HEAT TRANSFER OF MHD OLDROYD-B FLUID WITH RAMPED WALL VELOCITY AND TEMPERATURE IN VIEW OF LOCAL AND NONLOCAL DIFFERENTIAL OPERATORS
The theoretical study focuses on the examination of the convective flow of Oldroyd-B fluid with ramped wall velocity and temperature. The fluid is confined on an extended, unbounded vertical plate saturated within the permeable medium. To depict the fluid flow, the coupled partial differential equat...
Saved in:
| Published in | Fractals (Singapore) Vol. 30; no. 5 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
World Scientific Publishing Company
01.08.2022
World Scientific Publishing Co. Pte., Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0218-348X 1793-6543 1793-6543 |
| DOI | 10.1142/S0218348X22401727 |
Cover
| Abstract | The theoretical study focuses on the examination of the convective flow of Oldroyd-B fluid with ramped wall velocity and temperature. The fluid is confined on an extended, unbounded vertical plate saturated within the permeable medium. To depict the fluid flow, the coupled partial differential equations are settled by using the Caputo (C) and Caputo Fabrizio (CF) differential time derivatives. The mathematical analysis of the fractionalized models of fluid flow is performed by Laplace transform (LT). The complexity of temperature and velocity profile is explored by numerical inversion algorithms of Stehfest and Tzou. The fractionalized solutions of the temperature and velocity profile have been traced out under fractional and other different parameters considered. The physical impacts of associated parameters are elucidated with the assistance of the graph using the software MATHCAD 15. We noticed the significant influence of the fractional parameter (memory effects) and other parameters on the dynamics of the fluid flow. Shear stress at the wall and Nusselt number also are considered. It’s brought into notice the fractional-order model (CF) is the best fit in describing the memory effects in comparison to the C model. An analysis of the comparison between the solution of velocity and temperature profile for ramped wall temperature and velocity and constant wall temperature and velocity is also performed. |
|---|---|
| AbstractList | The theoretical study focuses on the examination of the convective flow of Oldroyd-B fluid with ramped wall velocity and temperature. The fluid is confined on an extended, unbounded vertical plate saturated within the permeable medium. To depict the fluid flow, the coupled partial differential equations are settled by using the Caputo (C) and Caputo Fabrizio (CF) differential time derivatives. The mathematical analysis of the fractionalized models of fluid flow is performed by Laplace transform (LT). The complexity of temperature and velocity profile is explored by numerical inversion algorithms of Stehfest and Tzou. The fractionalized solutions of the temperature and velocity profile have been traced out under fractional and other different parameters considered. The physical impacts of associated parameters are elucidated with the assistance of the graph using the software MATHCAD 15. We noticed the significant influence of the fractional parameter (memory effects) and other parameters on the dynamics of the fluid flow. Shear stress at the wall and Nusselt number also are considered. It’s brought into notice the fractional-order model (CF) is the best fit in describing the memory effects in comparison to the C model. An analysis of the comparison between the solution of velocity and temperature profile for ramped wall temperature and velocity and constant wall temperature and velocity is also performed. |
| Author | JARAD, FAHD ASGIR, MARYAM RIAZ, MUHAMMAD BILAL ZAFAR, AZHAR ALI |
| Author_xml | – sequence: 1 givenname: MARYAM surname: ASGIR fullname: ASGIR, MARYAM – sequence: 2 givenname: MUHAMMAD BILAL surname: RIAZ fullname: RIAZ, MUHAMMAD BILAL – sequence: 3 givenname: FAHD surname: JARAD fullname: JARAD, FAHD – sequence: 4 givenname: AZHAR ALI surname: ZAFAR fullname: ZAFAR, AZHAR ALI |
| BookMark | eNp9kUtPg0AUhSdGE-vjB7ibxDU6LzqwxDIICYKhtOqKDBQSGoQKNNW1f9xBqgubuJq5Oee7986ZM3BcN3UOwBVGNxgzcjtHBBuUGc-EMIQ54UdggrlJtanO6DGYDLI26KfgrOvWCCHGMJuAT1dYMYwjK5g7IoKhAx9cG4a-HYUvtnYHHX_h2fDJi10YWQ-PQt0t34dL4YczL36BVmDDWCghsuJFJKAXwKUnnoZGymH534YgDMbC9hw1RQSxp4rwGwqj-QU4KWTV5Zf78xwsHBHPXM0P7z2FaRnVOdeKAklKdPWeTNIVkmbBiDRkitOCGzpKU86ppCaTSJ9OcUrylcGw0jNusJxzg54DMvbd1hv5sZNVlWza8lW2HwlGyRBj0u1jfP-JUUHXI7Rpm7dt3vXJutm2tdozIRxxTKiOTOXCoytrm65r8-Kg88EHKYb_YbKyl33Z1H0ry-pfEo3krmmrVZeVed2XRZn9Dj1EvgDB25e0 |
| CitedBy_id | crossref_primary_10_1142_S0218348X2302005X |
| Cites_doi | 10.5897/IJPS12.390 10.1007/BF01212645 10.1142/S0218348X20400332 10.1063/1.4939634 10.1155/2020/8890820 10.1016/S0020-7225(00)00026-4 10.1016/j.chaos.2018.07.032 10.1007/s11012-012-9567-9 10.1016/j.aej.2021.03.028 10.1016/j.amc.2015.10.021 10.1155/2011/408132 10.3390/math8010130 10.2165/00007256-200030010-00003 10.3389/fphy.2020.00275 10.1016/j.amc.2016.03.037 10.1016/j.ijnonlinmec.2005.05.005 10.1016/j.apm.2005.11.032 10.1155/2021/9914408 10.1016/S0020-7225(02)00153-2 10.1007/BF01595580 10.3329/bjsir.v46i4.9590 10.1016/j.aej.2020.02.012 10.1371/journal.pone.0090280 10.1016/j.rinp.2021.104950 10.12693/APhysPolA.140.265 10.1016/j.rinp.2021.104367 10.1016/j.ijnonlinmec.2005.04.008 10.1186/s13662-020-03162-2 10.1017/jmech.2014.71 10.1016/j.chaos.2018.10.010 10.1007/s10973-020-09383-7 10.1007/s10973-018-7897-0 |
| ContentType | Journal Article |
| Copyright | 2022, The Author(s) 2022. The Author(s). This is an Open Access article in the “Special Issue Section on Fractal AI-Based Analyses and Applications to Complex Systems: Part III”, edited by Yeliz Karaca (University of Massachusetts Medical School, USA), Dumitru Baleanu (Cankaya University, Turkey), Majaz Moonis (University of Massachusetts Medical School, USA), Yu-Dong Zhang (University of Leicester, UK) & Osvaldo Gervasi (Perugia University, Italy) published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 4.0 (CC-BY) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| Copyright_xml | – notice: 2022, The Author(s) – notice: 2022. The Author(s). This is an Open Access article in the “Special Issue Section on Fractal AI-Based Analyses and Applications to Complex Systems: Part III”, edited by Yeliz Karaca (University of Massachusetts Medical School, USA), Dumitru Baleanu (Cankaya University, Turkey), Majaz Moonis (University of Massachusetts Medical School, USA), Yu-Dong Zhang (University of Leicester, UK) & Osvaldo Gervasi (Perugia University, Italy) published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 4.0 (CC-BY) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| DBID | ADCHV AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1142/S0218348X22401727 |
| DatabaseName | World Scientific Open CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1793-6543 |
| ExternalDocumentID | 10.1142/s0218348x22401727 10_1142_S0218348X22401727 S0218348X22401727 |
| GroupedDBID | -~X 0R~ 4.4 5GY ADCHV ADSJI ALMA_UNASSIGNED_HOLDINGS CAG COF CS3 EBS EJD ESX F5P HZ~ O9- P71 RWJ WSN AAYXX AMVHM CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3577-ff0a325543ca3d0a9f42a8ab1bf7850bb773a394a05661b2ed8418abc784e7783 |
| IEDL.DBID | UNPAY |
| ISSN | 0218-348X 1793-6543 |
| IngestDate | Sun Sep 07 11:13:29 EDT 2025 Mon Jun 30 12:59:57 EDT 2025 Tue Jul 01 04:11:48 EDT 2025 Thu Apr 24 22:55:46 EDT 2025 Fri Aug 23 08:20:03 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Fractional Calculus Numerical Algorithms MHD Permeable Medium Oldroyd-B Fluid Laplace Transform Convection |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3577-ff0a325543ca3d0a9f42a8ab1bf7850bb773a394a05661b2ed8418abc784e7783 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1142/s0218348x22401727 |
| PQID | 2707123509 |
| PQPubID | 2049864 |
| ParticipantIDs | crossref_primary_10_1142_S0218348X22401727 worldscientific_primary_S0218348X22401727 unpaywall_primary_10_1142_s0218348x22401727 proquest_journals_2707123509 crossref_citationtrail_10_1142_S0218348X22401727 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220800 2022-08-00 20220801 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 20220800 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore |
| PublicationTitle | Fractals (Singapore) |
| PublicationYear | 2022 |
| Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
| Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
| References | S0218348X22401727BIB020 Seth G. S. (S0218348X22401727BIB055) 2011; 7 S0218348X22401727BIB025 Seth G. S. (S0218348X22401727BIB037) 2011; 7 Riaz M. B. (S0218348X22401727BIB030) 2021; 7 S0218348X22401727BIB027 S0218348X22401727BIB021 S0218348X22401727BIB022 Oldroyd J. G. (S0218348X22401727BIB004) 1950; 200 Ahmed N. (S0218348X22401727BIB045) 2013; 8 S0218348X22401727BIB024 Jajrmi A. (S0218348X22401727BIB015) 2021 Iftikhar N. (S0218348X22401727BIB028) 2021; 7 Ullah S. (S0218348X22401727BIB009) 2019; 48 S0218348X22401727BIB029 Larsen R. W. (S0218348X22401727BIB048) 2010 Stehfest H. A. (S0218348X22401727BIB052) 1970; 13 Bruce R. A. (S0218348X22401727BIB032) 1956; 25 Tzou D. Y. (S0218348X22401727BIB053) 1970 Riaz M. B. (S0218348X22401727BIB014) 2021; 7 Ismail Z. (S0218348X22401727BIB035) 2013; 45 Arshad M. S. (S0218348X22401727BIB023) 2020; 2020 S0218348X22401727BIB036 Seth G. S. (S0218348X22401727BIB038) 2015; 8 S0218348X22401727BIB039 S0218348X22401727BIB033 S0218348X22401727BIB034 Caputo M. (S0218348X22401727BIB051) 2015; 1 Rehman A. U. (S0218348X22401727BIB026) 2021; 2021 S0218348X22401727BIB040 S0218348X22401727BIB041 S0218348X22401727BIB042 S0218348X22401727BIB003 S0218348X22401727BIB005 S0218348X22401727BIB049 S0218348X22401727BIB006 S0218348X22401727BIB043 S0218348X22401727BIB044 S0218348X22401727BIB002 S0218348X22401727BIB046 Baleanu D. (S0218348X22401727BIB016) 2021 White F. M. (S0218348X22401727BIB001) 2006 S0218348X22401727BIB007 S0218348X22401727BIB008 Filho D. C. Sobral (S0218348X22401727BIB031) 2003; 81 S0218348X22401727BIB050 Alshomrani A. S. (S0218348X22401727BIB019) 2021; 2021 S0218348X22401727BIB017 S0218348X22401727BIB010 Ahmad S. (S0218348X22401727BIB018) 2021; 2021 Tiwana M. H. (S0218348X22401727BIB047) 2019; 676 S0218348X22401727BIB054 S0218348X22401727BIB011 S0218348X22401727BIB012 S0218348X22401727BIB013 |
| References_xml | – volume: 8 start-page: 254 year: 2013 ident: S0218348X22401727BIB045 publication-title: Int. J. Phys. Sci. doi: 10.5897/IJPS12.390 – ident: S0218348X22401727BIB005 doi: 10.1007/BF01212645 – volume: 25 start-page: 321 issue: 4 year: 1956 ident: S0218348X22401727BIB032 publication-title: Mod. Concepts Cardiovasc. Dis. – volume-title: Viscous Fluid Flow year: 2006 ident: S0218348X22401727BIB001 – ident: S0218348X22401727BIB043 doi: 10.1142/S0218348X20400332 – ident: S0218348X22401727BIB008 doi: 10.1063/1.4939634 – ident: S0218348X22401727BIB040 doi: 10.1155/2020/8890820 – volume: 8 start-page: 7 year: 2015 ident: S0218348X22401727BIB038 publication-title: J. Appl. Fluid Mech. – ident: S0218348X22401727BIB006 doi: 10.1016/S0020-7225(00)00026-4 – volume-title: Macro to Microscale Heat Transfer: The Lagging Behaviour year: 1970 ident: S0218348X22401727BIB053 – ident: S0218348X22401727BIB044 doi: 10.1016/j.chaos.2018.07.032 – volume: 81 start-page: 48 issue: 1 year: 2003 ident: S0218348X22401727BIB031 publication-title: Arq. Bras. Cardiol. – ident: S0218348X22401727BIB036 doi: 10.1007/s11012-012-9567-9 – ident: S0218348X22401727BIB017 doi: 10.1016/j.aej.2021.03.028 – ident: S0218348X22401727BIB024 doi: 10.1016/j.amc.2015.10.021 – volume: 7 start-page: 116 issue: 1 year: 2021 ident: S0218348X22401727BIB014 publication-title: J. Appl. Comput. Mech. – volume: 2020 start-page: 1020472 year: 2020 ident: S0218348X22401727BIB023 publication-title: Disc. Dyn. Nature Soc. – ident: S0218348X22401727BIB011 doi: 10.1155/2011/408132 – ident: S0218348X22401727BIB046 doi: 10.3390/math8010130 – ident: S0218348X22401727BIB033 doi: 10.2165/00007256-200030010-00003 – ident: S0218348X22401727BIB042 doi: 10.3389/fphy.2020.00275 – ident: S0218348X22401727BIB034 doi: 10.1016/j.amc.2016.03.037 – volume: 13 start-page: 9 year: 1970 ident: S0218348X22401727BIB052 publication-title: Commun. ACM – ident: S0218348X22401727BIB007 doi: 10.1016/j.ijnonlinmec.2005.05.005 – ident: S0218348X22401727BIB012 doi: 10.1016/j.apm.2005.11.032 – ident: S0218348X22401727BIB025 doi: 10.1155/2021/9914408 – ident: S0218348X22401727BIB050 doi: 10.1016/S0020-7225(02)00153-2 – ident: S0218348X22401727BIB010 doi: 10.1007/BF01595580 – ident: S0218348X22401727BIB002 doi: 10.3329/bjsir.v46i4.9590 – ident: S0218348X22401727BIB027 doi: 10.1016/j.aej.2020.02.012 – ident: S0218348X22401727BIB054 doi: 10.1371/journal.pone.0090280 – ident: S0218348X22401727BIB049 doi: 10.1016/S0020-7225(00)00026-4 – ident: S0218348X22401727BIB021 doi: 10.1016/j.rinp.2021.104950 – volume: 45 start-page: 77 year: 2013 ident: S0218348X22401727BIB035 publication-title: Int. J. Appl. Math. Stat. – volume: 7 start-page: 52 year: 2011 ident: S0218348X22401727BIB055 publication-title: Int. J. Appl. Math. Mech. – volume: 7 start-page: 54 issue: 1 year: 2021 ident: S0218348X22401727BIB030 publication-title: J. Appl. Comput. Mech. – ident: S0218348X22401727BIB020 doi: 10.12693/APhysPolA.140.265 – volume: 48 start-page: 372 year: 2019 ident: S0218348X22401727BIB009 publication-title: Hacet. J. Math. Stat. – ident: S0218348X22401727BIB041 doi: 10.1016/j.rinp.2021.104367 – ident: S0218348X22401727BIB003 doi: 10.1016/j.ijnonlinmec.2005.04.008 – volume: 2021 start-page: 1 issue: 1 year: 2021 ident: S0218348X22401727BIB018 publication-title: Adv. Differential Equations doi: 10.1186/s13662-020-03162-2 – volume: 2021 start-page: 1 year: 2021 ident: S0218348X22401727BIB026 publication-title: Heat Transf. – volume: 200 start-page: 523 issue: 1063 year: 1950 ident: S0218348X22401727BIB004 publication-title: Proc. R. Soc. London Ser. A Math. Phys. Sci. – year: 2021 ident: S0218348X22401727BIB015 publication-title: Math. Methods Appl. Sci. – volume: 676 start-page: 7080676 issue: 7 year: 2019 ident: S0218348X22401727BIB047 publication-title: Mathematics – volume-title: Introduction to Mathcad 15 year: 2010 ident: S0218348X22401727BIB048 – year: 2021 ident: S0218348X22401727BIB016 publication-title: Alex. Engin. J. – ident: S0218348X22401727BIB039 doi: 10.1017/jmech.2014.71 – volume: 7 start-page: 189 issue: 1 year: 2021 ident: S0218348X22401727BIB028 publication-title: J. Appl. Comput. Mech. – volume: 1 start-page: 1 year: 2015 ident: S0218348X22401727BIB051 publication-title: Progr. Fract. Differ. Appl. – volume: 7 start-page: 52 year: 2011 ident: S0218348X22401727BIB037 publication-title: Int. J. Appl. Math. Mech. – ident: S0218348X22401727BIB029 doi: 10.1016/j.chaos.2018.10.010 – ident: S0218348X22401727BIB013 doi: 10.1007/s10973-020-09383-7 – volume: 2021 start-page: 1 issue: 1 year: 2021 ident: S0218348X22401727BIB019 publication-title: Adv. Differential Equations doi: 10.1186/s13662-020-03162-2 – ident: S0218348X22401727BIB022 doi: 10.1007/s10973-018-7897-0 |
| SSID | ssj0004414 |
| Score | 2.2760017 |
| Snippet | The theoretical study focuses on the examination of the convective flow of Oldroyd-B fluid with ramped wall velocity and temperature. The fluid is confined on... |
| SourceID | unpaywall proquest crossref worldscientific |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Convective flow Fluid dynamics Fluid flow Laplace transforms Mathematical models Operators (mathematics) Parameters Partial differential equations Shear stress Temperature profiles Velocity Velocity distribution Wall temperature |
| Title | HEAT TRANSFER OF MHD OLDROYD-B FLUID WITH RAMPED WALL VELOCITY AND TEMPERATURE IN VIEW OF LOCAL AND NONLOCAL DIFFERENTIAL OPERATORS |
| URI | http://www.worldscientific.com/doi/abs/10.1142/S0218348X22401727 https://www.proquest.com/docview/2707123509 https://doi.org/10.1142/s0218348x22401727 |
| UnpaywallVersion | publishedVersion |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1793-6543 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0004414 issn: 0218-348X databaseCode: AMVHM dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELagPaA9LG9tV8vKBy6AvCSxUyfHsEmUoDxWaQrtKbJT50JVVttWPK78ccZJWpYtQnCL5fFYsceaGXvmG4Rewq5KY8EkoeDyEAY6kLiC1YSxRipwHxo61gnOaTaOpuz9zJ71YNE6F-b2-73JrLfrVocz56tWPVrZ3kfDsQ1m9wANp9mVN2_vUEyHAM2sTX50KdH5kv0L5h95_K6DfhmWD7ara_Hti1guj9Bxi1jaZSXqoJ1bWid82MVrrVuwQh1s8uliu5EX9fc7UI7_9EOP0HFve2KvE5bH6J5aPUFH6R64df0U_YgCr8Rl4WWTMChwHuI08nGe-EU-98k7HCbT2Mcf4zLChZdeBfDtJQnWhTwv43KOvczHZQAdRRtPgeMM6-gLzQgovKQlyPKsa_hxCLMEWRlDI28H5cXkGZqGQXkZkb5OA6mpzTlpGkNQcE0YrQVdGMJtmCUcIU3ZcMc2pOScCuoyAcbW2JSWWjjMhP6aO0xx7tDnaLD6vFInCCslJLhsppSmAJpa2MpllmRcMUe7niNk7HauqnsQc11LY1l1CdZWNenXd7Zb3xF6vR9y3SF4_I34bCcOVX-Y15XFYWaLgmk1Qm_2InLA7GBnR-jVHSHajzmY-PS_OJ-hweZmq16APbSR52jopR-i9Lw_ET8BPa_09A |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db5swELe29GHqQ7vuQ03VTX7oyza5A2xieGQFBBOBihAteUI2MS-N0qpJ1Hav-8d3BpJ1zTRtb1g-n4V91t3Zd79D6Ax2VRozJgkFl4cw0IHEFawijNVSgftQ04FOcB6mg2jMvk7sSQcWrXNhHr_fm8z6vGx0OHPuterRyvY52hvYYHb30N44vfSmzR2K6RCgmTTJjy4lOl-ye8H8I4_fddAvw_LFenEjHu7EfL6PDhrE0jYrUQftPNI64WEbr7VswAp1sMnV-Xolz6vvT6Ac_-mHXqKDzvbEXissR-iZWrxC-8MtcOvyNfoRBV6Bi9xLR2GQ4yzEw8jHWeLn2dQnX3CYjGMff4uLCOfe8DKAby9JsC7keREXU-ylPi4C6MibeAocp1hHX2hGQOElDUGapW3Dj0OYJUiLGBpZMyjLR2_QOAyKi4h0dRpIRW3OSV0bgoJrwmgl6MwQbs0s4Qhpypo7tiEl51RQlwkwtgamtNTMYSb0V9xhinOHvkW9xfVCHSOslJDgsplSmgJoKmErl1mSccUc7Xr2kbHZubLqQMx1LY152SZYW-WoW9_JZn376ON2yE2L4PE34tONOJTdYV6WFoeZLQqmVR992orIDrOdne2jD0-EaDtmZ-KT_-J8inqr27V6B_bQSr7vTsJPnbHzWA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HEAT+TRANSFER+OF+MHD+OLDROYD-B+FLUID+WITH+RAMPED+WALL+VELOCITY+AND+TEMPERATURE+IN+VIEW+OF+LOCAL+AND+NONLOCAL+DIFFERENTIAL+OPERATORS&rft.jtitle=Fractals+%28Singapore%29&rft.au=ASGIR%2C+MARYAM&rft.au=MUHAMMAD+BILAL+RIAZ&rft.au=Jarad%2C+Fahd&rft.au=AZHAR+ALI+ZAFAR&rft.date=2022-08-01&rft.pub=World+Scientific+Publishing+Co.+Pte.%2C+Ltd&rft.issn=0218-348X&rft.eissn=1793-6543&rft.volume=30&rft.issue=5&rft_id=info:doi/10.1142%2FS0218348X22401727&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0218-348X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0218-348X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0218-348X&client=summon |