Uncovering the Crystalline Packing Advantages of Asymmetric Y‐Series Acceptors for Efficient Additive‐Insensitive and Intrinsically Stable Organic Solar Cells

Organic solar cells (OSCs) hold immense potential as renewable energy sources, but the performance‐stability conundrum remains a major obstacle on the road to OSC commercialization. To address this, in this study, molecular packing behaviors of representative state‐of‐the‐art Y‐series non‐fullerene...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 14; no. 12
Main Authors Xia, Xinxin, Mei, Le, Sun, Rui, Li, Shuixing, Chen, Chun‐Yu, Lin, Jhih‐Min, Min, Jie, Chen, Hongzheng, Chen, Xian‐Kai, Lu, Xinhui
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2024
Subjects
Online AccessGet full text
ISSN1614-6832
1614-6840
DOI10.1002/aenm.202303785

Cover

Abstract Organic solar cells (OSCs) hold immense potential as renewable energy sources, but the performance‐stability conundrum remains a major obstacle on the road to OSC commercialization. To address this, in this study, molecular packing behaviors of representative state‐of‐the‐art Y‐series non‐fullerene acceptors (NFAs) are studied, focusing on their terminal group symmetries. Utilizing grazing‐incidence wide‐angle X‐ray scattering, the distinct crystalline packing structure of these NFAs is revealed. Remarkably, NFAs with asymmetric terminals exhibited excellent additive insensitivity and thermal stability for their crystalline structure, unlike their symmetric counterparts. Molecular dynamics simulations confirmed the stable and robust crystalline feature of asymmetric NFAs and attributed to their large molecular dipole moments. These findings showed the great potential of asymmetric NFAs in fabricating efficient and intrinsically stable additive‐free OSC devices for real applications. This work highlights the crucial role of non‐fullerene acceptors (NFA) terminal‐asymmetry in the formation of characteristic and robust crystalline packing structures. It is uncovered that in strong contrast to the symmetric molecules, the three asymmetric NFAs (BTP‐S1, BTP‐S2, and BTP‐S9) possess unique additive‐insensitive and thermally stable crystalline packing, which further enable efficient, durable, and commercially viable OSC devices.
AbstractList Organic solar cells (OSCs) hold immense potential as renewable energy sources, but the performance‐stability conundrum remains a major obstacle on the road to OSC commercialization. To address this, in this study, molecular packing behaviors of representative state‐of‐the‐art Y‐series non‐fullerene acceptors (NFAs) are studied, focusing on their terminal group symmetries. Utilizing grazing‐incidence wide‐angle X‐ray scattering, the distinct crystalline packing structure of these NFAs is revealed. Remarkably, NFAs with asymmetric terminals exhibited excellent additive insensitivity and thermal stability for their crystalline structure, unlike their symmetric counterparts. Molecular dynamics simulations confirmed the stable and robust crystalline feature of asymmetric NFAs and attributed to their large molecular dipole moments. These findings showed the great potential of asymmetric NFAs in fabricating efficient and intrinsically stable additive‐free OSC devices for real applications. This work highlights the crucial role of non‐fullerene acceptors (NFA) terminal‐asymmetry in the formation of characteristic and robust crystalline packing structures. It is uncovered that in strong contrast to the symmetric molecules, the three asymmetric NFAs (BTP‐S1, BTP‐S2, and BTP‐S9) possess unique additive‐insensitive and thermally stable crystalline packing, which further enable efficient, durable, and commercially viable OSC devices.
Organic solar cells (OSCs) hold immense potential as renewable energy sources, but the performance‐stability conundrum remains a major obstacle on the road to OSC commercialization. To address this, in this study, molecular packing behaviors of representative state‐of‐the‐art Y‐series non‐fullerene acceptors (NFAs) are studied, focusing on their terminal group symmetries. Utilizing grazing‐incidence wide‐angle X‐ray scattering, the distinct crystalline packing structure of these NFAs is revealed. Remarkably, NFAs with asymmetric terminals exhibited excellent additive insensitivity and thermal stability for their crystalline structure, unlike their symmetric counterparts. Molecular dynamics simulations confirmed the stable and robust crystalline feature of asymmetric NFAs and attributed to their large molecular dipole moments. These findings showed the great potential of asymmetric NFAs in fabricating efficient and intrinsically stable additive‐free OSC devices for real applications.
Author Chen, Chun‐Yu
Min, Jie
Lu, Xinhui
Lin, Jhih‐Min
Chen, Hongzheng
Mei, Le
Li, Shuixing
Sun, Rui
Xia, Xinxin
Chen, Xian‐Kai
Author_xml – sequence: 1
  givenname: Xinxin
  surname: Xia
  fullname: Xia, Xinxin
  organization: The Chinese University of Hong Kong
– sequence: 2
  givenname: Le
  surname: Mei
  fullname: Mei, Le
  organization: City University of Hong Kong
– sequence: 3
  givenname: Rui
  surname: Sun
  fullname: Sun, Rui
  organization: Wuhan University
– sequence: 4
  givenname: Shuixing
  surname: Li
  fullname: Li, Shuixing
  organization: Zhejiang University
– sequence: 5
  givenname: Chun‐Yu
  surname: Chen
  fullname: Chen, Chun‐Yu
  organization: National Synchrotron Radiation Research Center
– sequence: 6
  givenname: Jhih‐Min
  surname: Lin
  fullname: Lin, Jhih‐Min
  organization: National Synchrotron Radiation Research Center
– sequence: 7
  givenname: Jie
  surname: Min
  fullname: Min, Jie
  email: min.jie@whu.edu.cn
  organization: Wuhan University
– sequence: 8
  givenname: Hongzheng
  surname: Chen
  fullname: Chen, Hongzheng
  email: hzchen@zju.edu.cn
  organization: Zhejiang University
– sequence: 9
  givenname: Xian‐Kai
  surname: Chen
  fullname: Chen, Xian‐Kai
  email: xkchen@suda.edu.cn
  organization: Soochow University
– sequence: 10
  givenname: Xinhui
  orcidid: 0000-0002-1908-3294
  surname: Lu
  fullname: Lu, Xinhui
  email: xinhui.lu@cuhk.edu.hk
  organization: The Chinese University of Hong Kong
BookMark eNqFkcFuGyEURVGUSE2TbLtG6touDIyHWY4st7GUNJHcLLoaMfBwSDG4QFzNrp_Qb-in9UuC6yqRKlVlA7x3z7uC-xod--ABoTeUTCkh1TsJfjOtSMUIa0R9hE7pjPLJTHBy_Hxm1St0kdIDKYu3lDB2in7eeRV2EK1f43wPeB7HlKVz1gO-lerLvt7pnfRZriHhYHCXxs0GcrQKf_71_ceqsKXRKQXbHGLCJkS8MMYqCz4XVttsd1CUS5_Ap983LL3GS1-GlIIqdiNeZTk4wDdxLX0ZvQpORjwH59I5OjHSJbj4s5-hu_eLT_PLydXNh-W8u5ooVjf1hDeVIGKYcQBBaz5Qoetas4G1TUtgaBpiasW0KJ1WMGmYMFpKBbNqaLXmlJ2ht4e52xi-PkLK_UN4jL5Y9lXblI-tBeVFNT2oVAwpRTD9NtqNjGNPSb-Pot9H0T9HUQD-F6BsltmG8nxp3b-x9oB9sw7G_5j03eLj9Qv7BB69pUM
CitedBy_id crossref_primary_10_1021_acsapm_4c00663
crossref_primary_10_1021_jacs_5c00004
crossref_primary_10_1016_j_nxmate_2025_100595
crossref_primary_10_1007_s40843_024_3273_2
crossref_primary_10_1039_D4EE03315A
crossref_primary_10_1021_polymscitech_4c00054
crossref_primary_10_1039_D4EE04515G
Cites_doi 10.1002/adma.202206269
10.1021/jacs.0c08557
10.1021/ja00214a001
10.1002/aenm.201904234
10.1002/adfm.202112511
10.1039/D1TA05268C
10.1016/0263-7855(96)00018-5
10.1002/adma.202005348
10.1039/D2EE00595F
10.1016/j.joule.2019.01.004
10.1002/adma.201304187
10.1002/adma.202001160
10.1002/adma.201802888
10.1016/j.fmre.2022.01.025
10.1016/j.joule.2021.06.006
10.1039/D2EE03535A
10.1002/adfm.202205115
10.1063/1.2121687
10.1063/1.447334
10.1002/aenm.201200377
10.1021/ci4001597
10.1038/s41586-021-03840-5
10.1016/j.softx.2015.06.001
10.1002/adma.201404317
10.1039/D1EE01832A
10.1002/adma.201908205
10.1016/j.joule.2018.11.006
10.1107/S1600576720005476
10.1038/s41467-018-04502-3
10.1039/D3TA05177C
10.1039/D1EE02977K
10.1038/s41467-021-24937-5
10.1016/j.joule.2022.02.001
10.1002/adma.202202752
10.1002/adma.202202089
10.1038/s41563-020-00872-6
10.1038/s41467-022-30225-7
10.1002/adma.202105943
10.1093/nsr/nwz200
10.1063/1.328693
10.1002/adma.201904215
ContentType Journal Article
Copyright 2024 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202303785
DatabaseName Wiley Online Library Open Access
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202303785
AENM202303785
Genre article
GrantInformation_xml – fundername: HORIZON EUROPE Non‐nuclear direct actions of the Joint Research Centre
  funderid: 4442384
– fundername: Suzhou Key Laboratory of Functional Nano & Soft Materials
– fundername: National Key Research and Development Program of China
  funderid: 2022YFB4200600
– fundername: Collaborative Innovation Center of Suzhou Nano Science & Technology
– fundername: National Synchrotron Radiation Research Center
– fundername: 111 Project
– fundername: Natural Science Foundation of China
  funderid: 52122004
GroupedDBID 05W
0R~
1OC
24P
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3575-472808b64ee8154b18d55d3b39790eb770f5c3d84b1983af38fdaace62b9dd413
IEDL.DBID 24P
ISSN 1614-6832
IngestDate Fri Jul 25 12:07:33 EDT 2025
Tue Jul 01 01:43:55 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Wed Jan 22 16:13:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3575-472808b64ee8154b18d55d3b39790eb770f5c3d84b1983af38fdaace62b9dd413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1908-3294
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202303785
PQID 2973035814
PQPubID 886389
PageCount 10
ParticipantIDs proquest_journals_2973035814
crossref_primary_10_1002_aenm_202303785
crossref_citationtrail_10_1002_aenm_202303785
wiley_primary_10_1002_aenm_202303785_AENM202303785
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2015; 1
2013; 3
2021; 5
2019; 3
2021; 20
2023; 11
1984; 81
2019; 31
2020; 142
2023; 16
2014; 26
2020; 10
2020; 32
1996; 14
2020; 7
2018; 9
2015; 27
2021; 12
2020; 53
2021; 597
2022; 3
2005; 123
2022; 6
2013; 53
2022; 34
2022; 13
2022; 15
2018; 30
1988; 110
2016
2022; 32
1981; 52
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 2598
  year: 2022
  publication-title: Nat. Commun.
– volume: 7
  start-page: 1239
  year: 2020
  publication-title: Natl Sci. Rev.
– volume: 3
  start-page: 1140
  year: 2019
  publication-title: Joule
– volume: 53
  start-page: 1191
  year: 2013
  publication-title: J. Chem. Inf. Model.
– volume: 27
  start-page: 1170
  year: 2015
  publication-title: Adv. Mater.
– volume: 11
  year: 2023
  publication-title: J. Mater. Chem. A.
– volume: 15
  start-page: 320
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 597
  start-page: 666
  year: 2021
  publication-title: Nature
– volume: 3
  start-page: 443
  year: 2019
  publication-title: Joule
– volume: 12
  start-page: 4627
  year: 2021
  publication-title: Nat. Commun.
– volume: 110
  start-page: 1657
  year: 1988
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 1108
  year: 2020
  publication-title: J. Appl. Crystallogr.
– year: 2016
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 81
  start-page: 511
  year: 1984
  publication-title: J. Chem. Phys.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 123
  year: 2005
  publication-title: J. Chem. Phys.
– volume: 15
  start-page: 2537
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 26
  start-page: 7692
  year: 2014
  publication-title: Adv. Mater.
– volume: 1
  start-page: 19
  year: 2015
  publication-title: SoftwareX
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 3
  start-page: 65
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 20
  start-page: 525
  year: 2021
  publication-title: Nat. Mater.
– volume: 16
  start-page: 1581
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 662
  year: 2022
  publication-title: Joule
– volume: 3
  start-page: 611
  year: 2022
  publication-title: Fundam. Res.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A.
– volume: 5
  start-page: 2129
  year: 2021
  publication-title: Joule
– volume: 15
  start-page: 855
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 7182
  year: 1981
  publication-title: J. Appl. Phys.
– volume: 9
  start-page: 2059
  year: 2018
  publication-title: Nat. Commun.
– volume: 14
  start-page: 33
  year: 1996
  publication-title: J. Mol. Graph. Model.
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.202206269
– ident: e_1_2_8_33_1
  doi: 10.1021/jacs.0c08557
– ident: e_1_2_8_35_1
  doi: 10.1021/ja00214a001
– ident: e_1_2_8_8_1
  doi: 10.1002/aenm.201904234
– ident: e_1_2_8_13_1
  doi: 10.1002/adfm.202112511
– ident: e_1_2_8_30_1
  doi: 10.1039/D1TA05268C
– ident: e_1_2_8_42_1
  doi: 10.1016/0263-7855(96)00018-5
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.202005348
– ident: e_1_2_8_14_1
  doi: 10.1039/D2EE00595F
– ident: e_1_2_8_4_1
  doi: 10.1016/j.joule.2019.01.004
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.201304187
– ident: e_1_2_8_15_1
  doi: 10.1002/adma.202001160
– ident: e_1_2_8_7_1
  doi: 10.1002/adma.201802888
– ident: e_1_2_8_32_1
  doi: 10.1016/j.fmre.2022.01.025
– ident: e_1_2_8_22_1
  doi: 10.1016/j.joule.2021.06.006
– ident: e_1_2_8_34_1
  doi: 10.1039/D2EE03535A
– ident: e_1_2_8_19_1
  doi: 10.1002/adfm.202205115
– ident: e_1_2_8_41_1
  doi: 10.1063/1.2121687
– ident: e_1_2_8_39_1
  doi: 10.1063/1.447334
– ident: e_1_2_8_1_1
  doi: 10.1002/aenm.201200377
– ident: e_1_2_8_37_1
  doi: 10.1021/ci4001597
– ident: e_1_2_8_31_1
  doi: 10.1038/s41586-021-03840-5
– ident: e_1_2_8_36_1
  doi: 10.1016/j.softx.2015.06.001
– ident: e_1_2_8_3_1
  doi: 10.1002/adma.201404317
– ident: e_1_2_8_11_1
  doi: 10.1039/D1EE01832A
– ident: e_1_2_8_28_1
  doi: 10.1002/adma.201908205
– ident: e_1_2_8_23_1
  doi: 10.1016/j.joule.2018.11.006
– ident: e_1_2_8_6_1
  doi: 10.1107/S1600576720005476
– ident: e_1_2_8_25_1
  doi: 10.1038/s41467-018-04502-3
– ident: e_1_2_8_29_1
  doi: 10.1039/D3TA05177C
– ident: e_1_2_8_17_1
  doi: 10.1039/D1EE02977K
– ident: e_1_2_8_38_1
– ident: e_1_2_8_16_1
  doi: 10.1038/s41467-021-24937-5
– ident: e_1_2_8_18_1
  doi: 10.1016/j.joule.2022.02.001
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.202202752
– ident: e_1_2_8_21_1
  doi: 10.1002/adma.202202089
– ident: e_1_2_8_26_1
  doi: 10.1038/s41563-020-00872-6
– ident: e_1_2_8_10_1
  doi: 10.1038/s41467-022-30225-7
– ident: e_1_2_8_9_1
  doi: 10.1002/adma.202105943
– ident: e_1_2_8_27_1
  doi: 10.1093/nsr/nwz200
– ident: e_1_2_8_40_1
  doi: 10.1063/1.328693
– ident: e_1_2_8_5_1
  doi: 10.1002/adma.201904215
SSID ssj0000491033
Score 2.4728804
Snippet Organic solar cells (OSCs) hold immense potential as renewable energy sources, but the performance‐stability conundrum remains a major obstacle on the road to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Asymmetry
Commercialization
Crystal structure
crystalline structure
Crystallinity
Dipole moments
Dynamic stability
end‐group symmetry
Molecular dynamics
molecular dynamics simulations
Molecular structure
Photovoltaic cells
Renewable energy sources
Solar cells
Thermal stability
Y‐series NFA
Title Uncovering the Crystalline Packing Advantages of Asymmetric Y‐Series Acceptors for Efficient Additive‐Insensitive and Intrinsically Stable Organic Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202303785
https://www.proquest.com/docview/2973035814
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTuMwELZYuLCHFbCg5VdzQOJk4SZO6hyjUgSIIiS2Epwi_-UU0lXTPfTGI-wz7KPtkzDjtKEcENLeYvknUsb2fJ6Mv4-x01KK2CdZjzuRCi5Tk3GV9RxXLsUzi8mECQSmo7v0aixvHpPHlVv8LT9EF3CjlRH2a1rg2jTnb6Sh2td0kxwhdNxXyRe2gcg-pjkeyfsuyoL4tyeCnjwiG8lTnL9L5kYRnb8f4r1neoObq6A1eJ3LLfZtARchb-27zdZ8vcO-rpAIfmd_x7WlPEwsAKI5GEzniPiIatvDvbYUCoegnTzDraOBSQl5M39-JiUtC0__Xv5QgAwrcksZLpNpA4hjYRioJdAjYV8X8ouw5TUFoptQAl07uK5xkDrYuZoD4lZTeWhvd1p4oEMzDHxVNbtsfDn8ObjiC-UFbmPEb1ySaJUyqfReIcYyPeWSxMWGfgIKb_p9USY2dgprMhXrMlal09r6NDKZc-gX99h6Pan9DwYq6nudEiWPF9KU2pTSUuzRWDxs6lLuM7786oVd0JKTOkZVtITKUUFWKjor7bOzrv2vlpDjw5ZHSyMWi4XZFCTVJYjzDV8cBcN-MkqRD-9GXengfzodsk18lm3m2hFbn01_-2OEMjNzEmbrCdvIL0a3D69ujfA4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29btswECbadGgzFEl_kLRJc0OATkRoiaKp0TAc2GlsBEgMtJPAP02KHFjO4K2P0Gfoo_VJekfZSjIUATpS_BGgj-R9PB2_Y-y0lCINWd7jXijBpbI513nPc-0VnllsLmwUMJ3O1HguL75n22hCugvT6kN0DjdaGXG_pgVODumzB9VQE2q6So4cOu3r7CV7JRWeX0jcWV51bhYkwD0RE8ojtZFc4QTeSjeK5OzpEE9N0wPffMxao9k532NvN3wRBi3A--xFqN-x3Ucqgu_Z73ntKBATC4B0DobLNVI-0toOcGUc-cIhJk9e4d7RwKKEQbO-vaVUWg5-_Pn5izxkWDFwFOKyWDaARBZGUVsCTRL29THACFtOyBPdxBKY2sOkxkHqCHS1BiSutgrQXu90cE2nZhiGqmo-sPn56GY45pvUC9ylSOC4pKxV2ioZgkaSZXvaZ5lPLf0FFMH2-6LMXOo11uQ6NWWqS2-MCyqxufdoGD-ynXpRhwMGOukHo0iTJwhpS2NL6cj5aB2iZUp5yPj2qxduo0tO6TGqolVUTgpCqehQOmRfu_Z3rSLHP1sebUEsNiuzKShXlyDRN3xxEoF9ZpRiMJpNu9Kn_-l0wl6Pb6aXxeVk9u0ze4PPZRvGdsR2Vsv7cIy8ZmW_xJn7F8gI8go
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29btswECbSBCjaoWj6g6RNmxsCdCJCS5RMjYZrI86PYaA1kE4CfydFDix38NZH6DP00fokvaNsxRmKAh0pHilAd-R9PB2_Y-wsSJH6rOhxJ3LBZW4Kroqe48rleGYxhTCRwPRmml_M5eVtdrtzi7_lh-gCbrQy4n5NC_zehfMH0lDta7pJjhA67avsCTuQaHxk44mcdVEWxL89EevJI7KRPEf73TI3iuT88RSPPdMD3NwFrdHrjF-yFxu4CINWv4dsz9ev2PMdEsHX7Ne8tpSHiQ1ANAfD5RoRH1Fte5hpS6FwiLWTV7h1NLAIMGjWd3dUScvCt98_flKADDsGljJcFssGEMfCKFJLoEfCsS7mF6HkhALRTWyBrh1Mapykjnqu1oC41VQe2tudFr7QoRmGvqqaN2w-Hn0dXvBN5QVuU8RvXFLRKmVy6b1CjGV6ymWZSw39BBTe9PsiZDZ1CnsKleqQquC0tj5PTOEc-sW3bL9e1P6IgUr6XudEyeOFNEGbIC3FHo3Fw6YO8pjx7Vcv7YaWnKpjVGVLqJyUpKWy09Ix-9TJ37eEHH-VPNkqsdwszKakUl2CON_wxUlU7D9mKQej6U3Xevc_g07Z09nncXk9mV69Z8_wsWyT2E7Y_mr53X9AVLMyH6Ph_gGEs_FF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+the+Crystalline+Packing+Advantages+of+Asymmetric+Y%E2%80%90Series+Acceptors+for+Efficient+Additive%E2%80%90Insensitive+and+Intrinsically+Stable+Organic+Solar+Cells&rft.jtitle=Advanced+energy+materials&rft.au=Xia%2C+Xinxin&rft.au=Mei%2C+Le&rft.au=Sun%2C+Rui&rft.au=Li%2C+Shuixing&rft.date=2024-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202303785&rft.externalDBID=10.1002%252Faenm.202303785&rft.externalDocID=AENM202303785
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon