HEAT TRANSFER OF MHD OLDROYD-B FLUID WITH RAMPED WALL VELOCITY AND TEMPERATURE IN VIEW OF LOCAL AND NONLOCAL DIFFERENTIAL OPERATORS

The theoretical study focuses on the examination of the convective flow of Oldroyd-B fluid with ramped wall velocity and temperature. The fluid is confined on an extended, unbounded vertical plate saturated within the permeable medium. To depict the fluid flow, the coupled partial differential equat...

Full description

Saved in:
Bibliographic Details
Published inFractals (Singapore) Vol. 30; no. 5
Main Authors ASGIR, MARYAM, RIAZ, MUHAMMAD BILAL, JARAD, FAHD, ZAFAR, AZHAR ALI
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 01.08.2022
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text
ISSN0218-348X
1793-6543
1793-6543
DOI10.1142/S0218348X22401727

Cover

Abstract The theoretical study focuses on the examination of the convective flow of Oldroyd-B fluid with ramped wall velocity and temperature. The fluid is confined on an extended, unbounded vertical plate saturated within the permeable medium. To depict the fluid flow, the coupled partial differential equations are settled by using the Caputo (C) and Caputo Fabrizio (CF) differential time derivatives. The mathematical analysis of the fractionalized models of fluid flow is performed by Laplace transform (LT). The complexity of temperature and velocity profile is explored by numerical inversion algorithms of Stehfest and Tzou. The fractionalized solutions of the temperature and velocity profile have been traced out under fractional and other different parameters considered. The physical impacts of associated parameters are elucidated with the assistance of the graph using the software MATHCAD 15. We noticed the significant influence of the fractional parameter (memory effects) and other parameters on the dynamics of the fluid flow. Shear stress at the wall and Nusselt number also are considered. It’s brought into notice the fractional-order model (CF) is the best fit in describing the memory effects in comparison to the C model. An analysis of the comparison between the solution of velocity and temperature profile for ramped wall temperature and velocity and constant wall temperature and velocity is also performed.
AbstractList The theoretical study focuses on the examination of the convective flow of Oldroyd-B fluid with ramped wall velocity and temperature. The fluid is confined on an extended, unbounded vertical plate saturated within the permeable medium. To depict the fluid flow, the coupled partial differential equations are settled by using the Caputo (C) and Caputo Fabrizio (CF) differential time derivatives. The mathematical analysis of the fractionalized models of fluid flow is performed by Laplace transform (LT). The complexity of temperature and velocity profile is explored by numerical inversion algorithms of Stehfest and Tzou. The fractionalized solutions of the temperature and velocity profile have been traced out under fractional and other different parameters considered. The physical impacts of associated parameters are elucidated with the assistance of the graph using the software MATHCAD 15. We noticed the significant influence of the fractional parameter (memory effects) and other parameters on the dynamics of the fluid flow. Shear stress at the wall and Nusselt number also are considered. It’s brought into notice the fractional-order model (CF) is the best fit in describing the memory effects in comparison to the C model. An analysis of the comparison between the solution of velocity and temperature profile for ramped wall temperature and velocity and constant wall temperature and velocity is also performed.
Author JARAD, FAHD
ASGIR, MARYAM
RIAZ, MUHAMMAD BILAL
ZAFAR, AZHAR ALI
Author_xml – sequence: 1
  givenname: MARYAM
  surname: ASGIR
  fullname: ASGIR, MARYAM
– sequence: 2
  givenname: MUHAMMAD BILAL
  surname: RIAZ
  fullname: RIAZ, MUHAMMAD BILAL
– sequence: 3
  givenname: FAHD
  surname: JARAD
  fullname: JARAD, FAHD
– sequence: 4
  givenname: AZHAR ALI
  surname: ZAFAR
  fullname: ZAFAR, AZHAR ALI
BookMark eNp9kUtPg0AUhSdGE-vjB7ibxDU6LzqwxDIICYKhtOqKDBQSGoQKNNW1f9xBqgubuJq5Oee7986ZM3BcN3UOwBVGNxgzcjtHBBuUGc-EMIQ54UdggrlJtanO6DGYDLI26KfgrOvWCCHGMJuAT1dYMYwjK5g7IoKhAx9cG4a-HYUvtnYHHX_h2fDJi10YWQ-PQt0t34dL4YczL36BVmDDWCghsuJFJKAXwKUnnoZGymH534YgDMbC9hw1RQSxp4rwGwqj-QU4KWTV5Zf78xwsHBHPXM0P7z2FaRnVOdeKAklKdPWeTNIVkmbBiDRkitOCGzpKU86ppCaTSJ9OcUrylcGw0jNusJxzg54DMvbd1hv5sZNVlWza8lW2HwlGyRBj0u1jfP-JUUHXI7Rpm7dt3vXJutm2tdozIRxxTKiOTOXCoytrm65r8-Kg88EHKYb_YbKyl33Z1H0ry-pfEo3krmmrVZeVed2XRZn9Dj1EvgDB25e0
CitedBy_id crossref_primary_10_1142_S0218348X2302005X
Cites_doi 10.5897/IJPS12.390
10.1007/BF01212645
10.1142/S0218348X20400332
10.1063/1.4939634
10.1155/2020/8890820
10.1016/S0020-7225(00)00026-4
10.1016/j.chaos.2018.07.032
10.1007/s11012-012-9567-9
10.1016/j.aej.2021.03.028
10.1016/j.amc.2015.10.021
10.1155/2011/408132
10.3390/math8010130
10.2165/00007256-200030010-00003
10.3389/fphy.2020.00275
10.1016/j.amc.2016.03.037
10.1016/j.ijnonlinmec.2005.05.005
10.1016/j.apm.2005.11.032
10.1155/2021/9914408
10.1016/S0020-7225(02)00153-2
10.1007/BF01595580
10.3329/bjsir.v46i4.9590
10.1016/j.aej.2020.02.012
10.1371/journal.pone.0090280
10.1016/j.rinp.2021.104950
10.12693/APhysPolA.140.265
10.1016/j.rinp.2021.104367
10.1016/j.ijnonlinmec.2005.04.008
10.1186/s13662-020-03162-2
10.1017/jmech.2014.71
10.1016/j.chaos.2018.10.010
10.1007/s10973-020-09383-7
10.1007/s10973-018-7897-0
ContentType Journal Article
Copyright 2022, The Author(s)
2022. The Author(s). This is an Open Access article in the “Special Issue Section on Fractal AI-Based Analyses and Applications to Complex Systems: Part III”, edited by Yeliz Karaca (University of Massachusetts Medical School, USA), Dumitru Baleanu (Cankaya University, Turkey), Majaz Moonis (University of Massachusetts Medical School, USA), Yu-Dong Zhang (University of Leicester, UK) & Osvaldo Gervasi (Perugia University, Italy) published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 4.0 (CC-BY) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Copyright_xml – notice: 2022, The Author(s)
– notice: 2022. The Author(s). This is an Open Access article in the “Special Issue Section on Fractal AI-Based Analyses and Applications to Complex Systems: Part III”, edited by Yeliz Karaca (University of Massachusetts Medical School, USA), Dumitru Baleanu (Cankaya University, Turkey), Majaz Moonis (University of Massachusetts Medical School, USA), Yu-Dong Zhang (University of Leicester, UK) & Osvaldo Gervasi (Perugia University, Italy) published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 4.0 (CC-BY) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
DBID ADCHV
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1142/S0218348X22401727
DatabaseName World Scientific Open
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1793-6543
ExternalDocumentID 10.1142/s0218348x22401727
10_1142_S0218348X22401727
S0218348X22401727
GroupedDBID -~X
0R~
4.4
5GY
ADCHV
ADSJI
ALMA_UNASSIGNED_HOLDINGS
CAG
COF
CS3
EBS
EJD
ESX
F5P
HZ~
O9-
P71
RWJ
WSN
AAYXX
AMVHM
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c3577-ff0a325543ca3d0a9f42a8ab1bf7850bb773a394a05661b2ed8418abc784e7783
IEDL.DBID UNPAY
ISSN 0218-348X
1793-6543
IngestDate Sun Sep 07 11:13:29 EDT 2025
Mon Jun 30 12:59:57 EDT 2025
Tue Jul 01 04:11:48 EDT 2025
Thu Apr 24 22:55:46 EDT 2025
Fri Aug 23 08:20:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Fractional Calculus
Numerical Algorithms
MHD
Permeable Medium
Oldroyd-B Fluid
Laplace Transform
Convection
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3577-ff0a325543ca3d0a9f42a8ab1bf7850bb773a394a05661b2ed8418abc784e7783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1142/s0218348x22401727
PQID 2707123509
PQPubID 2049864
ParticipantIDs crossref_primary_10_1142_S0218348X22401727
worldscientific_primary_S0218348X22401727
unpaywall_primary_10_1142_s0218348x22401727
proquest_journals_2707123509
crossref_citationtrail_10_1142_S0218348X22401727
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220800
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 20220800
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Fractals (Singapore)
PublicationYear 2022
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References S0218348X22401727BIB020
Seth G. S. (S0218348X22401727BIB055) 2011; 7
S0218348X22401727BIB025
Seth G. S. (S0218348X22401727BIB037) 2011; 7
Riaz M. B. (S0218348X22401727BIB030) 2021; 7
S0218348X22401727BIB027
S0218348X22401727BIB021
S0218348X22401727BIB022
Oldroyd J. G. (S0218348X22401727BIB004) 1950; 200
Ahmed N. (S0218348X22401727BIB045) 2013; 8
S0218348X22401727BIB024
Jajrmi A. (S0218348X22401727BIB015) 2021
Iftikhar N. (S0218348X22401727BIB028) 2021; 7
Ullah S. (S0218348X22401727BIB009) 2019; 48
S0218348X22401727BIB029
Larsen R. W. (S0218348X22401727BIB048) 2010
Stehfest H. A. (S0218348X22401727BIB052) 1970; 13
Bruce R. A. (S0218348X22401727BIB032) 1956; 25
Tzou D. Y. (S0218348X22401727BIB053) 1970
Riaz M. B. (S0218348X22401727BIB014) 2021; 7
Ismail Z. (S0218348X22401727BIB035) 2013; 45
Arshad M. S. (S0218348X22401727BIB023) 2020; 2020
S0218348X22401727BIB036
Seth G. S. (S0218348X22401727BIB038) 2015; 8
S0218348X22401727BIB039
S0218348X22401727BIB033
S0218348X22401727BIB034
Caputo M. (S0218348X22401727BIB051) 2015; 1
Rehman A. U. (S0218348X22401727BIB026) 2021; 2021
S0218348X22401727BIB040
S0218348X22401727BIB041
S0218348X22401727BIB042
S0218348X22401727BIB003
S0218348X22401727BIB005
S0218348X22401727BIB049
S0218348X22401727BIB006
S0218348X22401727BIB043
S0218348X22401727BIB044
S0218348X22401727BIB002
S0218348X22401727BIB046
Baleanu D. (S0218348X22401727BIB016) 2021
White F. M. (S0218348X22401727BIB001) 2006
S0218348X22401727BIB007
S0218348X22401727BIB008
Filho D. C. Sobral (S0218348X22401727BIB031) 2003; 81
S0218348X22401727BIB050
Alshomrani A. S. (S0218348X22401727BIB019) 2021; 2021
S0218348X22401727BIB017
S0218348X22401727BIB010
Ahmad S. (S0218348X22401727BIB018) 2021; 2021
Tiwana M. H. (S0218348X22401727BIB047) 2019; 676
S0218348X22401727BIB054
S0218348X22401727BIB011
S0218348X22401727BIB012
S0218348X22401727BIB013
References_xml – volume: 8
  start-page: 254
  year: 2013
  ident: S0218348X22401727BIB045
  publication-title: Int. J. Phys. Sci.
  doi: 10.5897/IJPS12.390
– ident: S0218348X22401727BIB005
  doi: 10.1007/BF01212645
– volume: 25
  start-page: 321
  issue: 4
  year: 1956
  ident: S0218348X22401727BIB032
  publication-title: Mod. Concepts Cardiovasc. Dis.
– volume-title: Viscous Fluid Flow
  year: 2006
  ident: S0218348X22401727BIB001
– ident: S0218348X22401727BIB043
  doi: 10.1142/S0218348X20400332
– ident: S0218348X22401727BIB008
  doi: 10.1063/1.4939634
– ident: S0218348X22401727BIB040
  doi: 10.1155/2020/8890820
– volume: 8
  start-page: 7
  year: 2015
  ident: S0218348X22401727BIB038
  publication-title: J. Appl. Fluid Mech.
– ident: S0218348X22401727BIB006
  doi: 10.1016/S0020-7225(00)00026-4
– volume-title: Macro to Microscale Heat Transfer: The Lagging Behaviour
  year: 1970
  ident: S0218348X22401727BIB053
– ident: S0218348X22401727BIB044
  doi: 10.1016/j.chaos.2018.07.032
– volume: 81
  start-page: 48
  issue: 1
  year: 2003
  ident: S0218348X22401727BIB031
  publication-title: Arq. Bras. Cardiol.
– ident: S0218348X22401727BIB036
  doi: 10.1007/s11012-012-9567-9
– ident: S0218348X22401727BIB017
  doi: 10.1016/j.aej.2021.03.028
– ident: S0218348X22401727BIB024
  doi: 10.1016/j.amc.2015.10.021
– volume: 7
  start-page: 116
  issue: 1
  year: 2021
  ident: S0218348X22401727BIB014
  publication-title: J. Appl. Comput. Mech.
– volume: 2020
  start-page: 1020472
  year: 2020
  ident: S0218348X22401727BIB023
  publication-title: Disc. Dyn. Nature Soc.
– ident: S0218348X22401727BIB011
  doi: 10.1155/2011/408132
– ident: S0218348X22401727BIB046
  doi: 10.3390/math8010130
– ident: S0218348X22401727BIB033
  doi: 10.2165/00007256-200030010-00003
– ident: S0218348X22401727BIB042
  doi: 10.3389/fphy.2020.00275
– ident: S0218348X22401727BIB034
  doi: 10.1016/j.amc.2016.03.037
– volume: 13
  start-page: 9
  year: 1970
  ident: S0218348X22401727BIB052
  publication-title: Commun. ACM
– ident: S0218348X22401727BIB007
  doi: 10.1016/j.ijnonlinmec.2005.05.005
– ident: S0218348X22401727BIB012
  doi: 10.1016/j.apm.2005.11.032
– ident: S0218348X22401727BIB025
  doi: 10.1155/2021/9914408
– ident: S0218348X22401727BIB050
  doi: 10.1016/S0020-7225(02)00153-2
– ident: S0218348X22401727BIB010
  doi: 10.1007/BF01595580
– ident: S0218348X22401727BIB002
  doi: 10.3329/bjsir.v46i4.9590
– ident: S0218348X22401727BIB027
  doi: 10.1016/j.aej.2020.02.012
– ident: S0218348X22401727BIB054
  doi: 10.1371/journal.pone.0090280
– ident: S0218348X22401727BIB049
  doi: 10.1016/S0020-7225(00)00026-4
– ident: S0218348X22401727BIB021
  doi: 10.1016/j.rinp.2021.104950
– volume: 45
  start-page: 77
  year: 2013
  ident: S0218348X22401727BIB035
  publication-title: Int. J. Appl. Math. Stat.
– volume: 7
  start-page: 52
  year: 2011
  ident: S0218348X22401727BIB055
  publication-title: Int. J. Appl. Math. Mech.
– volume: 7
  start-page: 54
  issue: 1
  year: 2021
  ident: S0218348X22401727BIB030
  publication-title: J. Appl. Comput. Mech.
– ident: S0218348X22401727BIB020
  doi: 10.12693/APhysPolA.140.265
– volume: 48
  start-page: 372
  year: 2019
  ident: S0218348X22401727BIB009
  publication-title: Hacet. J. Math. Stat.
– ident: S0218348X22401727BIB041
  doi: 10.1016/j.rinp.2021.104367
– ident: S0218348X22401727BIB003
  doi: 10.1016/j.ijnonlinmec.2005.04.008
– volume: 2021
  start-page: 1
  issue: 1
  year: 2021
  ident: S0218348X22401727BIB018
  publication-title: Adv. Differential Equations
  doi: 10.1186/s13662-020-03162-2
– volume: 2021
  start-page: 1
  year: 2021
  ident: S0218348X22401727BIB026
  publication-title: Heat Transf.
– volume: 200
  start-page: 523
  issue: 1063
  year: 1950
  ident: S0218348X22401727BIB004
  publication-title: Proc. R. Soc. London Ser. A Math. Phys. Sci.
– year: 2021
  ident: S0218348X22401727BIB015
  publication-title: Math. Methods Appl. Sci.
– volume: 676
  start-page: 7080676
  issue: 7
  year: 2019
  ident: S0218348X22401727BIB047
  publication-title: Mathematics
– volume-title: Introduction to Mathcad 15
  year: 2010
  ident: S0218348X22401727BIB048
– year: 2021
  ident: S0218348X22401727BIB016
  publication-title: Alex. Engin. J.
– ident: S0218348X22401727BIB039
  doi: 10.1017/jmech.2014.71
– volume: 7
  start-page: 189
  issue: 1
  year: 2021
  ident: S0218348X22401727BIB028
  publication-title: J. Appl. Comput. Mech.
– volume: 1
  start-page: 1
  year: 2015
  ident: S0218348X22401727BIB051
  publication-title: Progr. Fract. Differ. Appl.
– volume: 7
  start-page: 52
  year: 2011
  ident: S0218348X22401727BIB037
  publication-title: Int. J. Appl. Math. Mech.
– ident: S0218348X22401727BIB029
  doi: 10.1016/j.chaos.2018.10.010
– ident: S0218348X22401727BIB013
  doi: 10.1007/s10973-020-09383-7
– volume: 2021
  start-page: 1
  issue: 1
  year: 2021
  ident: S0218348X22401727BIB019
  publication-title: Adv. Differential Equations
  doi: 10.1186/s13662-020-03162-2
– ident: S0218348X22401727BIB022
  doi: 10.1007/s10973-018-7897-0
SSID ssj0004414
Score 2.2760017
Snippet The theoretical study focuses on the examination of the convective flow of Oldroyd-B fluid with ramped wall velocity and temperature. The fluid is confined on...
SourceID unpaywall
proquest
crossref
worldscientific
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Convective flow
Fluid dynamics
Fluid flow
Laplace transforms
Mathematical models
Operators (mathematics)
Parameters
Partial differential equations
Shear stress
Temperature profiles
Velocity
Velocity distribution
Wall temperature
Title HEAT TRANSFER OF MHD OLDROYD-B FLUID WITH RAMPED WALL VELOCITY AND TEMPERATURE IN VIEW OF LOCAL AND NONLOCAL DIFFERENTIAL OPERATORS
URI http://www.worldscientific.com/doi/abs/10.1142/S0218348X22401727
https://www.proquest.com/docview/2707123509
https://doi.org/10.1142/s0218348x22401727
UnpaywallVersion publishedVersion
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1793-6543
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0004414
  issn: 0218-348X
  databaseCode: AMVHM
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELagPaA9LG9tV8vKBy6AvCSxUyfHsEmUoDxWaQrtKbJT50JVVttWPK78ccZJWpYtQnCL5fFYsceaGXvmG4Rewq5KY8EkoeDyEAY6kLiC1YSxRipwHxo61gnOaTaOpuz9zJ71YNE6F-b2-73JrLfrVocz56tWPVrZ3kfDsQ1m9wANp9mVN2_vUEyHAM2sTX50KdH5kv0L5h95_K6DfhmWD7ara_Hti1guj9Bxi1jaZSXqoJ1bWid82MVrrVuwQh1s8uliu5EX9fc7UI7_9EOP0HFve2KvE5bH6J5aPUFH6R64df0U_YgCr8Rl4WWTMChwHuI08nGe-EU-98k7HCbT2Mcf4zLChZdeBfDtJQnWhTwv43KOvczHZQAdRRtPgeMM6-gLzQgovKQlyPKsa_hxCLMEWRlDI28H5cXkGZqGQXkZkb5OA6mpzTlpGkNQcE0YrQVdGMJtmCUcIU3ZcMc2pOScCuoyAcbW2JSWWjjMhP6aO0xx7tDnaLD6vFInCCslJLhsppSmAJpa2MpllmRcMUe7niNk7HauqnsQc11LY1l1CdZWNenXd7Zb3xF6vR9y3SF4_I34bCcOVX-Y15XFYWaLgmk1Qm_2InLA7GBnR-jVHSHajzmY-PS_OJ-hweZmq16APbSR52jopR-i9Lw_ET8BPa_09A
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db5swELe29GHqQ7vuQ03VTX7oyza5A2xieGQFBBOBihAteUI2MS-N0qpJ1Hav-8d3BpJ1zTRtb1g-n4V91t3Zd79D6Ax2VRozJgkFl4cw0IHEFawijNVSgftQ04FOcB6mg2jMvk7sSQcWrXNhHr_fm8z6vGx0OHPuterRyvY52hvYYHb30N44vfSmzR2K6RCgmTTJjy4lOl-ye8H8I4_fddAvw_LFenEjHu7EfL6PDhrE0jYrUQftPNI64WEbr7VswAp1sMnV-Xolz6vvT6Ac_-mHXqKDzvbEXissR-iZWrxC-8MtcOvyNfoRBV6Bi9xLR2GQ4yzEw8jHWeLn2dQnX3CYjGMff4uLCOfe8DKAby9JsC7keREXU-ylPi4C6MibeAocp1hHX2hGQOElDUGapW3Dj0OYJUiLGBpZMyjLR2_QOAyKi4h0dRpIRW3OSV0bgoJrwmgl6MwQbs0s4Qhpypo7tiEl51RQlwkwtgamtNTMYSb0V9xhinOHvkW9xfVCHSOslJDgsplSmgJoKmErl1mSccUc7Xr2kbHZubLqQMx1LY152SZYW-WoW9_JZn376ON2yE2L4PE34tONOJTdYV6WFoeZLQqmVR992orIDrOdne2jD0-EaDtmZ-KT_-J8inqr27V6B_bQSr7vTsJPnbHzWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HEAT+TRANSFER+OF+MHD+OLDROYD-B+FLUID+WITH+RAMPED+WALL+VELOCITY+AND+TEMPERATURE+IN+VIEW+OF+LOCAL+AND+NONLOCAL+DIFFERENTIAL+OPERATORS&rft.jtitle=Fractals+%28Singapore%29&rft.au=ASGIR%2C+MARYAM&rft.au=MUHAMMAD+BILAL+RIAZ&rft.au=Jarad%2C+Fahd&rft.au=AZHAR+ALI+ZAFAR&rft.date=2022-08-01&rft.pub=World+Scientific+Publishing+Co.+Pte.%2C+Ltd&rft.issn=0218-348X&rft.eissn=1793-6543&rft.volume=30&rft.issue=5&rft_id=info:doi/10.1142%2FS0218348X22401727&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0218-348X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0218-348X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0218-348X&client=summon