Uncovering the Crystalline Packing Advantages of Asymmetric Y‐Series Acceptors for Efficient Additive‐Insensitive and Intrinsically Stable Organic Solar Cells
Organic solar cells (OSCs) hold immense potential as renewable energy sources, but the performance‐stability conundrum remains a major obstacle on the road to OSC commercialization. To address this, in this study, molecular packing behaviors of representative state‐of‐the‐art Y‐series non‐fullerene...
Saved in:
Published in | Advanced energy materials Vol. 14; no. 12 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1614-6832 1614-6840 |
DOI | 10.1002/aenm.202303785 |
Cover
Abstract | Organic solar cells (OSCs) hold immense potential as renewable energy sources, but the performance‐stability conundrum remains a major obstacle on the road to OSC commercialization. To address this, in this study, molecular packing behaviors of representative state‐of‐the‐art Y‐series non‐fullerene acceptors (NFAs) are studied, focusing on their terminal group symmetries. Utilizing grazing‐incidence wide‐angle X‐ray scattering, the distinct crystalline packing structure of these NFAs is revealed. Remarkably, NFAs with asymmetric terminals exhibited excellent additive insensitivity and thermal stability for their crystalline structure, unlike their symmetric counterparts. Molecular dynamics simulations confirmed the stable and robust crystalline feature of asymmetric NFAs and attributed to their large molecular dipole moments. These findings showed the great potential of asymmetric NFAs in fabricating efficient and intrinsically stable additive‐free OSC devices for real applications.
This work highlights the crucial role of non‐fullerene acceptors (NFA) terminal‐asymmetry in the formation of characteristic and robust crystalline packing structures. It is uncovered that in strong contrast to the symmetric molecules, the three asymmetric NFAs (BTP‐S1, BTP‐S2, and BTP‐S9) possess unique additive‐insensitive and thermally stable crystalline packing, which further enable efficient, durable, and commercially viable OSC devices. |
---|---|
AbstractList | Organic solar cells (OSCs) hold immense potential as renewable energy sources, but the performance‐stability conundrum remains a major obstacle on the road to OSC commercialization. To address this, in this study, molecular packing behaviors of representative state‐of‐the‐art Y‐series non‐fullerene acceptors (NFAs) are studied, focusing on their terminal group symmetries. Utilizing grazing‐incidence wide‐angle X‐ray scattering, the distinct crystalline packing structure of these NFAs is revealed. Remarkably, NFAs with asymmetric terminals exhibited excellent additive insensitivity and thermal stability for their crystalline structure, unlike their symmetric counterparts. Molecular dynamics simulations confirmed the stable and robust crystalline feature of asymmetric NFAs and attributed to their large molecular dipole moments. These findings showed the great potential of asymmetric NFAs in fabricating efficient and intrinsically stable additive‐free OSC devices for real applications.
This work highlights the crucial role of non‐fullerene acceptors (NFA) terminal‐asymmetry in the formation of characteristic and robust crystalline packing structures. It is uncovered that in strong contrast to the symmetric molecules, the three asymmetric NFAs (BTP‐S1, BTP‐S2, and BTP‐S9) possess unique additive‐insensitive and thermally stable crystalline packing, which further enable efficient, durable, and commercially viable OSC devices. Organic solar cells (OSCs) hold immense potential as renewable energy sources, but the performance‐stability conundrum remains a major obstacle on the road to OSC commercialization. To address this, in this study, molecular packing behaviors of representative state‐of‐the‐art Y‐series non‐fullerene acceptors (NFAs) are studied, focusing on their terminal group symmetries. Utilizing grazing‐incidence wide‐angle X‐ray scattering, the distinct crystalline packing structure of these NFAs is revealed. Remarkably, NFAs with asymmetric terminals exhibited excellent additive insensitivity and thermal stability for their crystalline structure, unlike their symmetric counterparts. Molecular dynamics simulations confirmed the stable and robust crystalline feature of asymmetric NFAs and attributed to their large molecular dipole moments. These findings showed the great potential of asymmetric NFAs in fabricating efficient and intrinsically stable additive‐free OSC devices for real applications. |
Author | Chen, Chun‐Yu Min, Jie Lu, Xinhui Lin, Jhih‐Min Chen, Hongzheng Mei, Le Li, Shuixing Sun, Rui Xia, Xinxin Chen, Xian‐Kai |
Author_xml | – sequence: 1 givenname: Xinxin surname: Xia fullname: Xia, Xinxin organization: The Chinese University of Hong Kong – sequence: 2 givenname: Le surname: Mei fullname: Mei, Le organization: City University of Hong Kong – sequence: 3 givenname: Rui surname: Sun fullname: Sun, Rui organization: Wuhan University – sequence: 4 givenname: Shuixing surname: Li fullname: Li, Shuixing organization: Zhejiang University – sequence: 5 givenname: Chun‐Yu surname: Chen fullname: Chen, Chun‐Yu organization: National Synchrotron Radiation Research Center – sequence: 6 givenname: Jhih‐Min surname: Lin fullname: Lin, Jhih‐Min organization: National Synchrotron Radiation Research Center – sequence: 7 givenname: Jie surname: Min fullname: Min, Jie email: min.jie@whu.edu.cn organization: Wuhan University – sequence: 8 givenname: Hongzheng surname: Chen fullname: Chen, Hongzheng email: hzchen@zju.edu.cn organization: Zhejiang University – sequence: 9 givenname: Xian‐Kai surname: Chen fullname: Chen, Xian‐Kai email: xkchen@suda.edu.cn organization: Soochow University – sequence: 10 givenname: Xinhui orcidid: 0000-0002-1908-3294 surname: Lu fullname: Lu, Xinhui email: xinhui.lu@cuhk.edu.hk organization: The Chinese University of Hong Kong |
BookMark | eNqFkcFuGyEURVGUSE2TbLtG6touDIyHWY4st7GUNJHcLLoaMfBwSDG4QFzNrp_Qb-in9UuC6yqRKlVlA7x3z7uC-xod--ABoTeUTCkh1TsJfjOtSMUIa0R9hE7pjPLJTHBy_Hxm1St0kdIDKYu3lDB2in7eeRV2EK1f43wPeB7HlKVz1gO-lerLvt7pnfRZriHhYHCXxs0GcrQKf_71_ceqsKXRKQXbHGLCJkS8MMYqCz4XVttsd1CUS5_Ap983LL3GS1-GlIIqdiNeZTk4wDdxLX0ZvQpORjwH59I5OjHSJbj4s5-hu_eLT_PLydXNh-W8u5ooVjf1hDeVIGKYcQBBaz5Qoetas4G1TUtgaBpiasW0KJ1WMGmYMFpKBbNqaLXmlJ2ht4e52xi-PkLK_UN4jL5Y9lXblI-tBeVFNT2oVAwpRTD9NtqNjGNPSb-Pot9H0T9HUQD-F6BsltmG8nxp3b-x9oB9sw7G_5j03eLj9Qv7BB69pUM |
CitedBy_id | crossref_primary_10_1021_acsapm_4c00663 crossref_primary_10_1021_jacs_5c00004 crossref_primary_10_1016_j_nxmate_2025_100595 crossref_primary_10_1007_s40843_024_3273_2 crossref_primary_10_1039_D4EE03315A crossref_primary_10_1021_polymscitech_4c00054 crossref_primary_10_1039_D4EE04515G |
Cites_doi | 10.1002/adma.202206269 10.1021/jacs.0c08557 10.1021/ja00214a001 10.1002/aenm.201904234 10.1002/adfm.202112511 10.1039/D1TA05268C 10.1016/0263-7855(96)00018-5 10.1002/adma.202005348 10.1039/D2EE00595F 10.1016/j.joule.2019.01.004 10.1002/adma.201304187 10.1002/adma.202001160 10.1002/adma.201802888 10.1016/j.fmre.2022.01.025 10.1016/j.joule.2021.06.006 10.1039/D2EE03535A 10.1002/adfm.202205115 10.1063/1.2121687 10.1063/1.447334 10.1002/aenm.201200377 10.1021/ci4001597 10.1038/s41586-021-03840-5 10.1016/j.softx.2015.06.001 10.1002/adma.201404317 10.1039/D1EE01832A 10.1002/adma.201908205 10.1016/j.joule.2018.11.006 10.1107/S1600576720005476 10.1038/s41467-018-04502-3 10.1039/D3TA05177C 10.1039/D1EE02977K 10.1038/s41467-021-24937-5 10.1016/j.joule.2022.02.001 10.1002/adma.202202752 10.1002/adma.202202089 10.1038/s41563-020-00872-6 10.1038/s41467-022-30225-7 10.1002/adma.202105943 10.1093/nsr/nwz200 10.1063/1.328693 10.1002/adma.201904215 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202303785 |
DatabaseName | Wiley Online Library Open Access CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202303785 AENM202303785 |
Genre | article |
GrantInformation_xml | – fundername: HORIZON EUROPE Non‐nuclear direct actions of the Joint Research Centre funderid: 4442384 – fundername: Suzhou Key Laboratory of Functional Nano & Soft Materials – fundername: National Key Research and Development Program of China funderid: 2022YFB4200600 – fundername: Collaborative Innovation Center of Suzhou Nano Science & Technology – fundername: National Synchrotron Radiation Research Center – fundername: 111 Project – fundername: Natural Science Foundation of China funderid: 52122004 |
GroupedDBID | 05W 0R~ 1OC 24P 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3575-472808b64ee8154b18d55d3b39790eb770f5c3d84b1983af38fdaace62b9dd413 |
IEDL.DBID | 24P |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:07:33 EDT 2025 Tue Jul 01 01:43:55 EDT 2025 Thu Apr 24 22:54:43 EDT 2025 Wed Jan 22 16:13:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3575-472808b64ee8154b18d55d3b39790eb770f5c3d84b1983af38fdaace62b9dd413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1908-3294 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202303785 |
PQID | 2973035814 |
PQPubID | 886389 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2973035814 crossref_primary_10_1002_aenm_202303785 crossref_citationtrail_10_1002_aenm_202303785 wiley_primary_10_1002_aenm_202303785_AENM202303785 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2015; 1 2013; 3 2021; 5 2019; 3 2021; 20 2023; 11 1984; 81 2019; 31 2020; 142 2023; 16 2014; 26 2020; 10 2020; 32 1996; 14 2020; 7 2018; 9 2015; 27 2021; 12 2020; 53 2021; 597 2022; 3 2005; 123 2022; 6 2013; 53 2022; 34 2022; 13 2022; 15 2018; 30 1988; 110 2016 2022; 32 1981; 52 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 13 start-page: 2598 year: 2022 publication-title: Nat. Commun. – volume: 7 start-page: 1239 year: 2020 publication-title: Natl Sci. Rev. – volume: 3 start-page: 1140 year: 2019 publication-title: Joule – volume: 53 start-page: 1191 year: 2013 publication-title: J. Chem. Inf. Model. – volume: 27 start-page: 1170 year: 2015 publication-title: Adv. Mater. – volume: 11 year: 2023 publication-title: J. Mater. Chem. A. – volume: 15 start-page: 320 year: 2022 publication-title: Energy Environ. Sci. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 597 start-page: 666 year: 2021 publication-title: Nature – volume: 3 start-page: 443 year: 2019 publication-title: Joule – volume: 12 start-page: 4627 year: 2021 publication-title: Nat. Commun. – volume: 110 start-page: 1657 year: 1988 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 1108 year: 2020 publication-title: J. Appl. Crystallogr. – year: 2016 – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 81 start-page: 511 year: 1984 publication-title: J. Chem. Phys. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 123 year: 2005 publication-title: J. Chem. Phys. – volume: 15 start-page: 2537 year: 2022 publication-title: Energy Environ. Sci. – volume: 26 start-page: 7692 year: 2014 publication-title: Adv. Mater. – volume: 1 start-page: 19 year: 2015 publication-title: SoftwareX – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 3 start-page: 65 year: 2013 publication-title: Adv. Energy Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 20 start-page: 525 year: 2021 publication-title: Nat. Mater. – volume: 16 start-page: 1581 year: 2023 publication-title: Energy Environ. Sci. – volume: 6 start-page: 662 year: 2022 publication-title: Joule – volume: 3 start-page: 611 year: 2022 publication-title: Fundam. Res. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A. – volume: 5 start-page: 2129 year: 2021 publication-title: Joule – volume: 15 start-page: 855 year: 2022 publication-title: Energy Environ. Sci. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 7182 year: 1981 publication-title: J. Appl. Phys. – volume: 9 start-page: 2059 year: 2018 publication-title: Nat. Commun. – volume: 14 start-page: 33 year: 1996 publication-title: J. Mol. Graph. Model. – ident: e_1_2_8_20_1 doi: 10.1002/adma.202206269 – ident: e_1_2_8_33_1 doi: 10.1021/jacs.0c08557 – ident: e_1_2_8_35_1 doi: 10.1021/ja00214a001 – ident: e_1_2_8_8_1 doi: 10.1002/aenm.201904234 – ident: e_1_2_8_13_1 doi: 10.1002/adfm.202112511 – ident: e_1_2_8_30_1 doi: 10.1039/D1TA05268C – ident: e_1_2_8_42_1 doi: 10.1016/0263-7855(96)00018-5 – ident: e_1_2_8_24_1 doi: 10.1002/adma.202005348 – ident: e_1_2_8_14_1 doi: 10.1039/D2EE00595F – ident: e_1_2_8_4_1 doi: 10.1016/j.joule.2019.01.004 – ident: e_1_2_8_2_1 doi: 10.1002/adma.201304187 – ident: e_1_2_8_15_1 doi: 10.1002/adma.202001160 – ident: e_1_2_8_7_1 doi: 10.1002/adma.201802888 – ident: e_1_2_8_32_1 doi: 10.1016/j.fmre.2022.01.025 – ident: e_1_2_8_22_1 doi: 10.1016/j.joule.2021.06.006 – ident: e_1_2_8_34_1 doi: 10.1039/D2EE03535A – ident: e_1_2_8_19_1 doi: 10.1002/adfm.202205115 – ident: e_1_2_8_41_1 doi: 10.1063/1.2121687 – ident: e_1_2_8_39_1 doi: 10.1063/1.447334 – ident: e_1_2_8_1_1 doi: 10.1002/aenm.201200377 – ident: e_1_2_8_37_1 doi: 10.1021/ci4001597 – ident: e_1_2_8_31_1 doi: 10.1038/s41586-021-03840-5 – ident: e_1_2_8_36_1 doi: 10.1016/j.softx.2015.06.001 – ident: e_1_2_8_3_1 doi: 10.1002/adma.201404317 – ident: e_1_2_8_11_1 doi: 10.1039/D1EE01832A – ident: e_1_2_8_28_1 doi: 10.1002/adma.201908205 – ident: e_1_2_8_23_1 doi: 10.1016/j.joule.2018.11.006 – ident: e_1_2_8_6_1 doi: 10.1107/S1600576720005476 – ident: e_1_2_8_25_1 doi: 10.1038/s41467-018-04502-3 – ident: e_1_2_8_29_1 doi: 10.1039/D3TA05177C – ident: e_1_2_8_17_1 doi: 10.1039/D1EE02977K – ident: e_1_2_8_38_1 – ident: e_1_2_8_16_1 doi: 10.1038/s41467-021-24937-5 – ident: e_1_2_8_18_1 doi: 10.1016/j.joule.2022.02.001 – ident: e_1_2_8_12_1 doi: 10.1002/adma.202202752 – ident: e_1_2_8_21_1 doi: 10.1002/adma.202202089 – ident: e_1_2_8_26_1 doi: 10.1038/s41563-020-00872-6 – ident: e_1_2_8_10_1 doi: 10.1038/s41467-022-30225-7 – ident: e_1_2_8_9_1 doi: 10.1002/adma.202105943 – ident: e_1_2_8_27_1 doi: 10.1093/nsr/nwz200 – ident: e_1_2_8_40_1 doi: 10.1063/1.328693 – ident: e_1_2_8_5_1 doi: 10.1002/adma.201904215 |
SSID | ssj0000491033 |
Score | 2.4728804 |
Snippet | Organic solar cells (OSCs) hold immense potential as renewable energy sources, but the performance‐stability conundrum remains a major obstacle on the road to... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Asymmetry Commercialization Crystal structure crystalline structure Crystallinity Dipole moments Dynamic stability end‐group symmetry Molecular dynamics molecular dynamics simulations Molecular structure Photovoltaic cells Renewable energy sources Solar cells Thermal stability Y‐series NFA |
Title | Uncovering the Crystalline Packing Advantages of Asymmetric Y‐Series Acceptors for Efficient Additive‐Insensitive and Intrinsically Stable Organic Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202303785 https://www.proquest.com/docview/2973035814 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTuMwELZYuLCHFbCg5VdzQOJk4SZO6hyjUgSIIiS2Epwi_-UU0lXTPfTGI-wz7KPtkzDjtKEcENLeYvknUsb2fJ6Mv4-x01KK2CdZjzuRCi5Tk3GV9RxXLsUzi8mECQSmo7v0aixvHpPHlVv8LT9EF3CjlRH2a1rg2jTnb6Sh2td0kxwhdNxXyRe2gcg-pjkeyfsuyoL4tyeCnjwiG8lTnL9L5kYRnb8f4r1neoObq6A1eJ3LLfZtARchb-27zdZ8vcO-rpAIfmd_x7WlPEwsAKI5GEzniPiIatvDvbYUCoegnTzDraOBSQl5M39-JiUtC0__Xv5QgAwrcksZLpNpA4hjYRioJdAjYV8X8ouw5TUFoptQAl07uK5xkDrYuZoD4lZTeWhvd1p4oEMzDHxVNbtsfDn8ObjiC-UFbmPEb1ySaJUyqfReIcYyPeWSxMWGfgIKb_p9USY2dgprMhXrMlal09r6NDKZc-gX99h6Pan9DwYq6nudEiWPF9KU2pTSUuzRWDxs6lLuM7786oVd0JKTOkZVtITKUUFWKjor7bOzrv2vlpDjw5ZHSyMWi4XZFCTVJYjzDV8cBcN-MkqRD-9GXengfzodsk18lm3m2hFbn01_-2OEMjNzEmbrCdvIL0a3D69ujfA4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29btswECbadGgzFEl_kLRJc0OATkRoiaKp0TAc2GlsBEgMtJPAP02KHFjO4K2P0Gfoo_VJekfZSjIUATpS_BGgj-R9PB2_Y-y0lCINWd7jXijBpbI513nPc-0VnllsLmwUMJ3O1HguL75n22hCugvT6kN0DjdaGXG_pgVODumzB9VQE2q6So4cOu3r7CV7JRWeX0jcWV51bhYkwD0RE8ojtZFc4QTeSjeK5OzpEE9N0wPffMxao9k532NvN3wRBi3A--xFqN-x3Ucqgu_Z73ntKBATC4B0DobLNVI-0toOcGUc-cIhJk9e4d7RwKKEQbO-vaVUWg5-_Pn5izxkWDFwFOKyWDaARBZGUVsCTRL29THACFtOyBPdxBKY2sOkxkHqCHS1BiSutgrQXu90cE2nZhiGqmo-sPn56GY45pvUC9ylSOC4pKxV2ioZgkaSZXvaZ5lPLf0FFMH2-6LMXOo11uQ6NWWqS2-MCyqxufdoGD-ynXpRhwMGOukHo0iTJwhpS2NL6cj5aB2iZUp5yPj2qxduo0tO6TGqolVUTgpCqehQOmRfu_Z3rSLHP1sebUEsNiuzKShXlyDRN3xxEoF9ZpRiMJpNu9Kn_-l0wl6Pb6aXxeVk9u0ze4PPZRvGdsR2Vsv7cIy8ZmW_xJn7F8gI8go |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29btswECbSBCjaoWj6g6RNmxsCdCJCS5RMjYZrI86PYaA1kE4CfydFDix38NZH6DP00fokvaNsxRmKAh0pHilAd-R9PB2_Y-wsSJH6rOhxJ3LBZW4Kroqe48rleGYxhTCRwPRmml_M5eVtdrtzi7_lh-gCbrQy4n5NC_zehfMH0lDta7pJjhA67avsCTuQaHxk44mcdVEWxL89EevJI7KRPEf73TI3iuT88RSPPdMD3NwFrdHrjF-yFxu4CINWv4dsz9ev2PMdEsHX7Ne8tpSHiQ1ANAfD5RoRH1Fte5hpS6FwiLWTV7h1NLAIMGjWd3dUScvCt98_flKADDsGljJcFssGEMfCKFJLoEfCsS7mF6HkhALRTWyBrh1Mapykjnqu1oC41VQe2tudFr7QoRmGvqqaN2w-Hn0dXvBN5QVuU8RvXFLRKmVy6b1CjGV6ymWZSw39BBTe9PsiZDZ1CnsKleqQquC0tj5PTOEc-sW3bL9e1P6IgUr6XudEyeOFNEGbIC3FHo3Fw6YO8pjx7Vcv7YaWnKpjVGVLqJyUpKWy09Ix-9TJ37eEHH-VPNkqsdwszKakUl2CON_wxUlU7D9mKQej6U3Xevc_g07Z09nncXk9mV69Z8_wsWyT2E7Y_mr53X9AVLMyH6Ph_gGEs_FF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+the+Crystalline+Packing+Advantages+of+Asymmetric+Y%E2%80%90Series+Acceptors+for+Efficient+Additive%E2%80%90Insensitive+and+Intrinsically+Stable+Organic+Solar+Cells&rft.jtitle=Advanced+energy+materials&rft.au=Xia%2C+Xinxin&rft.au=Mei%2C+Le&rft.au=Sun%2C+Rui&rft.au=Li%2C+Shuixing&rft.date=2024-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202303785&rft.externalDBID=10.1002%252Faenm.202303785&rft.externalDocID=AENM202303785 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |