Construction of dynamic protein interaction network based on gene expression data and quartile one principle

Real protein interaction network (PIN) is dynamic. Researchers created dynamic PIN by combining static PIN with gene expression data to explain the dynamicity evolution of protein interactions. However, all available approaches failed to recognize low‐ or high‐expression proteins as active proteins....

Full description

Saved in:
Bibliographic Details
Published inProteins, structure, function, and bioinformatics Vol. 90; no. 5; pp. 1219 - 1228
Main Authors Noori, Soheir, Al‐A'araji, Nabeel, Al‐Shamery, Eman
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0887-3585
1097-0134
1097-0134
DOI10.1002/prot.26304

Cover

Abstract Real protein interaction network (PIN) is dynamic. Researchers created dynamic PIN by combining static PIN with gene expression data to explain the dynamicity evolution of protein interactions. However, all available approaches failed to recognize low‐ or high‐expression proteins as active proteins. Therefore, determining an adequate threshold is one of the system's biological challenges. In this study, a quartile one (q‐one) method is proposed to determine the active time points for each protein according to its expression value's features and construct dynamic protein interaction networks (DPINs) in which a protein is added to the network if it is active in two successive time points. This leads to reduce the number of DPINs to half. The efficiency of the q‐one approach and three‐sigma (3‐sigma) method in detecting protein complexes is evaluated using Markov cluster method, clique percolation method, and ClusterONE algorithms. In most cases, q‐one outperforms the 3‐sigma method in recall, precision and F‐measure. This is in addition to its ability to reveal the dynamicity within the protein–protein interaction network and identify essential proteins.
AbstractList Real protein interaction network (PIN) is dynamic. Researchers created dynamic PIN by combining static PIN with gene expression data to explain the dynamicity evolution of protein interactions. However, all available approaches failed to recognize low‐ or high‐expression proteins as active proteins. Therefore, determining an adequate threshold is one of the system's biological challenges. In this study, a quartile one (q‐one) method is proposed to determine the active time points for each protein according to its expression value's features and construct dynamic protein interaction networks (DPINs) in which a protein is added to the network if it is active in two successive time points. This leads to reduce the number of DPINs to half. The efficiency of the q‐one approach and three‐sigma (3‐sigma) method in detecting protein complexes is evaluated using Markov cluster method, clique percolation method, and ClusterONE algorithms. In most cases, q‐one outperforms the 3‐sigma method in recall, precision and F‐measure. This is in addition to its ability to reveal the dynamicity within the protein–protein interaction network and identify essential proteins.
Real protein interaction network (PIN) is dynamic. Researchers created dynamic PIN by combining static PIN with gene expression data to explain the dynamicity evolution of protein interactions. However, all available approaches failed to recognize low- or high-expression proteins as active proteins. Therefore, determining an adequate threshold is one of the system's biological challenges. In this study, a quartile one (q-one) method is proposed to determine the active time points for each protein according to its expression value's features and construct dynamic protein interaction networks (DPINs) in which a protein is added to the network if it is active in two successive time points. This leads to reduce the number of DPINs to half. The efficiency of the q-one approach and three-sigma (3-sigma) method in detecting protein complexes is evaluated using Markov cluster method, clique percolation method, and ClusterONE algorithms. In most cases, q-one outperforms the 3-sigma method in recall, precision and F-measure. This is in addition to its ability to reveal the dynamicity within the protein-protein interaction network and identify essential proteins.Real protein interaction network (PIN) is dynamic. Researchers created dynamic PIN by combining static PIN with gene expression data to explain the dynamicity evolution of protein interactions. However, all available approaches failed to recognize low- or high-expression proteins as active proteins. Therefore, determining an adequate threshold is one of the system's biological challenges. In this study, a quartile one (q-one) method is proposed to determine the active time points for each protein according to its expression value's features and construct dynamic protein interaction networks (DPINs) in which a protein is added to the network if it is active in two successive time points. This leads to reduce the number of DPINs to half. The efficiency of the q-one approach and three-sigma (3-sigma) method in detecting protein complexes is evaluated using Markov cluster method, clique percolation method, and ClusterONE algorithms. In most cases, q-one outperforms the 3-sigma method in recall, precision and F-measure. This is in addition to its ability to reveal the dynamicity within the protein-protein interaction network and identify essential proteins.
Author Al‐Shamery, Eman
Noori, Soheir
Al‐A'araji, Nabeel
Author_xml – sequence: 1
  givenname: Soheir
  surname: Noori
  fullname: Noori, Soheir
  email: soheirn.sw.hdr@student.uobabylon.edu.iq, soheir.noori@uokerbala.edu.iq
  organization: University of Kerbala
– sequence: 2
  givenname: Nabeel
  surname: Al‐A'araji
  fullname: Al‐A'araji, Nabeel
  organization: Ministry of Higher Education, Iraq
– sequence: 3
  givenname: Eman
  surname: Al‐Shamery
  fullname: Al‐Shamery, Eman
  organization: University of Babylon
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35064702$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1q3DAURkVJaCaTbPoAxdBNKTiV9Wd5WYY2LQRSSroWd6TrotQjTySZZN6-cpxsQslKIJ3vQ_fcU3IUxoCEvGvoRUMp-7yPY75gilPxhqwa2rU1bbg4IiuqdVtzqeUJOU3pllKqOq7ekhMuqRItZSsybMaQcpxs9mOoxr5yhwA7b6u5FH2ofMgYYXkOmO_H-LfaQkJXlYs_GLDCh33ElGbAQYYKgqvuJojZD1ggLFU-WL8f8Iwc9zAkPH861-T3t683m-_11fXlj82Xq9py2YpaK-0EgJOaCimE5JJZhXarLAPdQtsy5RqFnUOhRNMDSt4CZ1tguuedA74mH5feMsTdhCmbnU8WhwECjlMyTDHGtKDF2Zp8eIHejlMM5XeFErrTjIuZev9ETdsdOlMm2kE8mGePBaALYOOYUsTeWJ9hlpYj-ME01MyrMrNV87iqEvn0IvLc-l-4WeD7IvXwCml-_rq-WTL_AJVspT4
CitedBy_id crossref_primary_10_1016_j_csbj_2024_10_009
crossref_primary_10_1016_j_eswa_2024_125140
Cites_doi 10.1126/science.1120499
10.1007/s11704-020-8179-0
10.1101/gr.1239303
10.1093/nar/gkn858
10.1186/1471-2105-15-335
10.1038/nature03607
10.1186/1471-2105-12-339
10.1089/cmb.2008.01TT
10.1093/bib/bbp057
10.1101/gad.1450606
10.1186/1471-2105-10-99
10.1073/pnas.2032324100
10.1089/cmb.2017.0114
10.1093/nar/30.1.69
10.1186/s12866-020-01904-6
10.1093/nar/gkj148
10.1002/pmic.201300257
10.1007/s10044-017-0626-7
10.1038/35001009
10.1093/nar/gkn1005
10.1109/BIBM.2011.45
10.1038/nmeth.1938
10.1186/s12859-016-1054-1
10.1155/2017/4120506
10.1093/bioinformatics/btp668
10.1093/nar/30.1.303
10.1002/pmic.201200277
10.1142/S0219720015710018
10.1126/science.1105103
10.1142/S0219720019500252
10.1186/s12859-018-2309-9
10.1186/s12859-021-04175-8
10.3389/fgene.2020.00567
10.1534/genetics.114.161620
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
DOI 10.1002/prot.26304
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1097-0134
EndPage 1228
ExternalDocumentID 35064702
10_1002_prot_26304
PROT26304
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FA8
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c3574-868d4aad58045445352c6ecb6c2a87a7726d16e9de4641fae537a32ba28f39da3
IEDL.DBID DR2
ISSN 0887-3585
1097-0134
IngestDate Thu Jul 10 16:37:39 EDT 2025
Tue Oct 07 06:19:08 EDT 2025
Thu Apr 03 07:06:51 EDT 2025
Wed Oct 01 01:19:18 EDT 2025
Thu Apr 24 23:02:07 EDT 2025
Wed Jan 22 16:24:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords quartile one principle
gene expression profile
protein complexes
dynamic protein interaction network
protein activity
Language English
License 2022 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3574-868d4aad58045445352c6ecb6c2a87a7726d16e9de4641fae537a32ba28f39da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 35064702
PQID 2648982346
PQPubID 1016441
PageCount 10
ParticipantIDs proquest_miscellaneous_2622284026
proquest_journals_2648982346
pubmed_primary_35064702
crossref_citationtrail_10_1002_prot_26304
crossref_primary_10_1002_prot_26304
wiley_primary_10_1002_prot_26304_PROT26304
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hokoben
PublicationTitle Proteins, structure, function, and bioinformatics
PublicationTitleAlternate Proteins
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2015; 13
2010; 11
2019; 2019
2021; 22
2017; 2017
2002; 30
2020; 20
2006; 34
2011
2005; 310
2005; 435
2019; 17
2003; 13
2011; 12
2020; 11
2016; 17
2018; 21
2014; 197
2018; 25
2018; 19
2021; 15
2006; 20
2010; 26
2009; 10
2013; 13
2000; 403
2014; 15
2014; 14
2005; 307
2009; 16
2003; 100
2009; 37
2012; 9
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Zhang J (e_1_2_8_8_1) 2019; 2019
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 15
  issue: 6
  year: 2021
  article-title: Protein interaction networks: centrality, modularity, dynamics, and applications
  publication-title: Front Comp Sci
– volume: 22
  year: 2021
  article-title: A novel essential protein identification method based on PPI networks and gene expression data
  publication-title: BMC Bioinformatics
– volume: 435
  start-page: 814
  issue: 7043
  year: 2005
  end-page: 818
  article-title: Uncovering the overlapping community structure of complex networks in nature and society
  publication-title: Nature
– volume: 20
  year: 2020
  article-title: Identification of protein complexes and functional modules in PPI networks
  publication-title: BMC Microbiol
– volume: 17
  issue: 4
  year: 2019
  article-title: Protein function prediction from dynamic protein interaction network using gene expression data
  publication-title: J Bioinform Comput Biol
– volume: 100
  start-page: 12123
  issue: 21
  year: 2003
  end-page: 12128
  article-title: Protein complexes and functional modules in molecular networks
  publication-title: Proc Natl Acad Sci U S A
– volume: 30
  start-page: 69
  issue: 1
  year: 2002
  end-page: 72
  article-title: Saccharomyces genome database (SGD) provides secondary gene annotation using the gene ontology (GO)
  publication-title: Nucleic Acids Res
– volume: 12
  year: 2011
  article-title: A comparison of the functional modules identified from time course and static PPI network data
  publication-title: BMC Bioinformatics
– volume: 25
  start-page: 586
  issue: 6
  year: 2018
  end-page: 605
  article-title: A method for predicting protein complexes from dynamic weighted protein–protein interaction networks
  publication-title: J Comput Biol
– start-page: 37
  year: 2011
  end-page: 42
– volume: 310
  start-page: 1152
  issue: 5751
  year: 2005
  end-page: 1158
  article-title: Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes
  publication-title: Science
– volume: 11
  start-page: 15
  issue: 1
  year: 2010
  end-page: 29
  article-title: Toward the dynamic interactome: it's about time
  publication-title: Brief Bioinform
– volume: 26
  start-page: 385
  issue: 3
  year: 2010
  end-page: 391
  article-title: Protein complex prediction based on simultaneous protein interaction network
  publication-title: Bioinformatics
– volume: 37
  start-page: 825
  issue: 3
  year: 2009
  end-page: 831
  article-title: Up‐to‐date catalogues of yeast protein complexes
  publication-title: Nucleic Acids Res
– volume: 307
  start-page: 724
  issue: 5710
  year: 2005
  end-page: 727
  article-title: Dynamic complex formation during the yeast cell cycle
  publication-title: Science
– volume: 10
  year: 2009
  article-title: Markov clustering versus affinity propagation for the partitioning of protein interaction graphs
  publication-title: BMC Bioinformatics
– volume: 11
  year: 2020
  article-title: DPCT: a dynamic method for detecting protein complexes from TAP‐aware weighted PPI network
  publication-title: Front Genet
– volume: 13
  issue: 02
  year: 2015
  article-title: From the static interactome to dynamic protein complexes: three challenges
  publication-title: J Bioinform Comput Biol
– volume: 15
  year: 2014
  article-title: Detecting temporal protein complexes from dynamic protein‐protein interaction networks
  publication-title: BMC Bioinformatics
– volume: 2017
  year: 2017
  article-title: Predicting protein complexes in weighted dynamic PPI networks based on ICSC
  publication-title: Complexity
– volume: 403
  start-page: 623
  issue: 6770
  year: 2000
  end-page: 627
  article-title: A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae
  publication-title: Nature
– volume: 9
  start-page: 471
  issue: 5
  year: 2012
  end-page: 472
  article-title: Detecting overlapping protein complexes in protein‐protein interaction networks
  publication-title: Nat Methods
– volume: 13
  start-page: 2498
  issue: 11
  year: 2003
  end-page: 2504
  article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks
  publication-title: Genome Res
– volume: 13
  start-page: 301
  issue: 2
  year: 2013
  end-page: 312
  article-title: Construction and application of dynamic protein interaction network based on time course gene expression data
  publication-title: Proteomics
– volume: 197
  start-page: 451
  issue: 2
  year: 2014
  end-page: 465
  article-title: The yeast deletion collection: a decade of functional genomics
  publication-title: Genetics
– volume: 20
  start-page: 2266
  issue: 16
  year: 2006
  end-page: 2278
  article-title: The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S‐phase gap in the transcriptional circuitry of the cell cycle
  publication-title: Genes Dev
– volume: 37
  start-page: D455
  issue: suppl_1
  year: 2009
  end-page: D458
  article-title: DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes
  publication-title: Nucleic Acids Res
– volume: 2019
  year: 2019
  article-title: Identifying protein complexes from dynamic temporal interval protein‐protein interaction networks
  publication-title: Biomed Res Int
– volume: 21
  start-page: 1067
  issue: 4
  year: 2018
  end-page: 1081
  article-title: Dynamic protein–protein interaction networks construction using firefly algorithm
  publication-title: Pattern Anal Applic
– volume: 17
  year: 2016
  article-title: Construction of dynamic probabilistic protein interaction networks for protein complex identification
  publication-title: BMC Bioinformatics
– volume: 30
  start-page: 303
  issue: 1
  year: 2002
  end-page: 305
  article-title: DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions
  publication-title: Nucleic Acids Res
– volume: 16
  start-page: 133
  issue: 2
  year: 2009
  end-page: 144
  article-title: Predicting protein complexes from PPI data: a core‐attachment approach
  publication-title: J Comput Biol
– volume: 19
  year: 2018
  article-title: Predicting overlapping protein complexes based on core‐attachment and a local modularity structure
  publication-title: BMC Bioinformatics
– volume: 34
  start-page: D169
  issue: suppl_1
  year: 2006
  end-page: D172
  article-title: MIPS: analysis and annotation of proteins from whole genomes in 2005
  publication-title: Nucleic Acids Res
– volume: 14
  start-page: 338
  issue: 4–5
  year: 2014
  end-page: 352
  article-title: Dynamic protein interaction network construction and applications
  publication-title: Proteomics
– ident: e_1_2_8_20_1
  doi: 10.1126/science.1120499
– ident: e_1_2_8_18_1
  doi: 10.1007/s11704-020-8179-0
– ident: e_1_2_8_31_1
  doi: 10.1101/gr.1239303
– ident: e_1_2_8_34_1
  doi: 10.1093/nar/gkn858
– ident: e_1_2_8_14_1
  doi: 10.1186/1471-2105-15-335
– ident: e_1_2_8_23_1
  doi: 10.1038/nature03607
– ident: e_1_2_8_11_1
  doi: 10.1186/1471-2105-12-339
– ident: e_1_2_8_24_1
  doi: 10.1089/cmb.2008.01TT
– ident: e_1_2_8_4_1
  doi: 10.1093/bib/bbp057
– ident: e_1_2_8_21_1
  doi: 10.1101/gad.1450606
– ident: e_1_2_8_22_1
  doi: 10.1186/1471-2105-10-99
– ident: e_1_2_8_25_1
  doi: 10.1073/pnas.2032324100
– ident: e_1_2_8_16_1
  doi: 10.1089/cmb.2017.0114
– ident: e_1_2_8_33_1
  doi: 10.1093/nar/30.1.69
– ident: e_1_2_8_27_1
  doi: 10.1186/s12866-020-01904-6
– ident: e_1_2_8_32_1
  doi: 10.1093/nar/gkj148
– ident: e_1_2_8_6_1
  doi: 10.1002/pmic.201300257
– ident: e_1_2_8_7_1
  doi: 10.1007/s10044-017-0626-7
– ident: e_1_2_8_2_1
  doi: 10.1038/35001009
– ident: e_1_2_8_28_1
  doi: 10.1093/nar/gkn1005
– ident: e_1_2_8_12_1
  doi: 10.1109/BIBM.2011.45
– volume: 2019
  year: 2019
  ident: e_1_2_8_8_1
  article-title: Identifying protein complexes from dynamic temporal interval protein‐protein interaction networks
  publication-title: Biomed Res Int
– ident: e_1_2_8_29_1
  doi: 10.1038/nmeth.1938
– ident: e_1_2_8_9_1
  doi: 10.1186/s12859-016-1054-1
– ident: e_1_2_8_15_1
  doi: 10.1155/2017/4120506
– ident: e_1_2_8_26_1
  doi: 10.1093/bioinformatics/btp668
– ident: e_1_2_8_19_1
  doi: 10.1093/nar/30.1.303
– ident: e_1_2_8_13_1
  doi: 10.1002/pmic.201200277
– ident: e_1_2_8_5_1
  doi: 10.1142/S0219720015710018
– ident: e_1_2_8_10_1
  doi: 10.1126/science.1105103
– ident: e_1_2_8_17_1
  doi: 10.1142/S0219720019500252
– ident: e_1_2_8_3_1
  doi: 10.1186/s12859-018-2309-9
– ident: e_1_2_8_36_1
  doi: 10.1186/s12859-021-04175-8
– ident: e_1_2_8_30_1
  doi: 10.3389/fgene.2020.00567
– ident: e_1_2_8_35_1
  doi: 10.1534/genetics.114.161620
SSID ssj0006936
Score 2.3960981
Snippet Real protein interaction network (PIN) is dynamic. Researchers created dynamic PIN by combining static PIN with gene expression data to explain the dynamicity...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1219
SubjectTerms Algorithms
Computational Biology - methods
dynamic protein interaction network
Gene Expression
gene expression profile
Percolation
protein activity
protein complexes
Protein interaction
Protein Interaction Mapping - methods
Protein Interaction Maps - genetics
Proteins
Proteins - genetics
Proteins - metabolism
quartile one principle
Title Construction of dynamic protein interaction network based on gene expression data and quartile one principle
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.26304
https://www.ncbi.nlm.nih.gov/pubmed/35064702
https://www.proquest.com/docview/2648982346
https://www.proquest.com/docview/2622284026
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0887-3585
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0134
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006936
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS90wFD-IMNyLc35edSOyIWzQ622SpinsxYkig30gCr6MkjQpiK5-3Cu4_fU7J2l7cRNBX0ppT0mTntNzcvLL7wC8F5nS0gqXSDfK8WBlYp2XSaHQe5hcWuUpof_1mzo8kV9Os9MZ-NTthYn8EH3CjSwj_K_JwI0d70xJQ4nHYMiVCGSgqVBhPnU05Y5SRagPGK0Ig-Kem5TvTB-9743-CzHvR6zB5Ry8gp_dy0akyfnwdmKH1Z9_eByf25sFmG9jUbYblec1zPhmEZZ2G5yH__rNtllAh4a0-yK8-Nydze11NeKW4ILqfXYMtOyyZi4WuGeB_uGsYcRGcRP3TrAmIs4ZOU7H8ALqrmf-roXiNozQqsw0jl0T0hS7gUKeXXXLActwcrB_vHeYtPUbkkpkuUy00k4a4zJNPH-SiGQq5SurKm50bjCuVy5VvkDdUDKtjc9EbgS3hutaFM6IFZhtsKE1YCq1GKcaVUueSj8qdCZrk6OYFiNXWz2AD913LKuW3JxqbFyUkZaZl9TvMgzwAN71sleR0uNBqc1OHcrWrMclwQELzYVUA9jqb-OY0yqLafzlLclQUg2n5SizGtWob0YQPWA-4gP4GJThkfbLH0ffj8PZ-lOEN-Alpw0aAZK5CbOoAv4Nhk0T-zaYx1-EFhRp
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fT9swEMdPE9PEXvYDNtaNDU8gJJBSWttxnEfGQN3GL6Ei8RbZsSMhILAB0ra_fnd2koofmgQvVdRcazm9qy-Xrz8HsCRSpaUVLpFukOGLlYl1Xia5wtXDZNIqTwX9nV01OpTfj9KjRptDe2EiH6IruFFkhP9rCnAqSK9NqKEEMuhzJYgG-lTid5NTfz2Y0KNUHjoExjjCtLijk_K1yWdvrkd3ksybOWtYdLZexs6ql4FVSFqTk_71le2Xf2-RHB89n1fwoklH2Xr0n9fwxNczMLte46342R-2zIJANFTeZ-DZl_ZoeqNtEzcLp9Tys4XQsvOKudjjngUCxHHNCEjxK26fYHUUnTNaOx3DN9B9PfO_GzVuzUiwykzt2E8Sm-I80Mizi_aJwBs43Nocb4ySpoVDUoo0k4lW2kljXKoJ9SeJJVMqX1pVcqMzg6m9ckPlc3QPJYeV8anIjODWcF2J3BnxFqZqHOgdMDW0mKoaVUk-lH6Q61RWJkMzLQausroHK-0PWZQN35zabJwWkczMC5p3ES5wDxY724tI9bjXar71h6KJ7MuCFIG55kKqHnzuTuM1pwctpvbn12RDdTW8M0ebuehH3TCCCIHZgPdgNXjDf8Yv9g_2xuHo_UOMF2B6NN7ZLra_7f74AM857dcICs15mEJ38B8xi7qyn0Ks_APFZhiK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fT9UwFMdPDETkBRUUL6CWYEw02eXetuu6RwRvUAEJgeS-Le3aJUYcl18J-tdzTrvtBjEm-rIs21mabuesZ923nwPwRqRKSytcIt0gw42ViXVeJrnC0cNk0ipPE_r7B2r3RH4ep-NGm0NrYSIfoptwo8gI72sKcD9x1eaUGkoggz5XgmigszLNNSn6do6m9CiVhwqBMY4wLe7opHxzeu3d8eheknk3Zw2DzuhxrKx6GViFpDX53r--sv3y128kx__uzxNYaNJRthX95yk88PUiLG3V-Cn-4yd7y4JANMy8L8LDD-3eo-22TNwSnFLJzxZCy84q5mKNexYIEN9qRkCKi7h8gtVRdM5o7HQMD6D7euZvGjVuzUiwykzt2DmJTbEfaOTZpP0j8AxORh-Pt3eTpoRDUoo0k4lW2kljXKoJ9SeJJVMqX1pVcqMzg6m9ckPlc3QPJYeV8anIjODWcF2J3BnxHGZqbOgFMDW0mKoaVUk-lH6Aj1tWJkMzLQausroH79oHWZQN35zKbJwWkczMC-p3EW5wDzY620mkevzRaq31h6KJ7MuCFIG55kKqHqx3p_Ge048WU_uza7KheTX8Mkeb5ehHXTOCCIHZgPfgffCGv7RfHB59PQ57K_9i_BrmDndGxd6ngy-rMM9puUYQaK7BDHqDf4lJ1JV9FULlFkymGA4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+dynamic+protein+interaction+network+based+on+gene+expression+data+and+quartile+one+principle&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Noori%2C+Soheir&rft.au=Al-A%27araji%2C+Nabeel&rft.au=Al-Shamery%2C+Eman&rft.date=2022-05-01&rft.eissn=1097-0134&rft.volume=90&rft.issue=5&rft.spage=1219&rft_id=info:doi/10.1002%2Fprot.26304&rft_id=info%3Apmid%2F35064702&rft.externalDocID=35064702
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon