Rational Design of a Stable Fe‐rich Ni‐Fe Layered Double Hydroxide for the Industrially Relevant Dynamic Operation of Alkaline Water Electrolyzers

Nickel‐iron layered double hydroxides (Ni‐Fe LDHs) consist of stacked Fe3+‐doped positively charged Ni‐hydroxide layers containing charge‐balancing anions and water molecules between the layers. Although Ni‐Fe LDHs are highly active in the oxygen evolution reaction (OER) under alkaline conditions, t...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 13; no. 25
Main Authors Mehdi, Muhammad, An, Byeong‐Seon, Kim, Haesol, Lee, Sechan, Lee, Changsoo, Seo, Myeongmin, Noh, Min Wook, Cho, Won‐Chul, Kim, Chang‐Hee, Choi, Chang Hyuck, Kim, Byung‐Hyun, Kim, MinJoong, Cho, Hyun‐Seok
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.07.2023
Subjects
Online AccessGet full text
ISSN1614-6832
1614-6840
DOI10.1002/aenm.202204403

Cover

Abstract Nickel‐iron layered double hydroxides (Ni‐Fe LDHs) consist of stacked Fe3+‐doped positively charged Ni‐hydroxide layers containing charge‐balancing anions and water molecules between the layers. Although Ni‐Fe LDHs are highly active in the oxygen evolution reaction (OER) under alkaline conditions, their poor operational stability remains an issue. Herein, based on density functional theory calculations, it is proposed that the inclusion of a higher Fe content (>40%) than the theoretical Fe3+ limit (≈25%) permitted by Ni‐Fe LDHs can lead to improved structural stability. An Fe‐rich Ni‐Fe LDH electrode is therefore prepared via a growth strategy based on the controlled oxygen corrosion of an Fe substrate, by enabling the incorporation of additional Fe2+ into the Ni2+‐Fe3+ LDH structure. Indeed, microstructural and elemental analysis confirm the presence of additional Fe2+. This Fe‐rich Ni‐Fe LDH electrode not only offers a low OER overpotential (≈270 mV at 200 mA cm−2) but also exhibits an excellent operational stability under dynamic operating environments without any significant performance degradation or metal ion dissolution. Finally, the practical feasibility of the Fe‐rich Ni‐Fe LDH electrode is demonstrated in a single‐cell (34.56 cm2) operation. These findings are expected to aid in the development of reliable OER electrodes for use in commercial water electrolyzers. For green hydrogen production, the development of highly active and durable electrode materials that function the under intermittent power supply of renewable energies is necessary. Rational design of a stable iron‐rich nickel‐iron layered double hydroxide (Fe‐rich Ni‐Fe LDH) under dynamic operating conditions for alkaline oxygen evolution reaction is proposed, and its practical feasibility for industrially relevant application for water electroyzers is demonstrated.
AbstractList Nickel‐iron layered double hydroxides (Ni‐Fe LDHs) consist of stacked Fe 3+ ‐doped positively charged Ni‐hydroxide layers containing charge‐balancing anions and water molecules between the layers. Although Ni‐Fe LDHs are highly active in the oxygen evolution reaction (OER) under alkaline conditions, their poor operational stability remains an issue. Herein, based on density functional theory calculations, it is proposed that the inclusion of a higher Fe content (>40%) than the theoretical Fe 3+ limit (≈25%) permitted by Ni‐Fe LDHs can lead to improved structural stability. An Fe‐rich Ni‐Fe LDH electrode is therefore prepared via a growth strategy based on the controlled oxygen corrosion of an Fe substrate, by enabling the incorporation of additional Fe 2+ into the Ni 2+ ‐Fe 3+ LDH structure. Indeed, microstructural and elemental analysis confirm the presence of additional Fe 2+ . This Fe‐rich Ni‐Fe LDH electrode not only offers a low OER overpotential (≈270 mV at 200 mA cm −2 ) but also exhibits an excellent operational stability under dynamic operating environments without any significant performance degradation or metal ion dissolution. Finally, the practical feasibility of the Fe‐rich Ni‐Fe LDH electrode is demonstrated in a single‐cell (34.56 cm 2 ) operation. These findings are expected to aid in the development of reliable OER electrodes for use in commercial water electrolyzers.
Nickel‐iron layered double hydroxides (Ni‐Fe LDHs) consist of stacked Fe3+‐doped positively charged Ni‐hydroxide layers containing charge‐balancing anions and water molecules between the layers. Although Ni‐Fe LDHs are highly active in the oxygen evolution reaction (OER) under alkaline conditions, their poor operational stability remains an issue. Herein, based on density functional theory calculations, it is proposed that the inclusion of a higher Fe content (>40%) than the theoretical Fe3+ limit (≈25%) permitted by Ni‐Fe LDHs can lead to improved structural stability. An Fe‐rich Ni‐Fe LDH electrode is therefore prepared via a growth strategy based on the controlled oxygen corrosion of an Fe substrate, by enabling the incorporation of additional Fe2+ into the Ni2+‐Fe3+ LDH structure. Indeed, microstructural and elemental analysis confirm the presence of additional Fe2+. This Fe‐rich Ni‐Fe LDH electrode not only offers a low OER overpotential (≈270 mV at 200 mA cm−2) but also exhibits an excellent operational stability under dynamic operating environments without any significant performance degradation or metal ion dissolution. Finally, the practical feasibility of the Fe‐rich Ni‐Fe LDH electrode is demonstrated in a single‐cell (34.56 cm2) operation. These findings are expected to aid in the development of reliable OER electrodes for use in commercial water electrolyzers.
Nickel‐iron layered double hydroxides (Ni‐Fe LDHs) consist of stacked Fe3+‐doped positively charged Ni‐hydroxide layers containing charge‐balancing anions and water molecules between the layers. Although Ni‐Fe LDHs are highly active in the oxygen evolution reaction (OER) under alkaline conditions, their poor operational stability remains an issue. Herein, based on density functional theory calculations, it is proposed that the inclusion of a higher Fe content (>40%) than the theoretical Fe3+ limit (≈25%) permitted by Ni‐Fe LDHs can lead to improved structural stability. An Fe‐rich Ni‐Fe LDH electrode is therefore prepared via a growth strategy based on the controlled oxygen corrosion of an Fe substrate, by enabling the incorporation of additional Fe2+ into the Ni2+‐Fe3+ LDH structure. Indeed, microstructural and elemental analysis confirm the presence of additional Fe2+. This Fe‐rich Ni‐Fe LDH electrode not only offers a low OER overpotential (≈270 mV at 200 mA cm−2) but also exhibits an excellent operational stability under dynamic operating environments without any significant performance degradation or metal ion dissolution. Finally, the practical feasibility of the Fe‐rich Ni‐Fe LDH electrode is demonstrated in a single‐cell (34.56 cm2) operation. These findings are expected to aid in the development of reliable OER electrodes for use in commercial water electrolyzers. For green hydrogen production, the development of highly active and durable electrode materials that function the under intermittent power supply of renewable energies is necessary. Rational design of a stable iron‐rich nickel‐iron layered double hydroxide (Fe‐rich Ni‐Fe LDH) under dynamic operating conditions for alkaline oxygen evolution reaction is proposed, and its practical feasibility for industrially relevant application for water electroyzers is demonstrated.
Author Lee, Changsoo
Mehdi, Muhammad
Kim, MinJoong
Kim, Haesol
Kim, Chang‐Hee
Cho, Hyun‐Seok
Seo, Myeongmin
Noh, Min Wook
An, Byeong‐Seon
Choi, Chang Hyuck
Kim, Byung‐Hyun
Cho, Won‐Chul
Lee, Sechan
Author_xml – sequence: 1
  givenname: Muhammad
  orcidid: 0000-0002-5786-6337
  surname: Mehdi
  fullname: Mehdi, Muhammad
  organization: University of Science and Technology
– sequence: 2
  givenname: Byeong‐Seon
  surname: An
  fullname: An, Byeong‐Seon
  organization: Korea Institute of Energy Research
– sequence: 3
  givenname: Haesol
  surname: Kim
  fullname: Kim, Haesol
  organization: Pohang University of Science and Technology
– sequence: 4
  givenname: Sechan
  surname: Lee
  fullname: Lee, Sechan
  organization: Korea Institute of Energy Research
– sequence: 5
  givenname: Changsoo
  surname: Lee
  fullname: Lee, Changsoo
  organization: Korea Institute of Energy Research
– sequence: 6
  givenname: Myeongmin
  surname: Seo
  fullname: Seo, Myeongmin
  organization: Korea Institute of Energy Research
– sequence: 7
  givenname: Min Wook
  surname: Noh
  fullname: Noh, Min Wook
  organization: Pohang University of Science and Technology
– sequence: 8
  givenname: Won‐Chul
  surname: Cho
  fullname: Cho, Won‐Chul
  organization: Seoul National University of Science and Technology
– sequence: 9
  givenname: Chang‐Hee
  surname: Kim
  fullname: Kim, Chang‐Hee
  organization: Korea Institute of Energy Technology
– sequence: 10
  givenname: Chang Hyuck
  surname: Choi
  fullname: Choi, Chang Hyuck
  organization: Yonsei University
– sequence: 11
  givenname: Byung‐Hyun
  surname: Kim
  fullname: Kim, Byung‐Hyun
  email: bhkim@kier.re.kr
  organization: Korea Institute of Energy Research
– sequence: 12
  givenname: MinJoong
  orcidid: 0000-0002-2330-546X
  surname: Kim
  fullname: Kim, MinJoong
  email: mj.kim@kier.re.kr
  organization: University of Science and Technology
– sequence: 13
  givenname: Hyun‐Seok
  orcidid: 0000-0001-8356-4490
  surname: Cho
  fullname: Cho, Hyun‐Seok
  email: hscho@kier.re.kr
  organization: University of Science and Technology
BookMark eNqFkEtLMzEUhoMoeN26DrhuzWXazCyLbVXop-AFl8OZmTMaTZOapOq48ie48gd-v8SpFQVBzCaH8D55Oc8mWbXOIiG7nHU5Y2If0E67ggnBkoTJFbLB-zzp9NOErX7NUqyTnRBuWXuSjDMpN8jbGUTtLBg6xKCvLXU1BXoeoTBIx_j_5dXr8oae6HYaI51Agx4rOnTzReCoqbx70hXS2nkab5Ae22oeotdgTEPP0OAD2EiHjYWpLunpDP1H36JmYO7AaIv0CiJ6OjJYRu9M84w-bJO1GkzAnc97i1yORxcHR53J6eHxwWDSKWVPyY5kPVanUChUDFgrQsmqKFjV45hmieIVQD8VlaylSpXCGhOBRVnwMoP2CZXcInvLf2fe3c8xxPzWzX2rI-QilTLt96TI2lR3mSq9C8Fjnc-8noJvcs7yhf58oT__0t8CyQ-g1PFj8ehBm9-xbIk9aoPNHyX5YHTy75t9B45yn6I
CitedBy_id crossref_primary_10_1007_s12274_024_6529_1
crossref_primary_10_1002_adma_202411688
crossref_primary_10_1002_adma_202412598
crossref_primary_10_1016_j_jcis_2024_02_198
crossref_primary_10_1002_advs_202408544
crossref_primary_10_1021_acsaem_3c01538
crossref_primary_10_1007_s12274_023_6385_4
crossref_primary_10_1021_acssuschemeng_4c01787
crossref_primary_10_1021_acs_inorgchem_4c03664
crossref_primary_10_1039_D4NR01186D
crossref_primary_10_1021_acs_inorgchem_3c01639
crossref_primary_10_1039_D3RA07003D
crossref_primary_10_1007_s11426_024_2428_y
crossref_primary_10_1016_j_jcis_2024_07_098
crossref_primary_10_1021_acsanm_4c00604
crossref_primary_10_1155_2024_7856850
crossref_primary_10_1002_smll_202409097
crossref_primary_10_1016_j_apsusc_2023_159097
crossref_primary_10_1002_smll_202405468
crossref_primary_10_1039_D3NR06581B
crossref_primary_10_1002_cctc_202401950
crossref_primary_10_1186_s40580_024_00467_w
crossref_primary_10_1021_acs_energyfuels_4c03096
crossref_primary_10_1016_j_jechem_2023_08_005
crossref_primary_10_1002_cey2_542
crossref_primary_10_1002_cey2_543
crossref_primary_10_1155_2024_4097180
crossref_primary_10_1016_j_cej_2023_147991
crossref_primary_10_1021_acsami_4c01107
Cites_doi 10.1021/ja502379c
10.1039/D0CY01179G
10.1007/s12274-015-0881-0
10.1002/adfm.202008190
10.1002/chem.201803165
10.4236/ojmetal.2012.21003
10.1016/j.mset.2019.03.002
10.1002/aenm.202102372
10.1021/ja511559d
10.1002/adfm.201902180
10.1002/smll.201902551
10.1016/j.jechem.2020.08.001
10.1039/C8EE01063C
10.1038/s41467-020-18891-x
10.1039/D2TA07261K
10.1021/jacs.1c07975
10.1016/j.jpowsour.2018.07.125
10.1021/acs.jpcc.5b05861
10.1038/s41467-018-05019-5
10.1149/2.0481815jes
10.1021/ja405351s
10.1016/j.jlp.2015.06.008
10.1039/D0NA00727G
10.1021/jacs.7b07117
10.1038/s41560-020-0576-y
10.1007/s12274-021-3759-3
10.1038/s41467-020-17934-7
10.1021/acsaem.1c02604
10.1016/j.est.2019.03.001
10.1038/s41467-021-25811-0
10.1021/acs.jpcc.5b00105
10.1002/anie.201404208
10.1016/j.chempr.2017.03.006
10.1002/adma.201903909
10.1098/rsta.2016.0400
10.1021/acs.nanolett.8b04466
10.1002/anie.201804881
10.1021/acs.nanolett.7b03313
10.1039/C6EE00377J
10.1002/cssc.201902841
10.1039/C6CP08590C
10.1021/jacs.6b12250
10.1016/j.electacta.2012.05.011
10.1016/j.electacta.2019.05.088
10.1016/j.ijpharm.2004.12.013
10.1039/D0TA10712C
10.1039/c3dt51521d
10.1016/j.apcatb.2019.118193
10.1039/C8EE01157E
10.1016/j.jallcom.2008.06.050
10.1021/acs.chemmater.8b01334
10.1038/nmat4938
10.1016/j.corsci.2012.11.028
10.1002/smll.202000663
10.1039/C6CS00328A
10.1038/srep13801
10.1016/j.ijhydene.2020.10.129
10.1016/j.nanoen.2020.105514
10.1021/jacs.6b00332
10.1002/adfm.202009032
10.1039/D1CS00186H
10.1002/aenm.201900954
10.1002/adsu.202000136
10.1038/s41929-020-0496-z
10.1002/elan.201600178
10.1021/acscatal.0c00304
10.1016/j.rser.2017.10.034
ContentType Journal Article
Copyright 2023 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202204403
DatabaseName Wiley Online Library Open Access
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Aerospace Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202204403
AENM202204403
Genre article
GrantInformation_xml – fundername: Commercialization Promotion Agency
  funderid: 2023E300
– fundername: Hydrogen Energy Innovation Technology Development Program
– fundername: National Research Foundation
  funderid: NRF‐2019M3E6A1064020
– fundername: Korea Institute of Energy Technology Evaluation and Planning
  funderid: 20218520040040
– fundername: Korea Institute for Advancement of Technology
  funderid: 1415183416
GroupedDBID 05W
0R~
1OC
24P
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3573-3050f8ab7e70a010073dbb0d51e89471daa682d3f37877efe42ebcb1c9af37e73
IEDL.DBID 24P
ISSN 1614-6832
IngestDate Fri Jul 25 12:18:22 EDT 2025
Tue Jul 01 01:43:50 EDT 2025
Thu Apr 24 22:54:58 EDT 2025
Wed Jan 22 16:20:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3573-3050f8ab7e70a010073dbb0d51e89471daa682d3f37877efe42ebcb1c9af37e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5786-6337
0000-0001-8356-4490
0000-0002-2330-546X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202204403
PQID 2833865329
PQPubID 886389
PageCount 11
ParticipantIDs proquest_journals_2833865329
crossref_primary_10_1002_aenm_202204403
crossref_citationtrail_10_1002_aenm_202204403
wiley_primary_10_1002_aenm_202204403_AENM202204403
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 37
2018; 165
2005; 293
2017; 2
2013; 69
2019; 12
2017; 46
2019; 15
2018; 400
2020; 16
2009; 474
2020; 13
2020; 11
2018; 82
2020; 10
2014; 136
2018; 9
2020; 5
2020; 3
2021; 31
2020; 2
2015; 137
2019; 23
2019; 29
2018; 30
2019; 315
2014; 53
2021; 80
2021; 9
2021; 46
2012; 82
2021; 5
2015; 5
2023; 11
2019; 31
2020; 261
2019; 2
2013; 42
2021; 143
2021; 50
2015; 8
2017; 139
2018; 24
2018; 19
2012; 2
2021; 56
2021; 12
2017; 17
2021
2017; 16
2022; 12
2017
2022; 15
2013; 135
2015; 119
2017; 19
2016; 138
2018; 11
2016; 28
2016; 9
2018; 57
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 19
  start-page: 530
  year: 2018
  publication-title: Nano Lett.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 2476
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 23
  start-page: 392
  year: 2019
  publication-title: J. Energy Storage
– volume: 37
  start-page: 39
  year: 2015
  publication-title: J Loss Prev Process Ind
– volume: 11
  start-page: 4066
  year: 2020
  publication-title: Nat. Commun.
– year: 2021
– volume: 42
  year: 2013
  publication-title: Dalton Trans.
– volume: 293
  start-page: 101
  year: 2005
  publication-title: Int. J. Pharm.
– volume: 119
  start-page: 7243
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 137
  start-page: 1305
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 4067
  year: 2023
  publication-title: J Mater Chem A Mater
– volume: 136
  start-page: 6744
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 261
  year: 2020
  publication-title: Appl. Catal. B
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 315
  start-page: 94
  year: 2019
  publication-title: Electrochim. Acta
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 165
  year: 2018
  publication-title: J. Electrochem. Soc.
– volume: 17
  start-page: 6922
  year: 2017
  publication-title: Nano Lett.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– year: 2017
  publication-title: Philos. Trans. R. Soc., A
– volume: 46
  start-page: 2143
  year: 2021
  publication-title: Int. J. Hydrogen Energy
– volume: 16
  start-page: 925
  year: 2017
  publication-title: Nat. Mater.
– volume: 19
  start-page: 7491
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 82
  start-page: 3027
  year: 2018
  publication-title: Renewable Sustainable Energy Rev.
– volume: 13
  start-page: 811
  year: 2020
  publication-title: ChemSusChem
– volume: 12
  start-page: 5589
  year: 2021
  publication-title: Nat. Commun.
– volume: 2
  start-page: 5555
  year: 2020
  publication-title: Nanoscale Adv
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 139
  start-page: 2070
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 337
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 590
  year: 2017
  publication-title: Chem
– volume: 69
  start-page: 97
  year: 2013
  publication-title: Corros. Sci.
– volume: 10
  start-page: 6254
  year: 2020
  publication-title: ACS Catal.
– volume: 56
  start-page: 299
  year: 2021
  publication-title: J Energy Chem
– volume: 9
  start-page: 2609
  year: 2018
  publication-title: Nat. Commun.
– volume: 2
  start-page: 442
  year: 2019
  publication-title: Mater Sci Energy Technol
– volume: 400
  start-page: 31
  year: 2018
  publication-title: J. Power Sources
– volume: 474
  start-page: 190
  year: 2009
  publication-title: J. Alloys Compd.
– volume: 3
  start-page: 743
  year: 2020
  publication-title: Nat. Catal.
– volume: 8
  start-page: 3815
  year: 2015
  publication-title: Nano Res.
– volume: 57
  start-page: 9392
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 5
  year: 2021
  publication-title: Adv Sustain Syst
– volume: 2
  start-page: 18
  year: 2012
  publication-title: Open J Met
– volume: 30
  start-page: 4321
  year: 2018
  publication-title: Chem. Mater.
– volume: 119
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 15
  year: 2019
  publication-title: Small
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 50
  start-page: 8790
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 24
  year: 2018
  publication-title: Chemistry
– volume: 11
  start-page: 5075
  year: 2020
  publication-title: Nat. Commun.
– volume: 28
  start-page: 2394
  year: 2016
  publication-title: Electroanalysis
– volume: 82
  start-page: 384
  year: 2012
  publication-title: Electrochim. Acta
– volume: 12
  start-page: 463
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 222
  year: 2020
  publication-title: Nat. Energy
– volume: 10
  start-page: 5593
  year: 2020
  publication-title: Catal. Sci. Technol.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 1734
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 138
  start-page: 5603
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 80
  year: 2021
  publication-title: Nano Energy
– volume: 15
  start-page: 1824
  year: 2022
  publication-title: Nano Res.
– volume: 9
  start-page: 3180
  year: 2021
  publication-title: J Mater Chem A Mater
– volume: 53
  start-page: 7547
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_7_12_1
  doi: 10.1021/ja502379c
– ident: e_1_2_7_33_1
  doi: 10.1039/D0CY01179G
– ident: e_1_2_7_17_1
  doi: 10.1007/s12274-015-0881-0
– ident: e_1_2_7_49_1
  doi: 10.1002/adfm.202008190
– ident: e_1_2_7_35_1
  doi: 10.1002/chem.201803165
– ident: e_1_2_7_55_1
  doi: 10.4236/ojmetal.2012.21003
– ident: e_1_2_7_66_1
  doi: 10.1016/j.mset.2019.03.002
– ident: e_1_2_7_46_1
  doi: 10.1002/aenm.202102372
– ident: e_1_2_7_11_1
  doi: 10.1021/ja511559d
– ident: e_1_2_7_41_1
  doi: 10.1002/adfm.201902180
– ident: e_1_2_7_47_1
  doi: 10.1002/smll.201902551
– ident: e_1_2_7_7_1
  doi: 10.1016/j.jechem.2020.08.001
– ident: e_1_2_7_25_1
  doi: 10.1039/C8EE01063C
– ident: e_1_2_7_58_1
  doi: 10.1038/s41467-020-18891-x
– ident: e_1_2_7_62_1
  doi: 10.1039/D2TA07261K
– ident: e_1_2_7_23_1
  doi: 10.1021/jacs.1c07975
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jpowsour.2018.07.125
– ident: e_1_2_7_38_1
  doi: 10.1021/acs.jpcc.5b05861
– ident: e_1_2_7_42_1
  doi: 10.1038/s41467-018-05019-5
– ident: e_1_2_7_63_1
  doi: 10.1149/2.0481815jes
– ident: e_1_2_7_13_1
  doi: 10.1021/ja405351s
– ident: e_1_2_7_43_1
  doi: 10.1016/j.jlp.2015.06.008
– ident: e_1_2_7_14_1
  doi: 10.1039/D0NA00727G
– ident: e_1_2_7_21_1
  doi: 10.1021/jacs.7b07117
– ident: e_1_2_7_31_1
  doi: 10.1038/s41560-020-0576-y
– ident: e_1_2_7_5_1
  doi: 10.1007/s12274-021-3759-3
– ident: e_1_2_7_52_1
  doi: 10.1038/s41467-020-17934-7
– ident: e_1_2_7_32_1
  doi: 10.1021/acsaem.1c02604
– ident: e_1_2_7_4_1
  doi: 10.1016/j.est.2019.03.001
– ident: e_1_2_7_59_1
  doi: 10.1038/s41467-021-25811-0
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.jpcc.5b00105
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.201404208
– ident: e_1_2_7_36_1
  doi: 10.1016/j.chempr.2017.03.006
– ident: e_1_2_7_34_1
  doi: 10.1002/adma.201903909
– ident: e_1_2_7_1_1
  doi: 10.1098/rsta.2016.0400
– ident: e_1_2_7_51_1
  doi: 10.1021/acs.nanolett.8b04466
– ident: e_1_2_7_60_1
  doi: 10.1002/anie.201804881
– ident: e_1_2_7_24_1
  doi: 10.1021/acs.nanolett.7b03313
– ident: e_1_2_7_56_1
  doi: 10.1039/C6EE00377J
– ident: e_1_2_7_57_1
  doi: 10.1002/cssc.201902841
– ident: e_1_2_7_26_1
  doi: 10.1039/C6CP08590C
– ident: e_1_2_7_27_1
  doi: 10.1021/jacs.6b12250
– ident: e_1_2_7_65_1
  doi: 10.1016/j.electacta.2012.05.011
– ident: e_1_2_7_37_1
  doi: 10.1016/j.electacta.2019.05.088
– ident: e_1_2_7_45_1
  doi: 10.1016/j.ijpharm.2004.12.013
– ident: e_1_2_7_18_1
  doi: 10.1039/D0TA10712C
– ident: e_1_2_7_48_1
  doi: 10.1039/c3dt51521d
– ident: e_1_2_7_29_1
  doi: 10.1016/j.apcatb.2019.118193
– ident: e_1_2_7_2_1
  doi: 10.1039/C8EE01157E
– ident: e_1_2_7_54_1
  doi: 10.1016/j.jallcom.2008.06.050
– ident: e_1_2_7_19_1
  doi: 10.1021/acs.chemmater.8b01334
– ident: e_1_2_7_53_1
  doi: 10.1038/nmat4938
– ident: e_1_2_7_44_1
  doi: 10.1016/j.corsci.2012.11.028
– ident: e_1_2_7_40_1
  doi: 10.1002/smll.202000663
– ident: e_1_2_7_6_1
  doi: 10.1039/C6CS00328A
– ident: e_1_2_7_61_1
  doi: 10.1038/srep13801
– ident: e_1_2_7_28_1
  doi: 10.1016/j.ijhydene.2020.10.129
– ident: e_1_2_7_22_1
  doi: 10.1016/j.nanoen.2020.105514
– ident: e_1_2_7_67_1
  doi: 10.1021/jacs.6b00332
– ident: e_1_2_7_39_1
  doi: 10.1002/adfm.202009032
– ident: e_1_2_7_20_1
  doi: 10.1039/D1CS00186H
– ident: e_1_2_7_15_1
  doi: 10.1002/aenm.201900954
– ident: e_1_2_7_9_1
  doi: 10.1002/adsu.202000136
– ident: e_1_2_7_30_1
  doi: 10.1038/s41929-020-0496-z
– ident: e_1_2_7_64_1
  doi: 10.1002/elan.201600178
– ident: e_1_2_7_50_1
  doi: 10.1021/acscatal.0c00304
– ident: e_1_2_7_3_1
  doi: 10.1016/j.rser.2017.10.034
SSID ssj0000491033
Score 2.5981832
Snippet Nickel‐iron layered double hydroxides (Ni‐Fe LDHs) consist of stacked Fe3+‐doped positively charged Ni‐hydroxide layers containing charge‐balancing anions and...
Nickel‐iron layered double hydroxides (Ni‐Fe LDHs) consist of stacked Fe 3+ ‐doped positively charged Ni‐hydroxide layers containing charge‐balancing anions...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms alkaline water electrolysis
Corrosion prevention
Density functional theory
dynamic operation stability
Dynamic stability
Electrodes
Ferric ions
Ferrous ions
Hydroxides
Iron
Nickel
Ni‐Fe layered double hydroxide
oxygen corrosion method
oxygen evolution reaction
Oxygen evolution reactions
Performance degradation
Structural stability
Substrates
Water chemistry
Title Rational Design of a Stable Fe‐rich Ni‐Fe Layered Double Hydroxide for the Industrially Relevant Dynamic Operation of Alkaline Water Electrolyzers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202204403
https://www.proquest.com/docview/2833865329
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEF3a5NIeSj-p2yTModDTEmlX0spHU9uYErslbWhuYlc7S0OEHZwE4p7yE3LqD-wvyYwky86hFHqTxGoFOzM7T8POe0J8wED_GDFG0mdeyyRYIy1mpUwx905llGJK7neezrLJSfL5ND3d6uJv-CG6ghtHRr1fc4Bbd3m4IQ21OOdOcqVYNFk_FrvcX8viDSr52lVZCP_GUa0nT8gmkRn575q5MVKHD6d4mJk2cHMbtNZZZ_xcPGvhIgwa-74Qj3D-UjzdIhF8JX4ft_U8GNanMWARwAKBSFchjPHP7R1tdT9hdkZXY4Qju2J5TiDkzAMmK79c3Jx5BEKvQGgQNmIe1QqOuf2cFh-GjXI9fLnAxmf4M4Pq3PJCwg9CrEsYNZI61eoXYcrX4mQ8-v5pIlu1BVnq1GhJgR-F3DqDJrIRH57Q3rnIpzHmfUph3tosV14HTTFuMGCi0JUuLvuWHqHRb8TOfDHHtwIyNEEniXZKhcT0VZ7FrgxGG5vqQJtAT8j1ShdlS0XOihhV0ZAoq4ItU3SW6YmP3fiLhoTjryP31oYr2mC8LAhBsbKpVv2eULUx_zFLMRjNpt3du_956b14wsL0zcHePbFztbzGfYIvV-6g9tADsTsYTo--3QNIeer6
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVgOQAHxKcoLDAHJE7WJrYTp8eKbVWgLWi1K7hFdjzWrojaVVkkyomfwIkfyC9hJknT3QNC4pZEjiN5PJ6X0cx7QrzESP8YKSYy5EFLE52VDvNKZlgEr3IKMRX3O88X-fTEvP2UbasJuRem5YfoE27sGc15zQ7OCemDHWuowyW3kivFqsn6urhhCJwzfb4yH_o0CwHgNGkE5QnaGJnTBt5SNybq4OoUV0PTDm9eRq1N2JncFXc6vAij1sD3xDVc3he3L7EIPhC_jrqEHhw25RiwiuCAUKSvESb4-8dPOutOYXFGVxOEmduwPicQdOYB001Yr76dBQSCr0BwEHZqHvUGjrj_nFYfDlvpenh_ju2m4c-M6s-OVxI-EmRdw7jV1Kk33wlUPhQnk_Hx66ns5BZkpTOrJXl-EgvnLdrEJVw9oYP3SchSLIYUw4JzeaGCjpqc3GJEo9BXPq2Gjh6h1Y_E3nK1xMcCcrRRG6O9UtHYoSry1FfRausyHekUGAi5Xemy6rjIWRKjLlsWZVWyZcreMgPxqh9_3rJw_HXk_tZwZeeNX0qCUCxtqtVwIFRjzH_MUo7Gi3l_9-R_Xnohbk6P57Ny9mbx7qm4xSr1bZXvvti7WH_FZ4RlLvzzZrf-AajB7Ng
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVgkRAcEJ-iywJzQOJkbWIncXqsaKMCu2W1YsXeIjseixVRW5VF2nLiJ3DiB_JLmEnStHtASNySaOJIHo_nxfa8J8QrDPSPEWMkfea1TII10mJWyRRz71RGKabieufjWTY9S96dp-c7VfwtP0S_4MaR0czXHOBLHw63pKEW51xJrhSLJuub4hbv-LF4g0pO-lUWwr9x1OjJE7JJZEbjd8PcGKnD601cz0xbuLkLWpusU9wX9zq4CKPWvw_EDZw_FHd3SAQfiV-n3XoejJvTGLAIYIFApKsRCvz94ydNdZ9hdkFXBcKRXbM8JxByZoPp2q8WVxcegdArEBqErZhHvYZTLj-nzodxq1wPH5bYjhn-zKj-Yrkj4RMh1hVMWkmdev2dMOVjcVZMPr6Zyk5tQVY6NVpS4Echt86giWzEhye0dy7yaYz5kFKYtzbLlddBU4wbDJgodJWLq6GlR2j0E7E3X8zxqYAMTdBJop1SITFDlWexq4LRxqY60CQwEHLT02XVUZGzIkZdtiTKqmTPlL1nBuJ1b79sSTj-anmwcVzZBePXkhAUK5tqNRwI1TjzH62Uo8nsuL_b_5-XXorbJ-OiPHo7e_9M3GGN-vaM74HYu1x9w-eEZC7di2aw_gE9o-wB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+Design+of+a+Stable+Fe%E2%80%90rich+Ni%E2%80%90Fe+Layered+Double+Hydroxide+for+the+Industrially+Relevant+Dynamic+Operation+of+Alkaline+Water+Electrolyzers&rft.jtitle=Advanced+energy+materials&rft.au=Mehdi%2C+Muhammad&rft.au=An%2C+Byeong%E2%80%90Seon&rft.au=Kim%2C+Haesol&rft.au=Lee%2C+Sechan&rft.date=2023-07-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=25&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202204403&rft.externalDBID=10.1002%252Faenm.202204403&rft.externalDocID=AENM202204403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon