Mendelian randomization in the multivariate general linear model framework

Mendelian randomization (MR) is an application of instrumental variable (IV) methods to observational data in which the IV is a genetic variant. MR methods applicable to the general exponential family of distributions are currently not well characterized. We adapt a general linear model framework to...

Full description

Saved in:
Bibliographic Details
Published inGenetic epidemiology Vol. 46; no. 1; pp. 17 - 31
Main Authors Allman, Phillip H., Aban, Inmaculada, Long, Dustin M., Patki, Amit, MacKenzie, Todd, Irvin, Marguerite R., Lange, Leslie A., Lange, Ethan, Cutter, Gary, Tiwari, Hemant K.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.02.2022
Subjects
Online AccessGet full text
ISSN0741-0395
1098-2272
1098-2272
DOI10.1002/gepi.22435

Cover

Abstract Mendelian randomization (MR) is an application of instrumental variable (IV) methods to observational data in which the IV is a genetic variant. MR methods applicable to the general exponential family of distributions are currently not well characterized. We adapt a general linear model framework to the IV setting and propose a general MR method applicable to any full‐rank distribution from the exponential family. Empirical bias and coverage are estimated via simulations. The proposed method is compared to several existing MR methods. Real data analyses are performed using data from the REGARDS study to estimate the potential causal effect of smoking frequency on stroke risk in African Americans. In simulations with binary variates and very weak instruments the proposed method had the lowest median [Q1, Q3] bias (0.10 [−3.68 to 3.62]); compared with 2SPS (0.27 [−3.74 to 4.26]) and the Wald method (−0.69 [−1.72 to 0.35]). Low bias was observed throughout other simulation scenarios; as well as more than 90% coverage for the proposed method. In simulations with count variates, the proposed method performed comparably to 2SPS; the Wald method maintained the most consistent low bias; and 2SRI was biased towards the null. Real data analyses find no evidence for a causal effect of smoking frequency on stroke risk. The proposed MR method has low bias and acceptable coverage across a wide range of distributional scenarios and instrument strengths; and provides a more parsimonious framework for asymptotic hypothesis testing compared to existing two‐stage procedures.
AbstractList Mendelian randomization (MR) is an application of instrumental variable (IV) methods to observational data in which the IV is a genetic variant. MR methods applicable to the general exponential family of distributions are currently not well characterized. We adapt a general linear model framework to the IV setting and propose a general MR method applicable to any full-rank distribution from the exponential family. Empirical bias and coverage are estimated via simulations. The proposed method is compared to several existing MR methods. Real data analyses are performed using data from the REGARDS study to estimate the potential causal effect of smoking frequency on stroke risk in African Americans. In simulations with binary variates and very weak instruments the proposed method had the lowest median [Q , Q ] bias (0.10 [-3.68 to 3.62]); compared with 2SPS (0.27 [-3.74 to 4.26]) and the Wald method (-0.69 [-1.72 to 0.35]). Low bias was observed throughout other simulation scenarios; as well as more than 90% coverage for the proposed method. In simulations with count variates, the proposed method performed comparably to 2SPS; the Wald method maintained the most consistent low bias; and 2SRI was biased towards the null. Real data analyses find no evidence for a causal effect of smoking frequency on stroke risk. The proposed MR method has low bias and acceptable coverage across a wide range of distributional scenarios and instrument strengths; and provides a more parsimonious framework for asymptotic hypothesis testing compared to existing two-stage procedures.
Mendelian randomization (MR) is an application of instrumental variable (IV) methods to observational data in which the IV is a genetic variant. MR methods applicable to the general exponential family of distributions are currently not well characterized. We adapt a general linear model framework to the IV setting and propose a general MR method applicable to any full‐rank distribution from the exponential family. Empirical bias and coverage are estimated via simulations. The proposed method is compared to several existing MR methods. Real data analyses are performed using data from the REGARDS study to estimate the potential causal effect of smoking frequency on stroke risk in African Americans. In simulations with binary variates and very weak instruments the proposed method had the lowest median [Q1, Q3] bias (0.10 [−3.68 to 3.62]); compared with 2SPS (0.27 [−3.74 to 4.26]) and the Wald method (−0.69 [−1.72 to 0.35]). Low bias was observed throughout other simulation scenarios; as well as more than 90% coverage for the proposed method. In simulations with count variates, the proposed method performed comparably to 2SPS; the Wald method maintained the most consistent low bias; and 2SRI was biased towards the null. Real data analyses find no evidence for a causal effect of smoking frequency on stroke risk. The proposed MR method has low bias and acceptable coverage across a wide range of distributional scenarios and instrument strengths; and provides a more parsimonious framework for asymptotic hypothesis testing compared to existing two‐stage procedures.
Mendelian randomization (MR) is an application of instrumental variable (IV) methods to observational data in which the IV is a genetic variant. MR methods applicable to the general exponential family of distributions are currently not well characterized. We adapt a general linear model framework to the IV setting and propose a general MR method applicable to any full‐rank distribution from the exponential family. Empirical bias and coverage are estimated via simulations. The proposed method is compared to several existing MR methods. Real data analyses are performed using data from the REGARDS study to estimate the potential causal effect of smoking frequency on stroke risk in African Americans. In simulations with binary variates and very weak instruments the proposed method had the lowest median [Q 1 , Q 3 ] bias (0.10 [−3.68 to 3.62]); compared with 2SPS (0.27 [−3.74 to 4.26]) and the Wald method (−0.69 [−1.72 to 0.35]). Low bias was observed throughout other simulation scenarios; as well as more than 90% coverage for the proposed method. In simulations with count variates, the proposed method performed comparably to 2SPS; the Wald method maintained the most consistent low bias; and 2SRI was biased towards the null. Real data analyses find no evidence for a causal effect of smoking frequency on stroke risk. The proposed MR method has low bias and acceptable coverage across a wide range of distributional scenarios and instrument strengths; and provides a more parsimonious framework for asymptotic hypothesis testing compared to existing two‐stage procedures.
Mendelian randomization (MR) is an application of instrumental variable (IV) methods to observational data in which the IV is a genetic variant. MR methods applicable to the general exponential family of distributions are currently not well characterized. We adapt a general linear model framework to the IV setting and propose a general MR method applicable to any full-rank distribution from the exponential family. Empirical bias and coverage are estimated via simulations. The proposed method is compared to several existing MR methods. Real data analyses are performed using data from the REGARDS study to estimate the potential causal effect of smoking frequency on stroke risk in African Americans. In simulations with binary variates and very weak instruments the proposed method had the lowest median [Q1 , Q3 ] bias (0.10 [-3.68 to 3.62]); compared with 2SPS (0.27 [-3.74 to 4.26]) and the Wald method (-0.69 [-1.72 to 0.35]). Low bias was observed throughout other simulation scenarios; as well as more than 90% coverage for the proposed method. In simulations with count variates, the proposed method performed comparably to 2SPS; the Wald method maintained the most consistent low bias; and 2SRI was biased towards the null. Real data analyses find no evidence for a causal effect of smoking frequency on stroke risk. The proposed MR method has low bias and acceptable coverage across a wide range of distributional scenarios and instrument strengths; and provides a more parsimonious framework for asymptotic hypothesis testing compared to existing two-stage procedures.Mendelian randomization (MR) is an application of instrumental variable (IV) methods to observational data in which the IV is a genetic variant. MR methods applicable to the general exponential family of distributions are currently not well characterized. We adapt a general linear model framework to the IV setting and propose a general MR method applicable to any full-rank distribution from the exponential family. Empirical bias and coverage are estimated via simulations. The proposed method is compared to several existing MR methods. Real data analyses are performed using data from the REGARDS study to estimate the potential causal effect of smoking frequency on stroke risk in African Americans. In simulations with binary variates and very weak instruments the proposed method had the lowest median [Q1 , Q3 ] bias (0.10 [-3.68 to 3.62]); compared with 2SPS (0.27 [-3.74 to 4.26]) and the Wald method (-0.69 [-1.72 to 0.35]). Low bias was observed throughout other simulation scenarios; as well as more than 90% coverage for the proposed method. In simulations with count variates, the proposed method performed comparably to 2SPS; the Wald method maintained the most consistent low bias; and 2SRI was biased towards the null. Real data analyses find no evidence for a causal effect of smoking frequency on stroke risk. The proposed MR method has low bias and acceptable coverage across a wide range of distributional scenarios and instrument strengths; and provides a more parsimonious framework for asymptotic hypothesis testing compared to existing two-stage procedures.
Author Cutter, Gary
Tiwari, Hemant K.
MacKenzie, Todd
Allman, Phillip H.
Lange, Ethan
Aban, Inmaculada
Lange, Leslie A.
Long, Dustin M.
Patki, Amit
Irvin, Marguerite R.
Author_xml – sequence: 1
  givenname: Phillip H.
  orcidid: 0000-0001-8860-1676
  surname: Allman
  fullname: Allman, Phillip H.
  email: allman@uab.edu
  organization: University of Alabama at Birmingham
– sequence: 2
  givenname: Inmaculada
  surname: Aban
  fullname: Aban, Inmaculada
  organization: University of Alabama at Birmingham
– sequence: 3
  givenname: Dustin M.
  surname: Long
  fullname: Long, Dustin M.
  organization: University of Alabama at Birmingham
– sequence: 4
  givenname: Amit
  surname: Patki
  fullname: Patki, Amit
  organization: University of Alabama at Birmingham
– sequence: 5
  givenname: Todd
  surname: MacKenzie
  fullname: MacKenzie, Todd
  organization: Dartmouth College
– sequence: 6
  givenname: Marguerite R.
  surname: Irvin
  fullname: Irvin, Marguerite R.
  organization: University of Alabama at Birmingham
– sequence: 7
  givenname: Leslie A.
  surname: Lange
  fullname: Lange, Leslie A.
  organization: University of Colorado Anschutz Medical Campus
– sequence: 8
  givenname: Ethan
  surname: Lange
  fullname: Lange, Ethan
  organization: University of Colorado Anschutz Medical Campus
– sequence: 9
  givenname: Gary
  surname: Cutter
  fullname: Cutter, Gary
  organization: University of Alabama at Birmingham
– sequence: 10
  givenname: Hemant K.
  surname: Tiwari
  fullname: Tiwari, Hemant K.
  organization: University of Alabama at Birmingham
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34672390$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLxDAUhYMoOj42_gApuBGhmkfTNEsZfIwoutB1uG1vNZomY9oq-uvtOLoRcXU333c43LNJVn3wSMguo0eMUn78gHN7xHkm5AqZMKqLlHPFV8mEqoylVGi5QTa77olSxjIt18mGyHLFhaYTcnmNvkZnwScRfB1a-wG9DT6xPukfMWkH19tXiBZ6TB7QYwSXOOsRYtKG0UyaCC2-hfi8TdYacB3ufN8tcn92eje9SK9uzmfTk6u0ElLJFAqFoiowL3PMK1aMfRmWADmUZZOhbpBppfVYUNKyKrnKRJ3nAkHVHAQWYoscLHPnMbwM2PWmtV2FzoHHMHSGy0JmjCtJR3T_F_oUhujHdobnnGuWScFHau-bGsoWazOPtoX4bn6-NAJ0CVQxdF3ExlS2_3pTH8E6w6hZDGEWQ5ivIUbl8Jfyk_onzJbwm3X4_g9pzk9vZ0vnE945mFM
CitedBy_id crossref_primary_10_1016_j_csbj_2022_05_015
Cites_doi 10.1002/sim.3843
10.1093/ije/dyg070
10.1093/ije/dyu176
10.1002/ana.25534
10.1038/nrg3461
10.1002/sim.4498
10.1002/gepi.22387
10.1001/jama.1988.03720070025028
10.2307/1907619
10.1093/aje/148.1.1
10.1214/aoms/1177731868
10.1016/0304-4076(74)90033-5
10.1214/aoms/1177730090
10.1002/sim.4241
10.1161/CIRCGEN.117.002098
10.1038/s41588-018-0307-5
10.1126/science.1059431
10.1093/ije/dyt093
10.1080/01621459.2012.734171
10.1007/s10742-014-0117-x
10.1586/erc.10.56
10.1002/gepi.20394
10.2307/1913827
10.1201/b18084
10.1159/000086678
10.1002/sim.4499
10.1161/01.STR.0000217222.09978.ce
10.1080/00949659308811554
10.1161/01.STR.0000259676.75552.38
10.1177/0962280215597579
10.2307/1913081
10.1111/j.2517-6161.1954.tb00159.x
10.1016/j.jhealeco.2007.09.009
10.1016/S0140-6736(86)92972-7
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC
2021 Wiley Periodicals LLC.
2022 Wiley Periodicals LLC
Copyright_xml – notice: 2021 Wiley Periodicals LLC
– notice: 2021 Wiley Periodicals LLC.
– notice: 2022 Wiley Periodicals LLC
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
P64
RC3
7X8
DOI 10.1002/gepi.22435
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Genetics Abstracts
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
EISSN 1098-2272
EndPage 31
ExternalDocumentID 34672390
10_1002_gepi_22435
GEPI22435
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute on Aging
  funderid: U01 NS041588
– fundername: National Institute of Neurological Disorders and Stroke
  funderid: U01 NS041588
– fundername: NIA NIH HHS
  grantid: U01 NS041588
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DVXWH
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M66
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWV
RX1
RYL
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WTM
WXSBR
WYISQ
XG1
XV2
ZGI
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c3575-a87e3c8e6b6e6c180981ebaa6abbf4e9fe1979967250bcb2743d663ea7d2a3e83
IEDL.DBID DR2
ISSN 0741-0395
1098-2272
IngestDate Thu Jul 10 22:22:40 EDT 2025
Fri Jul 25 19:05:15 EDT 2025
Mon Jul 21 06:08:12 EDT 2025
Tue Jul 01 04:23:59 EDT 2025
Thu Apr 24 22:55:47 EDT 2025
Wed Jan 22 16:26:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords genetics
instrumental variable
Mendelian randomization
general linear model
Language English
License 2021 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3575-a87e3c8e6b6e6c180981ebaa6abbf4e9fe1979967250bcb2743d663ea7d2a3e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8860-1676
PMID 34672390
PQID 2622914532
PQPubID 105460
PageCount 15
ParticipantIDs proquest_miscellaneous_2585412750
proquest_journals_2622914532
pubmed_primary_34672390
crossref_citationtrail_10_1002_gepi_22435
crossref_primary_10_1002_gepi_22435
wiley_primary_10_1002_gepi_22435_GEPI22435
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Genetic epidemiology
PublicationTitleAlternate Genet Epidemiol
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1993; 48
2015; 17
2021; 45
2019; 51
2017; 26
2013; 42
2006; 37
2011; 30
1953
1950
2002
2012; 107
1974; 2
2012; 31
2003; 32
2005; 25
2007; 38
1986; 327
2009; 33
2013; 14
2001; 293
1949; 20
2019; 86
2010; 29
1958; 26
2015; 44
2008; 27
2014; 15
2014; 14
1954; 16
1998; 148
2015
1940; 390
1975; 43
1978; 46
2018; 11
1988; 259
2010; 8
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
Fieller E. (e_1_2_9_16_1) 1954; 16
Koopmans T. (e_1_2_9_26_1) 1950
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Theil H. (e_1_2_9_36_1) 1953
Casella G. (e_1_2_9_13_1) 2002
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
Hoffman M. (e_1_2_9_20_1) 2014; 15
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
Leung T. (e_1_2_9_28_1) 2015; 17
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 26
  start-page: 393
  year: 1958
  end-page: 415
  article-title: The estimation of economic relationships using instrumental variables
  publication-title: Econometrica: Journal of the Economic Society
– volume: 38
  start-page: 1143
  issue: 4
  year: 2007
  end-page: 1147
  article-title: Cognitive status, stroke symptom reports, and modifiable risk factors among individuals with no diagnosis of stroke or TIA in the REasons for Geographic And Racial Differences in Stroke (REGARDS) Study
  publication-title: Stroke
– volume: 42
  start-page: 1134
  issue: 4
  year: 2013
  end-page: 1144
  article-title: Use of allele scores as instrumental variables for Mendelian randomization
  publication-title: International Journal of Epidemiology
– volume: 148
  start-page: 1
  year: 1998
  end-page: 4
  article-title: The human genome epidemiology network
  publication-title: American Journal of Epidemiology
– volume: 33
  start-page: 406
  issue: 5
  year: 2009
  end-page: 418
  article-title: Unbiased estimation of odds ratios: Combining genomewide association scans with replication studies
  publication-title: Genetic Epidemiology
– volume: 30
  start-page: 1809
  issue: 15
  year: 2011
  end-page: 1824
  article-title: Two‐stage instrumental variable methods for estimating the causal odds ratio: Analysis of bias
  publication-title: Statistics in Medicine
– volume: 45
  start-page: 549
  issue: 5
  year: 2021
  end-page: 560
  article-title: A novel Mendelian randomization method with binary risk factor and outcome
  publication-title: Genetic Epidemiology
– volume: 31
  start-page: 1483
  issue: 14
  year: 2012
  end-page: 1501
  article-title: On the choice of parameterisation and priors for the Bayesian analyses of Mendelian randomisation studies
  publication-title: Statistics in Medicine
– volume: 11
  issue: 6
  year: 2018
  article-title: nephropathy risk variants and incident cardiovascular disease events in community‐dwelling black adults
  publication-title: Circulation: Genomic and Precision Medicine
– volume: 37
  start-page: 1171
  issue: 5
  year: 2006
  end-page: 1178
  article-title: Racial and geographic differences in awareness, treatment and control of hypertension: The REasons for Geographic And Racial Differences in Stroke (REGARDS) Study
  publication-title: Stroke
– year: 1950
– volume: 32
  start-page: 1
  issue: 1
  year: 2003
  end-page: 22
  article-title: Mendelian randomization: can genetic epidemiology contribute to understanding environmental determinants of disease?
  publication-title: International Journal of Epidemiology
– volume: 327
  start-page: 507
  year: 1986
  end-page: 508
  article-title: Apolipoprotein E isoforms, serum cholesterol, and cancer
  publication-title: Lancet
– volume: 46
  start-page: 1251
  issue: 6
  year: 1978
  end-page: 1271
  article-title: Specification tests in econometrics
  publication-title: Econometrica
– volume: 390
  start-page: 284
  issue: 3
  year: 1940
  end-page: 300
  article-title: The fitting of straight lines if both variables are subject to error
  publication-title: The Annals of Mathematical Statistics
– volume: 2
  start-page: 105
  issue: 2
  year: 1974
  end-page: 110
  article-title: The nonlinear two‐stage least squares estimator
  publication-title: Journal of Econometrics
– volume: 16
  start-page: 175
  issue: 2
  year: 1954
  end-page: 185
  article-title: Some problems in interval estimation
  publication-title: Journal of the Royal Statistical Society: Series B
– volume: 26
  start-page: 2333
  issue: 5
  year: 2017
  end-page: 2355
  article-title: A review of instrumental variable estimators for Mendelian randomization
  publication-title: Statistical Methods in Medical Research
– volume: 29
  start-page: 1298
  issue: 12
  year: 2010
  end-page: 1311
  article-title: Bayesian methods for meta‐analysis of causal relationships estimated using genetic instrumental variables
  publication-title: Statistics in Medicine
– volume: 20
  start-page: 46
  issue: 1
  year: 1949
  end-page: 63
  article-title: Estimation of the parameters of a single equation in a complete system of stochastic equations
  publication-title: Annals of Mathematical Statistics
– volume: 259
  start-page: 1025
  issue: 7
  year: 1988
  end-page: 1029
  article-title: Cigarette smoking as a risk factor for stroke: The Framingham Study
  publication-title: Journal of the American Medical Association
– volume: 44
  start-page: 484
  issue: 2
  year: 2015
  end-page: 495
  article-title: Network Mendelian randomization: Using genetic variants and instrumental variables to investigate mediation in causal pathways
  publication-title: International Journal of Epidemiology
– volume: 25
  start-page: 135
  issue: 3
  year: 2005
  end-page: 143
  article-title: The REasons for Geographic And Racial Differences in stroke study: Objectives and design
  publication-title: Neuroepidemiology
– volume: 27
  start-page: 531
  issue: 3
  year: 2008
  end-page: 543
  article-title: Two‐stage residual inclusion estimation: Addressing endogeneity in health econometric modeling
  publication-title: Journal of Health Economics
– volume: 48
  start-page: 233
  issue: 3‐4
  year: 1993
  end-page: 243
  article-title: Generalized linear mixed models: A pseudo‐likelihood approach
  publication-title: Journal of Statistical Computation and Simulation
– year: 2002
– volume: 14
  start-page: 54
  issue: 1‐2
  year: 2014
  end-page: 68
  article-title: Using instrumental variables to estimate a Cox's proportional hazards regression subject to additive confounding
  publication-title: Health Services and Outcomes Research Methodology
– volume: 8
  start-page: 917
  issue: 7
  year: 2010
  end-page: 932
  article-title: Smoking and stroke: The more you smoke the more you stroke
  publication-title: Expert Review of Cardiovascular Therapy
– volume: 17
  start-page: 15
  issue: 7
  year: 2015
  end-page: 34
  article-title: Effect of the rs1051730–rs16969968 variant and smoking cessation treatment: A meta‐analysis
  publication-title: Pharmacogenomics
– volume: 51
  start-page: 237
  issue: 2
  year: 2019
  end-page: 244
  article-title: Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use
  publication-title: Nature Genetics
– volume: 15
  start-page: 1593
  issue: 1
  year: 2014
  end-page: 1623
  article-title: The No‐U‐Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo
  publication-title: Journal of Machine Learning Research
– year: 1953
– volume: 14
  start-page: 483
  issue: 7
  year: 2013
  end-page: 495
  article-title: Pleiotropy in complex traits: Challenges and strategies
  publication-title: Nature Reviews Genetics
– volume: 43
  start-page: 727
  issue: 4
  year: 1975
  end-page: 738
  article-title: An instrumental variable approach to full information estimators for linear and certain nonlinear econometric models
  publication-title: Econometrica
– volume: 293
  start-page: 489
  issue: 5529
  year: 2001
  end-page: 493
  article-title: Haplotype variation and linkage disequilibrium in 313 human genes
  publication-title: Science
– volume: 107
  start-page: 1638
  issue: 500
  year: 2012
  end-page: 1652
  article-title: Instrumental variable estimators for binary outcomes
  publication-title: Journal of the American Statistical Association
– year: 2015
– volume: 31
  start-page: 1582
  issue: 15
  year: 2012
  end-page: 1600
  article-title: Improving bias and coverage in instrumental variable analysis with weak instruments for continuous and binary outcomes
  publication-title: Statistics in Medicine
– volume: 86
  start-page: 468
  issue: 3
  year: 2019
  end-page: 471
  article-title: Smoking and stroke: A Mendelian randomization study
  publication-title: Annals of Neurology
– ident: e_1_2_9_8_1
  doi: 10.1002/sim.3843
– ident: e_1_2_9_15_1
  doi: 10.1093/ije/dyg070
– ident: e_1_2_9_6_1
  doi: 10.1093/ije/dyu176
– volume-title: Statistical inference
  year: 2002
  ident: e_1_2_9_13_1
– ident: e_1_2_9_27_1
  doi: 10.1002/ana.25534
– ident: e_1_2_9_33_1
  doi: 10.1038/nrg3461
– ident: e_1_2_9_9_1
  doi: 10.1002/sim.4498
– volume-title: Henri Theil's contributions to economics and econometrics
  year: 1953
  ident: e_1_2_9_36_1
– ident: e_1_2_9_2_1
  doi: 10.1002/gepi.22387
– ident: e_1_2_9_39_1
  doi: 10.1001/jama.1988.03720070025028
– volume-title: Statistical inference in dynamic economic models
  year: 1950
  ident: e_1_2_9_26_1
– ident: e_1_2_9_31_1
  doi: 10.2307/1907619
– ident: e_1_2_9_25_1
  doi: 10.1093/aje/148.1.1
– ident: e_1_2_9_38_1
  doi: 10.1214/aoms/1177731868
– ident: e_1_2_9_3_1
  doi: 10.1016/0304-4076(74)90033-5
– ident: e_1_2_9_4_1
  doi: 10.1214/aoms/1177730090
– ident: e_1_2_9_12_1
  doi: 10.1002/sim.4241
– ident: e_1_2_9_17_1
  doi: 10.1161/CIRCGEN.117.002098
– ident: e_1_2_9_29_1
  doi: 10.1038/s41588-018-0307-5
– ident: e_1_2_9_34_1
  doi: 10.1126/science.1059431
– ident: e_1_2_9_10_1
  doi: 10.1093/ije/dyt093
– ident: e_1_2_9_14_1
  doi: 10.1080/01621459.2012.734171
– ident: e_1_2_9_30_1
  doi: 10.1007/s10742-014-0117-x
– ident: e_1_2_9_32_1
  doi: 10.1586/erc.10.56
– ident: e_1_2_9_5_1
  doi: 10.1002/gepi.20394
– ident: e_1_2_9_19_1
  doi: 10.2307/1913827
– ident: e_1_2_9_11_1
  doi: 10.1201/b18084
– ident: e_1_2_9_22_1
  doi: 10.1159/000086678
– ident: e_1_2_9_23_1
  doi: 10.1002/sim.4499
– ident: e_1_2_9_21_1
  doi: 10.1161/01.STR.0000217222.09978.ce
– ident: e_1_2_9_40_1
  doi: 10.1080/00949659308811554
– ident: e_1_2_9_37_1
  doi: 10.1161/01.STR.0000259676.75552.38
– ident: e_1_2_9_7_1
  doi: 10.1177/0962280215597579
– ident: e_1_2_9_18_1
  doi: 10.2307/1913081
– volume: 16
  start-page: 175
  issue: 2
  year: 1954
  ident: e_1_2_9_16_1
  article-title: Some problems in interval estimation
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1111/j.2517-6161.1954.tb00159.x
– volume: 15
  start-page: 1593
  issue: 1
  year: 2014
  ident: e_1_2_9_20_1
  article-title: The No‐U‐Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_9_35_1
  doi: 10.1016/j.jhealeco.2007.09.009
– ident: e_1_2_9_24_1
  doi: 10.1016/S0140-6736(86)92972-7
– volume: 17
  start-page: 15
  issue: 7
  year: 2015
  ident: e_1_2_9_28_1
  article-title: Effect of the rs1051730–rs16969968 variant and smoking cessation treatment: A meta‐analysis
  publication-title: Pharmacogenomics
SSID ssj0011495
Score 2.3466368
Snippet Mendelian randomization (MR) is an application of instrumental variable (IV) methods to observational data in which the IV is a genetic variant. MR methods...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17
SubjectTerms Bias
Causality
general linear model
Genetic diversity
genetics
Humans
Hypothesis testing
instrumental variable
Linear Models
Mendelian randomization
Mendelian Randomization Analysis - methods
Models, Genetic
Simulation
Smoking
Smoking - genetics
Title Mendelian randomization in the multivariate general linear model framework
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgepi.22435
https://www.ncbi.nlm.nih.gov/pubmed/34672390
https://www.proquest.com/docview/2622914532
https://www.proquest.com/docview/2585412750
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9EEATx-2M6JaIvCt3WpM1a8EXUOQVFRMEXKUmaiqiduE3Qv95L0lamIuhbISlJc3e9Xy53vwBsR74OY02VF2ZoTYFANRZKKE-lqEGcxlxIc6J7ds6718HpTXgzBntlLYzjh6gCbsYy7P_aGLiQ_eYnaeidfr5voANipsLcZ9wQ5x9eVtxRvoH-joPT5AzFYcVNSpufr456o28QcxSxWpfTmYHbcrIu0-ShMRzIhnr_wuP436-ZhekCi5J9pzxzMKbzeZhwt1O-zcOUC-kRV6m0AKdnJlxuwiIEHVzaeypKOMl9ThBGEpub-Ip7b4Sv5M7RWRMzM_FC7IU7JCszwRbhunN0ddD1iqsYPMUQ0HkoQ81UpLnkmivD-YVClkKgKGUW6DjTvjkf5G1EVFJJ3OqyFLGMFu2UCqYjtgTjeS_XK0BY1JbK0vqlNOBRHLWy0G8jjoxwEMlaNdgpRZKogqfcXJfxmDiGZZqYtUrsWtVgq-r77Ng5fuxVLyWbFBbaTyinNPaDkNEabFbNaFvmwETkujfEPriXCiwDfg2WnUZUwzD0MJTF2LJr5frL-Mnx0cWJfVr9S-c1mKSm1sKmiNdhfPAy1OuIgAZyw2r6B9QLACM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9B0QQSAjb2USjgaXvZpHSLnbjJI0IdXWmrCa1S3yLbcaYJSKt-IMFfz52dZiqgSfAWKY6c-O5yP9-dfwdwnIQ2Ti03QVygNUUK1VgZZQKTowZJnkqlKaM7HMneOOpP4klVm0NnYTw_RB1wI8tw_2sycApIn92xht7Y2W0bPZCIH8Ijl6AjTPS5Zo8KCfx7Fk6qGkrjmp2Un909u-mP_gCZm5jVOZ2L576z6sJxFVKtyZf2aqnb5udvTI7__T0v4FkFR9l7rz_b8MCWO7DlG1T-2IGnPqrH_GGll9AfUsScIiMMfVw-_Vad4mS3JUMkyVx54nfcfiOCZTee0ZrRq6k5cz13WLEuBtuF8UX3-kMvqLoxBEYgpgtQjFaYxEotrTRE-4Vy1kqhNHUR2bSwIaUIZQdBlTYad7siRzhjVSfnSthE7EGjnJb2AJhIOto4Zr-cRzJJk_MiDjsIJROcRIvzJpysZZKZiqqcOmZ8zTzJMs9orTK3Vk04qsfOPEHHX0e11qLNKiNdZFxynoZRLHgTDuvbaF6UM1Glna5wDG6nIkeC34R9rxL1NAKdDBcp3jl1gr1n_uxj9-rSXb36l8Hv4HHvejjIBpejT6_hCaejF65ivAWN5Xxl3yAgWuq3Tu1_AdmHBEE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swED7SlJXBaLdu69Jmm8b20oGTWrIVG_pS2mZJtoRSWshLMZIsh9LNCVkyaH99T5Lt0HUMtjeDzkjW3fk-SafvAD5Fvg5jTZUXZuhNgUAzFkooT6VoQZzGXEhzojsc8d5lMBiH4xoclndhHD9EteFmPMP-r42Dz9KsvSINnejZdQsDEAvXYD3gGCcNJDqvyKN8g_0dCadJGorDipyUtlfvPgxHjzDmQ8hqY053C67K0bpUk5vWciFb6u43Isf__ZznsFmAUXLkrOcF1HS-DU9cecrbbXjm9vSIu6r0EgZDs19u9kUIRrh0-qO4w0muc4I4ktjkxF-4-Eb8SiaOz5qYkYk5sRV3SFamgr2Cy-7pxXHPK2oxeIohovNQiZqpSHPJNVeG9Au1LIVAXcos0HGmfXNAyDsIqaSSuNZlKYIZLTopFUxH7DXU82mu3wBhUUcqy-uX0oBHcXSQhX4HgWSEnUh20ID9UiWJKojKTb2M74mjWKaJmavEzlUDPlayM0fP8UepZqnZpHDRnwnllMZ-EDLagA9VMzqXOTERuZ4uUQYXU4GlwG_AjrOIqhuGIYayGFs-W73-pf_ky-lZ3z7t_ovwe9g4O-km3_qjr3vwlJp7FzZdvAn1xXyp3yIaWsh31ujvAcq1AvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mendelian+randomization+in+the+multivariate+general+linear+model+framework&rft.jtitle=Genetic+epidemiology&rft.au=Allman%2C+Phillip+H.&rft.au=Aban%2C+Inmaculada&rft.au=Long%2C+Dustin+M.&rft.au=Patki%2C+Amit&rft.date=2022-02-01&rft.issn=0741-0395&rft.eissn=1098-2272&rft.volume=46&rft.issue=1&rft.spage=17&rft.epage=31&rft_id=info:doi/10.1002%2Fgepi.22435&rft.externalDBID=10.1002%252Fgepi.22435&rft.externalDocID=GEPI22435
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-0395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-0395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-0395&client=summon