Rational Design of a Stable Fe‐rich Ni‐Fe Layered Double Hydroxide for the Industrially Relevant Dynamic Operation of Alkaline Water Electrolyzers
Nickel‐iron layered double hydroxides (Ni‐Fe LDHs) consist of stacked Fe3+‐doped positively charged Ni‐hydroxide layers containing charge‐balancing anions and water molecules between the layers. Although Ni‐Fe LDHs are highly active in the oxygen evolution reaction (OER) under alkaline conditions, t...
Saved in:
Published in | Advanced energy materials Vol. 13; no. 25 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.07.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1614-6832 1614-6840 |
DOI | 10.1002/aenm.202204403 |
Cover
Abstract | Nickel‐iron layered double hydroxides (Ni‐Fe LDHs) consist of stacked Fe3+‐doped positively charged Ni‐hydroxide layers containing charge‐balancing anions and water molecules between the layers. Although Ni‐Fe LDHs are highly active in the oxygen evolution reaction (OER) under alkaline conditions, their poor operational stability remains an issue. Herein, based on density functional theory calculations, it is proposed that the inclusion of a higher Fe content (>40%) than the theoretical Fe3+ limit (≈25%) permitted by Ni‐Fe LDHs can lead to improved structural stability. An Fe‐rich Ni‐Fe LDH electrode is therefore prepared via a growth strategy based on the controlled oxygen corrosion of an Fe substrate, by enabling the incorporation of additional Fe2+ into the Ni2+‐Fe3+ LDH structure. Indeed, microstructural and elemental analysis confirm the presence of additional Fe2+. This Fe‐rich Ni‐Fe LDH electrode not only offers a low OER overpotential (≈270 mV at 200 mA cm−2) but also exhibits an excellent operational stability under dynamic operating environments without any significant performance degradation or metal ion dissolution. Finally, the practical feasibility of the Fe‐rich Ni‐Fe LDH electrode is demonstrated in a single‐cell (34.56 cm2) operation. These findings are expected to aid in the development of reliable OER electrodes for use in commercial water electrolyzers.
For green hydrogen production, the development of highly active and durable electrode materials that function the under intermittent power supply of renewable energies is necessary. Rational design of a stable iron‐rich nickel‐iron layered double hydroxide (Fe‐rich Ni‐Fe LDH) under dynamic operating conditions for alkaline oxygen evolution reaction is proposed, and its practical feasibility for industrially relevant application for water electroyzers is demonstrated. |
---|---|
AbstractList | Nickel‐iron layered double hydroxides (Ni‐Fe LDHs) consist of stacked Fe
3+
‐doped positively charged Ni‐hydroxide layers containing charge‐balancing anions and water molecules between the layers. Although Ni‐Fe LDHs are highly active in the oxygen evolution reaction (OER) under alkaline conditions, their poor operational stability remains an issue. Herein, based on density functional theory calculations, it is proposed that the inclusion of a higher Fe content (>40%) than the theoretical Fe
3+
limit (≈25%) permitted by Ni‐Fe LDHs can lead to improved structural stability. An Fe‐rich Ni‐Fe LDH electrode is therefore prepared via a growth strategy based on the controlled oxygen corrosion of an Fe substrate, by enabling the incorporation of additional Fe
2+
into the Ni
2+
‐Fe
3+
LDH structure. Indeed, microstructural and elemental analysis confirm the presence of additional Fe
2+
. This Fe‐rich Ni‐Fe LDH electrode not only offers a low OER overpotential (≈270 mV at 200 mA cm
−2
) but also exhibits an excellent operational stability under dynamic operating environments without any significant performance degradation or metal ion dissolution. Finally, the practical feasibility of the Fe‐rich Ni‐Fe LDH electrode is demonstrated in a single‐cell (34.56 cm
2
) operation. These findings are expected to aid in the development of reliable OER electrodes for use in commercial water electrolyzers. Nickel‐iron layered double hydroxides (Ni‐Fe LDHs) consist of stacked Fe3+‐doped positively charged Ni‐hydroxide layers containing charge‐balancing anions and water molecules between the layers. Although Ni‐Fe LDHs are highly active in the oxygen evolution reaction (OER) under alkaline conditions, their poor operational stability remains an issue. Herein, based on density functional theory calculations, it is proposed that the inclusion of a higher Fe content (>40%) than the theoretical Fe3+ limit (≈25%) permitted by Ni‐Fe LDHs can lead to improved structural stability. An Fe‐rich Ni‐Fe LDH electrode is therefore prepared via a growth strategy based on the controlled oxygen corrosion of an Fe substrate, by enabling the incorporation of additional Fe2+ into the Ni2+‐Fe3+ LDH structure. Indeed, microstructural and elemental analysis confirm the presence of additional Fe2+. This Fe‐rich Ni‐Fe LDH electrode not only offers a low OER overpotential (≈270 mV at 200 mA cm−2) but also exhibits an excellent operational stability under dynamic operating environments without any significant performance degradation or metal ion dissolution. Finally, the practical feasibility of the Fe‐rich Ni‐Fe LDH electrode is demonstrated in a single‐cell (34.56 cm2) operation. These findings are expected to aid in the development of reliable OER electrodes for use in commercial water electrolyzers. Nickel‐iron layered double hydroxides (Ni‐Fe LDHs) consist of stacked Fe3+‐doped positively charged Ni‐hydroxide layers containing charge‐balancing anions and water molecules between the layers. Although Ni‐Fe LDHs are highly active in the oxygen evolution reaction (OER) under alkaline conditions, their poor operational stability remains an issue. Herein, based on density functional theory calculations, it is proposed that the inclusion of a higher Fe content (>40%) than the theoretical Fe3+ limit (≈25%) permitted by Ni‐Fe LDHs can lead to improved structural stability. An Fe‐rich Ni‐Fe LDH electrode is therefore prepared via a growth strategy based on the controlled oxygen corrosion of an Fe substrate, by enabling the incorporation of additional Fe2+ into the Ni2+‐Fe3+ LDH structure. Indeed, microstructural and elemental analysis confirm the presence of additional Fe2+. This Fe‐rich Ni‐Fe LDH electrode not only offers a low OER overpotential (≈270 mV at 200 mA cm−2) but also exhibits an excellent operational stability under dynamic operating environments without any significant performance degradation or metal ion dissolution. Finally, the practical feasibility of the Fe‐rich Ni‐Fe LDH electrode is demonstrated in a single‐cell (34.56 cm2) operation. These findings are expected to aid in the development of reliable OER electrodes for use in commercial water electrolyzers. For green hydrogen production, the development of highly active and durable electrode materials that function the under intermittent power supply of renewable energies is necessary. Rational design of a stable iron‐rich nickel‐iron layered double hydroxide (Fe‐rich Ni‐Fe LDH) under dynamic operating conditions for alkaline oxygen evolution reaction is proposed, and its practical feasibility for industrially relevant application for water electroyzers is demonstrated. |
Author | Lee, Changsoo Mehdi, Muhammad Kim, MinJoong Kim, Haesol Kim, Chang‐Hee Cho, Hyun‐Seok Seo, Myeongmin Noh, Min Wook An, Byeong‐Seon Choi, Chang Hyuck Kim, Byung‐Hyun Cho, Won‐Chul Lee, Sechan |
Author_xml | – sequence: 1 givenname: Muhammad orcidid: 0000-0002-5786-6337 surname: Mehdi fullname: Mehdi, Muhammad organization: University of Science and Technology – sequence: 2 givenname: Byeong‐Seon surname: An fullname: An, Byeong‐Seon organization: Korea Institute of Energy Research – sequence: 3 givenname: Haesol surname: Kim fullname: Kim, Haesol organization: Pohang University of Science and Technology – sequence: 4 givenname: Sechan surname: Lee fullname: Lee, Sechan organization: Korea Institute of Energy Research – sequence: 5 givenname: Changsoo surname: Lee fullname: Lee, Changsoo organization: Korea Institute of Energy Research – sequence: 6 givenname: Myeongmin surname: Seo fullname: Seo, Myeongmin organization: Korea Institute of Energy Research – sequence: 7 givenname: Min Wook surname: Noh fullname: Noh, Min Wook organization: Pohang University of Science and Technology – sequence: 8 givenname: Won‐Chul surname: Cho fullname: Cho, Won‐Chul organization: Seoul National University of Science and Technology – sequence: 9 givenname: Chang‐Hee surname: Kim fullname: Kim, Chang‐Hee organization: Korea Institute of Energy Technology – sequence: 10 givenname: Chang Hyuck surname: Choi fullname: Choi, Chang Hyuck organization: Yonsei University – sequence: 11 givenname: Byung‐Hyun surname: Kim fullname: Kim, Byung‐Hyun email: bhkim@kier.re.kr organization: Korea Institute of Energy Research – sequence: 12 givenname: MinJoong orcidid: 0000-0002-2330-546X surname: Kim fullname: Kim, MinJoong email: mj.kim@kier.re.kr organization: University of Science and Technology – sequence: 13 givenname: Hyun‐Seok orcidid: 0000-0001-8356-4490 surname: Cho fullname: Cho, Hyun‐Seok email: hscho@kier.re.kr organization: University of Science and Technology |
BookMark | eNqFkEtLMzEUhoMoeN26DrhuzWXazCyLbVXop-AFl8OZmTMaTZOapOq48ie48gd-v8SpFQVBzCaH8D55Oc8mWbXOIiG7nHU5Y2If0E67ggnBkoTJFbLB-zzp9NOErX7NUqyTnRBuWXuSjDMpN8jbGUTtLBg6xKCvLXU1BXoeoTBIx_j_5dXr8oae6HYaI51Agx4rOnTzReCoqbx70hXS2nkab5Ae22oeotdgTEPP0OAD2EiHjYWpLunpDP1H36JmYO7AaIv0CiJ6OjJYRu9M84w-bJO1GkzAnc97i1yORxcHR53J6eHxwWDSKWVPyY5kPVanUChUDFgrQsmqKFjV45hmieIVQD8VlaylSpXCGhOBRVnwMoP2CZXcInvLf2fe3c8xxPzWzX2rI-QilTLt96TI2lR3mSq9C8Fjnc-8noJvcs7yhf58oT__0t8CyQ-g1PFj8ehBm9-xbIk9aoPNHyX5YHTy75t9B45yn6I |
CitedBy_id | crossref_primary_10_1007_s12274_024_6529_1 crossref_primary_10_1002_adma_202411688 crossref_primary_10_1002_adma_202412598 crossref_primary_10_1016_j_jcis_2024_02_198 crossref_primary_10_1002_advs_202408544 crossref_primary_10_1021_acsaem_3c01538 crossref_primary_10_1007_s12274_023_6385_4 crossref_primary_10_1021_acssuschemeng_4c01787 crossref_primary_10_1021_acs_inorgchem_4c03664 crossref_primary_10_1039_D4NR01186D crossref_primary_10_1021_acs_inorgchem_3c01639 crossref_primary_10_1039_D3RA07003D crossref_primary_10_1007_s11426_024_2428_y crossref_primary_10_1016_j_jcis_2024_07_098 crossref_primary_10_1021_acsanm_4c00604 crossref_primary_10_1155_2024_7856850 crossref_primary_10_1002_smll_202409097 crossref_primary_10_1016_j_apsusc_2023_159097 crossref_primary_10_1002_smll_202405468 crossref_primary_10_1039_D3NR06581B crossref_primary_10_1002_cctc_202401950 crossref_primary_10_1186_s40580_024_00467_w crossref_primary_10_1021_acs_energyfuels_4c03096 crossref_primary_10_1016_j_jechem_2023_08_005 crossref_primary_10_1002_cey2_542 crossref_primary_10_1002_cey2_543 crossref_primary_10_1155_2024_4097180 crossref_primary_10_1016_j_cej_2023_147991 crossref_primary_10_1021_acsami_4c01107 |
Cites_doi | 10.1021/ja502379c 10.1039/D0CY01179G 10.1007/s12274-015-0881-0 10.1002/adfm.202008190 10.1002/chem.201803165 10.4236/ojmetal.2012.21003 10.1016/j.mset.2019.03.002 10.1002/aenm.202102372 10.1021/ja511559d 10.1002/adfm.201902180 10.1002/smll.201902551 10.1016/j.jechem.2020.08.001 10.1039/C8EE01063C 10.1038/s41467-020-18891-x 10.1039/D2TA07261K 10.1021/jacs.1c07975 10.1016/j.jpowsour.2018.07.125 10.1021/acs.jpcc.5b05861 10.1038/s41467-018-05019-5 10.1149/2.0481815jes 10.1021/ja405351s 10.1016/j.jlp.2015.06.008 10.1039/D0NA00727G 10.1021/jacs.7b07117 10.1038/s41560-020-0576-y 10.1007/s12274-021-3759-3 10.1038/s41467-020-17934-7 10.1021/acsaem.1c02604 10.1016/j.est.2019.03.001 10.1038/s41467-021-25811-0 10.1021/acs.jpcc.5b00105 10.1002/anie.201404208 10.1016/j.chempr.2017.03.006 10.1002/adma.201903909 10.1098/rsta.2016.0400 10.1021/acs.nanolett.8b04466 10.1002/anie.201804881 10.1021/acs.nanolett.7b03313 10.1039/C6EE00377J 10.1002/cssc.201902841 10.1039/C6CP08590C 10.1021/jacs.6b12250 10.1016/j.electacta.2012.05.011 10.1016/j.electacta.2019.05.088 10.1016/j.ijpharm.2004.12.013 10.1039/D0TA10712C 10.1039/c3dt51521d 10.1016/j.apcatb.2019.118193 10.1039/C8EE01157E 10.1016/j.jallcom.2008.06.050 10.1021/acs.chemmater.8b01334 10.1038/nmat4938 10.1016/j.corsci.2012.11.028 10.1002/smll.202000663 10.1039/C6CS00328A 10.1038/srep13801 10.1016/j.ijhydene.2020.10.129 10.1016/j.nanoen.2020.105514 10.1021/jacs.6b00332 10.1002/adfm.202009032 10.1039/D1CS00186H 10.1002/aenm.201900954 10.1002/adsu.202000136 10.1038/s41929-020-0496-z 10.1002/elan.201600178 10.1021/acscatal.0c00304 10.1016/j.rser.2017.10.034 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202204403 |
DatabaseName | Wiley Online Library Open Access CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202204403 AENM202204403 |
Genre | article |
GrantInformation_xml | – fundername: Commercialization Promotion Agency funderid: 2023E300 – fundername: Hydrogen Energy Innovation Technology Development Program – fundername: National Research Foundation funderid: NRF‐2019M3E6A1064020 – fundername: Korea Institute of Energy Technology Evaluation and Planning funderid: 20218520040040 – fundername: Korea Institute for Advancement of Technology funderid: 1415183416 |
GroupedDBID | 05W 0R~ 1OC 24P 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3573-3050f8ab7e70a010073dbb0d51e89471daa682d3f37877efe42ebcb1c9af37e73 |
IEDL.DBID | 24P |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:18:22 EDT 2025 Tue Jul 01 01:43:50 EDT 2025 Thu Apr 24 22:54:58 EDT 2025 Wed Jan 22 16:20:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3573-3050f8ab7e70a010073dbb0d51e89471daa682d3f37877efe42ebcb1c9af37e73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5786-6337 0000-0001-8356-4490 0000-0002-2330-546X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202204403 |
PQID | 2833865329 |
PQPubID | 886389 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2833865329 crossref_primary_10_1002_aenm_202204403 crossref_citationtrail_10_1002_aenm_202204403 wiley_primary_10_1002_aenm_202204403_AENM202204403 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 37 2018; 165 2005; 293 2017; 2 2013; 69 2019; 12 2017; 46 2019; 15 2018; 400 2020; 16 2009; 474 2020; 13 2020; 11 2018; 82 2020; 10 2014; 136 2018; 9 2020; 5 2020; 3 2021; 31 2020; 2 2015; 137 2019; 23 2019; 29 2018; 30 2019; 315 2014; 53 2021; 80 2021; 9 2021; 46 2012; 82 2021; 5 2015; 5 2023; 11 2019; 31 2020; 261 2019; 2 2013; 42 2021; 143 2021; 50 2015; 8 2017; 139 2018; 24 2018; 19 2012; 2 2021; 56 2021; 12 2017; 17 2021 2017; 16 2022; 12 2017 2022; 15 2013; 135 2015; 119 2017; 19 2016; 138 2018; 11 2016; 28 2016; 9 2018; 57 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 19 start-page: 530 year: 2018 publication-title: Nano Lett. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 11 start-page: 2476 year: 2018 publication-title: Energy Environ. Sci. – volume: 23 start-page: 392 year: 2019 publication-title: J. Energy Storage – volume: 37 start-page: 39 year: 2015 publication-title: J Loss Prev Process Ind – volume: 11 start-page: 4066 year: 2020 publication-title: Nat. Commun. – year: 2021 – volume: 42 year: 2013 publication-title: Dalton Trans. – volume: 293 start-page: 101 year: 2005 publication-title: Int. J. Pharm. – volume: 119 start-page: 7243 year: 2015 publication-title: J. Phys. Chem. C – volume: 137 start-page: 1305 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 4067 year: 2023 publication-title: J Mater Chem A Mater – volume: 136 start-page: 6744 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 261 year: 2020 publication-title: Appl. Catal. B – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 315 start-page: 94 year: 2019 publication-title: Electrochim. Acta – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 165 year: 2018 publication-title: J. Electrochem. Soc. – volume: 17 start-page: 6922 year: 2017 publication-title: Nano Lett. – volume: 16 year: 2020 publication-title: Small – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – year: 2017 publication-title: Philos. Trans. R. Soc., A – volume: 46 start-page: 2143 year: 2021 publication-title: Int. J. Hydrogen Energy – volume: 16 start-page: 925 year: 2017 publication-title: Nat. Mater. – volume: 19 start-page: 7491 year: 2017 publication-title: Phys. Chem. Chem. Phys. – volume: 82 start-page: 3027 year: 2018 publication-title: Renewable Sustainable Energy Rev. – volume: 13 start-page: 811 year: 2020 publication-title: ChemSusChem – volume: 12 start-page: 5589 year: 2021 publication-title: Nat. Commun. – volume: 2 start-page: 5555 year: 2020 publication-title: Nanoscale Adv – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 139 start-page: 2070 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 337 year: 2017 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 590 year: 2017 publication-title: Chem – volume: 69 start-page: 97 year: 2013 publication-title: Corros. Sci. – volume: 10 start-page: 6254 year: 2020 publication-title: ACS Catal. – volume: 56 start-page: 299 year: 2021 publication-title: J Energy Chem – volume: 9 start-page: 2609 year: 2018 publication-title: Nat. Commun. – volume: 2 start-page: 442 year: 2019 publication-title: Mater Sci Energy Technol – volume: 400 start-page: 31 year: 2018 publication-title: J. Power Sources – volume: 474 start-page: 190 year: 2009 publication-title: J. Alloys Compd. – volume: 3 start-page: 743 year: 2020 publication-title: Nat. Catal. – volume: 8 start-page: 3815 year: 2015 publication-title: Nano Res. – volume: 57 start-page: 9392 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 5 year: 2021 publication-title: Adv Sustain Syst – volume: 2 start-page: 18 year: 2012 publication-title: Open J Met – volume: 30 start-page: 4321 year: 2018 publication-title: Chem. Mater. – volume: 119 year: 2015 publication-title: J. Phys. Chem. C – volume: 15 year: 2019 publication-title: Small – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 50 start-page: 8790 year: 2021 publication-title: Chem. Soc. Rev. – volume: 24 year: 2018 publication-title: Chemistry – volume: 11 start-page: 5075 year: 2020 publication-title: Nat. Commun. – volume: 28 start-page: 2394 year: 2016 publication-title: Electroanalysis – volume: 82 start-page: 384 year: 2012 publication-title: Electrochim. Acta – volume: 12 start-page: 463 year: 2019 publication-title: Energy Environ. Sci. – volume: 5 start-page: 222 year: 2020 publication-title: Nat. Energy – volume: 10 start-page: 5593 year: 2020 publication-title: Catal. Sci. Technol. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 1734 year: 2016 publication-title: Energy Environ. Sci. – volume: 138 start-page: 5603 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 80 year: 2021 publication-title: Nano Energy – volume: 15 start-page: 1824 year: 2022 publication-title: Nano Res. – volume: 9 start-page: 3180 year: 2021 publication-title: J Mater Chem A Mater – volume: 53 start-page: 7547 year: 2014 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_7_12_1 doi: 10.1021/ja502379c – ident: e_1_2_7_33_1 doi: 10.1039/D0CY01179G – ident: e_1_2_7_17_1 doi: 10.1007/s12274-015-0881-0 – ident: e_1_2_7_49_1 doi: 10.1002/adfm.202008190 – ident: e_1_2_7_35_1 doi: 10.1002/chem.201803165 – ident: e_1_2_7_55_1 doi: 10.4236/ojmetal.2012.21003 – ident: e_1_2_7_66_1 doi: 10.1016/j.mset.2019.03.002 – ident: e_1_2_7_46_1 doi: 10.1002/aenm.202102372 – ident: e_1_2_7_11_1 doi: 10.1021/ja511559d – ident: e_1_2_7_41_1 doi: 10.1002/adfm.201902180 – ident: e_1_2_7_47_1 doi: 10.1002/smll.201902551 – ident: e_1_2_7_7_1 doi: 10.1016/j.jechem.2020.08.001 – ident: e_1_2_7_25_1 doi: 10.1039/C8EE01063C – ident: e_1_2_7_58_1 doi: 10.1038/s41467-020-18891-x – ident: e_1_2_7_62_1 doi: 10.1039/D2TA07261K – ident: e_1_2_7_23_1 doi: 10.1021/jacs.1c07975 – ident: e_1_2_7_8_1 doi: 10.1016/j.jpowsour.2018.07.125 – ident: e_1_2_7_38_1 doi: 10.1021/acs.jpcc.5b05861 – ident: e_1_2_7_42_1 doi: 10.1038/s41467-018-05019-5 – ident: e_1_2_7_63_1 doi: 10.1149/2.0481815jes – ident: e_1_2_7_13_1 doi: 10.1021/ja405351s – ident: e_1_2_7_43_1 doi: 10.1016/j.jlp.2015.06.008 – ident: e_1_2_7_14_1 doi: 10.1039/D0NA00727G – ident: e_1_2_7_21_1 doi: 10.1021/jacs.7b07117 – ident: e_1_2_7_31_1 doi: 10.1038/s41560-020-0576-y – ident: e_1_2_7_5_1 doi: 10.1007/s12274-021-3759-3 – ident: e_1_2_7_52_1 doi: 10.1038/s41467-020-17934-7 – ident: e_1_2_7_32_1 doi: 10.1021/acsaem.1c02604 – ident: e_1_2_7_4_1 doi: 10.1016/j.est.2019.03.001 – ident: e_1_2_7_59_1 doi: 10.1038/s41467-021-25811-0 – ident: e_1_2_7_10_1 doi: 10.1021/acs.jpcc.5b00105 – ident: e_1_2_7_16_1 doi: 10.1002/anie.201404208 – ident: e_1_2_7_36_1 doi: 10.1016/j.chempr.2017.03.006 – ident: e_1_2_7_34_1 doi: 10.1002/adma.201903909 – ident: e_1_2_7_1_1 doi: 10.1098/rsta.2016.0400 – ident: e_1_2_7_51_1 doi: 10.1021/acs.nanolett.8b04466 – ident: e_1_2_7_60_1 doi: 10.1002/anie.201804881 – ident: e_1_2_7_24_1 doi: 10.1021/acs.nanolett.7b03313 – ident: e_1_2_7_56_1 doi: 10.1039/C6EE00377J – ident: e_1_2_7_57_1 doi: 10.1002/cssc.201902841 – ident: e_1_2_7_26_1 doi: 10.1039/C6CP08590C – ident: e_1_2_7_27_1 doi: 10.1021/jacs.6b12250 – ident: e_1_2_7_65_1 doi: 10.1016/j.electacta.2012.05.011 – ident: e_1_2_7_37_1 doi: 10.1016/j.electacta.2019.05.088 – ident: e_1_2_7_45_1 doi: 10.1016/j.ijpharm.2004.12.013 – ident: e_1_2_7_18_1 doi: 10.1039/D0TA10712C – ident: e_1_2_7_48_1 doi: 10.1039/c3dt51521d – ident: e_1_2_7_29_1 doi: 10.1016/j.apcatb.2019.118193 – ident: e_1_2_7_2_1 doi: 10.1039/C8EE01157E – ident: e_1_2_7_54_1 doi: 10.1016/j.jallcom.2008.06.050 – ident: e_1_2_7_19_1 doi: 10.1021/acs.chemmater.8b01334 – ident: e_1_2_7_53_1 doi: 10.1038/nmat4938 – ident: e_1_2_7_44_1 doi: 10.1016/j.corsci.2012.11.028 – ident: e_1_2_7_40_1 doi: 10.1002/smll.202000663 – ident: e_1_2_7_6_1 doi: 10.1039/C6CS00328A – ident: e_1_2_7_61_1 doi: 10.1038/srep13801 – ident: e_1_2_7_28_1 doi: 10.1016/j.ijhydene.2020.10.129 – ident: e_1_2_7_22_1 doi: 10.1016/j.nanoen.2020.105514 – ident: e_1_2_7_67_1 doi: 10.1021/jacs.6b00332 – ident: e_1_2_7_39_1 doi: 10.1002/adfm.202009032 – ident: e_1_2_7_20_1 doi: 10.1039/D1CS00186H – ident: e_1_2_7_15_1 doi: 10.1002/aenm.201900954 – ident: e_1_2_7_9_1 doi: 10.1002/adsu.202000136 – ident: e_1_2_7_30_1 doi: 10.1038/s41929-020-0496-z – ident: e_1_2_7_64_1 doi: 10.1002/elan.201600178 – ident: e_1_2_7_50_1 doi: 10.1021/acscatal.0c00304 – ident: e_1_2_7_3_1 doi: 10.1016/j.rser.2017.10.034 |
SSID | ssj0000491033 |
Score | 2.5981832 |
Snippet | Nickel‐iron layered double hydroxides (Ni‐Fe LDHs) consist of stacked Fe3+‐doped positively charged Ni‐hydroxide layers containing charge‐balancing anions and... Nickel‐iron layered double hydroxides (Ni‐Fe LDHs) consist of stacked Fe 3+ ‐doped positively charged Ni‐hydroxide layers containing charge‐balancing anions... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | alkaline water electrolysis Corrosion prevention Density functional theory dynamic operation stability Dynamic stability Electrodes Ferric ions Ferrous ions Hydroxides Iron Nickel Ni‐Fe layered double hydroxide oxygen corrosion method oxygen evolution reaction Oxygen evolution reactions Performance degradation Structural stability Substrates Water chemistry |
Title | Rational Design of a Stable Fe‐rich Ni‐Fe Layered Double Hydroxide for the Industrially Relevant Dynamic Operation of Alkaline Water Electrolyzers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202204403 https://www.proquest.com/docview/2833865329 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEF3a5NIeSj-p2yTModDTEmlX0spHU9uYErslbWhuYlc7S0OEHZwE4p7yE3LqD-wvyYwky86hFHqTxGoFOzM7T8POe0J8wED_GDFG0mdeyyRYIy1mpUwx905llGJK7neezrLJSfL5ND3d6uJv-CG6ghtHRr1fc4Bbd3m4IQ21OOdOcqVYNFk_FrvcX8viDSr52lVZCP_GUa0nT8gmkRn575q5MVKHD6d4mJk2cHMbtNZZZ_xcPGvhIgwa-74Qj3D-UjzdIhF8JX4ft_U8GNanMWARwAKBSFchjPHP7R1tdT9hdkZXY4Qju2J5TiDkzAMmK79c3Jx5BEKvQGgQNmIe1QqOuf2cFh-GjXI9fLnAxmf4M4Pq3PJCwg9CrEsYNZI61eoXYcrX4mQ8-v5pIlu1BVnq1GhJgR-F3DqDJrIRH57Q3rnIpzHmfUph3tosV14HTTFuMGCi0JUuLvuWHqHRb8TOfDHHtwIyNEEniXZKhcT0VZ7FrgxGG5vqQJtAT8j1ShdlS0XOihhV0ZAoq4ItU3SW6YmP3fiLhoTjryP31oYr2mC8LAhBsbKpVv2eULUx_zFLMRjNpt3du_956b14wsL0zcHePbFztbzGfYIvV-6g9tADsTsYTo--3QNIeer6 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVgOQAHxKcoLDAHJE7WJrYTp8eKbVWgLWi1K7hFdjzWrojaVVkkyomfwIkfyC9hJknT3QNC4pZEjiN5PJ6X0cx7QrzESP8YKSYy5EFLE52VDvNKZlgEr3IKMRX3O88X-fTEvP2UbasJuRem5YfoE27sGc15zQ7OCemDHWuowyW3kivFqsn6urhhCJwzfb4yH_o0CwHgNGkE5QnaGJnTBt5SNybq4OoUV0PTDm9eRq1N2JncFXc6vAij1sD3xDVc3he3L7EIPhC_jrqEHhw25RiwiuCAUKSvESb4-8dPOutOYXFGVxOEmduwPicQdOYB001Yr76dBQSCr0BwEHZqHvUGjrj_nFYfDlvpenh_ju2m4c-M6s-OVxI-EmRdw7jV1Kk33wlUPhQnk_Hx66ns5BZkpTOrJXl-EgvnLdrEJVw9oYP3SchSLIYUw4JzeaGCjpqc3GJEo9BXPq2Gjh6h1Y_E3nK1xMcCcrRRG6O9UtHYoSry1FfRausyHekUGAi5Xemy6rjIWRKjLlsWZVWyZcreMgPxqh9_3rJw_HXk_tZwZeeNX0qCUCxtqtVwIFRjzH_MUo7Gi3l_9-R_Xnohbk6P57Ny9mbx7qm4xSr1bZXvvti7WH_FZ4RlLvzzZrf-AajB7Ng |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVgkRAcEJ-iywJzQOJkbWIncXqsaKMCu2W1YsXeIjseixVRW5VF2nLiJ3DiB_JLmEnStHtASNySaOJIHo_nxfa8J8QrDPSPEWMkfea1TII10mJWyRRz71RGKabieufjWTY9S96dp-c7VfwtP0S_4MaR0czXHOBLHw63pKEW51xJrhSLJuub4hbv-LF4g0pO-lUWwr9x1OjJE7JJZEbjd8PcGKnD601cz0xbuLkLWpusU9wX9zq4CKPWvw_EDZw_FHd3SAQfiV-n3XoejJvTGLAIYIFApKsRCvz94ydNdZ9hdkFXBcKRXbM8JxByZoPp2q8WVxcegdArEBqErZhHvYZTLj-nzodxq1wPH5bYjhn-zKj-Yrkj4RMh1hVMWkmdev2dMOVjcVZMPr6Zyk5tQVY6NVpS4Echt86giWzEhye0dy7yaYz5kFKYtzbLlddBU4wbDJgodJWLq6GlR2j0E7E3X8zxqYAMTdBJop1SITFDlWexq4LRxqY60CQwEHLT02XVUZGzIkZdtiTKqmTPlL1nBuJ1b79sSTj-anmwcVzZBePXkhAUK5tqNRwI1TjzH62Uo8nsuL_b_5-XXorbJ-OiPHo7e_9M3GGN-vaM74HYu1x9w-eEZC7di2aw_gE9o-wB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+Design+of+a+Stable+Fe%E2%80%90rich+Ni%E2%80%90Fe+Layered+Double+Hydroxide+for+the+Industrially+Relevant+Dynamic+Operation+of+Alkaline+Water+Electrolyzers&rft.jtitle=Advanced+energy+materials&rft.au=Mehdi%2C+Muhammad&rft.au=An%2C+Byeong%E2%80%90Seon&rft.au=Kim%2C+Haesol&rft.au=Lee%2C+Sechan&rft.date=2023-07-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=25&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202204403&rft.externalDBID=10.1002%252Faenm.202204403&rft.externalDocID=AENM202204403 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |