title: Nano Lett.
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 364
  start-page: 532
  year: 2019
  publication-title: Science
– volume: 21
  start-page: 5461
  year: 2021
  publication-title: Nano Lett.
– volume: 110
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 329
  start-page: 930
  year: 2010
  publication-title: Science
– volume: 35
  start-page: 4208
  year: 2010
  publication-title: Opt. Lett.
– volume: 13
  year: 2011
  publication-title: New J. Phys.
– volume: 351
  start-page: 1176
  year: 2016
  publication-title: Science
– volume: 6
  start-page: 7788
  year: 2015
  publication-title: Nat. Commumn.
– volume: 3
  year: 2020
  publication-title: Adv. Quantum Technol.
– volume: 4
  start-page: 710
  year: 2017
  publication-title: ACS Photonics
– volume: 5
  start-page: 43
  year: 2018
  publication-title: ACS Photonics
– volume: 6
  year: 2012
  publication-title: ACS Nano
– volume: 374
  year: 2021
  publication-title: Science
– volume: 10
  start-page: 7331
  year: 2016
  publication-title: ACS Nano
– volume: 13
  year: 2021
  publication-title: Nanoscale
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 8
  start-page: 224
  year: 2014
  publication-title: Nat. Photonics
– volume: 27
  year: 2019
  publication-title: Opt. Express
– volume: 7
  start-page: 1111
  year: 2020
  publication-title: ACS Photonics
– volume: 13
  start-page: 2071
  year: 2022
  publication-title: Nat. Commun.
– volume: 115
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: 4797
  year: 2014
  publication-title: Nano Lett.
– volume: 10
  start-page: 396
  year: 2019
  publication-title: Nat. Commun.
– volume: 14
  start-page: 273
  year: 2020
  publication-title: Nat. Photonics
– volume: 21
  start-page: 4423
  year: 2021
  publication-title: Nano Lett.
– volume: 9
  start-page: 445
  year: 2022
  publication-title: Optica
– volume: 5
  start-page: 240
  year: 2018
  publication-title: ACS Photonics
– volume: 7
  start-page: 9450
  year: 2021
  publication-title: Sci. Adv.
– volume: 3
  start-page: 654
  year: 2009
  publication-title: Nat. Photonics
– volume: 126
  year: 2021
  publication-title: Phys. Rev. Lett.
– volume: 16
  start-page: 7037
  year: 2016
  publication-title: Nano Lett.
– volume: 8
  start-page: 70
  year: 2019
  publication-title: Light: Sci. Appl.
– volume: 10
  start-page: 631
  year: 2016
  publication-title: Nat. Photonics
– volume: 377
  start-page: 991
  year: 2022
  publication-title: Science
– volume: 339
  year: 2013
  publication-title: Science
– volume: 17
  start-page: 3889
  year: 2017
  publication-title: Nano Lett.
– volume: 6
  start-page: 1416
  year: 2019
  publication-title: Optica
– volume: 87
  start-page: 347
  year: 2015
  publication-title: Rev. Mod. Phys.
– volume: 6
  start-page: 23
  year: 2019
  publication-title: ACS Photonics
– volume: 365
  start-page: 257
  year: 2019
  publication-title: Science
– volume: 7
  start-page: 463
  year: 2020
  publication-title: Optica
– volume: 3
  start-page: 687
  year: 2009
  publication-title: Nat. Photonics
– year: 2012
– volume: 16
  start-page: 2527
  year: 2016
  publication-title: Nano Lett.
– volume: 5
  start-page: 83
  year: 2011
  publication-title: Nat. Photonics
– volume: 11
  start-page: 398
  year: 2017
  publication-title: Nat. Photonics
– volume: 18
  start-page: 4837
  year: 2018
  publication-title: Nano Lett.
– volume: 340
  start-page: 1545
  year: 2013
  publication-title: Science
– volume: 9
  start-page: 3557
  year: 2020
  publication-title: Nanophotonics
– volume: 6
  year: 2017
  publication-title: Light: Sci. Appl.
– year: 2006
– volume: 98
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 3415
  year: 2018
  publication-title: Sci. Rep.
– volume: 16
  start-page: 715
  year: 1928
  publication-title: Proc. IRE
– volume: 13
  year: 2016
  publication-title: Laser Phys. Lett.
– volume: 14
  start-page: 2287
  year: 2022
  publication-title: Nanoscale
– volume: 107
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 692
  year: 2018
  publication-title: ACS Photonics
– volume: 2
  start-page: 1669
  year: 2015
  publication-title: ACS Photonics
– volume: 11
  start-page: 37
  year: 2015
  publication-title: Nat. Nanotechnol.
– ident: e_1_2_9_80_1
  doi: 10.1021/acs.nanolett.7b00444
– ident: e_1_2_9_25_1
  doi: 10.1103/RevModPhys.87.347
– ident: e_1_2_9_27_1
  doi: 10.1021/acsphotonics.9b00570
– ident: e_1_2_9_30_1
  doi: 10.1103/PhysRevB.97.205418
– ident: e_1_2_9_29_1
  doi: 10.1126/science.aax3766
– ident: e_1_2_9_64_1
  doi: 10.1103/PhysRevA.92.053811
– ident: e_1_2_9_34_1
  doi: 10.1039/D1NR05951C
– ident: e_1_2_9_50_1
  doi: 10.1364/OL.402781
– ident: e_1_2_9_3_1
  doi: 10.1103/PhysRevLett.106.096801
– ident: e_1_2_9_52_1
  doi: 10.1038/nphoton.2017.103
– ident: e_1_2_9_118_1
  doi: 10.1126/science.aag2472
– ident: e_1_2_9_106_1
  doi: 10.1364/OPTICA.463481
– ident: e_1_2_9_150_1
  doi: 10.1364/OPTICA.453527
– ident: e_1_2_9_120_1
  doi: 10.1103/PhysRevLett.115.025501
– ident: e_1_2_9_128_1
  doi: 10.1126/science.aad8532
– ident: e_1_2_9_17_1
  doi: 10.1021/acsphotonics.8b00852
– ident: e_1_2_9_66_1
  doi: 10.1038/nphoton.2009.187
– ident: e_1_2_9_81_1
  doi: 10.1364/OPTICA.5.001128
– ident: e_1_2_9_115_1
  doi: 10.1021/acs.nanolett.8b01533
– ident: e_1_2_9_88_1
  doi: 10.1126/science.1191922
– ident: e_1_2_9_140_1
  doi: 10.1126/science.aba9779
– ident: e_1_2_9_4_1
  doi: 10.1126/science.1142892
– ident: e_1_2_9_5_1
  doi: 10.1038/nature07127
– ident: e_1_2_9_144_1
  doi: 10.1038/s41467-018-08057-1
– ident: e_1_2_9_53_1
  doi: 10.1364/OE.15.010869
– ident: e_1_2_9_84_1
  doi: 10.1088/1367-2630/13/5/055017
– ident: e_1_2_9_134_1
  doi: 10.1364/OE.27.030773
– ident: e_1_2_9_56_1
  doi: 10.1038/ncomms8788
– ident: e_1_2_9_61_1
  doi: 10.1021/acs.nanolett.8b01415
– ident: e_1_2_9_112_1
  doi: 10.1038/s42254-020-0164-x
– ident: e_1_2_9_82_1
  doi: 10.1063/1.3519847
– ident: e_1_2_9_18_1
  doi: 10.1103/PhysRevLett.115.173601
– ident: e_1_2_9_93_1
  doi: 10.1038/s41565-019-0611-y
– ident: e_1_2_9_90_1
  doi: 10.1038/nphoton.2010.34
– ident: e_1_2_9_24_1
  doi: 10.1021/acsphotonics.5b00433
– ident: e_1_2_9_10_1
  doi: 10.1038/nphoton.2015.103
– ident: e_1_2_9_111_1
  doi: 10.1103/PhysRevB.97.195448
– ident: e_1_2_9_136_1
  doi: 10.1364/OL.385741
– ident: e_1_2_9_139_1
  doi: 10.1126/sciadv.abq4240
– ident: e_1_2_9_14_1
  doi: 10.1021/nl5037808
– ident: e_1_2_9_138_1
  doi: 10.1039/D1NR05379E
– ident: e_1_2_9_65_1
  doi: 10.1021/nl071084d
– ident: e_1_2_9_68_1
  doi: 10.1021/acsphotonics.7b00061
– ident: e_1_2_9_124_1
  doi: 10.1063/1.4982164
– ident: e_1_2_9_63_1
  doi: 10.1021/nl202825s
– ident: e_1_2_9_147_1
  doi: 10.1038/s41467-018-03155-6
– ident: e_1_2_9_13_1
  doi: 10.1038/s41565-017-0003-0
– ident: e_1_2_9_28_1
  doi: 10.1038/nature17974
– ident: e_1_2_9_91_1
  doi: 10.1088/1367-2630/13/2/025020
– ident: e_1_2_9_97_1
  doi: 10.1002/adom.201900724
– ident: e_1_2_9_108_1
  doi: 10.1002/adom.202000854
– ident: e_1_2_9_102_1
  doi: 10.1126/science.1237861
– ident: e_1_2_9_92_1
  doi: 10.1038/s41467-019-10238-5
– ident: e_1_2_9_16_1
  doi: 10.1017/CBO9780511794193
– ident: e_1_2_9_44_1
  doi: 10.1038/nphoton.2010.237
– ident: e_1_2_9_60_1
  doi: 10.1021/acs.nanolett.5b03724
– ident: e_1_2_9_101_1
  doi: 10.1515/nanoph-2020-0208
– ident: e_1_2_9_137_1
  doi: 10.1364/OPTICA.6.001416
– ident: e_1_2_9_109_1
  doi: 10.1038/s41565-022-01217-x
– ident: e_1_2_9_143_1
  doi: 10.1038/nphoton.2015.247
– ident: e_1_2_9_99_1
  doi: 10.1021/acs.nanolett.7b01436
– ident: e_1_2_9_11_1
  doi: 10.1103/PhysRevLett.95.017402
– ident: e_1_2_9_95_1
  doi: 10.1126/science.abj0039
– ident: e_1_2_9_126_1
  doi: 10.1038/nphoton.2013.377
– ident: e_1_2_9_105_1
  doi: 10.1038/s41565-020-00827-7
– ident: e_1_2_9_149_1
  doi: 10.1038/s41565-022-01197-y
– ident: e_1_2_9_107_1
  doi: 10.1038/ncomms11183
– ident: e_1_2_9_141_1
  doi: 10.1021/acs.nanolett.1c01125
– ident: e_1_2_9_125_1
  doi: 10.1038/s41377-019-0182-6
– ident: e_1_2_9_45_1
  doi: 10.1002/adma.201202783
– ident: e_1_2_9_49_1
  doi: 10.1002/qute.201900087
– ident: e_1_2_9_36_1
  doi: 10.1021/acs.nanolett.1c00828
– ident: e_1_2_9_55_1
  doi: 10.1002/adom.202200510
– ident: e_1_2_9_121_1
  doi: 10.1126/science.aat8196
– ident: e_1_2_9_8_1
  doi: 10.1021/acsphotonics.1c00849
– ident: e_1_2_9_20_1
  doi: 10.1103/PhysRevApplied.7.024031
– ident: e_1_2_9_87_1
  doi: 10.1021/nn303907r
– ident: e_1_2_9_58_1
  doi: 10.1021/nl501976f
– ident: e_1_2_9_130_1
  doi: 10.1103/PhysRevLett.75.4337
– ident: e_1_2_9_38_1
  doi: 10.1002/adma.201907832
– ident: e_1_2_9_103_1
  doi: 10.1364/OPTICA.4.001006
– ident: e_1_2_9_22_1
  doi: 10.1103/PhysRevLett.126.223602
– ident: e_1_2_9_31_1
  doi: 10.1364/OPTICA.382841
– ident: e_1_2_9_77_1
  doi: 10.1021/acs.nanolett.6b01987
– ident: e_1_2_9_32_1
  doi: 10.1002/adfm.202100889
– ident: e_1_2_9_47_1
  doi: 10.1021/acsphotonics.7b00717
– ident: e_1_2_9_70_1
  doi: 10.1063/5.0033507
– ident: e_1_2_9_67_1
  doi: 10.1002/lpor.201900025
– ident: e_1_2_9_43_1
  doi: 10.1002/adom.202102697
– ident: e_1_2_9_35_1
  doi: 10.1088/1361-6633/aa8732
– ident: e_1_2_9_26_1
  doi: 10.1021/acs.nanolett.6b00082
– ident: e_1_2_9_110_1
  doi: 10.1103/PhysRevB.65.195315
– ident: e_1_2_9_117_1
  doi: 10.1002/lpor.202200179
– ident: e_1_2_9_113_1
  doi: 10.1126/science.1226528
– ident: e_1_2_9_142_1
  doi: 10.1126/science.abq8684
– ident: e_1_2_9_131_1
  doi: 10.1016/B978-0-12-369470-6.00002-2
– ident: e_1_2_9_37_1
  doi: 10.1038/s41566-021-00793-z
– volume-title: Quantum Optics: An Introduction
  year: 2006
  ident: e_1_2_9_48_1
  doi: 10.1093/oso/9780198566724.001.0001
– ident: e_1_2_9_12_1
  doi: 10.1038/lsa.2016.245
– ident: e_1_2_9_89_1
  doi: 10.1109/JRPROC.1928.221464
– ident: e_1_2_9_19_1
  doi: 10.1364/OL.35.004208
– ident: e_1_2_9_54_1
  doi: 10.1364/OE.21.027438
– ident: e_1_2_9_146_1
  doi: 10.1126/sciadv.abd9450
– ident: e_1_2_9_73_1
  doi: 10.1021/acsnano.7b04810
– ident: e_1_2_9_94_1
  doi: 10.1126/sciadv.aba8761
– ident: e_1_2_9_2_1
  doi: 10.1038/s41566-019-0532-1
– ident: e_1_2_9_122_1
  doi: 10.1126/science.aat9042
– ident: e_1_2_9_76_1
  doi: 10.1038/nnano.2015.242
– ident: e_1_2_9_114_1
  doi: 10.1126/science.aao5392
– ident: e_1_2_9_86_1
  doi: 10.1021/acsphotonics.7b01194
– ident: e_1_2_9_23_1
  doi: 10.1038/nphoton.2014.228
– ident: e_1_2_9_9_1
  doi: 10.1021/nl401791v
– ident: e_1_2_9_116_1
  doi: 10.1021/acs.nanolett.1c01843
– ident: e_1_2_9_133_1
  doi: 10.1088/2040-8986/ab05a8
– ident: e_1_2_9_78_1
  doi: 10.1021/acsnano.6b03602
– ident: e_1_2_9_127_1
  doi: 10.1038/ncomms6298
– ident: e_1_2_9_96_1
  doi: 10.1002/adma.202106692
– ident: e_1_2_9_42_1
  doi: 10.1021/acsphotonics.0c00196
– ident: e_1_2_9_57_1
  doi: 10.1038/s41563-019-0290-y
– ident: e_1_2_9_83_1
  doi: 10.1063/1.3573870
– ident: e_1_2_9_21_1
  doi: 10.1103/PhysRevLett.107.123602
– ident: e_1_2_9_46_1
  doi: 10.1038/s41598-018-21664-8
– ident: e_1_2_9_85_1
  doi: 10.1021/nl503451j
– ident: e_1_2_9_98_1
  doi: 10.1038/nnano.2015.159
– ident: e_1_2_9_104_1
  doi: 10.1038/nature14246
– ident: e_1_2_9_123_1
  doi: 10.1038/s41567-020-0845-5
– ident: e_1_2_9_72_1
  doi: 10.1021/acs.nanolett.7b03248
– ident: e_1_2_9_129_1
  doi: 10.1038/nphoton.2009.229
– ident: e_1_2_9_6_1
  doi: 10.1038/nphoton.2008.32
– ident: e_1_2_9_135_1
  doi: 10.1103/PhysRevA.100.053815
– ident: e_1_2_9_69_1
  doi: 10.1021/acsphotonics.7b01139
– ident: e_1_2_9_75_1
  doi: 10.1021/acsphotonics.7b01142
– ident: e_1_2_9_33_1
  doi: 10.1021/acsphotonics.9b01358
– ident: e_1_2_9_59_1
  doi: 10.1021/ph5003472
– ident: e_1_2_9_74_1
  doi: 10.1021/acs.nanolett.8b02808
– ident: e_1_2_9_15_1
  doi: 10.1364/OPTICA.3.001418
– ident: e_1_2_9_41_1
  doi: 10.1021/acsphotonics.1c00459
– ident: e_1_2_9_100_1
  doi: 10.1021/acsphotonics.8b01225
– ident: e_1_2_9_119_1
  doi: 10.1126/science.1232009
– ident: e_1_2_9_51_1
  doi: 10.1038/nature03119
– ident: e_1_2_9_71_1
  doi: 10.1021/ph500379p
– ident: e_1_2_9_132_1
  doi: 10.1088/1612-2011/13/11/115204
– ident: e_1_2_9_39_1
  doi: 10.1126/sciadv.abk3075
– ident: e_1_2_9_40_1
  doi: 10.1103/PhysRevLett.127.043603
– ident: e_1_2_9_148_1
  doi: 10.1038/s41467-022-29798-0
– ident: e_1_2_9_62_1
  doi: 10.1126/science.aah5243
– ident: e_1_2_9_79_1
  doi: 10.1021/acs.nanolett.6b03268
– ident: e_1_2_9_7_1
  doi: 10.1038/nphoton.2009.215
– ident: e_1_2_9_145_1
  doi: 10.1126/science.aax5961
– ident: e_1_2_9_1_1
  doi: 10.1038/nphoton.2016.186
SSID ssj0001073947
Score 2.4599476
SecondaryResourceType review_article
Snippet Spontaneous photon emission can be drastically modified by placing quantum emitters (QEs) in nanostructured environment, resulting in dramatically enhanced...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Collimation
Design
Emitters
Materials science
Metasurfaces
Nanostructure
Optics
Photon beams
Photon emission
Photons
Plasmons
Polarization
Purcell effect
quantum emitters
Quantum phenomena
single‐photon generation
spontaneous emission
surface plasmons
Title Advances in Metaphotonics Empowered Single Photon Emission
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202202759
https://www.proquest.com/docview/2815846711
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2195-1071
  dateEnd: 20240930
  omitProxy: false
  ssIdentifier: ssj0001073947
  issn: 2195-1071
  databaseCode: ADMLS
  dateStart: 20191203
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEJ0oXLz4bUSR9GDiqYFut5X11giEGKskYsKt2c9IgoXY-v_daUuBgzHxuO10D687ndeZ3TcAt9QIYwNB4CplQpf2A2ldiiqXGamE8KTsGUzoxy_h-J0-zYLZ1in-Uh-iTrihZxTfa3RwLrLuRjSUqyWeJCf49x6wfWh6GPpR25lONlkWLEQVXcYINiW0Q2-t3Ngj3d0pdiPThm5uk9Yi6oyO4bCii05Uvt8T2NPpKRxV1NGpHDM7g4eorOVnzjx1Yp3z1ccyR9XbzBl-rrATGprbMLXQzqS4Za_PcQdseg7T0XD6OHartgiu9IN75krtEU41pZyFgRTUV1xLxmwctsgqyy-MYVIK0u9pFRJiuPXZEIVFmS-18fwLaKTLVF-Co5g2WFb0sbxmQsF1KEK_x_tSaMs8ZAvcNSKJrCTDsXPFIinFjkmCCCY1gi24q-1XpVjGr5btNcBJ5TRZQuyaQTrkeS0gBeh_zJJEg9e4Hl3956FrOMAG8uUWxjY08q9vfWNpRi46xUrqQDMaxM9vP5YRypY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDLDwRhQKZEBiipo4jqnZKmhVoCkdisRm-SkqlbQi4f_jy6OlA0JidHLxcLnLfbk7f4fQNbHSukAQ-1pb6pNOrJxLEe0zq7SUoVKBhYR-MqKDV_L0FtfdhHAWpuSHWCbcwDOK7zU4OCSk2yvWUKHncJQcw-97zDbRFqE4AMPGZLxKs0AlqhgzhmEqoVuGNXVjgNvrW6yHphXe_Ilai7DT30e7FV70uuULPkAbJj1EexV29CrPzI7QXbcs5mfeNPUSk4vF-zwH2tvM630sYBQaiLs4NTPeuLjlrk-hBTY9RpN-b3I_8Ku5CL6K4lvmKxNiQQwhgtFYSRJpYRRjLhA71WoHMKxlSkncCYymGFvhnJYCsyiLlLFhdIIa6Tw1p8jTzFioK0ZQX7NUCkMljQLRUdI46KGayK81wlXFGQ6jK2a8ZDvGHDTIlxpsopul_KJky_hVslUrmFdek3HsjAbwUBg2ES6U_scuvPvwkixXZ_956AptDybJkA8fR8_naAemyZf9jC3UyD-_zIXDHLm8LKzqGz89zHE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oJsaLbyOK2oOJpwa63a6sNyIQfIAcMOG22WckwdLY-v_daUuBgzHxuO10D193Ol9ndr9B6JZYaV0giHytLfVJO1LOpYj2mVVaykCploWE_nBEB-_keRpN107xF_oQVcINPCP_XoODJ9o2V6KhQi_gJDmGv_eIbaMdArotoO1MxqssCxSi8i5jGJoSumGwVG5s4ebmFJuRaUU310lrHnX6h2i_pItep3i_R2jLxMfooKSOXumY6Ql66BS1_NSbxd7QZCL5WGSgept6vc8EOqGBuQtTc-ON81vu-gx2wManaNLvTR4HftkWwVdhdM98ZQIsiCFEMBopSUItjGLMxWGHrHb8wlqmlMTtltEUYyucz1IQFmWhMjYIz1AtXsTmHHmaGQtlxRDKa5ZKYaikYUu0lTSOeag68peIcFVKhkPnijkvxI4xBwR5hWAd3VX2SSGW8atlYwkwL50m5ditGaBDQVBHOAf9j1l4p_s2rEYX_3noBu2Ou33--jR6uUR70Eu-2M3YQLXs69tcOcaRyet8Uf0AM9rLow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Metaphotonics+Empowered+Single+Photon+Emission&rft.jtitle=Advanced+optical+materials&rft.au=Kan%2C+Yinhui&rft.au=Bozhevolnyi%2C+Sergey+I&rft.date=2023-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2195-1071&rft.volume=11&rft.issue=10&rft_id=info:doi/10.1002%2Fadom.202202759&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon