Bragg Solitons – Historical and Future Perspectives
Solitons have been a subject of intense intellectual curiosity and an avenue for a plethora of applications since they are first observed in water waves. Optical solitons, in particular, have seen tremendous progress, starting from their first theoretical predictions in optical fiber in 1973. On the...
Saved in:
| Published in | Laser & photonics reviews Vol. 17; no. 12 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Weinheim
Wiley Subscription Services, Inc
01.12.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1863-8880 1863-8899 1863-8899 |
| DOI | 10.1002/lpor.202300373 |
Cover
| Abstract | Solitons have been a subject of intense intellectual curiosity and an avenue for a plethora of applications since they are first observed in water waves. Optical solitons, in particular, have seen tremendous progress, starting from their first theoretical predictions in optical fiber in 1973. On the 50th anniversary of this seminal work from Haseagawa and Tappert, a review is provided on the progress in an important class of optical solitons, the Bragg soliton. Bragg solitons are optical solitons which exist in structures periodic in one dimension. The history of Bragg solitons is described, including the most salient advancements made both in theory and experiments. Recent progress made in integrated photonic devices and their associated design advantages are highlighted, with particular emphasis on how these have facilitated the realization of Bragg soliton dynamics on a chip and their optical processing functions. A discussion and future outlook for this burgeoning field provides a perspective on how Bragg solitons may impact the field of photonics and future applications.
On the 50th anniversary of Haseagawa and Tappert's first theoretical predictions of solitons in fiber, the progress in an important class of optical solitons, the Bragg soliton, is reviewed. The history of Bragg solitons and recent progress made in Bragg soliton dynamics on a chip are covered, and perspectives are provided on how they may impact the field of photonics and future applications. |
|---|---|
| AbstractList | Solitons have been a subject of intense intellectual curiosity and an avenue for a plethora of applications since they are first observed in water waves. Optical solitons, in particular, have seen tremendous progress, starting from their first theoretical predictions in optical fiber in 1973. On the 50
th
anniversary of this seminal work from Haseagawa and Tappert, a review is provided on the progress in an important class of optical solitons, the Bragg soliton. Bragg solitons are optical solitons which exist in structures periodic in one dimension. The history of Bragg solitons is described, including the most salient advancements made both in theory and experiments. Recent progress made in integrated photonic devices and their associated design advantages are highlighted, with particular emphasis on how these have facilitated the realization of Bragg soliton dynamics on a chip and their optical processing functions. A discussion and future outlook for this burgeoning field provides a perspective on how Bragg solitons may impact the field of photonics and future applications. Solitons have been a subject of intense intellectual curiosity and an avenue for a plethora of applications since they are first observed in water waves. Optical solitons, in particular, have seen tremendous progress, starting from their first theoretical predictions in optical fiber in 1973. On the 50th anniversary of this seminal work from Haseagawa and Tappert, a review is provided on the progress in an important class of optical solitons, the Bragg soliton. Bragg solitons are optical solitons which exist in structures periodic in one dimension. The history of Bragg solitons is described, including the most salient advancements made both in theory and experiments. Recent progress made in integrated photonic devices and their associated design advantages are highlighted, with particular emphasis on how these have facilitated the realization of Bragg soliton dynamics on a chip and their optical processing functions. A discussion and future outlook for this burgeoning field provides a perspective on how Bragg solitons may impact the field of photonics and future applications. On the 50th anniversary of Haseagawa and Tappert's first theoretical predictions of solitons in fiber, the progress in an important class of optical solitons, the Bragg soliton, is reviewed. The history of Bragg solitons and recent progress made in Bragg soliton dynamics on a chip are covered, and perspectives are provided on how they may impact the field of photonics and future applications. Solitons have been a subject of intense intellectual curiosity and an avenue for a plethora of applications since they are first observed in water waves. Optical solitons, in particular, have seen tremendous progress, starting from their first theoretical predictions in optical fiber in 1973. On the 50th anniversary of this seminal work from Haseagawa and Tappert, a review is provided on the progress in an important class of optical solitons, the Bragg soliton. Bragg solitons are optical solitons which exist in structures periodic in one dimension. The history of Bragg solitons is described, including the most salient advancements made both in theory and experiments. Recent progress made in integrated photonic devices and their associated design advantages are highlighted, with particular emphasis on how these have facilitated the realization of Bragg soliton dynamics on a chip and their optical processing functions. A discussion and future outlook for this burgeoning field provides a perspective on how Bragg solitons may impact the field of photonics and future applications. |
| Author | Tan, Dawn T. H. Eggleton, Benjamin J. |
| Author_xml | – sequence: 1 givenname: Dawn T. H. orcidid: 0000-0002-7111-1125 surname: Tan fullname: Tan, Dawn T. H. email: dawn_tan@sutd.edu.sg organization: ASTAR – sequence: 2 givenname: Benjamin J. surname: Eggleton fullname: Eggleton, Benjamin J. email: benjamin.eggleton@sydney.edu.au organization: The University of Sydney |
| BookMark | eNqFj19LwzAUxYMouE1ffS743O22aZP2UYdzwmDDP88hTdOREZuapI69-R38hn4SOyoTBNl9Offh_A7nDNFpbWqJ0FUE4wggnujG2HEMMQbAFJ-gQZQRHGZZnp8e_gzO0dC5DUDaHRmg9Nby9Tp4Mlp5U7vg6-MzmCvnjVWC64DXZTBrfWtlsJLWNVJ49S7dBTqruHby8kdH6GV29zydh4vl_cP0ZhEKnFIcJlUGICOoEprkQmAOaSkrTmKaUQxUxLwAXmEMpBQFLkqal1wSUVWEyLIoCjxCkz63rRu-23KtWWPVK7c7FgHbr2b71eywuiOue6Kx5q2VzrONaW3dlWRxDpDQiFLSuZLeJaxxzsqKCeW5V6b2liv9f_j4D3a0Td4DW6Xl7oibLVbLx1_2G5rui8g |
| CitedBy_id | crossref_primary_10_1364_OPTICA_521625 crossref_primary_10_1088_1361_6528_ada3dc |
| Cites_doi | 10.1049/el:20072474 10.1109/JLT.2021.3089901 10.1103/PhysRevE.59.1267 10.1038/s41566-019-0358-x 10.1364/OE.18.022915 10.1063/1.88632 10.1063/1.107311 10.1103/PhysRevA.39.5163 10.1002/adpr.202100107 10.1109/IPCon.2012.6358639 10.1364/OL.12.000407 10.1364/OE.14.011987 10.1049/el:19890143 10.1049/el:19961581 10.1038/ncomms1113 10.1038/s41598-019-46865-7 10.1364/OL.23.000328 10.1063/1.1435801 10.1364/JOSAB.14.002980 10.1016/S0030-4018(98)00022-4 10.1364/OL.14.001269 10.1038/nphys438 10.1049/el:19850520 10.1364/OME.475309 10.1002/lpor.201400420 10.1103/PhysRevLett.58.160 10.1038/nphoton.2013.183 10.1515/nanoph-2022-0623 10.1103/PhysRevLett.45.1095 10.1515/nanoph-2022-0026 10.1038/s41598-017-03543-w 10.1038/ncomms4160 10.1063/1.89368 10.1038/s41566-020-0629-6 10.1103/RevModPhys.78.1135 10.1080/23746149.2021.1905544 10.1063/1.5113758 10.1063/5.0003633 10.1088/0022-3727/40/9/S07 10.1038/nphoton.2008.146 10.1063/1.3242028 10.1002/lpor.201900114 10.1364/OL.8.000186 10.1063/1.1654836 10.1103/PhysRevA.42.550 10.1364/CLEOPR.2018.Th5A.7 10.1364/OE.16.006227 10.1016/0375-9601(89)90441-6 10.1103/PhysRevLett.36.1135 10.1364/OL.18.000962 10.1063/1.91131 10.1103/PhysRevLett.87.203901 10.1002/lpor.201500054 10.1364/CLEO_QELS.2022.FW5J.5 10.1049/el:19910454 10.1038/nphoton.2009.28 10.1364/OE.14.004357 10.1364/OL.30.002457 10.1038/ncomms10427 10.1038/s41377-021-00572-z 10.1109/JLT.1986.1074827 10.1063/1.109883 10.1103/PhysRevLett.87.253902 10.1364/OL.18.001783 10.1364/OE.22.006296 10.1364/OL.25.000536 10.1103/PhysRevLett.62.1746 10.1063/1.4982157 10.1364/OE.3.000411 10.1063/5.0059525 10.1038/nphoton.2010.261 10.1002/lpor.202200571 10.1364/PRJ.6.000B50 10.1038/s41598-021-00805-6 10.1063/1.93083 10.1103/PhysRevB.36.947 10.1364/OL.32.000539 10.1103/PhysRevA.19.1169 10.1063/1.3299008 10.1038/s41467-022-34979-y 10.1364/OL.23.000259 10.1103/PhysRevResearch.3.013166 10.1109/JQE.1985.1072805 10.1063/1.95580 10.1103/PhysRevA.17.335 10.1007/978-3-662-05144-3 10.1103/PhysRevLett.76.1627 10.1126/science.abo2631 10.1515/nanoph-2021-0302 10.1364/OL.34.001357 10.1364/OE.18.007625 10.1016/S0079-6638(08)70515-8 10.1364/OE.16.012987 10.1364/OE.20.013108 10.1364/OL.9.000013 10.1063/1.97181 10.1049/piee.1966.0189 10.1364/OL.13.000132 10.1364/PRJ.411073 10.1103/PhysRevA.91.023831 10.1063/1.1653255 10.1063/1.1815066 10.1002/lpor.202100030 10.1002/j.1538-7305.1969.tb01198.x 10.1038/36514 10.1364/OE.27.037374 10.1038/s41586-018-0421-7 10.1088/2040-8978/12/10/104003 10.1364/JOCN.10.000B25 10.1364/OE.3.000447 10.1063/1.114461 10.1063/1.2737359 10.1049/el:19900936 10.1364/OL.8.000289 |
| ContentType | Journal Article |
| Copyright | 2023 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION 7SP 7U5 8FD L7M ADTOC UNPAY |
| DOI | 10.1002/lpor.202300373 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1863-8899 |
| EndPage | n/a |
| ExternalDocumentID | 10.1002/lpor.202300373 10_1002_lpor_202300373 LPOR202300373 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: A*STAR MTC Grant funderid: M21K2c0119 – fundername: Ministry of Education ACRF Tier 2 Grant funderid: T2EP50121‐0019 – fundername: Quantum Engineering Programme Grant funderid: NRF2022‐QEP2‐01‐P08 – fundername: Australian Research Council funderid: DP22010431; DP200101893 |
| GroupedDBID | 05W 0R~ 1OC 31~ 33P 3SF 3WU 4.4 52U 66C 8-1 A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION 7SP 7U5 8FD L7M ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3573-4f800e10f4749cc3a05defa62787307c2ab0af3306dcb3bd79dae6cff66edbbb3 |
| IEDL.DBID | UNPAY |
| ISSN | 1863-8880 1863-8899 |
| IngestDate | Tue Aug 19 09:07:50 EDT 2025 Fri Jul 25 10:14:54 EDT 2025 Thu Apr 24 22:58:41 EDT 2025 Wed Oct 01 05:09:39 EDT 2025 Wed Jan 22 16:17:13 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3573-4f800e10f4749cc3a05defa62787307c2ab0af3306dcb3bd79dae6cff66edbbb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7111-1125 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lpor.202300373 |
| PQID | 2900471776 |
| PQPubID | 1016358 |
| PageCount | 20 |
| ParticipantIDs | unpaywall_primary_10_1002_lpor_202300373 proquest_journals_2900471776 crossref_citationtrail_10_1002_lpor_202300373 crossref_primary_10_1002_lpor_202300373 wiley_primary_10_1002_lpor_202300373_LPOR202300373 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | December 2023 2023-12-00 20231201 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Laser & photonics reviews |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2010; 12 2018; 560 1987; 36 1979; 35 2010; 18 2019; 13 1980; 45 1983; 8 2020; 14 2013; 7 1985; 21 1996; 76 2014; 22 2018; 6 1990; 42 2009; 95 2010; 1 1986; 4 1999; 59 2019; 27 1984 1977; 30 1969; 48 2015; 91 1997; 390 2010; 4 2012; 20 1989; 39 1989; 62 1987; 58 1979; 19 2019; 9 2019; 4 2007; 90 1988; 13 1994 2002; 80 2011; 3 1970; 17 2016; 7 1990; 26 1973; 23 1982; 40 2022; 13 1984; 9 1998; 3 2022; 11 1998; 149 2018; 10 2022; 376 2017; 7 1966; 113 2006; 78 1993; 63 2017; 110 2008; 2 1976; 28 2007; 32 1996; 32 2001; 87 2020; 5 2014; 5 1976; 36 1989; 141 2021; 39 1997; 14 1995; 67 1986; 49 1994; 33 2005; 30 2021; 9 2004; 85 2021; 6 1987; 12 2023; 13 2021; 3 2021; 2 2023; 12 2012 2000; 25 2023; 17 2008; 16 2006; 14 2009 1978; 17 2003 2006; 2 2015; 9 1989; 25 1998; 23 1985; 46 2009; 34 2021; 15 2021; 10 1991; 27 1993; 18 2021; 11 2022 2021 2018 2007; 40 2013 2009; 3 2007; 43 1989; 14 1992; 60 2010; 96 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 Kashyap R. (e_1_2_7_25_1) 2009 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 Sterke C. M. (e_1_2_7_33_1) 1994 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_29_1 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 Agrawal G. P. (e_1_2_7_48_1) 2013 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 Winful H. G. (e_1_2_7_50_1) 1979; 35 e_1_2_7_106_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 Yariv A. (e_1_2_7_21_1) 1984 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 Wang X. (e_1_2_7_71_1) 2011; 3 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 |
| References_xml | – volume: 23 start-page: 142 year: 1973 publication-title: Appl. Phys. Lett. – volume: 14 start-page: 1269 year: 1989 publication-title: Opt. Lett. – volume: 113 start-page: 1151 year: 1966 publication-title: Proc. Inst. Electr. Eng. – volume: 45 start-page: 1095 year: 1980 publication-title: Phys. Rev. Lett. – volume: 42 start-page: 550 year: 1990 publication-title: Phys. Rev. A – volume: 39 start-page: 5163 year: 1989 publication-title: Phys. Rev. A – volume: 15 year: 2021 publication-title: Laser Photonics Rev. – volume: 20 year: 2012 publication-title: Opt. Express – volume: 560 start-page: 565 year: 2018 publication-title: Nature – volume: 5 start-page: 3160 year: 2014 publication-title: Nat. Commun. – volume: 14 start-page: 2980 year: 1997 publication-title: J. Opt. Soc. Am. B – volume: 67 start-page: 1051 year: 1995 publication-title: Appl. Phys. Lett. – volume: 21 start-page: 737 year: 1985 publication-title: Electron. Lett. – volume: 3 start-page: 411 year: 1998 publication-title: Opt. Express – volume: 62 start-page: 1746 year: 1989 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 186 year: 1983 publication-title: Opt. Lett. – volume: 8 start-page: 289 year: 1983 publication-title: Opt. Lett. – volume: 4 start-page: 956 year: 1986 publication-title: J Lightwave Technol – volume: 27 start-page: 730 year: 1991 publication-title: Electron. Lett. – volume: 21 start-page: 1172 year: 1985 publication-title: IEEE J. Quantum Electron. – volume: 13 year: 2019 publication-title: Laser & Photon. Rev. – volume: 48 start-page: 2909 year: 1969 publication-title: Bell Syst. Tech. J. – volume: 4 year: 2019 publication-title: APL Photonics – volume: 6 year: 2021 publication-title: Adv Phys X – volume: 390 start-page: 143 year: 1997 publication-title: Nature – volume: 4 start-page: 862 year: 2010 publication-title: Nat. Photon. – volume: 2 year: 2021 publication-title: Adv Photonics Res – volume: 36 start-page: 1135 year: 1976 publication-title: Phys. Rev. Lett. – volume: 87 year: 2001 publication-title: Phys. Rev. Lett. – volume: 30 start-page: 282 year: 1977 publication-title: Appl. Phys. Lett. – volume: 49 start-page: 236 year: 1986 publication-title: Appl. Phys. Lett. – volume: 90 year: 2007 publication-title: Appl. Phys. Lett. – volume: 149 start-page: 267 year: 1998 publication-title: Optic. Commun. – volume: 11 year: 2021 publication-title: Sci. Rep. – volume: 46 start-page: 527 year: 1985 publication-title: Appl. Phys. Lett. – volume: 16 year: 2008 publication-title: Opt. Express – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 80 start-page: 416 year: 2002 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 294 year: 2015 publication-title: Laser Photonics Rev. – year: 1984 – volume: 1 start-page: 116 year: 2010 publication-title: Nat. Commun. – volume: 14 start-page: 492 year: 2020 publication-title: Nat. Photonics – volume: 14 start-page: 4357 year: 2006 publication-title: Opt. Express – volume: 26 start-page: 1459 year: 1990 publication-title: Electron. Lett. – volume: 376 start-page: 1309 year: 2022 publication-title: Science – volume: 6 start-page: B50 year: 2018 publication-title: Photon. Res. – volume: 33 start-page: 203 year: 1994 publication-title: Prog. Opt. – volume: 19 start-page: 1169 year: 1979 publication-title: Phys. Rev. A – volume: 85 start-page: 4866 year: 2004 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 13 year: 1984 publication-title: Opt. Lett. – year: 2013 – volume: 18 start-page: 7625 year: 2010 publication-title: Opt. Express – volume: 23 start-page: 328 year: 1998 publication-title: Opt. Lett. – volume: 13 start-page: 158 year: 2019 publication-title: Nat. Photon. – year: 2009 – volume: 25 start-page: 199 year: 1989 publication-title: Electron. Lett. – volume: 78 start-page: 1135 year: 2006 publication-title: Rev. Mod. Phys. – volume: 10 start-page: 3507 year: 2021 publication-title: Nanophotonics – volume: 11 start-page: 2319 year: 2022 publication-title: Nanophotonics. – volume: 96 year: 2010 publication-title: Appl. Phys. Lett. – volume: 58 start-page: 160 year: 1987 publication-title: Phys. Rev. Lett. – volume: 40 start-page: 298 year: 1982 publication-title: Appl. Phys. Lett. – volume: 3 start-page: 447 year: 1998 publication-title: Opt. Express – volume: 95 year: 2009 publication-title: Appl. Phys. Lett. – volume: 6 year: 2021 publication-title: APL Photonics – volume: 14 year: 2006 publication-title: Opt. Express – volume: 12 year: 2010 publication-title: J Opt – volume: 40 start-page: 2666 year: 2007 publication-title: J. Phys. D: Appl. Phys. – volume: 18 start-page: 962 year: 1993 publication-title: Opt. Lett. – volume: 3 start-page: 290 year: 2011 publication-title: IEEE Photonics Technol. Lett. – volume: 16 start-page: 6227 year: 2008 publication-title: Opt. Express – year: 2018 – year: 1994 – volume: 36 start-page: 947 year: 1987 publication-title: Phys. Rev. B – volume: 17 start-page: 335 year: 1978 publication-title: Phys. Rev. A – volume: 4 start-page: 862 year: 2010 publication-title: Nat. Photonics – volume: 39 start-page: 5221 year: 2021 publication-title: J Lightwave Technol – volume: 13 start-page: 132 year: 1988 publication-title: Opt. Lett. – volume: 110 year: 2017 publication-title: Appl. Phys. Lett. – volume: 5 year: 2020 publication-title: APL Photonics – volume: 13 start-page: 377 year: 2023 publication-title: Opt. Mater. Express – volume: 141 start-page: 37 year: 1989 publication-title: Phys. Lett. A – year: 2022 article-title: Superluminal k‐gap solitons in nonlinear photonic time‐crystals – volume: 10 start-page: 130 year: 2021 publication-title: Light Sci Appl – volume: 7 start-page: 3366 year: 2017 publication-title: Sci. Rep. – volume: 2 start-page: 465 year: 2008 publication-title: Nat. Photon. – volume: 3 year: 2021 publication-title: Phys. Rev. Research – volume: 27 year: 2019 publication-title: Opt. Express – volume: 30 start-page: 2457 year: 2005 publication-title: Opt. Lett. – volume: 34 start-page: 1357 year: 2009 publication-title: Opt. Lett. – volume: 12 start-page: 1421 year: 2023 publication-title: Nanophotonics – volume: 17 start-page: 423 year: 1970 publication-title: Appl. Phys. Lett. – volume: 18 start-page: 1783 year: 1993 publication-title: Opt. Lett. – volume: 59 start-page: 1267 year: 1999 publication-title: Phys Rev E – volume: 60 start-page: 1427 year: 1992 publication-title: Appl. Phys. Lett. – volume: 76 start-page: 1627 year: 1996 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 597 year: 2013 publication-title: Nat. Photonics – year: 2003 – volume: 23 start-page: 259 year: 1998 publication-title: Opt. Lett. – volume: 35 start-page: 379 year: 1979 publication-title: Appl. Phys. Lett. – volume: 13 start-page: 7218 year: 2022 publication-title: Nat. Commun. – volume: 32 start-page: 539 year: 2007 publication-title: Opt. Lett. – volume: 3 start-page: 206 year: 2009 publication-title: Nat. Photon. – start-page: 356 year: 2012 – volume: 35 start-page: 379 year: 1979 publication-title: Phys. Lett. – volume: 9 year: 2019 publication-title: Sci. Rep. – volume: 63 start-page: 866 year: 1993 publication-title: Appl. Phys. Lett. – start-page: 20 year: 2021 – volume: 2 start-page: 775 year: 2006 publication-title: Nat. Phys. – volume: 32 start-page: 2341 year: 1996 publication-title: Electron. Lett. – volume: 9 start-page: 596 year: 2021 publication-title: Photon. Res. – volume: 18 year: 2010 publication-title: Opt. Express – volume: 91 year: 2015 publication-title: Phys. Rev. A – volume: 28 start-page: 731 year: 1976 publication-title: Appl. Phys. Lett. – volume: 22 start-page: 6296 year: 2014 publication-title: Opt. Express – volume: 17 year: 2023 publication-title: Laser Photonics Rev. – volume: 25 start-page: 536 year: 2000 publication-title: Opt. Lett. – volume: 9 start-page: 498 year: 2015 publication-title: Laser Photon. Rev. – volume: 10 start-page: 25 year: 2018 publication-title: J. Opt. Comm. Netw. – volume: 12 start-page: 407 year: 1987 publication-title: Opt. Lett. – publication-title: AIM Photonics. Retrieved from – volume: 43 start-page: 1418 year: 2007 publication-title: Electron. Lett. – ident: e_1_2_7_63_1 doi: 10.1049/el:20072474 – ident: e_1_2_7_4_1 doi: 10.1109/JLT.2021.3089901 – ident: e_1_2_7_35_1 doi: 10.1103/PhysRevE.59.1267 – ident: e_1_2_7_83_1 doi: 10.1038/s41566-019-0358-x – ident: e_1_2_7_17_1 doi: 10.1364/OE.18.022915 – ident: e_1_2_7_51_1 doi: 10.1063/1.88632 – ident: e_1_2_7_36_1 doi: 10.1063/1.107311 – volume-title: Optical Waves in Crystals Propagation and Control of Laser Radiation year: 1984 ident: e_1_2_7_21_1 – ident: e_1_2_7_45_1 doi: 10.1103/PhysRevA.39.5163 – ident: e_1_2_7_86_1 doi: 10.1002/adpr.202100107 – ident: e_1_2_7_7_1 doi: 10.1109/IPCon.2012.6358639 – ident: e_1_2_7_103_1 doi: 10.1364/OL.12.000407 – ident: e_1_2_7_61_1 doi: 10.1364/OE.14.011987 – ident: e_1_2_7_108_1 doi: 10.1049/el:19890143 – ident: e_1_2_7_8_1 – ident: e_1_2_7_112_1 doi: 10.1049/el:19961581 – volume-title: Optics XXXIII year: 1994 ident: e_1_2_7_33_1 – volume: 3 start-page: 290 year: 2011 ident: e_1_2_7_71_1 publication-title: IEEE Photonics Technol. Lett. – ident: e_1_2_7_96_1 doi: 10.1038/ncomms1113 – ident: e_1_2_7_77_1 doi: 10.1038/s41598-019-46865-7 – ident: e_1_2_7_56_1 doi: 10.1364/OL.23.000328 – ident: e_1_2_7_80_1 doi: 10.1063/1.1435801 – ident: e_1_2_7_23_1 doi: 10.1364/JOSAB.14.002980 – ident: e_1_2_7_114_1 doi: 10.1016/S0030-4018(98)00022-4 – ident: e_1_2_7_106_1 doi: 10.1364/OL.14.001269 – ident: e_1_2_7_62_1 doi: 10.1038/nphys438 – ident: e_1_2_7_104_1 doi: 10.1049/el:19850520 – ident: e_1_2_7_87_1 doi: 10.1364/OME.475309 – ident: e_1_2_7_92_1 doi: 10.1002/lpor.201400420 – ident: e_1_2_7_29_1 doi: 10.1103/PhysRevLett.58.160 – ident: e_1_2_7_65_1 doi: 10.1038/nphoton.2013.183 – ident: e_1_2_7_99_1 doi: 10.1515/nanoph-2022-0623 – ident: e_1_2_7_26_1 doi: 10.1103/PhysRevLett.45.1095 – ident: e_1_2_7_98_1 doi: 10.1515/nanoph-2022-0026 – ident: e_1_2_7_115_1 doi: 10.1038/s41598-017-03543-w – ident: e_1_2_7_12_1 doi: 10.1038/ncomms4160 – ident: e_1_2_7_53_1 doi: 10.1063/1.89368 – ident: e_1_2_7_123_1 doi: 10.1038/s41566-020-0629-6 – ident: e_1_2_7_109_1 doi: 10.1103/RevModPhys.78.1135 – ident: e_1_2_7_66_1 doi: 10.1080/23746149.2021.1905544 – ident: e_1_2_7_95_1 doi: 10.1063/1.5113758 – ident: e_1_2_7_13_1 doi: 10.1063/5.0003633 – ident: e_1_2_7_20_1 doi: 10.1088/0022-3727/40/9/S07 – ident: e_1_2_7_10_1 doi: 10.1038/nphoton.2008.146 – ident: e_1_2_7_70_1 doi: 10.1063/1.3242028 – ident: e_1_2_7_41_1 doi: 10.1002/lpor.201900114 – ident: e_1_2_7_84_1 doi: 10.1364/OL.8.000186 – ident: e_1_2_7_24_1 doi: 10.1063/1.1654836 – ident: e_1_2_7_34_1 doi: 10.1103/PhysRevA.42.550 – ident: e_1_2_7_74_1 doi: 10.1364/CLEOPR.2018.Th5A.7 – ident: e_1_2_7_16_1 doi: 10.1364/OE.16.006227 – volume-title: Fiber Bragg Gratings year: 2009 ident: e_1_2_7_25_1 – ident: e_1_2_7_32_1 doi: 10.1016/0375-9601(89)90441-6 – ident: e_1_2_7_52_1 doi: 10.1103/PhysRevLett.36.1135 – ident: e_1_2_7_59_1 doi: 10.1364/OL.18.000962 – ident: e_1_2_7_6_1 – ident: e_1_2_7_27_1 doi: 10.1063/1.91131 – ident: e_1_2_7_110_1 doi: 10.1103/PhysRevLett.87.203901 – ident: e_1_2_7_75_1 doi: 10.1002/lpor.201500054 – ident: e_1_2_7_120_1 doi: 10.1364/CLEO_QELS.2022.FW5J.5 – ident: e_1_2_7_107_1 doi: 10.1049/el:19910454 – ident: e_1_2_7_18_1 doi: 10.1038/nphoton.2009.28 – ident: e_1_2_7_64_1 doi: 10.1364/OE.14.004357 – ident: e_1_2_7_47_1 doi: 10.1364/OL.30.002457 – ident: e_1_2_7_121_1 doi: 10.1038/ncomms10427 – ident: e_1_2_7_97_1 doi: 10.1038/s41377-021-00572-z – ident: e_1_2_7_105_1 doi: 10.1109/JLT.1986.1074827 – ident: e_1_2_7_38_1 doi: 10.1063/1.109883 – ident: e_1_2_7_9_1 doi: 10.1103/PhysRevLett.87.253902 – ident: e_1_2_7_37_1 doi: 10.1364/OL.18.001783 – ident: e_1_2_7_91_1 doi: 10.1364/OE.22.006296 – ident: e_1_2_7_58_1 doi: 10.1364/OL.25.000536 – ident: e_1_2_7_31_1 doi: 10.1103/PhysRevLett.62.1746 – ident: e_1_2_7_73_1 doi: 10.1063/1.4982157 – ident: e_1_2_7_113_1 doi: 10.1364/OE.3.000411 – ident: e_1_2_7_124_1 doi: 10.1063/5.0059525 – ident: e_1_2_7_11_1 doi: 10.1038/nphoton.2010.261 – ident: e_1_2_7_119_1 doi: 10.1002/lpor.202200571 – ident: e_1_2_7_76_1 doi: 10.1364/PRJ.6.000B50 – ident: e_1_2_7_116_1 doi: 10.1038/s41598-021-00805-6 – ident: e_1_2_7_5_1 – ident: e_1_2_7_28_1 doi: 10.1063/1.93083 – ident: e_1_2_7_44_1 doi: 10.1103/PhysRevB.36.947 – ident: e_1_2_7_68_1 doi: 10.1364/OL.32.000539 – ident: e_1_2_7_55_1 doi: 10.1103/PhysRevA.19.1169 – ident: e_1_2_7_82_1 doi: 10.1063/1.3299008 – ident: e_1_2_7_78_1 doi: 10.1038/s41467-022-34979-y – ident: e_1_2_7_60_1 doi: 10.1364/OL.23.000259 – ident: e_1_2_7_122_1 doi: 10.1103/PhysRevResearch.3.013166 – ident: e_1_2_7_102_1 doi: 10.1109/JQE.1985.1072805 – ident: e_1_2_7_43_1 doi: 10.1063/1.95580 – volume-title: Nonlinear Fiber Optics year: 2013 ident: e_1_2_7_48_1 – ident: e_1_2_7_54_1 doi: 10.1103/PhysRevA.17.335 – ident: e_1_2_7_49_1 doi: 10.1007/978-3-662-05144-3 – ident: e_1_2_7_22_1 doi: 10.1103/PhysRevLett.76.1627 – ident: e_1_2_7_118_1 doi: 10.1126/science.abo2631 – ident: e_1_2_7_88_1 doi: 10.1515/nanoph-2021-0302 – ident: e_1_2_7_69_1 doi: 10.1364/OL.34.001357 – ident: e_1_2_7_89_1 doi: 10.1364/OE.18.007625 – ident: e_1_2_7_46_1 doi: 10.1016/S0079-6638(08)70515-8 – ident: e_1_2_7_81_1 doi: 10.1364/OE.16.012987 – ident: e_1_2_7_15_1 doi: 10.1364/OE.20.013108 – ident: e_1_2_7_101_1 doi: 10.1364/OL.9.000013 – ident: e_1_2_7_111_1 doi: 10.1063/1.97181 – ident: e_1_2_7_1_1 doi: 10.1049/piee.1966.0189 – ident: e_1_2_7_30_1 doi: 10.1364/OL.13.000132 – ident: e_1_2_7_85_1 doi: 10.1364/PRJ.411073 – ident: e_1_2_7_93_1 doi: 10.1103/PhysRevA.91.023831 – ident: e_1_2_7_2_1 doi: 10.1063/1.1653255 – ident: e_1_2_7_14_1 doi: 10.1063/1.1815066 – ident: e_1_2_7_117_1 doi: 10.1002/lpor.202100030 – ident: e_1_2_7_42_1 doi: 10.1002/j.1538-7305.1969.tb01198.x – ident: e_1_2_7_67_1 doi: 10.1038/36514 – ident: e_1_2_7_94_1 doi: 10.1364/OE.27.037374 – ident: e_1_2_7_72_1 doi: 10.1038/s41586-018-0421-7 – volume: 35 start-page: 379 year: 1979 ident: e_1_2_7_50_1 publication-title: Phys. Lett. – ident: e_1_2_7_19_1 doi: 10.1088/2040-8978/12/10/104003 – ident: e_1_2_7_3_1 doi: 10.1364/JOCN.10.000B25 – ident: e_1_2_7_57_1 doi: 10.1364/OE.3.000447 – ident: e_1_2_7_39_1 doi: 10.1063/1.114461 – ident: e_1_2_7_79_1 doi: 10.1063/1.2737359 – ident: e_1_2_7_40_1 doi: 10.1049/el:19900936 – ident: e_1_2_7_90_1 doi: 10.1038/nphoton.2010.261 – ident: e_1_2_7_100_1 doi: 10.1364/OL.8.000289 |
| SSID | ssj0055556 |
| Score | 2.4114425 |
| SecondaryResourceType | review_article |
| Snippet | Solitons have been a subject of intense intellectual curiosity and an avenue for a plethora of applications since they are first observed in water waves.... |
| SourceID | unpaywall proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Bragg solitons integrated photonics nonlinear optics Optical fibers Photonics Solitary waves soliton dynamics Water waves |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NS8MwGMeD7KIX38XplBwEvXTLkjZdjyqOIb6M6WC3ktcdLHWsG6Inv4Pf0E9i0lcnyEB7KC0kpU2e58k_Jc8vAJxggTk2w4KjeYAcV0nkBEwaIafaRLoYKenZfOfbO9obutcjb_Qtiz_jQ5Q_3KxnpPHaOjjjSauChkZGnzbt5t8WoWJxn21C0znVoORHeeZI04s6lDhmqocKaiPCrcXqi6NSJTVX5_GEvb6wKFoUr-no090ArHjvbNHJU3M-403x9gPp-J8P2wTruTSF55ktbYEVFW-DjVymwjwIJDvAu5iy8Rg-2JVzxmbh5_sHrGgjkMUSdlNSCexXmZzJLhh2rx4ve06--4IjiOcTx9VGS6o20q7vBkIQhjypNKPYuLgJDAIzjpgmZsohBSdc-oFkigqtKVWSc072QC1-jtU-gLojEFdacmMYJjDLDhVG1WhpTlIZRVQHTtH6ocjR5HaHjCjMoMo4tG0Slm1SB6dl-UkG5fi1ZKPozDB3ziTEgWVktn2f1sFZ2cFLn4TTTltSLLzp3w_Ku4O_VDoEa_Y6WzPTALXZdK6OjPKZ8ePUur8A7R77ow priority: 102 providerName: Wiley-Blackwell |
| Title | Bragg Solitons – Historical and Future Perspectives |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202300373 https://www.proquest.com/docview/2900471776 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lpor.202300373 |
| UnpaywallVersion | publishedVersion |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1863-8899 dateEnd: 20241028 omitProxy: false ssIdentifier: ssj0055556 issn: 1863-8899 databaseCode: ADMLS dateStart: 20120701 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1863-8899 databaseCode: DR2 dateStart: 20070101 customDbUrl: isFulltext: true eissn: 1863-8899 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055556 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60Hjz5Fita9iDoJTXdTTbN0Vcp4qOoBT2FffZgicW2iJ78D_5Df4mzzaOoiIKXkMAwJDuP_Xaz8w3ADlVUUpwWPCtj3wuM9r1YaARypsF0QH2jQ1fvfH7B293g9Da8nYHjohYm44coN9xcZEzytQvwgbZZns__7tP9PmLUumsA7mhU2CzM8RAReQXmuhedgzu31mpy5uEiz5_ex3HB3fhNwee5aQo458fpQDw_iX7_M4SdzEGtRTDF22dHT-7r45Gsq5cvxI7__bwlWMhBKjnIvGoZZky6Aos5YCV5OhiuQnj4KHo9cu3O0KH3kvfXNzLlHSEi1aQ14SwhnWlN53ANuq2Tm6O2l_dh8BQLI-YFFlGlafg2iIJYKSb8UBsrOMVgxxShqJC-sAwXH1pJJnUUa2G4spZzo6WUbB0q6UNqNoDYpvKlsVqii2CK1k2uEN9YjRdtEBtVwSsskKicpNz1yugnGb0yTdyYJOWYVGG3lB9k9Bw_Sm4VBk3yMB0mNHZsmY0o4lXYK438qyY6MdwvYslZ5_KqfNr8u_4tqIwex2Ybwc5I1hDmX9Fa7tEfnZr96A |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5S55BekqZpiVO32UOhvchZ70or69iWGie13ZAH5Cb26UOEYmKbkJ7yH_IP-0s6q5dxIQRaHQQSs2K189hvl5lvAT4yzRTDaSFwKqFBaA0NEmkQyNkeNyGj1kS-3nk8EcPL8OQqqrMJfS1MyQ_RbLh5zyjitXdwvyF9tGINzRCgdv3p355Dhb-AzVDgYsXjorOGQSrCqygw6gse4GKP1ryNlB2tt1-fl1Zgc2uZz-T9ncyydfhazD-DHVB1z8u0k-vucqG6-tdfpI7_9WuvYLtCp-RLaU67sGHz17BTIVVSxYH5HkRfb-V0Ss598hyaLfn98EhWhCNE5oYMCrIScroq5py_gcvB94tvw6A6gCHQPIp5EDqEk7ZHXRiHidZc0shYJwVDL8fYoJlUVDqOqw6jFVcmToy0QjsnhDVKKf4WWvlNbveBuL6myjqj0DYwNpu-0AhsnMGbsQiK2hDUw5_qip3cH5KRpSWvMkv9mKTNmLThUyM_K3k5npTs1NpMK_-cpyzxNJm9OBZt-Nxo-NkvsUJrz4ilo9OfZ83Twb80OoSt4cV4lI6OJz_ewUv_vkyh6UBrcbu07xEILdSHwtT_ALny_8Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH5oBfViXbGucxD0kjqdydIc3Yq7pSp4C7P2YImlC6In_4P_0F_iTLZSQQqaQyDhTUjeNt-E974B2COCcGKmBUfzEDuuktgJmTRATtWodAlW0rP9zje3_vmje_nk5dWEthcm5YcofrjZyEjytQ1w1ZX6cMQa2jEAtWp3_7YcKnQaZlwvrNuqvtNWwSDlmSNpMKr71DGLPZzzNmJyOD5-fF4agc25Ydxlb6-s0xmHr8n80ygDz988LTt5rg4HvCref5A6_uvTFmEhQ6foKHWnJZhS8TKUM6SKsjzQXwHvuMfabXRvi-eM26Kvj080IhxBLJaokZCVoOaombO_Co-Ns4eTcyfbgMER1Auo42oDJ1UNazdwQyEow55UmvnERLnJDYIwjpmmZtUhBadcBqFkyhda-76SnHO6BqX4JVbrgHRdYK605MY3TG6WdV8YYKOlOUllQFEFnFz9kcjYye0mGZ0o5VUmkdVJVOikAvuFfDfl5fhVciu3ZpTFZz8ioaXJrAWBX4GDwsITn0QSq00Qi66bd63iauMvg3ZhtnnaiK4vbq82Yd7eTitotqA06A3VtsFBA76TePo3YkT_SA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH5oe_BkXbFSZQ6CXlLTmWTSHOtSimgtaqGewqw9WGLpgujJ_-A_9Jc40yylilTwEhJ4PJJ5y3wzmfc9gCMsMMdmWnA0D13HU9J1QiYNkFM1Ij3sKunbeuebNm11vaue31uBi6wWJuGHyDfcbGTM8rUN8KHUSZ5P_-7j04HBqFXbANzSqJBVKFLfIPICFLvtTuPRrrXqlDhmkefO78Mw4278oWBxbpoDzrVpPGSvL2wwWISwszmoWQKVvX1y9OSpOp3wqnj7Ruz438_bgPUUpKJG4lWbsKLiLSilgBWl6WC8Df7ZiPX76N6eoTPeiz7fP9CcdwSxWKLmjLMEdeY1neMd6DYvH85bTtqHwRHED4jjaYMqVc3VXuCFQhDm-lJpRrEJdpMiBGbcZZqYxYcUnHAZhJIpKrSmVEnOOdmFQvwcqz1Aui5crrTkxkVMipZ1Kgy-0dJcpDLYqAxOZoFIpCTltlfGIErolXFkxyTKx6QMx7n8MKHn-FWykhk0SsN0HOHQsmXWgoCW4SQ38lJNeGa4JWLRdef2Ln_a_7v-ChQmo6k6MGBnwg9TX_4Cr7z8_w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bragg+Solitons+%E2%80%93+Historical+and+Future+Perspectives&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Tan%2C+Dawn+T.+H.&rft.au=Eggleton%2C+Benjamin+J.&rft.date=2023-12-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=17&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Flpor.202300373&rft.externalDBID=10.1002%252Flpor.202300373&rft.externalDocID=LPOR202300373 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |