Biophysical evidence to support and extend the vitamin D‐folate hypothesis as a paradigm for the evolution of human skin pigmentation

Objective To test the “vitamin D‐folate hypothesis for the evolution of human skin pigmentation.” Methods Total ozone mapping spectrometer (TOMS) satellite data were used to examine surface UV‐irradiance in a large (n = 649) Australian cross‐sectional study population. Genetic analysis was used to s...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of human biology Vol. 34; no. 4; pp. e23667 - n/a
Main Authors Lucock, Mark D., Jones, Patrice R., Veysey, Martin, Thota, Rohith, Garg, Manohar, Furst, John, Martin, Charlotte, Yates, Zoe, Scarlett, Christopher J., Jablonski, Nina G., Chaplin, George, Beckett, Emma L.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.04.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1042-0533
1520-6300
1520-6300
DOI10.1002/ajhb.23667

Cover

Abstract Objective To test the “vitamin D‐folate hypothesis for the evolution of human skin pigmentation.” Methods Total ozone mapping spectrometer (TOMS) satellite data were used to examine surface UV‐irradiance in a large (n = 649) Australian cross‐sectional study population. Genetic analysis was used to score vitamin D‐ and folate‐related gene polymorphisms (n = 22), along with two pigmentation gene variants (IRF4‐rs12203592/HERC2‐rs12913832). Red cell folate and vitamin D3 were measured by immunoassay and HPLC, respectively. Results Ultraviolet radiation (UVR) and pigmentation genes interact to modify blood vitamin levels; Light skin IRF4‐TT genotype has greatest folate loss while light skin HERC2‐GG genotype has greatest vitamin D3 synthesis (reflected in both TOMS and seasonal data). UV‐wavelength exhibits a dose–response relationship in folate loss within light skin IRF4‐TT genotype (305 > 310 > 324 > 380 nm). Significant vitamin D3 photosynthesis only occurs within light skin HERC2‐GG genotype, and is maximal at 305 nm. Three dietary antioxidants (vitamins C, E, and β‐carotene) interact with UVR and pigmentation genes preventing oxidative loss of labile reduced folate vitamers, with greatest benefit in light skin IRF4‐TT subjects. The putative photosensitiser, riboflavin, did not sensitize red cell folate to UVR and actually afforded protection. Four genes (5xSNPs) influenced blood vitamin levels when stratified by pigmentation genotype; MTHFR‐rs1801133/rs1801131, TS‐rs34489327, CYP24A‐rs17216707, and VDR‐ApaI‐rs7975232. Lightest IRF4‐TT/darkest HERC2‐AA genotype combination (greatest folate loss/lowest vitamin D3 synthesis) has 0% occurrence. The opposing, commonest (39%) compound genotype (darkest IRF4‐CC/lightest HERC2‐GG) permits least folate loss and greatest synthesis of vitamin D3. Conclusion New biophysical evidence supports the vitamin D‐folate hypothesis for evolution of skin pigmentation.
AbstractList Objective To test the “vitamin D‐folate hypothesis for the evolution of human skin pigmentation.” Methods Total ozone mapping spectrometer (TOMS) satellite data were used to examine surface UV‐irradiance in a large (n = 649) Australian cross‐sectional study population. Genetic analysis was used to score vitamin D‐ and folate‐related gene polymorphisms (n = 22), along with two pigmentation gene variants (IRF4‐rs12203592/HERC2‐rs12913832). Red cell folate and vitamin D3 were measured by immunoassay and HPLC, respectively. Results Ultraviolet radiation (UVR) and pigmentation genes interact to modify blood vitamin levels; Light skin IRF4‐TT genotype has greatest folate loss while light skin HERC2‐GG genotype has greatest vitamin D3 synthesis (reflected in both TOMS and seasonal data). UV‐wavelength exhibits a dose–response relationship in folate loss within light skin IRF4‐TT genotype (305 > 310 > 324 > 380 nm). Significant vitamin D3 photosynthesis only occurs within light skin HERC2‐GG genotype, and is maximal at 305 nm. Three dietary antioxidants (vitamins C, E, and β‐carotene) interact with UVR and pigmentation genes preventing oxidative loss of labile reduced folate vitamers, with greatest benefit in light skin IRF4‐TT subjects. The putative photosensitiser, riboflavin, did not sensitize red cell folate to UVR and actually afforded protection. Four genes (5xSNPs) influenced blood vitamin levels when stratified by pigmentation genotype; MTHFR‐rs1801133/rs1801131, TS‐rs34489327, CYP24A‐rs17216707, and VDR‐ApaI‐rs7975232. Lightest IRF4‐TT/darkest HERC2‐AA genotype combination (greatest folate loss/lowest vitamin D3 synthesis) has 0% occurrence. The opposing, commonest (39%) compound genotype (darkest IRF4‐CC/lightest HERC2‐GG) permits least folate loss and greatest synthesis of vitamin D3. Conclusion New biophysical evidence supports the vitamin D‐folate hypothesis for evolution of skin pigmentation.
To test the "vitamin D-folate hypothesis for the evolution of human skin pigmentation." Total ozone mapping spectrometer (TOMS) satellite data were used to examine surface UV-irradiance in a large (n = 649) Australian cross-sectional study population. Genetic analysis was used to score vitamin D- and folate-related gene polymorphisms (n = 22), along with two pigmentation gene variants (IRF4-rs12203592/HERC2-rs12913832). Red cell folate and vitamin D were measured by immunoassay and HPLC, respectively. Ultraviolet radiation (UVR) and pigmentation genes interact to modify blood vitamin levels; Light skin IRF4-TT genotype has greatest folate loss while light skin HERC2-GG genotype has greatest vitamin D synthesis (reflected in both TOMS and seasonal data). UV-wavelength exhibits a dose-response relationship in folate loss within light skin IRF4-TT genotype (305 > 310 > 324 > 380 nm). Significant vitamin D photosynthesis only occurs within light skin HERC2-GG genotype, and is maximal at 305 nm. Three dietary antioxidants (vitamins C, E, and β-carotene) interact with UVR and pigmentation genes preventing oxidative loss of labile reduced folate vitamers, with greatest benefit in light skin IRF4-TT subjects. The putative photosensitiser, riboflavin, did not sensitize red cell folate to UVR and actually afforded protection. Four genes (5xSNPs) influenced blood vitamin levels when stratified by pigmentation genotype; MTHFR-rs1801133/rs1801131, TS-rs34489327, CYP24A-rs17216707, and VDR-ApaI-rs7975232. Lightest IRF4-TT/darkest HERC2-AA genotype combination (greatest folate loss/lowest vitamin D synthesis) has 0% occurrence. The opposing, commonest (39%) compound genotype (darkest IRF4-CC/lightest HERC2-GG) permits least folate loss and greatest synthesis of vitamin D . New biophysical evidence supports the vitamin D-folate hypothesis for evolution of skin pigmentation.
ObjectiveTo test the “vitamin D‐folate hypothesis for the evolution of human skin pigmentation.”MethodsTotal ozone mapping spectrometer (TOMS) satellite data were used to examine surface UV‐irradiance in a large (n = 649) Australian cross‐sectional study population. Genetic analysis was used to score vitamin D‐ and folate‐related gene polymorphisms (n = 22), along with two pigmentation gene variants (IRF4‐rs12203592/HERC2‐rs12913832). Red cell folate and vitamin D3 were measured by immunoassay and HPLC, respectively.ResultsUltraviolet radiation (UVR) and pigmentation genes interact to modify blood vitamin levels; Light skin IRF4‐TT genotype has greatest folate loss while light skin HERC2‐GG genotype has greatest vitamin D3 synthesis (reflected in both TOMS and seasonal data).UV‐wavelength exhibits a dose–response relationship in folate loss within light skin IRF4‐TT genotype (305 > 310 > 324 > 380 nm). Significant vitamin D3 photosynthesis only occurs within light skin HERC2‐GG genotype, and is maximal at 305 nm.Three dietary antioxidants (vitamins C, E, and β‐carotene) interact with UVR and pigmentation genes preventing oxidative loss of labile reduced folate vitamers, with greatest benefit in light skin IRF4‐TT subjects. The putative photosensitiser, riboflavin, did not sensitize red cell folate to UVR and actually afforded protection.Four genes (5xSNPs) influenced blood vitamin levels when stratified by pigmentation genotype; MTHFR‐rs1801133/rs1801131, TS‐rs34489327, CYP24A‐rs17216707, and VDR‐ApaI‐rs7975232.Lightest IRF4‐TT/darkest HERC2‐AA genotype combination (greatest folate loss/lowest vitamin D3 synthesis) has 0% occurrence. The opposing, commonest (39%) compound genotype (darkest IRF4‐CC/lightest HERC2‐GG) permits least folate loss and greatest synthesis of vitamin D3.ConclusionNew biophysical evidence supports the vitamin D‐folate hypothesis for evolution of skin pigmentation.
To test the "vitamin D-folate hypothesis for the evolution of human skin pigmentation."OBJECTIVETo test the "vitamin D-folate hypothesis for the evolution of human skin pigmentation."Total ozone mapping spectrometer (TOMS) satellite data were used to examine surface UV-irradiance in a large (n = 649) Australian cross-sectional study population. Genetic analysis was used to score vitamin D- and folate-related gene polymorphisms (n = 22), along with two pigmentation gene variants (IRF4-rs12203592/HERC2-rs12913832). Red cell folate and vitamin D3 were measured by immunoassay and HPLC, respectively.METHODSTotal ozone mapping spectrometer (TOMS) satellite data were used to examine surface UV-irradiance in a large (n = 649) Australian cross-sectional study population. Genetic analysis was used to score vitamin D- and folate-related gene polymorphisms (n = 22), along with two pigmentation gene variants (IRF4-rs12203592/HERC2-rs12913832). Red cell folate and vitamin D3 were measured by immunoassay and HPLC, respectively.Ultraviolet radiation (UVR) and pigmentation genes interact to modify blood vitamin levels; Light skin IRF4-TT genotype has greatest folate loss while light skin HERC2-GG genotype has greatest vitamin D3 synthesis (reflected in both TOMS and seasonal data). UV-wavelength exhibits a dose-response relationship in folate loss within light skin IRF4-TT genotype (305 > 310 > 324 > 380 nm). Significant vitamin D3 photosynthesis only occurs within light skin HERC2-GG genotype, and is maximal at 305 nm. Three dietary antioxidants (vitamins C, E, and β-carotene) interact with UVR and pigmentation genes preventing oxidative loss of labile reduced folate vitamers, with greatest benefit in light skin IRF4-TT subjects. The putative photosensitiser, riboflavin, did not sensitize red cell folate to UVR and actually afforded protection. Four genes (5xSNPs) influenced blood vitamin levels when stratified by pigmentation genotype; MTHFR-rs1801133/rs1801131, TS-rs34489327, CYP24A-rs17216707, and VDR-ApaI-rs7975232. Lightest IRF4-TT/darkest HERC2-AA genotype combination (greatest folate loss/lowest vitamin D3 synthesis) has 0% occurrence. The opposing, commonest (39%) compound genotype (darkest IRF4-CC/lightest HERC2-GG) permits least folate loss and greatest synthesis of vitamin D3 .RESULTSUltraviolet radiation (UVR) and pigmentation genes interact to modify blood vitamin levels; Light skin IRF4-TT genotype has greatest folate loss while light skin HERC2-GG genotype has greatest vitamin D3 synthesis (reflected in both TOMS and seasonal data). UV-wavelength exhibits a dose-response relationship in folate loss within light skin IRF4-TT genotype (305 > 310 > 324 > 380 nm). Significant vitamin D3 photosynthesis only occurs within light skin HERC2-GG genotype, and is maximal at 305 nm. Three dietary antioxidants (vitamins C, E, and β-carotene) interact with UVR and pigmentation genes preventing oxidative loss of labile reduced folate vitamers, with greatest benefit in light skin IRF4-TT subjects. The putative photosensitiser, riboflavin, did not sensitize red cell folate to UVR and actually afforded protection. Four genes (5xSNPs) influenced blood vitamin levels when stratified by pigmentation genotype; MTHFR-rs1801133/rs1801131, TS-rs34489327, CYP24A-rs17216707, and VDR-ApaI-rs7975232. Lightest IRF4-TT/darkest HERC2-AA genotype combination (greatest folate loss/lowest vitamin D3 synthesis) has 0% occurrence. The opposing, commonest (39%) compound genotype (darkest IRF4-CC/lightest HERC2-GG) permits least folate loss and greatest synthesis of vitamin D3 .New biophysical evidence supports the vitamin D-folate hypothesis for evolution of skin pigmentation.CONCLUSIONNew biophysical evidence supports the vitamin D-folate hypothesis for evolution of skin pigmentation.
Author Lucock, Mark D.
Jones, Patrice R.
Martin, Charlotte
Thota, Rohith
Jablonski, Nina G.
Veysey, Martin
Garg, Manohar
Scarlett, Christopher J.
Furst, John
Chaplin, George
Beckett, Emma L.
Yates, Zoe
Author_xml – sequence: 1
  givenname: Mark D.
  orcidid: 0000-0002-0788-5177
  surname: Lucock
  fullname: Lucock, Mark D.
  email: mark.lucock@newcastle.edu.au
  organization: University of Newcastle
– sequence: 2
  givenname: Patrice R.
  surname: Jones
  fullname: Jones, Patrice R.
  organization: University of Newcastle
– sequence: 3
  givenname: Martin
  surname: Veysey
  fullname: Veysey, Martin
  organization: Hull York Medical School
– sequence: 4
  givenname: Rohith
  surname: Thota
  fullname: Thota, Rohith
  organization: Riddet Institute, Massey University
– sequence: 5
  givenname: Manohar
  surname: Garg
  fullname: Garg, Manohar
  organization: University of Newcastle
– sequence: 6
  givenname: John
  surname: Furst
  fullname: Furst, John
  organization: University of Newcastle
– sequence: 7
  givenname: Charlotte
  surname: Martin
  fullname: Martin, Charlotte
  organization: University of Newcastle
– sequence: 8
  givenname: Zoe
  surname: Yates
  fullname: Yates, Zoe
  organization: University of Newcastle
– sequence: 9
  givenname: Christopher J.
  surname: Scarlett
  fullname: Scarlett, Christopher J.
  organization: University of Newcastle
– sequence: 10
  givenname: Nina G.
  surname: Jablonski
  fullname: Jablonski, Nina G.
  organization: The Pennsylvania State University
– sequence: 11
  givenname: George
  surname: Chaplin
  fullname: Chaplin, George
  organization: The Pennsylvania State University
– sequence: 12
  givenname: Emma L.
  surname: Beckett
  fullname: Beckett, Emma L.
  organization: University of Newcastle
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34418235$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1TAQhS1URH9gwwMgS2wQUop_EidetqVQUCU2sLYmjkN8SexgOxfurju2PCNPgm9TWFQIydJYmu-cGc05RgfOO4PQU0pOKSHsFWyG9pRxIeoH6IhWjBSCE3KQ_6RkBak4P0THMW4IIVKQ5hE65GVJG8arI_Tj3Pp52EWrYcRmazvjtMHJ47jMsw8Jg-uw-Z5MLmkweGsTTNbh179ufvZ-hGTwsJt9bkUbMeSHZwjQ2c8T7n241ZitH5dkvcO-x8MygcPxS_aYM2Rcgn3rMXrYwxjNk7t6gj69ufx4cVVcf3j77uLsutC8quuiIsCp7KFtJdcN7XhballXvexp3dc17QSUVVN3umlaLqGBkkDJuaBE8lq2DT9BL1bfOfivi4lJTTZqM47gjF-iYpXgJWOcsIw-v4du_BJc3k4xkacwJqTI1LM7amkn06k52AnCTv05cQZeroAOPsZg-r8IJWqfn9rnp27zyzC5B2u7HigFsOO_JXSVfLOj2f3HXJ29vzpfNb8B57-uZQ
CitedBy_id crossref_primary_10_1007_s11528_022_00815_9
crossref_primary_10_1002_ajpa_24750
crossref_primary_10_1002_bies_202300127
crossref_primary_10_1002_ajpa_24564
crossref_primary_10_1002_ajpa_24685
crossref_primary_10_1038_s41598_024_68437_0
crossref_primary_10_1371_journal_pone_0320335
crossref_primary_10_1146_annurev_anthro_052721_090632
Cites_doi 10.1098/rstb.2016.0349
10.1016/j.rdc.2012.03.004
10.1126/science.675247
10.1016/j.jphotobiol.2014.01.002
10.1177/0148607111430189
10.1038/jid.2009.258
10.1373/49.9.1521
10.1002/humu.20143
10.1530/JME-19-0246
10.1002/ajhb.23010
10.1126/science.6256855
10.1016/j.fertnstert.2009.05.019
10.1093/nutrit/nuy013
10.1016/j.jnim.2016.03.002
10.1007/s00239-019-09902-7
10.1038/skinbio.2011.3
10.1093/hmg/ddp003
10.1186/gb-2012-13-9-248
10.3378/027.085.0402
10.1111/pcmr.12976
10.1093/ajcn/83.5.993
10.1073/pnas.0914628107
10.3390/ijerph17051545
10.1152/ajpregu.00136.2019
10.1186/s12263-020-00663-3
10.1002/ajhb.23166
10.1016/j.cell.2017.11.015
10.1080/01635581.2016.1142584
10.1159/000313854
10.1201/9781420055962
10.1016/j.jnim.2016.04.007
10.1039/c3cc41437j
10.1006/jhev.2000.0403
10.1016/j.jphotobiol.2008.12.003
10.1016/S1096-7192(02)00113-0
10.1006/bmme.1995.1030
10.1016/j.bcp.2019.07.024
10.1016/j.cell.2013.10.022
10.1002/ijc.24003
10.1177/15648265080292S103
10.1152/japplphysiol.00501.2018
10.1385/CBB:41:3:415
10.1111/bjd.13885
10.1016/j.freeradbiomed.2009.07.030
10.1002/ajhb.22929
10.1016/j.mam.2021.100944
10.1016/S0271-5317(03)00156-8
10.1017/CBO9780511600463
10.1016/j.jphotobiol.2005.03.001
10.1271/bbb.80530
10.1016/j.bbacli.2014.11.005
10.1007/s10103-011-0895-0
10.1146/annurev.nu.08.070188.002111
10.1002/ajhb.23079
10.1111/j.1469-1809.2006.00341.x
10.1039/b718907a
10.1111/j.1600-0625.2007.00675.x
10.1086/425285
10.1111/exd.14142
10.1016/j.fertnstert.2008.06.010
10.1007/s00265-006-0266-1
10.1152/ajpregu.00355.2006
10.1097/01.GIM.0000159904.92850.D5
10.1093/emph/eou013
10.1073/pnas.94.7.3290
10.1210/er.2008-0004
10.1056/NEJMra0804615
10.1146/annurev.anthro.33.070203.143955
10.1017/S0007114514000178
10.1101/gr.128652.111
10.3390/nu10050554
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC.
2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2021 Wiley Periodicals LLC.
– notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7SN
7ST
7T5
7TK
7TM
7TS
C1K
H94
K9.
SOI
7X8
DOI 10.1002/ajhb.23667
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Ecology Abstracts
Environment Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Physical Education Index
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Ecology Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Environment Abstracts
Physical Education Index
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Nucleic Acids Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1520-6300
EndPage n/a
ExternalDocumentID 34418235
10_1002_ajhb_23667
AJHB23667
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GrantInformation_xml – fundername: National Health and Medical Research Council (NHMRC) Early Career Fellowship
– fundername: Australian Government Research Training Program scholarship and a Hunter Medical Research Institute (HMRI) Greaves Family Scholarship
– fundername: Australian Research Council
  funderid: G0188386
GroupedDBID ---
--Z
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACHQT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DVXWH
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M66
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
UAP
UB1
UPT
V2E
V8K
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7SN
7ST
7T5
7TK
7TM
7TS
C1K
H94
K9.
SOI
7X8
ID FETCH-LOGICAL-c3577-50a319fabb93c81d3b4c975f9f17f771d6a4587dc88b39a8a40a4336109379b83
IEDL.DBID DR2
ISSN 1042-0533
1520-6300
IngestDate Fri Jul 11 00:54:38 EDT 2025
Fri Jul 25 12:29:36 EDT 2025
Thu Apr 03 07:06:57 EDT 2025
Tue Jul 01 03:29:10 EDT 2025
Thu Apr 24 22:57:23 EDT 2025
Sun Jul 06 04:45:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2021 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3577-50a319fabb93c81d3b4c975f9f17f771d6a4587dc88b39a8a40a4336109379b83
Notes Funding information
National Health and Medical Research Council (NHMRC) Early Career Fellowship; Australian Government Research Training Program scholarship and a Hunter Medical Research Institute (HMRI) Greaves Family Scholarship; Australian Research Council, Grant/Award Number: G0188386
Mark D. Lucock and Patrice R. Jones are joint first authors.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0788-5177
PMID 34418235
PQID 2645822696
PQPubID 866343
PageCount 23
ParticipantIDs proquest_miscellaneous_2563422302
proquest_journals_2645822696
pubmed_primary_34418235
crossref_primary_10_1002_ajhb_23667
crossref_citationtrail_10_1002_ajhb_23667
wiley_primary_10_1002_ajhb_23667_AJHB23667
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle American journal of human biology
PublicationTitleAlternate Am J Hum Biol
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2009; 47
2020; 64
2010; 107
2018; 125
2020; 17
2020; 15
2008; 7
2007; 71
2012; 13
2014; 131
2020b; 173
2005; 25
2015; 173
2004; 33
2004; 75
1997; 94
2021; 34
2014; 3
2009; 92
2007; 292
2008; 29
2013; 155
2009; 124
2003; 49
2018; 30
2019; 317
2007; 61
2011; 26
2009; 361
2010; 70
2018; 76
2012; 22
2009; 18
2004; 41
2015; 3
2013; 49
2002; 76
1995; 55
2013; 85
2008; 17
2017; 171
2005; 80
2017; 29
2017; 372
2014; 2014
2012; 38
2002
1991
2012; 36
2008; 94
2014; 111
2020a; 29
2011; 131
2016; 5
2009; 73
2016; 1
2006; 83
2000; 39
1981; 211
2021
2019; 88
2020
1988; 8
2005; 7
2010; 130
1978; 201
2016
2018; 10
2016; 68
2010; 94
2003; 23
1966
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
Jones P. (e_1_2_10_31_1) 2016; 1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Robinson N. (e_1_2_10_60_1) 1966
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
Martin C. E. (e_1_2_10_50_1) 2014; 3
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – year: 1966
– volume: 29
  start-page: 726
  year: 2008
  end-page: 776
  article-title: Vitamin D and human health: Lessons from vitamin D receptor null mice
  publication-title: Endocrine Reviews
– volume: 23
  start-page: 1463
  year: 2003
  end-page: 1475
  article-title: A critical role for B‐vitamin nutrition in human developmental and evolutionary biology
  publication-title: Nutrition Research
– volume: 171
  start-page: 1340
  year: 2017
  end-page: 1353
  article-title: An unexpectedly complex architecture for skin pigmentation in Africans
  publication-title: Cell
– volume: 26
  start-page: 481
  year: 2011
  end-page: 485
  article-title: Effect of narrowband ultraviolet B phototherapy on serum folic acid levels in patients with psoriasis
  publication-title: Lasers in Medical Science
– volume: 49
  start-page: 1521
  year: 2003
  end-page: 1524
  article-title: Determination of 25‐hydroxyvitamin D in serum by HPLC and immunoassay
  publication-title: Clinical Chemistry
– volume: 94
  start-page: 3290
  year: 1997
  end-page: 3295
  article-title: Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: Implications for cancer and neuronal damage
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 10
  year: 2018
  article-title: The vitamin D‐Folate hypothesis as an evolutionary model for skin pigmentation: An update and integration of current ideas
  publication-title: Nutrients
– volume: 71
  start-page: 354
  year: 2007
  end-page: 369
  article-title: Signatures of positive selection in genes associated with human skin pigmentation as revealed from analyses of single nucleotide polymorphisms
  publication-title: Annals of Human Genetics
– volume: 94
  start-page: 1314
  year: 2010
  end-page: 1319
  article-title: Replete vitamin D stores predict reproductive success following in vitro fertilization
  publication-title: Fertility and Sterility
– volume: 88
  start-page: 77
  year: 2019
  end-page: 87
  article-title: The evolutionary history of human skin pigmentation
  publication-title: Journal of Molecular Evolution
– volume: 173
  year: 2020b
  article-title: Vitamin D and evolution: Pharmacologic implications
  publication-title: Biochemical Pharmacology
– volume: 173
  start-page: 1087
  year: 2015
  end-page: 1090
  article-title: Rearrangement and depletion of folate in human skin by ultraviolet radiation
  publication-title: The British Journal of Dermatology
– volume: 76
  start-page: 305
  year: 2002
  end-page: 312
  article-title: The impact of phenylketonuria on folate metabolism
  publication-title: Molecular Genetics and Metabolism
– volume: 80
  start-page: 47
  year: 2005
  end-page: 55
  article-title: Ultraviolet photodegradation of folic acid
  publication-title: Journal of Photochemistry and Photobiology B
– volume: 5
  start-page: 61
  year: 2016
  end-page: 69
  article-title: Erythrocyte omega‐3 polyunsaturated fatty acid levels are associated with biomarkers of inflammation in older Australians
  publication-title: Journal of Nutrition & Intermediary Metabolism
– volume: 111
  start-page: 1985
  year: 2014
  end-page: 1991
  article-title: Riboflavin (vitamin B₂) and oxidative stress: A review
  publication-title: The British Journal of Nutrition
– volume: 64
  year: 2020
  article-title: Genome‐wide effects of chromatin on vitamin D signalling
  publication-title: Journal of Molecular Endocrinology
– volume: 47
  start-page: 1199
  year: 2009
  end-page: 1204
  article-title: 5‐Methyltetrahydrofolate can be photodegraded by endogenous photosensitizers
  publication-title: Free Radical Biology & Medicine
– volume: 30
  issue: 5
  year: 2018
  article-title: Vitamin D and folate: A reciprocal environmental association based on seasonality and genetic disposition
  publication-title: American Journal of Human Biology
– volume: 22
  start-page: 446
  year: 2012
  end-page: 455
  article-title: HERC2 rs12913832 modulates human pigmentation by attenuating chromatin‐loop formation between a long‐range enhancer and the OCA2 promoter
  publication-title: Genome Research
– volume: 29
  issue: 5
  year: 2017
  article-title: VDR gene methylation as a molecular adaption to light exposure: Historic, recent and genetic influences
  publication-title: American Journal of Human Biology
– year: 2021
  article-title: Vitamin‐related phenotypic adaptation to exposomal factors: The folate‐vitamin D‐exposome triad
  publication-title: Molecular Aspects of Medicine
– volume: 124
  start-page: 1999
  year: 2009
  end-page: 2005
  article-title: The methylenetetrahydrofolate reductase C677T mutation induces cell‐specific changes in genomic DNA methylation and uracil misincorporation: A possible molecular basis for the site‐specific cancer risk modification
  publication-title: International Journal of Cancer
– volume: 92
  start-page: 548
  year: 2009
  end-page: 556
  article-title: Low folate in seminal plasma is associated with increased sperm DNA damage
  publication-title: Fertility and Sterility
– volume: 3
  start-page: 107
  year: 2015
  end-page: 112
  article-title: Methylation diet and methyl group genetics in risk for adenomatous polyp occurrence
  publication-title: BBA Clinical
– volume: 13
  start-page: 248
  year: 2012
  article-title: Human pigmentation genes under environmental selection
  publication-title: Genome Biology
– volume: 55
  start-page: 43
  year: 1995
  end-page: 53
  article-title: Nonenzymatic degradation and salvage of dietary folate: Physicochemical factors likely to influence bioavailability
  publication-title: Biochemical and Molecular Medicine
– volume: 29
  year: 2008
  article-title: Folate and vitamin B12 metabolism: Overview and interaction with riboflavin, vitamin B6, and polymorphisms
  publication-title: Food and Nutrition Bulletin
– volume: 75
  start-page: 739
  year: 2004
  end-page: 751
  article-title: The genetics of sun sensitivity in humans
  publication-title: American Journal of Human Genetics
– volume: 39
  start-page: 57
  year: 2000
  end-page: 106
  article-title: The evolution of human skin coloration
  publication-title: Journal of Human Evolution
– volume: 372
  year: 2017
  article-title: The colours of humanity: The evolution of pigmentation in the human lineage
  publication-title: Philos Trans R Soc Lond B Biol Sci.
– volume: 317
  year: 2019
  article-title: The vitamin D‐folate hypothesis in human vascular health
  publication-title: American Journal of Physiology. Regulatory, Integrative and Comparative Physiology
– volume: 211
  start-page: 590
  year: 1981
  end-page: 593
  article-title: Regulation of cutaneous previtamin D3 photosynthesis in man: Skin pigment is not an essential regulator
  publication-title: Science
– volume: 15
  start-page: 5
  year: 2020
  article-title: Distribution of variants in multiple vitamin D‐related loci (DHCR7/NADSYN1, GC, CYP2R1, CYP11A1, CYP24A1, VDR, RXRα and RXRγ) vary between European, east‐Asian and sub‐Saharan African‐ancestry populations
  publication-title: Genes & Nutrition
– volume: 125
  start-page: 1232
  year: 2018
  end-page: 1237
  article-title: Acute ultraviolet radiation exposure attenuates nitric oxide‐mediated vasodilation in the cutaneous microvasculature of healthy humans
  publication-title: Journal of Applied Physiology
– volume: 7
  start-page: 278
  year: 2005
  end-page: 282
  article-title: Detection of 677CT/1298AC "double variant" chromosomes: Implications for interpretation of MTHFR genotyping results
  publication-title: Genetics in Medicine
– volume: 73
  start-page: 322
  year: 2009
  end-page: 327
  article-title: Effects of UVA irradiation on the concentration of folate in human blood
  publication-title: Bioscience, Biotechnology, and Biochemistry
– volume: 1
  start-page: 34
  year: 2016
  article-title: Converging evolutionary, environmental and clinical ideas on Folate metabolism
  publication-title: Exploratory Research and Hypothesis in Medicine
– volume: 68
  start-page: 193
  year: 2016
  end-page: 200
  article-title: Vitamin D receptor polymorphisms relate to risk of adenomatous polyps in a sex‐specific manner
  publication-title: Nutrition and Cancer
– volume: 85
  start-page: 529
  year: 2013
  end-page: 552
  article-title: The human environment and the vitamin D compromise: Scotland as a case study in human biocultural adaptation and disease susceptibility
  publication-title: Human Biology
– volume: 25
  start-page: 278
  year: 2005
  end-page: 284
  article-title: Single nucleotide polymorphisms in the MATP gene are associated with normal human pigmentation variation
  publication-title: Human Mutation
– volume: 292
  start-page: 2352
  year: 2007
  end-page: 2356
  article-title: Influence of eye colors of Caucasians and Asians on suppression of melatonin secretion by light
  publication-title: American Journal of Physiology. Regulatory, Integrative and Comparative Physiology
– volume: 33
  start-page: 585
  year: 2004
  end-page: 623
  article-title: The evolution of human skin and skin color
  publication-title: Annual Review of Anthropology
– volume: 76
  start-page: 512
  year: 2018
  end-page: 525
  article-title: Photobiology of vitamins
  publication-title: Nutrition Reviews
– volume: 49
  start-page: 4444
  year: 2013
  end-page: 4452
  article-title: The purinosome, a multi‐protein complex involved in the de novo biosynthesis of purines in humans
  publication-title: Chemical Communications (Cambridge)
– volume: 131
  start-page: 90
  year: 2014
  end-page: 95
  article-title: Exposure to solar ultraviolet radiation is associated with a decreased folate status in women of childbearing age
  publication-title: Journal of Photochemistry and Photobiology B
– volume: 17
  start-page: 395
  year: 2008
  end-page: 404
  article-title: Regulation of melanogenesis–controversies and new concepts
  publication-title: Experimental Dermatology
– volume: 18
  year: 2009
  article-title: Molecular genetics of human pigmentation diversity
  publication-title: Human Molecular Genetics
– volume: 3
  year: 2014
  article-title: Vitamin D: Genetics, Environment & Health
  publication-title: Journal of Food and Nutritional Disorders
– volume: 7
  start-page: 814
  year: 2008
  end-page: 818
  article-title: 5‐Methyltetrahydrofolate is photosensitive in the presence of riboflavin
  publication-title: Photochemical & Photobiological Sciences
– volume: 30
  issue: 2
  year: 2018
  article-title: Frequency of folate‐related polymorphisms varies by skin pigmentation
  publication-title: American Journal of Human Biology
– year: 2016
– volume: 8
  start-page: 375
  year: 1988
  end-page: 399
  article-title: The role of sunlight in the cutaneous production of vitamin D3
  publication-title: Annual Review of Nutrition
– volume: 29
  issue: 2
  year: 2017
  article-title: UV‐associated decline in systemic folate: Implications for human nutrigenetics, health, and evolutionary processes
  publication-title: American Journal of Human Biology
– volume: 5
  start-page: 78
  year: 2016
  end-page: 85
  article-title: Association between erythrocyte omega‐3 polyunsaturated fatty acid levels and fatty liver index in older people is sex dependent
  publication-title: Journal of Nutrition & Intermediary Metabolism
– volume: 70
  start-page: 141
  year: 2010
  end-page: 149
  article-title: International schizophrenia consortium. Genetic differences between five European populations
  publication-title: Human Heredity
– volume: 155
  start-page: 1022
  year: 2013
  end-page: 1033
  article-title: A polymorphism in IRF4 affects human pigmentation through a tyrosinase‐dependent MITF/TFAP2A pathway
  publication-title: Cell
– volume: 107
  start-page: 8962
  year: 2010
  end-page: 8968
  article-title: Colloquium paper: Human skin pigmentation as an adaptation to UV radiation
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 41
  start-page: 415
  year: 2004
  end-page: 434
  article-title: Regulation of tetrahydrobiopterin synthesis and bioavailability in endothelial cells
  publication-title: Cell Biochemistry and Biophysics
– volume: 131
  start-page: 5
  year: 2011
  end-page: 7
  article-title: Unpacking human evolution to find the genetic determinants of human skin pigmentation
  publication-title: The Journal of Investigative Dermatology
– volume: 17
  year: 2020
  article-title: Environmental UVR levels and skin pigmentation gene variants associated with Folate and Homocysteine levels in an elderly cohort
  publication-title: International Journal of Environmental Research and Public Health
– volume: 83
  start-page: 993
  year: 2006
  end-page: 1016
  article-title: Folate and human reproduction
  publication-title: The American Journal of Clinical Nutrition
– volume: 61
  start-page: 371
  year: 2007
  end-page: 384
  article-title: Why do blue‐eyed men prefer women with the same eye colour?
  publication-title: Behavioral Ecology and Sociobiology
– year: 2002
– volume: 361
  start-page: 1475
  year: 2009
  end-page: 1485
  article-title: DNA damage, aging, and cancer
  publication-title: The New England Journal of Medicine
– volume: 2014
  start-page: 69
  issue: 1
  year: 2014
  end-page: 91
  article-title: Vitamin D, folate, and potential early lifecycle environmental origin of significant adult phenotypes
  publication-title: Evolution, Medicine, and Public Health
– year: 2020
– volume: 34
  start-page: 707
  year: 2021
  end-page: 729
  article-title: The evolution of human skin pigmentation involved the interactions of genetic, environmental, and cultural variables
  publication-title: Pigment Cell & Melanoma Research
– volume: 94
  start-page: 201
  year: 2008
  end-page: 204
  article-title: Photodegradation of 5‐methyltetrahydrofolate in the presence of Uroporphyrin
  publication-title: Journal of Photochemistry and Photobiology B
– volume: 29
  start-page: 864
  year: 2020a
  end-page: 875
  article-title: Skin colour and vitamin D: An update
  publication-title: Experimental Dermatology
– volume: 130
  start-page: 520
  year: 2010
  end-page: 528
  article-title: Multiple pigmentation gene polymorphisms account for a substantial proportion of risk of cutaneous malignant melanoma
  publication-title: The Journal of Investigative Dermatology
– volume: 201
  start-page: 625
  year: 1978
  end-page: 626
  article-title: Skin color and nutrient photolysis: An evolutionary hypothesis
  publication-title: Science
– volume: 36
  year: 2012
  article-title: The D‐lightful vitamin D for child health
  publication-title: Journal of Parenteral and Enteral Nutrition
– volume: 38
  start-page: 13
  year: 2012
  end-page: 27
  article-title: The vitamin D receptor: New paradigms for the regulation of gene expression by 1,25‐dihydroxyvitamin D3
  publication-title: Rheum Dis Clin North Am
– year: 1991
– ident: e_1_2_10_29_1
  doi: 10.1098/rstb.2016.0349
– ident: e_1_2_10_55_1
  doi: 10.1016/j.rdc.2012.03.004
– ident: e_1_2_10_10_1
  doi: 10.1126/science.675247
– ident: e_1_2_10_7_1
  doi: 10.1016/j.jphotobiol.2014.01.002
– ident: e_1_2_10_23_1
  doi: 10.1177/0148607111430189
– ident: e_1_2_10_30_1
– ident: e_1_2_10_13_1
  doi: 10.1038/jid.2009.258
– ident: e_1_2_10_72_1
  doi: 10.1373/49.9.1521
– ident: e_1_2_10_16_1
  doi: 10.1002/humu.20143
– ident: e_1_2_10_19_1
  doi: 10.1530/JME-19-0246
– ident: e_1_2_10_3_1
  doi: 10.1002/ajhb.23010
– ident: e_1_2_10_24_1
  doi: 10.1126/science.6256855
– ident: e_1_2_10_54_1
  doi: 10.1016/j.fertnstert.2009.05.019
– ident: e_1_2_10_49_1
– ident: e_1_2_10_41_1
  doi: 10.1093/nutrit/nuy013
– ident: e_1_2_10_53_1
  doi: 10.1016/j.jnim.2016.03.002
– ident: e_1_2_10_61_1
  doi: 10.1007/s00239-019-09902-7
– ident: e_1_2_10_57_1
  doi: 10.1038/skinbio.2011.3
– volume: 3
  start-page: 5
  year: 2014
  ident: e_1_2_10_50_1
  article-title: Vitamin D: Genetics, Environment & Health
  publication-title: Journal of Food and Nutritional Disorders
– ident: e_1_2_10_68_1
  doi: 10.1093/hmg/ddp003
– ident: e_1_2_10_69_1
  doi: 10.1186/gb-2012-13-9-248
– ident: e_1_2_10_12_1
  doi: 10.3378/027.085.0402
– ident: e_1_2_10_26_1
  doi: 10.1111/pcmr.12976
– ident: e_1_2_10_71_1
  doi: 10.1093/ajcn/83.5.993
– ident: e_1_2_10_28_1
  doi: 10.1073/pnas.0914628107
– ident: e_1_2_10_33_1
  doi: 10.3390/ijerph17051545
– ident: e_1_2_10_75_1
  doi: 10.1152/ajpregu.00136.2019
– ident: e_1_2_10_32_1
  doi: 10.1186/s12263-020-00663-3
– ident: e_1_2_10_42_1
  doi: 10.1002/ajhb.23166
– ident: e_1_2_10_48_1
  doi: 10.1016/j.cell.2017.11.015
– ident: e_1_2_10_4_1
  doi: 10.1080/01635581.2016.1142584
– ident: e_1_2_10_51_1
  doi: 10.1159/000313854
– ident: e_1_2_10_5_1
  doi: 10.1201/9781420055962
– ident: e_1_2_10_62_1
  doi: 10.1016/j.jnim.2016.04.007
– ident: e_1_2_10_77_1
  doi: 10.1039/c3cc41437j
– ident: e_1_2_10_27_1
  doi: 10.1006/jhev.2000.0403
– ident: e_1_2_10_70_1
  doi: 10.1016/j.jphotobiol.2008.12.003
– ident: e_1_2_10_44_1
  doi: 10.1016/S1096-7192(02)00113-0
– ident: e_1_2_10_47_1
  doi: 10.1006/bmme.1995.1030
– ident: e_1_2_10_18_1
  doi: 10.1016/j.bcp.2019.07.024
– ident: e_1_2_10_56_1
  doi: 10.1016/j.cell.2013.10.022
– volume: 1
  start-page: 34
  year: 2016
  ident: e_1_2_10_31_1
  article-title: Converging evolutionary, environmental and clinical ideas on Folate metabolism
  publication-title: Exploratory Research and Hypothesis in Medicine
– ident: e_1_2_10_66_1
  doi: 10.1002/ijc.24003
– ident: e_1_2_10_64_1
  doi: 10.1177/15648265080292S103
– ident: e_1_2_10_76_1
  doi: 10.1152/japplphysiol.00501.2018
– ident: e_1_2_10_65_1
  doi: 10.1385/CBB:41:3:415
– ident: e_1_2_10_20_1
  doi: 10.1111/bjd.13885
– ident: e_1_2_10_36_1
  doi: 10.1016/j.freeradbiomed.2009.07.030
– ident: e_1_2_10_40_1
  doi: 10.1002/ajhb.22929
– ident: e_1_2_10_39_1
  doi: 10.1016/j.mam.2021.100944
– ident: e_1_2_10_43_1
  doi: 10.1016/S0271-5317(03)00156-8
– ident: e_1_2_10_59_1
  doi: 10.1017/CBO9780511600463
– ident: e_1_2_10_52_1
  doi: 10.1016/j.jphotobiol.2005.03.001
– ident: e_1_2_10_15_1
  doi: 10.1271/bbb.80530
– ident: e_1_2_10_45_1
  doi: 10.1016/j.bbacli.2014.11.005
– ident: e_1_2_10_14_1
  doi: 10.1007/s10103-011-0895-0
– ident: e_1_2_10_74_1
  doi: 10.1146/annurev.nu.08.070188.002111
– ident: e_1_2_10_35_1
  doi: 10.1002/ajhb.23079
– ident: e_1_2_10_38_1
  doi: 10.1111/j.1469-1809.2006.00341.x
– ident: e_1_2_10_67_1
  doi: 10.1039/b718907a
– ident: e_1_2_10_63_1
  doi: 10.1111/j.1600-0625.2007.00675.x
– ident: e_1_2_10_58_1
  doi: 10.1086/425285
– ident: e_1_2_10_17_1
  doi: 10.1111/exd.14142
– ident: e_1_2_10_9_1
  doi: 10.1016/j.fertnstert.2008.06.010
– ident: e_1_2_10_37_1
  doi: 10.1007/s00265-006-0266-1
– ident: e_1_2_10_21_1
  doi: 10.1152/ajpregu.00355.2006
– volume-title: Solar radiation
  year: 1966
  ident: e_1_2_10_60_1
– ident: e_1_2_10_11_1
  doi: 10.1097/01.GIM.0000159904.92850.D5
– ident: e_1_2_10_46_1
  doi: 10.1093/emph/eou013
– ident: e_1_2_10_6_1
  doi: 10.1073/pnas.94.7.3290
– ident: e_1_2_10_8_1
  doi: 10.1210/er.2008-0004
– ident: e_1_2_10_22_1
  doi: 10.1056/NEJMra0804615
– ident: e_1_2_10_25_1
  doi: 10.1146/annurev.anthro.33.070203.143955
– ident: e_1_2_10_2_1
  doi: 10.1017/S0007114514000178
– ident: e_1_2_10_73_1
  doi: 10.1101/gr.128652.111
– ident: e_1_2_10_34_1
  doi: 10.3390/nu10050554
SSID ssj0009608
Score 2.3787074
Snippet Objective To test the “vitamin D‐folate hypothesis for the evolution of human skin pigmentation.” Methods Total ozone mapping spectrometer (TOMS) satellite...
To test the "vitamin D-folate hypothesis for the evolution of human skin pigmentation." Total ozone mapping spectrometer (TOMS) satellite data were used to...
ObjectiveTo test the “vitamin D‐folate hypothesis for the evolution of human skin pigmentation.”MethodsTotal ozone mapping spectrometer (TOMS) satellite data...
To test the "vitamin D-folate hypothesis for the evolution of human skin pigmentation."OBJECTIVETo test the "vitamin D-folate hypothesis for the evolution of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e23667
SubjectTerms Antioxidants
Australia
Blood
Calciferol
Carotene
Cross-Sectional Studies
Evolution
Folic Acid
Gene mapping
Gene polymorphism
Genes
Genetic analysis
Genotype
Genotype & phenotype
High-performance liquid chromatography
Humans
Hypotheses
Immunoassay
Interferon regulatory factor 4
Irradiance
Light levels
Liquid chromatography
Methylenetetrahydrofolate reductase
Photosynthesis
Pigmentation
Population genetics
Population studies
Riboflavin
Skin pigmentation
Skin Pigmentation - genetics
Skin tests
Total Ozone Mapping Spectrometer
Ultraviolet radiation
Ultraviolet Rays - adverse effects
Vitamin B
Vitamin D
Vitamin D receptors
Vitamin D3
Vitamins
β-Carotene
Title Biophysical evidence to support and extend the vitamin D‐folate hypothesis as a paradigm for the evolution of human skin pigmentation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fajhb.23667
https://www.ncbi.nlm.nih.gov/pubmed/34418235
https://www.proquest.com/docview/2645822696
https://www.proquest.com/docview/2563422302
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1042-0533
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1520-6300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009608
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CoNBLH0kfbtKi0lJowRvbkvWAXLaPsOTQQ2kgl2IkW0626XpN7A1sTrn12t_YX5KR7PWSthRa8EHgkWVLM9YnaeYbgJcKp1WlShEKLXTIXMlQjkuV2EihYiqF9Q6yH_nkiB0ep8cbsL-Khen4IYYNN2cZ_n_tDFybZm9NGqq_nppRQjl3oeQxTf0Z7ac1dxRC8y4OjiWhCzgduEmTvXXVm7PRbxDzJmL1U87BXfiyetnO0-RstGjNKL_8hcfxf7_mHtzpsSgZd8pzHzZstQXb4wrX4bMleUW8d6jfdt-CW13SyuU2fMdS3Y8usX1SUtLOSbOoHZgnuipIt7dOEF2Si2mrZ9OKvP959aPEhXRryemydoFfzbQhGi_i-MeL6cmMIIL2dexFbxFkXhKfRpA0Z_iMGoX6YKnqARwdfPj8bhL26RzCnKZChGmk0d5LbYyiOcJkaliuRFqqMhalEHHBNUulKHIpDVVaahZpRqnjg6dCGUkfwmY1r-xjIDzKrVCCCq0Lxk1hchUlllGplSy10gG8Xg1rlvdc5y7lxresY2lOMtffme_vAF4MsnXH8PFHqd2VdmS9lTcZgskUARZXPIDnw220T3foois7X6BMyilDDBYlATzqtGpohiIWlQlNA3jjdeMv7Wfjw8lbX3ryL8I7cDtx8Rre1WgXNtvzhX2KKKo1z7y1XAMzFxlE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgCMGFQgslUGAQCAmkbLOx44_jQqmWUnpArdRbZCdOu5TNRiRbaTlx65XfyC9h7KRZFRASSDlYyjhR7Jn4eTzzhpDnCpdVpQoRCi10yFzLUI5blaGRQg2pFNYHyO7z8SHbPUqOutgclwvT8kP0DjdnGf5_7QzcOaS3lqyh-tOJGcSUc3GVXHMHdM4utz8u2aMQnLeZcCwOXcppz04aby37Xl6PfgOZlzGrX3R2VtvKqrXnKnSxJqeDeWMG2ddfmBz_-3tuk1sdHIVRqz93yBVbrpH1UYlb8ekCXoAPEPWe9zVyva1buVgn59iqugkG29UlhWYG9bxyeB50mUPrXgcEmHA2afR0UsL2j2_fC9xLNxZOFpXL_aonNWi8wFGQ55PjKSCI9n3sWWcUMCvAVxKE-hSfUaFQly9V3iWHO28P3ozDrqJDmNFEiDCJNJp8oY1RNEOkTA3LlEgKVQxFIcQw55olUuSZlIYqLTWLNKPUUcJToYyk98hKOSvtfQI8yqxQggqtc8ZNbjIVxZZRqZUstNIBeXkxr2nW0Z27qhuf05aoOU7deKd-vAPyrJetWpKPP0ptXqhH2hl6nSKeTBBjccUD8rS_jSbqzl10aWdzlEk4ZQjDojggG61a9a-hCEdlTJOAvPLK8Zf3p6Pd8WvfevAvwk_IjfHBh710793--4fkZuzSN3zk0SZZab7M7SMEVY157E3nJ65EHWA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qRfHFj9aPaNUVRVDI9S672Q_w5bQeZ5UiYqEvJewmm_ZaLxdMrnA--earf6N_ibObXI6qCAp5WMhsPnZnsr_ZzPwG4InCZVWpXIRCCx0y1zKUo6syMFKoAZXC-gDZPT7eZ7sH8cEavFjmwjT8EN2Gm7MM_712Bl5m-faKNFSfHJteRDkXF-Ai4-heOUj0YUUehdi8SYRjUegyTjty0mh71ff8cvQbxjwPWf2aM7oGh8unbUJNTnvz2vTSL78QOf7v61yHqy0YJcNGe27Ami02YHNYoCM-XZCnxIeH-n33DbjUVK1cbMI3bJXt9BLbViUl9YxU89KheaKLjDSb6wThJTmb1Ho6KcjOj6_fc_Ska0uOF6XL_KomFdF4EEdAnk2OpgQhtO9jz1qTILOc-DqCpDrFa5Qo1GZLFTdhf_T646tx2NZzCFMaCxHGfY0Gn2tjFE0RJ1PDUiXiXOUDkQsxyLhmsRRZKqWhSkvN-ppR6gjhqVBG0luwXswKewcI76dWKEGF1hnjJjOp6keWUamVzLXSATxbTmuStmTnrubGp6ShaY4SN96JH-8AHneyZUPx8UepraV2JK2ZVwmiyRgRFlc8gEfdaTRQ99dFF3Y2R5mYU4YgrB8FcLvRqu42FMGojGgcwHOvG3-5fzLcHb_0rbv_IvwQLr_fGSXv3uy9vQdXIpe74cOOtmC9_jy39xFR1eaBN5yfR1ocDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biophysical+evidence+to+support+and+extend+the+vitamin+D%E2%80%90folate+hypothesis+as+a+paradigm+for+the+evolution+of+human+skin+pigmentation&rft.jtitle=American+journal+of+human+biology&rft.au=Lucock%2C+Mark+D&rft.au=Jones%2C+Patrice+R&rft.au=Veysey%2C+Martin&rft.au=Thota%2C+Rohith&rft.date=2022-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1042-0533&rft.eissn=1520-6300&rft.volume=34&rft.issue=4&rft_id=info:doi/10.1002%2Fajhb.23667&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1042-0533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1042-0533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1042-0533&client=summon