Biophysical evidence to support and extend the vitamin D‐folate hypothesis as a paradigm for the evolution of human skin pigmentation
Objective To test the “vitamin D‐folate hypothesis for the evolution of human skin pigmentation.” Methods Total ozone mapping spectrometer (TOMS) satellite data were used to examine surface UV‐irradiance in a large (n = 649) Australian cross‐sectional study population. Genetic analysis was used to s...
Saved in:
Published in | American journal of human biology Vol. 34; no. 4; pp. e23667 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.04.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1042-0533 1520-6300 1520-6300 |
DOI | 10.1002/ajhb.23667 |
Cover
Abstract | Objective
To test the “vitamin D‐folate hypothesis for the evolution of human skin pigmentation.”
Methods
Total ozone mapping spectrometer (TOMS) satellite data were used to examine surface UV‐irradiance in a large (n = 649) Australian cross‐sectional study population. Genetic analysis was used to score vitamin D‐ and folate‐related gene polymorphisms (n = 22), along with two pigmentation gene variants (IRF4‐rs12203592/HERC2‐rs12913832). Red cell folate and vitamin D3 were measured by immunoassay and HPLC, respectively.
Results
Ultraviolet radiation (UVR) and pigmentation genes interact to modify blood vitamin levels; Light skin IRF4‐TT genotype has greatest folate loss while light skin HERC2‐GG genotype has greatest vitamin D3 synthesis (reflected in both TOMS and seasonal data).
UV‐wavelength exhibits a dose–response relationship in folate loss within light skin IRF4‐TT genotype (305 > 310 > 324 > 380 nm). Significant vitamin D3 photosynthesis only occurs within light skin HERC2‐GG genotype, and is maximal at 305 nm.
Three dietary antioxidants (vitamins C, E, and β‐carotene) interact with UVR and pigmentation genes preventing oxidative loss of labile reduced folate vitamers, with greatest benefit in light skin IRF4‐TT subjects. The putative photosensitiser, riboflavin, did not sensitize red cell folate to UVR and actually afforded protection.
Four genes (5xSNPs) influenced blood vitamin levels when stratified by pigmentation genotype; MTHFR‐rs1801133/rs1801131, TS‐rs34489327, CYP24A‐rs17216707, and VDR‐ApaI‐rs7975232.
Lightest IRF4‐TT/darkest HERC2‐AA genotype combination (greatest folate loss/lowest vitamin D3 synthesis) has 0% occurrence. The opposing, commonest (39%) compound genotype (darkest IRF4‐CC/lightest HERC2‐GG) permits least folate loss and greatest synthesis of vitamin D3.
Conclusion
New biophysical evidence supports the vitamin D‐folate hypothesis for evolution of skin pigmentation. |
---|---|
AbstractList | Objective
To test the “vitamin D‐folate hypothesis for the evolution of human skin pigmentation.”
Methods
Total ozone mapping spectrometer (TOMS) satellite data were used to examine surface UV‐irradiance in a large (n = 649) Australian cross‐sectional study population. Genetic analysis was used to score vitamin D‐ and folate‐related gene polymorphisms (n = 22), along with two pigmentation gene variants (IRF4‐rs12203592/HERC2‐rs12913832). Red cell folate and vitamin D3 were measured by immunoassay and HPLC, respectively.
Results
Ultraviolet radiation (UVR) and pigmentation genes interact to modify blood vitamin levels; Light skin IRF4‐TT genotype has greatest folate loss while light skin HERC2‐GG genotype has greatest vitamin D3 synthesis (reflected in both TOMS and seasonal data).
UV‐wavelength exhibits a dose–response relationship in folate loss within light skin IRF4‐TT genotype (305 > 310 > 324 > 380 nm). Significant vitamin D3 photosynthesis only occurs within light skin HERC2‐GG genotype, and is maximal at 305 nm.
Three dietary antioxidants (vitamins C, E, and β‐carotene) interact with UVR and pigmentation genes preventing oxidative loss of labile reduced folate vitamers, with greatest benefit in light skin IRF4‐TT subjects. The putative photosensitiser, riboflavin, did not sensitize red cell folate to UVR and actually afforded protection.
Four genes (5xSNPs) influenced blood vitamin levels when stratified by pigmentation genotype; MTHFR‐rs1801133/rs1801131, TS‐rs34489327, CYP24A‐rs17216707, and VDR‐ApaI‐rs7975232.
Lightest IRF4‐TT/darkest HERC2‐AA genotype combination (greatest folate loss/lowest vitamin D3 synthesis) has 0% occurrence. The opposing, commonest (39%) compound genotype (darkest IRF4‐CC/lightest HERC2‐GG) permits least folate loss and greatest synthesis of vitamin D3.
Conclusion
New biophysical evidence supports the vitamin D‐folate hypothesis for evolution of skin pigmentation. To test the "vitamin D-folate hypothesis for the evolution of human skin pigmentation." Total ozone mapping spectrometer (TOMS) satellite data were used to examine surface UV-irradiance in a large (n = 649) Australian cross-sectional study population. Genetic analysis was used to score vitamin D- and folate-related gene polymorphisms (n = 22), along with two pigmentation gene variants (IRF4-rs12203592/HERC2-rs12913832). Red cell folate and vitamin D were measured by immunoassay and HPLC, respectively. Ultraviolet radiation (UVR) and pigmentation genes interact to modify blood vitamin levels; Light skin IRF4-TT genotype has greatest folate loss while light skin HERC2-GG genotype has greatest vitamin D synthesis (reflected in both TOMS and seasonal data). UV-wavelength exhibits a dose-response relationship in folate loss within light skin IRF4-TT genotype (305 > 310 > 324 > 380 nm). Significant vitamin D photosynthesis only occurs within light skin HERC2-GG genotype, and is maximal at 305 nm. Three dietary antioxidants (vitamins C, E, and β-carotene) interact with UVR and pigmentation genes preventing oxidative loss of labile reduced folate vitamers, with greatest benefit in light skin IRF4-TT subjects. The putative photosensitiser, riboflavin, did not sensitize red cell folate to UVR and actually afforded protection. Four genes (5xSNPs) influenced blood vitamin levels when stratified by pigmentation genotype; MTHFR-rs1801133/rs1801131, TS-rs34489327, CYP24A-rs17216707, and VDR-ApaI-rs7975232. Lightest IRF4-TT/darkest HERC2-AA genotype combination (greatest folate loss/lowest vitamin D synthesis) has 0% occurrence. The opposing, commonest (39%) compound genotype (darkest IRF4-CC/lightest HERC2-GG) permits least folate loss and greatest synthesis of vitamin D . New biophysical evidence supports the vitamin D-folate hypothesis for evolution of skin pigmentation. ObjectiveTo test the “vitamin D‐folate hypothesis for the evolution of human skin pigmentation.”MethodsTotal ozone mapping spectrometer (TOMS) satellite data were used to examine surface UV‐irradiance in a large (n = 649) Australian cross‐sectional study population. Genetic analysis was used to score vitamin D‐ and folate‐related gene polymorphisms (n = 22), along with two pigmentation gene variants (IRF4‐rs12203592/HERC2‐rs12913832). Red cell folate and vitamin D3 were measured by immunoassay and HPLC, respectively.ResultsUltraviolet radiation (UVR) and pigmentation genes interact to modify blood vitamin levels; Light skin IRF4‐TT genotype has greatest folate loss while light skin HERC2‐GG genotype has greatest vitamin D3 synthesis (reflected in both TOMS and seasonal data).UV‐wavelength exhibits a dose–response relationship in folate loss within light skin IRF4‐TT genotype (305 > 310 > 324 > 380 nm). Significant vitamin D3 photosynthesis only occurs within light skin HERC2‐GG genotype, and is maximal at 305 nm.Three dietary antioxidants (vitamins C, E, and β‐carotene) interact with UVR and pigmentation genes preventing oxidative loss of labile reduced folate vitamers, with greatest benefit in light skin IRF4‐TT subjects. The putative photosensitiser, riboflavin, did not sensitize red cell folate to UVR and actually afforded protection.Four genes (5xSNPs) influenced blood vitamin levels when stratified by pigmentation genotype; MTHFR‐rs1801133/rs1801131, TS‐rs34489327, CYP24A‐rs17216707, and VDR‐ApaI‐rs7975232.Lightest IRF4‐TT/darkest HERC2‐AA genotype combination (greatest folate loss/lowest vitamin D3 synthesis) has 0% occurrence. The opposing, commonest (39%) compound genotype (darkest IRF4‐CC/lightest HERC2‐GG) permits least folate loss and greatest synthesis of vitamin D3.ConclusionNew biophysical evidence supports the vitamin D‐folate hypothesis for evolution of skin pigmentation. To test the "vitamin D-folate hypothesis for the evolution of human skin pigmentation."OBJECTIVETo test the "vitamin D-folate hypothesis for the evolution of human skin pigmentation."Total ozone mapping spectrometer (TOMS) satellite data were used to examine surface UV-irradiance in a large (n = 649) Australian cross-sectional study population. Genetic analysis was used to score vitamin D- and folate-related gene polymorphisms (n = 22), along with two pigmentation gene variants (IRF4-rs12203592/HERC2-rs12913832). Red cell folate and vitamin D3 were measured by immunoassay and HPLC, respectively.METHODSTotal ozone mapping spectrometer (TOMS) satellite data were used to examine surface UV-irradiance in a large (n = 649) Australian cross-sectional study population. Genetic analysis was used to score vitamin D- and folate-related gene polymorphisms (n = 22), along with two pigmentation gene variants (IRF4-rs12203592/HERC2-rs12913832). Red cell folate and vitamin D3 were measured by immunoassay and HPLC, respectively.Ultraviolet radiation (UVR) and pigmentation genes interact to modify blood vitamin levels; Light skin IRF4-TT genotype has greatest folate loss while light skin HERC2-GG genotype has greatest vitamin D3 synthesis (reflected in both TOMS and seasonal data). UV-wavelength exhibits a dose-response relationship in folate loss within light skin IRF4-TT genotype (305 > 310 > 324 > 380 nm). Significant vitamin D3 photosynthesis only occurs within light skin HERC2-GG genotype, and is maximal at 305 nm. Three dietary antioxidants (vitamins C, E, and β-carotene) interact with UVR and pigmentation genes preventing oxidative loss of labile reduced folate vitamers, with greatest benefit in light skin IRF4-TT subjects. The putative photosensitiser, riboflavin, did not sensitize red cell folate to UVR and actually afforded protection. Four genes (5xSNPs) influenced blood vitamin levels when stratified by pigmentation genotype; MTHFR-rs1801133/rs1801131, TS-rs34489327, CYP24A-rs17216707, and VDR-ApaI-rs7975232. Lightest IRF4-TT/darkest HERC2-AA genotype combination (greatest folate loss/lowest vitamin D3 synthesis) has 0% occurrence. The opposing, commonest (39%) compound genotype (darkest IRF4-CC/lightest HERC2-GG) permits least folate loss and greatest synthesis of vitamin D3 .RESULTSUltraviolet radiation (UVR) and pigmentation genes interact to modify blood vitamin levels; Light skin IRF4-TT genotype has greatest folate loss while light skin HERC2-GG genotype has greatest vitamin D3 synthesis (reflected in both TOMS and seasonal data). UV-wavelength exhibits a dose-response relationship in folate loss within light skin IRF4-TT genotype (305 > 310 > 324 > 380 nm). Significant vitamin D3 photosynthesis only occurs within light skin HERC2-GG genotype, and is maximal at 305 nm. Three dietary antioxidants (vitamins C, E, and β-carotene) interact with UVR and pigmentation genes preventing oxidative loss of labile reduced folate vitamers, with greatest benefit in light skin IRF4-TT subjects. The putative photosensitiser, riboflavin, did not sensitize red cell folate to UVR and actually afforded protection. Four genes (5xSNPs) influenced blood vitamin levels when stratified by pigmentation genotype; MTHFR-rs1801133/rs1801131, TS-rs34489327, CYP24A-rs17216707, and VDR-ApaI-rs7975232. Lightest IRF4-TT/darkest HERC2-AA genotype combination (greatest folate loss/lowest vitamin D3 synthesis) has 0% occurrence. The opposing, commonest (39%) compound genotype (darkest IRF4-CC/lightest HERC2-GG) permits least folate loss and greatest synthesis of vitamin D3 .New biophysical evidence supports the vitamin D-folate hypothesis for evolution of skin pigmentation.CONCLUSIONNew biophysical evidence supports the vitamin D-folate hypothesis for evolution of skin pigmentation. |
Author | Lucock, Mark D. Jones, Patrice R. Martin, Charlotte Thota, Rohith Jablonski, Nina G. Veysey, Martin Garg, Manohar Scarlett, Christopher J. Furst, John Chaplin, George Beckett, Emma L. Yates, Zoe |
Author_xml | – sequence: 1 givenname: Mark D. orcidid: 0000-0002-0788-5177 surname: Lucock fullname: Lucock, Mark D. email: mark.lucock@newcastle.edu.au organization: University of Newcastle – sequence: 2 givenname: Patrice R. surname: Jones fullname: Jones, Patrice R. organization: University of Newcastle – sequence: 3 givenname: Martin surname: Veysey fullname: Veysey, Martin organization: Hull York Medical School – sequence: 4 givenname: Rohith surname: Thota fullname: Thota, Rohith organization: Riddet Institute, Massey University – sequence: 5 givenname: Manohar surname: Garg fullname: Garg, Manohar organization: University of Newcastle – sequence: 6 givenname: John surname: Furst fullname: Furst, John organization: University of Newcastle – sequence: 7 givenname: Charlotte surname: Martin fullname: Martin, Charlotte organization: University of Newcastle – sequence: 8 givenname: Zoe surname: Yates fullname: Yates, Zoe organization: University of Newcastle – sequence: 9 givenname: Christopher J. surname: Scarlett fullname: Scarlett, Christopher J. organization: University of Newcastle – sequence: 10 givenname: Nina G. surname: Jablonski fullname: Jablonski, Nina G. organization: The Pennsylvania State University – sequence: 11 givenname: George surname: Chaplin fullname: Chaplin, George organization: The Pennsylvania State University – sequence: 12 givenname: Emma L. surname: Beckett fullname: Beckett, Emma L. organization: University of Newcastle |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34418235$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1TAQhS1URH9gwwMgS2wQUop_EidetqVQUCU2sLYmjkN8SexgOxfurju2PCNPgm9TWFQIydJYmu-cGc05RgfOO4PQU0pOKSHsFWyG9pRxIeoH6IhWjBSCE3KQ_6RkBak4P0THMW4IIVKQ5hE65GVJG8arI_Tj3Pp52EWrYcRmazvjtMHJ47jMsw8Jg-uw-Z5MLmkweGsTTNbh179ufvZ-hGTwsJt9bkUbMeSHZwjQ2c8T7n241ZitH5dkvcO-x8MygcPxS_aYM2Rcgn3rMXrYwxjNk7t6gj69ufx4cVVcf3j77uLsutC8quuiIsCp7KFtJdcN7XhballXvexp3dc17QSUVVN3umlaLqGBkkDJuaBE8lq2DT9BL1bfOfivi4lJTTZqM47gjF-iYpXgJWOcsIw-v4du_BJc3k4xkacwJqTI1LM7amkn06k52AnCTv05cQZeroAOPsZg-r8IJWqfn9rnp27zyzC5B2u7HigFsOO_JXSVfLOj2f3HXJ29vzpfNb8B57-uZQ |
CitedBy_id | crossref_primary_10_1007_s11528_022_00815_9 crossref_primary_10_1002_ajpa_24750 crossref_primary_10_1002_bies_202300127 crossref_primary_10_1002_ajpa_24564 crossref_primary_10_1002_ajpa_24685 crossref_primary_10_1038_s41598_024_68437_0 crossref_primary_10_1371_journal_pone_0320335 crossref_primary_10_1146_annurev_anthro_052721_090632 |
Cites_doi | 10.1098/rstb.2016.0349 10.1016/j.rdc.2012.03.004 10.1126/science.675247 10.1016/j.jphotobiol.2014.01.002 10.1177/0148607111430189 10.1038/jid.2009.258 10.1373/49.9.1521 10.1002/humu.20143 10.1530/JME-19-0246 10.1002/ajhb.23010 10.1126/science.6256855 10.1016/j.fertnstert.2009.05.019 10.1093/nutrit/nuy013 10.1016/j.jnim.2016.03.002 10.1007/s00239-019-09902-7 10.1038/skinbio.2011.3 10.1093/hmg/ddp003 10.1186/gb-2012-13-9-248 10.3378/027.085.0402 10.1111/pcmr.12976 10.1093/ajcn/83.5.993 10.1073/pnas.0914628107 10.3390/ijerph17051545 10.1152/ajpregu.00136.2019 10.1186/s12263-020-00663-3 10.1002/ajhb.23166 10.1016/j.cell.2017.11.015 10.1080/01635581.2016.1142584 10.1159/000313854 10.1201/9781420055962 10.1016/j.jnim.2016.04.007 10.1039/c3cc41437j 10.1006/jhev.2000.0403 10.1016/j.jphotobiol.2008.12.003 10.1016/S1096-7192(02)00113-0 10.1006/bmme.1995.1030 10.1016/j.bcp.2019.07.024 10.1016/j.cell.2013.10.022 10.1002/ijc.24003 10.1177/15648265080292S103 10.1152/japplphysiol.00501.2018 10.1385/CBB:41:3:415 10.1111/bjd.13885 10.1016/j.freeradbiomed.2009.07.030 10.1002/ajhb.22929 10.1016/j.mam.2021.100944 10.1016/S0271-5317(03)00156-8 10.1017/CBO9780511600463 10.1016/j.jphotobiol.2005.03.001 10.1271/bbb.80530 10.1016/j.bbacli.2014.11.005 10.1007/s10103-011-0895-0 10.1146/annurev.nu.08.070188.002111 10.1002/ajhb.23079 10.1111/j.1469-1809.2006.00341.x 10.1039/b718907a 10.1111/j.1600-0625.2007.00675.x 10.1086/425285 10.1111/exd.14142 10.1016/j.fertnstert.2008.06.010 10.1007/s00265-006-0266-1 10.1152/ajpregu.00355.2006 10.1097/01.GIM.0000159904.92850.D5 10.1093/emph/eou013 10.1073/pnas.94.7.3290 10.1210/er.2008-0004 10.1056/NEJMra0804615 10.1146/annurev.anthro.33.070203.143955 10.1017/S0007114514000178 10.1101/gr.128652.111 10.3390/nu10050554 |
ContentType | Journal Article |
Copyright | 2021 Wiley Periodicals LLC. 2022 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2021 Wiley Periodicals LLC. – notice: 2022 Wiley Periodicals LLC. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7SN 7ST 7T5 7TK 7TM 7TS C1K H94 K9. SOI 7X8 |
DOI | 10.1002/ajhb.23667 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Ecology Abstracts Environment Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Physical Education Index Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Ecology Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Environment Abstracts Physical Education Index Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE Nucleic Acids Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1520-6300 |
EndPage | n/a |
ExternalDocumentID | 34418235 10_1002_ajhb_23667 AJHB23667 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Australia |
GeographicLocations_xml | – name: Australia |
GrantInformation_xml | – fundername: National Health and Medical Research Council (NHMRC) Early Career Fellowship – fundername: Australian Government Research Training Program scholarship and a Hunter Medical Research Institute (HMRI) Greaves Family Scholarship – fundername: Australian Research Council funderid: G0188386 |
GroupedDBID | --- --Z .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACHQT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DVXWH EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M66 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 UAP UB1 UPT V2E V8K W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF NPM 7QP 7SN 7ST 7T5 7TK 7TM 7TS C1K H94 K9. SOI 7X8 |
ID | FETCH-LOGICAL-c3577-50a319fabb93c81d3b4c975f9f17f771d6a4587dc88b39a8a40a4336109379b83 |
IEDL.DBID | DR2 |
ISSN | 1042-0533 1520-6300 |
IngestDate | Fri Jul 11 00:54:38 EDT 2025 Fri Jul 25 12:29:36 EDT 2025 Thu Apr 03 07:06:57 EDT 2025 Tue Jul 01 03:29:10 EDT 2025 Thu Apr 24 22:57:23 EDT 2025 Sun Jul 06 04:45:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | 2021 Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3577-50a319fabb93c81d3b4c975f9f17f771d6a4587dc88b39a8a40a4336109379b83 |
Notes | Funding information National Health and Medical Research Council (NHMRC) Early Career Fellowship; Australian Government Research Training Program scholarship and a Hunter Medical Research Institute (HMRI) Greaves Family Scholarship; Australian Research Council, Grant/Award Number: G0188386 Mark D. Lucock and Patrice R. Jones are joint first authors. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0788-5177 |
PMID | 34418235 |
PQID | 2645822696 |
PQPubID | 866343 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_2563422302 proquest_journals_2645822696 pubmed_primary_34418235 crossref_primary_10_1002_ajhb_23667 crossref_citationtrail_10_1002_ajhb_23667 wiley_primary_10_1002_ajhb_23667_AJHB23667 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 2022-04-00 20220401 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Hoboken |
PublicationTitle | American journal of human biology |
PublicationTitleAlternate | Am J Hum Biol |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2009; 47 2020; 64 2010; 107 2018; 125 2020; 17 2020; 15 2008; 7 2007; 71 2012; 13 2014; 131 2020b; 173 2005; 25 2015; 173 2004; 33 2004; 75 1997; 94 2021; 34 2014; 3 2009; 92 2007; 292 2008; 29 2013; 155 2009; 124 2003; 49 2018; 30 2019; 317 2007; 61 2011; 26 2009; 361 2010; 70 2018; 76 2012; 22 2009; 18 2004; 41 2015; 3 2013; 49 2002; 76 1995; 55 2013; 85 2008; 17 2017; 171 2005; 80 2017; 29 2017; 372 2014; 2014 2012; 38 2002 1991 2012; 36 2008; 94 2014; 111 2020a; 29 2011; 131 2016; 5 2009; 73 2016; 1 2006; 83 2000; 39 1981; 211 2021 2019; 88 2020 1988; 8 2005; 7 2010; 130 1978; 201 2016 2018; 10 2016; 68 2010; 94 2003; 23 1966 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 Jones P. (e_1_2_10_31_1) 2016; 1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Robinson N. (e_1_2_10_60_1) 1966 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_71_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 Martin C. E. (e_1_2_10_50_1) 2014; 3 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – year: 1966 – volume: 29 start-page: 726 year: 2008 end-page: 776 article-title: Vitamin D and human health: Lessons from vitamin D receptor null mice publication-title: Endocrine Reviews – volume: 23 start-page: 1463 year: 2003 end-page: 1475 article-title: A critical role for B‐vitamin nutrition in human developmental and evolutionary biology publication-title: Nutrition Research – volume: 171 start-page: 1340 year: 2017 end-page: 1353 article-title: An unexpectedly complex architecture for skin pigmentation in Africans publication-title: Cell – volume: 26 start-page: 481 year: 2011 end-page: 485 article-title: Effect of narrowband ultraviolet B phototherapy on serum folic acid levels in patients with psoriasis publication-title: Lasers in Medical Science – volume: 49 start-page: 1521 year: 2003 end-page: 1524 article-title: Determination of 25‐hydroxyvitamin D in serum by HPLC and immunoassay publication-title: Clinical Chemistry – volume: 94 start-page: 3290 year: 1997 end-page: 3295 article-title: Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: Implications for cancer and neuronal damage publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 10 year: 2018 article-title: The vitamin D‐Folate hypothesis as an evolutionary model for skin pigmentation: An update and integration of current ideas publication-title: Nutrients – volume: 71 start-page: 354 year: 2007 end-page: 369 article-title: Signatures of positive selection in genes associated with human skin pigmentation as revealed from analyses of single nucleotide polymorphisms publication-title: Annals of Human Genetics – volume: 94 start-page: 1314 year: 2010 end-page: 1319 article-title: Replete vitamin D stores predict reproductive success following in vitro fertilization publication-title: Fertility and Sterility – volume: 88 start-page: 77 year: 2019 end-page: 87 article-title: The evolutionary history of human skin pigmentation publication-title: Journal of Molecular Evolution – volume: 173 year: 2020b article-title: Vitamin D and evolution: Pharmacologic implications publication-title: Biochemical Pharmacology – volume: 173 start-page: 1087 year: 2015 end-page: 1090 article-title: Rearrangement and depletion of folate in human skin by ultraviolet radiation publication-title: The British Journal of Dermatology – volume: 76 start-page: 305 year: 2002 end-page: 312 article-title: The impact of phenylketonuria on folate metabolism publication-title: Molecular Genetics and Metabolism – volume: 80 start-page: 47 year: 2005 end-page: 55 article-title: Ultraviolet photodegradation of folic acid publication-title: Journal of Photochemistry and Photobiology B – volume: 5 start-page: 61 year: 2016 end-page: 69 article-title: Erythrocyte omega‐3 polyunsaturated fatty acid levels are associated with biomarkers of inflammation in older Australians publication-title: Journal of Nutrition & Intermediary Metabolism – volume: 111 start-page: 1985 year: 2014 end-page: 1991 article-title: Riboflavin (vitamin B₂) and oxidative stress: A review publication-title: The British Journal of Nutrition – volume: 64 year: 2020 article-title: Genome‐wide effects of chromatin on vitamin D signalling publication-title: Journal of Molecular Endocrinology – volume: 47 start-page: 1199 year: 2009 end-page: 1204 article-title: 5‐Methyltetrahydrofolate can be photodegraded by endogenous photosensitizers publication-title: Free Radical Biology & Medicine – volume: 30 issue: 5 year: 2018 article-title: Vitamin D and folate: A reciprocal environmental association based on seasonality and genetic disposition publication-title: American Journal of Human Biology – volume: 22 start-page: 446 year: 2012 end-page: 455 article-title: HERC2 rs12913832 modulates human pigmentation by attenuating chromatin‐loop formation between a long‐range enhancer and the OCA2 promoter publication-title: Genome Research – volume: 29 issue: 5 year: 2017 article-title: VDR gene methylation as a molecular adaption to light exposure: Historic, recent and genetic influences publication-title: American Journal of Human Biology – year: 2021 article-title: Vitamin‐related phenotypic adaptation to exposomal factors: The folate‐vitamin D‐exposome triad publication-title: Molecular Aspects of Medicine – volume: 124 start-page: 1999 year: 2009 end-page: 2005 article-title: The methylenetetrahydrofolate reductase C677T mutation induces cell‐specific changes in genomic DNA methylation and uracil misincorporation: A possible molecular basis for the site‐specific cancer risk modification publication-title: International Journal of Cancer – volume: 92 start-page: 548 year: 2009 end-page: 556 article-title: Low folate in seminal plasma is associated with increased sperm DNA damage publication-title: Fertility and Sterility – volume: 3 start-page: 107 year: 2015 end-page: 112 article-title: Methylation diet and methyl group genetics in risk for adenomatous polyp occurrence publication-title: BBA Clinical – volume: 13 start-page: 248 year: 2012 article-title: Human pigmentation genes under environmental selection publication-title: Genome Biology – volume: 55 start-page: 43 year: 1995 end-page: 53 article-title: Nonenzymatic degradation and salvage of dietary folate: Physicochemical factors likely to influence bioavailability publication-title: Biochemical and Molecular Medicine – volume: 29 year: 2008 article-title: Folate and vitamin B12 metabolism: Overview and interaction with riboflavin, vitamin B6, and polymorphisms publication-title: Food and Nutrition Bulletin – volume: 75 start-page: 739 year: 2004 end-page: 751 article-title: The genetics of sun sensitivity in humans publication-title: American Journal of Human Genetics – volume: 39 start-page: 57 year: 2000 end-page: 106 article-title: The evolution of human skin coloration publication-title: Journal of Human Evolution – volume: 372 year: 2017 article-title: The colours of humanity: The evolution of pigmentation in the human lineage publication-title: Philos Trans R Soc Lond B Biol Sci. – volume: 317 year: 2019 article-title: The vitamin D‐folate hypothesis in human vascular health publication-title: American Journal of Physiology. Regulatory, Integrative and Comparative Physiology – volume: 211 start-page: 590 year: 1981 end-page: 593 article-title: Regulation of cutaneous previtamin D3 photosynthesis in man: Skin pigment is not an essential regulator publication-title: Science – volume: 15 start-page: 5 year: 2020 article-title: Distribution of variants in multiple vitamin D‐related loci (DHCR7/NADSYN1, GC, CYP2R1, CYP11A1, CYP24A1, VDR, RXRα and RXRγ) vary between European, east‐Asian and sub‐Saharan African‐ancestry populations publication-title: Genes & Nutrition – volume: 125 start-page: 1232 year: 2018 end-page: 1237 article-title: Acute ultraviolet radiation exposure attenuates nitric oxide‐mediated vasodilation in the cutaneous microvasculature of healthy humans publication-title: Journal of Applied Physiology – volume: 7 start-page: 278 year: 2005 end-page: 282 article-title: Detection of 677CT/1298AC "double variant" chromosomes: Implications for interpretation of MTHFR genotyping results publication-title: Genetics in Medicine – volume: 73 start-page: 322 year: 2009 end-page: 327 article-title: Effects of UVA irradiation on the concentration of folate in human blood publication-title: Bioscience, Biotechnology, and Biochemistry – volume: 1 start-page: 34 year: 2016 article-title: Converging evolutionary, environmental and clinical ideas on Folate metabolism publication-title: Exploratory Research and Hypothesis in Medicine – volume: 68 start-page: 193 year: 2016 end-page: 200 article-title: Vitamin D receptor polymorphisms relate to risk of adenomatous polyps in a sex‐specific manner publication-title: Nutrition and Cancer – volume: 85 start-page: 529 year: 2013 end-page: 552 article-title: The human environment and the vitamin D compromise: Scotland as a case study in human biocultural adaptation and disease susceptibility publication-title: Human Biology – volume: 25 start-page: 278 year: 2005 end-page: 284 article-title: Single nucleotide polymorphisms in the MATP gene are associated with normal human pigmentation variation publication-title: Human Mutation – volume: 292 start-page: 2352 year: 2007 end-page: 2356 article-title: Influence of eye colors of Caucasians and Asians on suppression of melatonin secretion by light publication-title: American Journal of Physiology. Regulatory, Integrative and Comparative Physiology – volume: 33 start-page: 585 year: 2004 end-page: 623 article-title: The evolution of human skin and skin color publication-title: Annual Review of Anthropology – volume: 76 start-page: 512 year: 2018 end-page: 525 article-title: Photobiology of vitamins publication-title: Nutrition Reviews – volume: 49 start-page: 4444 year: 2013 end-page: 4452 article-title: The purinosome, a multi‐protein complex involved in the de novo biosynthesis of purines in humans publication-title: Chemical Communications (Cambridge) – volume: 131 start-page: 90 year: 2014 end-page: 95 article-title: Exposure to solar ultraviolet radiation is associated with a decreased folate status in women of childbearing age publication-title: Journal of Photochemistry and Photobiology B – volume: 17 start-page: 395 year: 2008 end-page: 404 article-title: Regulation of melanogenesis–controversies and new concepts publication-title: Experimental Dermatology – volume: 18 year: 2009 article-title: Molecular genetics of human pigmentation diversity publication-title: Human Molecular Genetics – volume: 3 year: 2014 article-title: Vitamin D: Genetics, Environment & Health publication-title: Journal of Food and Nutritional Disorders – volume: 7 start-page: 814 year: 2008 end-page: 818 article-title: 5‐Methyltetrahydrofolate is photosensitive in the presence of riboflavin publication-title: Photochemical & Photobiological Sciences – volume: 30 issue: 2 year: 2018 article-title: Frequency of folate‐related polymorphisms varies by skin pigmentation publication-title: American Journal of Human Biology – year: 2016 – volume: 8 start-page: 375 year: 1988 end-page: 399 article-title: The role of sunlight in the cutaneous production of vitamin D3 publication-title: Annual Review of Nutrition – volume: 29 issue: 2 year: 2017 article-title: UV‐associated decline in systemic folate: Implications for human nutrigenetics, health, and evolutionary processes publication-title: American Journal of Human Biology – volume: 5 start-page: 78 year: 2016 end-page: 85 article-title: Association between erythrocyte omega‐3 polyunsaturated fatty acid levels and fatty liver index in older people is sex dependent publication-title: Journal of Nutrition & Intermediary Metabolism – volume: 70 start-page: 141 year: 2010 end-page: 149 article-title: International schizophrenia consortium. Genetic differences between five European populations publication-title: Human Heredity – volume: 155 start-page: 1022 year: 2013 end-page: 1033 article-title: A polymorphism in IRF4 affects human pigmentation through a tyrosinase‐dependent MITF/TFAP2A pathway publication-title: Cell – volume: 107 start-page: 8962 year: 2010 end-page: 8968 article-title: Colloquium paper: Human skin pigmentation as an adaptation to UV radiation publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 41 start-page: 415 year: 2004 end-page: 434 article-title: Regulation of tetrahydrobiopterin synthesis and bioavailability in endothelial cells publication-title: Cell Biochemistry and Biophysics – volume: 131 start-page: 5 year: 2011 end-page: 7 article-title: Unpacking human evolution to find the genetic determinants of human skin pigmentation publication-title: The Journal of Investigative Dermatology – volume: 17 year: 2020 article-title: Environmental UVR levels and skin pigmentation gene variants associated with Folate and Homocysteine levels in an elderly cohort publication-title: International Journal of Environmental Research and Public Health – volume: 83 start-page: 993 year: 2006 end-page: 1016 article-title: Folate and human reproduction publication-title: The American Journal of Clinical Nutrition – volume: 61 start-page: 371 year: 2007 end-page: 384 article-title: Why do blue‐eyed men prefer women with the same eye colour? publication-title: Behavioral Ecology and Sociobiology – year: 2002 – volume: 361 start-page: 1475 year: 2009 end-page: 1485 article-title: DNA damage, aging, and cancer publication-title: The New England Journal of Medicine – volume: 2014 start-page: 69 issue: 1 year: 2014 end-page: 91 article-title: Vitamin D, folate, and potential early lifecycle environmental origin of significant adult phenotypes publication-title: Evolution, Medicine, and Public Health – year: 2020 – volume: 34 start-page: 707 year: 2021 end-page: 729 article-title: The evolution of human skin pigmentation involved the interactions of genetic, environmental, and cultural variables publication-title: Pigment Cell & Melanoma Research – volume: 94 start-page: 201 year: 2008 end-page: 204 article-title: Photodegradation of 5‐methyltetrahydrofolate in the presence of Uroporphyrin publication-title: Journal of Photochemistry and Photobiology B – volume: 29 start-page: 864 year: 2020a end-page: 875 article-title: Skin colour and vitamin D: An update publication-title: Experimental Dermatology – volume: 130 start-page: 520 year: 2010 end-page: 528 article-title: Multiple pigmentation gene polymorphisms account for a substantial proportion of risk of cutaneous malignant melanoma publication-title: The Journal of Investigative Dermatology – volume: 201 start-page: 625 year: 1978 end-page: 626 article-title: Skin color and nutrient photolysis: An evolutionary hypothesis publication-title: Science – volume: 36 year: 2012 article-title: The D‐lightful vitamin D for child health publication-title: Journal of Parenteral and Enteral Nutrition – volume: 38 start-page: 13 year: 2012 end-page: 27 article-title: The vitamin D receptor: New paradigms for the regulation of gene expression by 1,25‐dihydroxyvitamin D3 publication-title: Rheum Dis Clin North Am – year: 1991 – ident: e_1_2_10_29_1 doi: 10.1098/rstb.2016.0349 – ident: e_1_2_10_55_1 doi: 10.1016/j.rdc.2012.03.004 – ident: e_1_2_10_10_1 doi: 10.1126/science.675247 – ident: e_1_2_10_7_1 doi: 10.1016/j.jphotobiol.2014.01.002 – ident: e_1_2_10_23_1 doi: 10.1177/0148607111430189 – ident: e_1_2_10_30_1 – ident: e_1_2_10_13_1 doi: 10.1038/jid.2009.258 – ident: e_1_2_10_72_1 doi: 10.1373/49.9.1521 – ident: e_1_2_10_16_1 doi: 10.1002/humu.20143 – ident: e_1_2_10_19_1 doi: 10.1530/JME-19-0246 – ident: e_1_2_10_3_1 doi: 10.1002/ajhb.23010 – ident: e_1_2_10_24_1 doi: 10.1126/science.6256855 – ident: e_1_2_10_54_1 doi: 10.1016/j.fertnstert.2009.05.019 – ident: e_1_2_10_49_1 – ident: e_1_2_10_41_1 doi: 10.1093/nutrit/nuy013 – ident: e_1_2_10_53_1 doi: 10.1016/j.jnim.2016.03.002 – ident: e_1_2_10_61_1 doi: 10.1007/s00239-019-09902-7 – ident: e_1_2_10_57_1 doi: 10.1038/skinbio.2011.3 – volume: 3 start-page: 5 year: 2014 ident: e_1_2_10_50_1 article-title: Vitamin D: Genetics, Environment & Health publication-title: Journal of Food and Nutritional Disorders – ident: e_1_2_10_68_1 doi: 10.1093/hmg/ddp003 – ident: e_1_2_10_69_1 doi: 10.1186/gb-2012-13-9-248 – ident: e_1_2_10_12_1 doi: 10.3378/027.085.0402 – ident: e_1_2_10_26_1 doi: 10.1111/pcmr.12976 – ident: e_1_2_10_71_1 doi: 10.1093/ajcn/83.5.993 – ident: e_1_2_10_28_1 doi: 10.1073/pnas.0914628107 – ident: e_1_2_10_33_1 doi: 10.3390/ijerph17051545 – ident: e_1_2_10_75_1 doi: 10.1152/ajpregu.00136.2019 – ident: e_1_2_10_32_1 doi: 10.1186/s12263-020-00663-3 – ident: e_1_2_10_42_1 doi: 10.1002/ajhb.23166 – ident: e_1_2_10_48_1 doi: 10.1016/j.cell.2017.11.015 – ident: e_1_2_10_4_1 doi: 10.1080/01635581.2016.1142584 – ident: e_1_2_10_51_1 doi: 10.1159/000313854 – ident: e_1_2_10_5_1 doi: 10.1201/9781420055962 – ident: e_1_2_10_62_1 doi: 10.1016/j.jnim.2016.04.007 – ident: e_1_2_10_77_1 doi: 10.1039/c3cc41437j – ident: e_1_2_10_27_1 doi: 10.1006/jhev.2000.0403 – ident: e_1_2_10_70_1 doi: 10.1016/j.jphotobiol.2008.12.003 – ident: e_1_2_10_44_1 doi: 10.1016/S1096-7192(02)00113-0 – ident: e_1_2_10_47_1 doi: 10.1006/bmme.1995.1030 – ident: e_1_2_10_18_1 doi: 10.1016/j.bcp.2019.07.024 – ident: e_1_2_10_56_1 doi: 10.1016/j.cell.2013.10.022 – volume: 1 start-page: 34 year: 2016 ident: e_1_2_10_31_1 article-title: Converging evolutionary, environmental and clinical ideas on Folate metabolism publication-title: Exploratory Research and Hypothesis in Medicine – ident: e_1_2_10_66_1 doi: 10.1002/ijc.24003 – ident: e_1_2_10_64_1 doi: 10.1177/15648265080292S103 – ident: e_1_2_10_76_1 doi: 10.1152/japplphysiol.00501.2018 – ident: e_1_2_10_65_1 doi: 10.1385/CBB:41:3:415 – ident: e_1_2_10_20_1 doi: 10.1111/bjd.13885 – ident: e_1_2_10_36_1 doi: 10.1016/j.freeradbiomed.2009.07.030 – ident: e_1_2_10_40_1 doi: 10.1002/ajhb.22929 – ident: e_1_2_10_39_1 doi: 10.1016/j.mam.2021.100944 – ident: e_1_2_10_43_1 doi: 10.1016/S0271-5317(03)00156-8 – ident: e_1_2_10_59_1 doi: 10.1017/CBO9780511600463 – ident: e_1_2_10_52_1 doi: 10.1016/j.jphotobiol.2005.03.001 – ident: e_1_2_10_15_1 doi: 10.1271/bbb.80530 – ident: e_1_2_10_45_1 doi: 10.1016/j.bbacli.2014.11.005 – ident: e_1_2_10_14_1 doi: 10.1007/s10103-011-0895-0 – ident: e_1_2_10_74_1 doi: 10.1146/annurev.nu.08.070188.002111 – ident: e_1_2_10_35_1 doi: 10.1002/ajhb.23079 – ident: e_1_2_10_38_1 doi: 10.1111/j.1469-1809.2006.00341.x – ident: e_1_2_10_67_1 doi: 10.1039/b718907a – ident: e_1_2_10_63_1 doi: 10.1111/j.1600-0625.2007.00675.x – ident: e_1_2_10_58_1 doi: 10.1086/425285 – ident: e_1_2_10_17_1 doi: 10.1111/exd.14142 – ident: e_1_2_10_9_1 doi: 10.1016/j.fertnstert.2008.06.010 – ident: e_1_2_10_37_1 doi: 10.1007/s00265-006-0266-1 – ident: e_1_2_10_21_1 doi: 10.1152/ajpregu.00355.2006 – volume-title: Solar radiation year: 1966 ident: e_1_2_10_60_1 – ident: e_1_2_10_11_1 doi: 10.1097/01.GIM.0000159904.92850.D5 – ident: e_1_2_10_46_1 doi: 10.1093/emph/eou013 – ident: e_1_2_10_6_1 doi: 10.1073/pnas.94.7.3290 – ident: e_1_2_10_8_1 doi: 10.1210/er.2008-0004 – ident: e_1_2_10_22_1 doi: 10.1056/NEJMra0804615 – ident: e_1_2_10_25_1 doi: 10.1146/annurev.anthro.33.070203.143955 – ident: e_1_2_10_2_1 doi: 10.1017/S0007114514000178 – ident: e_1_2_10_73_1 doi: 10.1101/gr.128652.111 – ident: e_1_2_10_34_1 doi: 10.3390/nu10050554 |
SSID | ssj0009608 |
Score | 2.3787074 |
Snippet | Objective
To test the “vitamin D‐folate hypothesis for the evolution of human skin pigmentation.”
Methods
Total ozone mapping spectrometer (TOMS) satellite... To test the "vitamin D-folate hypothesis for the evolution of human skin pigmentation." Total ozone mapping spectrometer (TOMS) satellite data were used to... ObjectiveTo test the “vitamin D‐folate hypothesis for the evolution of human skin pigmentation.”MethodsTotal ozone mapping spectrometer (TOMS) satellite data... To test the "vitamin D-folate hypothesis for the evolution of human skin pigmentation."OBJECTIVETo test the "vitamin D-folate hypothesis for the evolution of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e23667 |
SubjectTerms | Antioxidants Australia Blood Calciferol Carotene Cross-Sectional Studies Evolution Folic Acid Gene mapping Gene polymorphism Genes Genetic analysis Genotype Genotype & phenotype High-performance liquid chromatography Humans Hypotheses Immunoassay Interferon regulatory factor 4 Irradiance Light levels Liquid chromatography Methylenetetrahydrofolate reductase Photosynthesis Pigmentation Population genetics Population studies Riboflavin Skin pigmentation Skin Pigmentation - genetics Skin tests Total Ozone Mapping Spectrometer Ultraviolet radiation Ultraviolet Rays - adverse effects Vitamin B Vitamin D Vitamin D receptors Vitamin D3 Vitamins β-Carotene |
Title | Biophysical evidence to support and extend the vitamin D‐folate hypothesis as a paradigm for the evolution of human skin pigmentation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fajhb.23667 https://www.ncbi.nlm.nih.gov/pubmed/34418235 https://www.proquest.com/docview/2645822696 https://www.proquest.com/docview/2563422302 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1042-0533 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1520-6300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009608 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CoNBLH0kfbtKi0lJowRvbkvWAXLaPsOTQQ2kgl2IkW0626XpN7A1sTrn12t_YX5KR7PWSthRa8EHgkWVLM9YnaeYbgJcKp1WlShEKLXTIXMlQjkuV2EihYiqF9Q6yH_nkiB0ep8cbsL-Khen4IYYNN2cZ_n_tDFybZm9NGqq_nppRQjl3oeQxTf0Z7ac1dxRC8y4OjiWhCzgduEmTvXXVm7PRbxDzJmL1U87BXfiyetnO0-RstGjNKL_8hcfxf7_mHtzpsSgZd8pzHzZstQXb4wrX4bMleUW8d6jfdt-CW13SyuU2fMdS3Y8usX1SUtLOSbOoHZgnuipIt7dOEF2Si2mrZ9OKvP959aPEhXRryemydoFfzbQhGi_i-MeL6cmMIIL2dexFbxFkXhKfRpA0Z_iMGoX6YKnqARwdfPj8bhL26RzCnKZChGmk0d5LbYyiOcJkaliuRFqqMhalEHHBNUulKHIpDVVaahZpRqnjg6dCGUkfwmY1r-xjIDzKrVCCCq0Lxk1hchUlllGplSy10gG8Xg1rlvdc5y7lxresY2lOMtffme_vAF4MsnXH8PFHqd2VdmS9lTcZgskUARZXPIDnw220T3foois7X6BMyilDDBYlATzqtGpohiIWlQlNA3jjdeMv7Wfjw8lbX3ryL8I7cDtx8Rre1WgXNtvzhX2KKKo1z7y1XAMzFxlE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgCMGFQgslUGAQCAmkbLOx44_jQqmWUnpArdRbZCdOu5TNRiRbaTlx65XfyC9h7KRZFRASSDlYyjhR7Jn4eTzzhpDnCpdVpQoRCi10yFzLUI5blaGRQg2pFNYHyO7z8SHbPUqOutgclwvT8kP0DjdnGf5_7QzcOaS3lqyh-tOJGcSUc3GVXHMHdM4utz8u2aMQnLeZcCwOXcppz04aby37Xl6PfgOZlzGrX3R2VtvKqrXnKnSxJqeDeWMG2ddfmBz_-3tuk1sdHIVRqz93yBVbrpH1UYlb8ekCXoAPEPWe9zVyva1buVgn59iqugkG29UlhWYG9bxyeB50mUPrXgcEmHA2afR0UsL2j2_fC9xLNxZOFpXL_aonNWi8wFGQ55PjKSCI9n3sWWcUMCvAVxKE-hSfUaFQly9V3iWHO28P3ozDrqJDmNFEiDCJNJp8oY1RNEOkTA3LlEgKVQxFIcQw55olUuSZlIYqLTWLNKPUUcJToYyk98hKOSvtfQI8yqxQggqtc8ZNbjIVxZZRqZUstNIBeXkxr2nW0Z27qhuf05aoOU7deKd-vAPyrJetWpKPP0ptXqhH2hl6nSKeTBBjccUD8rS_jSbqzl10aWdzlEk4ZQjDojggG61a9a-hCEdlTJOAvPLK8Zf3p6Pd8WvfevAvwk_IjfHBh710793--4fkZuzSN3zk0SZZab7M7SMEVY157E3nJ65EHWA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qRfHFj9aPaNUVRVDI9S672Q_w5bQeZ5UiYqEvJewmm_ZaLxdMrnA--earf6N_ibObXI6qCAp5WMhsPnZnsr_ZzPwG4InCZVWpXIRCCx0y1zKUo6syMFKoAZXC-gDZPT7eZ7sH8cEavFjmwjT8EN2Gm7MM_712Bl5m-faKNFSfHJteRDkXF-Ai4-heOUj0YUUehdi8SYRjUegyTjty0mh71ff8cvQbxjwPWf2aM7oGh8unbUJNTnvz2vTSL78QOf7v61yHqy0YJcNGe27Ami02YHNYoCM-XZCnxIeH-n33DbjUVK1cbMI3bJXt9BLbViUl9YxU89KheaKLjDSb6wThJTmb1Ho6KcjOj6_fc_Ska0uOF6XL_KomFdF4EEdAnk2OpgQhtO9jz1qTILOc-DqCpDrFa5Qo1GZLFTdhf_T646tx2NZzCFMaCxHGfY0Gn2tjFE0RJ1PDUiXiXOUDkQsxyLhmsRRZKqWhSkvN-ppR6gjhqVBG0luwXswKewcI76dWKEGF1hnjJjOp6keWUamVzLXSATxbTmuStmTnrubGp6ShaY4SN96JH-8AHneyZUPx8UepraV2JK2ZVwmiyRgRFlc8gEfdaTRQ99dFF3Y2R5mYU4YgrB8FcLvRqu42FMGojGgcwHOvG3-5fzLcHb_0rbv_IvwQLr_fGSXv3uy9vQdXIpe74cOOtmC9_jy39xFR1eaBN5yfR1ocDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biophysical+evidence+to+support+and+extend+the+vitamin+D%E2%80%90folate+hypothesis+as+a+paradigm+for+the+evolution+of+human+skin+pigmentation&rft.jtitle=American+journal+of+human+biology&rft.au=Lucock%2C+Mark+D&rft.au=Jones%2C+Patrice+R&rft.au=Veysey%2C+Martin&rft.au=Thota%2C+Rohith&rft.date=2022-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1042-0533&rft.eissn=1520-6300&rft.volume=34&rft.issue=4&rft_id=info:doi/10.1002%2Fajhb.23667&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1042-0533&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1042-0533&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1042-0533&client=summon |