The Formation of Residual Lithium Compounds on Ni‐Rich NCM Oxides: Their Impact on the Electrochemical Performance of Sulfide‐Based ASSBs

Residual lithium compounds (RLCs) are known to form on the surface of nickel‐rich LiNi1‐x‐yCoxMnyO2 (NCM) oxides during synthesis and storage. In this study, the impact of RLCs on cathode performance in sulfide‐based all‐solid‐state batteries (ASSBs) is investigated by employing practically relevant...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 21
Main Authors Aktekin, Burak, Sedykh, Alexander E., Müller‐Buschbaum, Klaus, Henss, Anja, Janek, Jürgen
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.05.2024
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
1616-3028
DOI10.1002/adfm.202313252

Cover

Abstract Residual lithium compounds (RLCs) are known to form on the surface of nickel‐rich LiNi1‐x‐yCoxMnyO2 (NCM) oxides during synthesis and storage. In this study, the impact of RLCs on cathode performance in sulfide‐based all‐solid‐state batteries (ASSBs) is investigated by employing practically relevant approaches to generate (or remove) RLCs on (or from) NCM single crystal particles. It is revealed that Li2CO3 is the predominant component in samples exposed to air. Surprisingly, heat treatment at high temperatures does not remove RLCs but increases the overall RLC content, accompanied by the partial transformation of existing RLCs into Li2O. These samples exhibit compromised electrochemical performance due to asymmetric overpotential increase during cell discharge. However, it is possible to recover performance through controlled ambient air storage which enables the conversion of existing Li2O into Li2CO3 and formation of fresh Li2CO3 on the surface. Notably, the beneficial effects are not replicated with pure CO2 or moisturized air storage, emphasizing the significance of storage conditions and reaction pathways for Li2CO3 formation. This study demonstrates that removal of Li2O residuals through the formation of Li2CO3 under controlled ambient air exposure proves to be advantageous for sulfide‐based ASSBs, thereby offering valuable guidance for the development of optimized NCM‐based ASSB systems. This study reveals that Li2CO3 is the predominant residual lithium compound (RLC) forming on nickel‐rich NCM oxides exposed to air. High temperature annealing increases the overall RLC content due to transformation of existing RLCs into Li2O. Li2O‐rich samples exhibit compromised electrochemical performance in ASSBs due to high resistance and asymmetric overpotential. Ambient air storage transforms Li2O back to Li2CO3 and recovers the performance. These findings offer valuable guidance for the development of optimized NCM‐based ASSB systems.
AbstractList Residual lithium compounds (RLCs) are known to form on the surface of nickel‐rich LiNi1‐x‐yCoxMnyO2 (NCM) oxides during synthesis and storage. In this study, the impact of RLCs on cathode performance in sulfide‐based all‐solid‐state batteries (ASSBs) is investigated by employing practically relevant approaches to generate (or remove) RLCs on (or from) NCM single crystal particles. It is revealed that Li2CO3 is the predominant component in samples exposed to air. Surprisingly, heat treatment at high temperatures does not remove RLCs but increases the overall RLC content, accompanied by the partial transformation of existing RLCs into Li2O. These samples exhibit compromised electrochemical performance due to asymmetric overpotential increase during cell discharge. However, it is possible to recover performance through controlled ambient air storage which enables the conversion of existing Li2O into Li2CO3 and formation of fresh Li2CO3 on the surface. Notably, the beneficial effects are not replicated with pure CO2 or moisturized air storage, emphasizing the significance of storage conditions and reaction pathways for Li2CO3 formation. This study demonstrates that removal of Li2O residuals through the formation of Li2CO3 under controlled ambient air exposure proves to be advantageous for sulfide‐based ASSBs, thereby offering valuable guidance for the development of optimized NCM‐based ASSB systems. This study reveals that Li2CO3 is the predominant residual lithium compound (RLC) forming on nickel‐rich NCM oxides exposed to air. High temperature annealing increases the overall RLC content due to transformation of existing RLCs into Li2O. Li2O‐rich samples exhibit compromised electrochemical performance in ASSBs due to high resistance and asymmetric overpotential. Ambient air storage transforms Li2O back to Li2CO3 and recovers the performance. These findings offer valuable guidance for the development of optimized NCM‐based ASSB systems.
Residual lithium compounds (RLCs) are known to form on the surface of nickel‐rich LiNi1‐x‐yCoxMnyO2 (NCM) oxides during synthesis and storage. In this study, the impact of RLCs on cathode performance in sulfide‐based all‐solid‐state batteries (ASSBs) is investigated by employing practically relevant approaches to generate (or remove) RLCs on (or from) NCM single crystal particles. It is revealed that Li2CO3 is the predominant component in samples exposed to air. Surprisingly, heat treatment at high temperatures does not remove RLCs but increases the overall RLC content, accompanied by the partial transformation of existing RLCs into Li2O. These samples exhibit compromised electrochemical performance due to asymmetric overpotential increase during cell discharge. However, it is possible to recover performance through controlled ambient air storage which enables the conversion of existing Li2O into Li2CO3 and formation of fresh Li2CO3 on the surface. Notably, the beneficial effects are not replicated with pure CO2 or moisturized air storage, emphasizing the significance of storage conditions and reaction pathways for Li2CO3 formation. This study demonstrates that removal of Li2O residuals through the formation of Li2CO3 under controlled ambient air exposure proves to be advantageous for sulfide‐based ASSBs, thereby offering valuable guidance for the development of optimized NCM‐based ASSB systems.
Residual lithium compounds (RLCs) are known to form on the surface of nickel‐rich LiNi 1‐x‐y Co x Mn y O 2 (NCM) oxides during synthesis and storage. In this study, the impact of RLCs on cathode performance in sulfide‐based all‐solid‐state batteries (ASSBs) is investigated by employing practically relevant approaches to generate (or remove) RLCs on (or from) NCM single crystal particles. It is revealed that Li 2 CO 3 is the predominant component in samples exposed to air. Surprisingly, heat treatment at high temperatures does not remove RLCs but increases the overall RLC content, accompanied by the partial transformation of existing RLCs into Li 2 O. These samples exhibit compromised electrochemical performance due to asymmetric overpotential increase during cell discharge. However, it is possible to recover performance through controlled ambient air storage which enables the conversion of existing Li 2 O into Li 2 CO 3 and formation of fresh Li 2 CO 3 on the surface. Notably, the beneficial effects are not replicated with pure CO 2 or moisturized air storage, emphasizing the significance of storage conditions and reaction pathways for Li 2 CO 3 formation. This study demonstrates that removal of Li 2 O residuals through the formation of Li 2 CO 3 under controlled ambient air exposure proves to be advantageous for sulfide‐based ASSBs, thereby offering valuable guidance for the development of optimized NCM‐based ASSB systems.
Author Aktekin, Burak
Sedykh, Alexander E.
Müller‐Buschbaum, Klaus
Henss, Anja
Janek, Jürgen
Author_xml – sequence: 1
  givenname: Burak
  orcidid: 0000-0002-8659-7519
  surname: Aktekin
  fullname: Aktekin, Burak
  email: burak.aktekin@phys.chemie.uni-giessen.de
  organization: Justus‐Liebig‐Universität Giessen
– sequence: 2
  givenname: Alexander E.
  surname: Sedykh
  fullname: Sedykh, Alexander E.
  organization: Justus‐Liebig‐Universität Giessen
– sequence: 3
  givenname: Klaus
  surname: Müller‐Buschbaum
  fullname: Müller‐Buschbaum, Klaus
  organization: Justus‐Liebig‐Universität Giessen
– sequence: 4
  givenname: Anja
  surname: Henss
  fullname: Henss, Anja
  organization: Justus‐Liebig‐Universität Giessen
– sequence: 5
  givenname: Jürgen
  orcidid: 0000-0002-9221-4756
  surname: Janek
  fullname: Janek, Jürgen
  email: juergen.janek@phys.chemie.uni-giessen.de
  organization: Justus‐Liebig‐Universität Giessen
BookMark eNqFkM1OGzEURi1EpQJl27WlrhP8MzOe6S6kCSAlAREqdWc59h3FaGY8tWcE2fUFKvGMPAmepqISUsXq3sV3zr36jtFh4xpA6DMlY0oIO1OmrMeMME45S9kBOqIZzUacsPzwdac_PqLjEO4JoULw5Aj9vtsCnjtfq866BrsS30KwplcVXthua_saT13dur4xAcfAyj7_erq1eotX0yW-frQGwlccJdbjq7pVuhtSXZTOKtCdd3oLtdVRdwO-HO40GoYz674qIxxt5yqAwZP1-jx8Qh9KVQU4_TtP0Pf57G56OVpcX1xNJ4uR5qlgI9gkXJTA0yLnmaCioKBElhuAJM8AqOYmLzY6NyrRhdasJCAYiGRTJFoYpvgJOtt7-6ZVuwdVVbL1tlZ-JymRQ5tyaFO-thmJL3ui9e5nD6GT9673TXxScpKKVOQszWIq2ae0dyF4KKW23Z9mO69s9X_5-A327jfFHniwFezeScvJt_nyH_sC-amqPQ
CitedBy_id crossref_primary_10_1021_acsaem_4c02211
crossref_primary_10_1021_acsnano_4c14322
crossref_primary_10_1021_acs_chemmater_4c03086
crossref_primary_10_1021_acsenergylett_5c00095
crossref_primary_10_1002_smll_202407284
crossref_primary_10_1016_j_jallcom_2024_176688
crossref_primary_10_1016_j_cclet_2024_110729
crossref_primary_10_3390_batteries10120453
Cites_doi 10.1016/j.ensm.2022.06.048
10.1016/j.fusengdes.2005.09.015
10.1149/1945-7111/ac0d69
10.1016/j.electacta.2020.136271
10.1021/acs.chemmater.0c03518
10.1016/j.jpowsour.2020.228204
10.1021/acs.chemmater.0c01825
10.1021/acsami.8b22529
10.1021/acsami.8b13158
10.1002/anie.201801533
10.1002/aenm.202202993
10.1149/2.1051506jes
10.1021/acs.accounts.1c00333
10.1002/adma.201900985
10.1002/batt.202300085
10.1149/1945-7111/ac0d3a
10.1149/2.0011912jes
10.1088/2752-5724/ac5b7d
10.1021/jacs.7b08461
10.1021/acs.chemmater.9b00770
10.1149/2.0401802jes
10.1038/s41560-019-0513-0
10.1016/j.jpowsour.2007.04.083
10.1021/acs.chemmater.0c02808
10.1149/1945-7111/aceca6
10.1016/j.ssi.2016.11.029
10.1149/2.0921714jes
10.1016/j.jpowsour.2006.07.028
10.1149/1945-7111/ac4e5d
10.1021/cm060122b
10.1021/acsenergylett.1c00086
10.1002/aenm.202002027
10.1016/j.powera.2021.100071
10.1021/acsenergylett.9b01693
10.1149/1945-7111/abb9cd
10.1021/acsenergylett.8b01457
10.1038/s41598-020-79139-8
10.1002/celc.201700129
10.1016/j.jpowsour.2014.07.021
10.1021/acsami.2c09358
10.1021/acsami.2c22406
10.1021/acsami.1c23128
10.1021/acs.chemmater.9b02947
10.26599/NRE.2022.9120016
10.1016/j.jpowsour.2022.231111
10.1021/acs.chemmater.1c00935
10.1016/j.matt.2022.01.011
10.1021/acs.chemmater.9b02372
10.1021/acs.chemmater.0c04660
10.1149/1945-7111/ac7ef0
10.1002/adfm.202103716
10.1149/2.1351915jes
10.1002/aenm.202103005
10.1002/aenm.201702028
ContentType Journal Article
Copyright 2024 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ADTOC
UNPAY
DOI 10.1002/adfm.202313252
DatabaseName Wiley Online Library Open Access
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10.1002/adfm.202313252
10_1002_adfm_202313252
ADFM202313252
Genre article
GrantInformation_xml – fundername: Bundesministerium für Bildung und Forschung
  funderid: FB2‐Char; 03XP0433D
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ADTOC
UNPAY
ID FETCH-LOGICAL-c3572-eb437fe35983671791ea768dee486ee1c3d89bc8da4c9cc2f0e72e74b94c7d2a3
IEDL.DBID DR2
ISSN 1616-301X
1616-3028
IngestDate Wed Oct 01 15:38:46 EDT 2025
Mon Jul 14 09:08:12 EDT 2025
Wed Oct 01 01:01:27 EDT 2025
Thu Apr 24 23:06:55 EDT 2025
Sun Jul 06 04:45:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License Attribution-NonCommercial-NoDerivs
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3572-eb437fe35983671791ea768dee486ee1c3d89bc8da4c9cc2f0e72e74b94c7d2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8659-7519
0000-0002-9221-4756
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202313252
PQID 3057578256
PQPubID 2045204
PageCount 12
ParticipantIDs unpaywall_primary_10_1002_adfm_202313252
proquest_journals_3057578256
crossref_citationtrail_10_1002_adfm_202313252
crossref_primary_10_1002_adfm_202313252
wiley_primary_10_1002_adfm_202313252_ADFM202313252
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 162
2018; 165
2021; 6
2023; 13
2019; 4
2023; 33
2017; 4
2021; 168
2019; 31
2019; 11
2023; 15
2023; 6
2022; 51
2020; 468
2020; 346
2006; 18
2020; 167
2020; 10
2020; 32
2019; 166
2017; 139
2006; 81
2020; 5
2018; 8
2021; 54
2018; 3
2021; 31
2023; 170
2021; 11
2021; 33
2023
2007; 173
2022; 5
2006; 162
2022; 14
2022; 1
2017; 164
2018; 10
2017; 300
2022; 525
2014; 269
2022; 169
2018; 57
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
Lee D. J. (e_1_2_9_23_1) 2023; 33
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
Ruess R. (e_1_2_9_32_1) 2023
e_1_2_9_13_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 269
  start-page: 396
  year: 2014
  publication-title: J. Power Sources
– volume: 11
  year: 2021
  publication-title: Journal of Power Sources Advances
– volume: 15
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 165
  start-page: A132
  year: 2018
  publication-title: J. Electrochem. Soc.
– volume: 31
  start-page: 9664
  year: 2019
  publication-title: Chem. Mater.
– volume: 11
  start-page: 1
  year: 2021
  publication-title: Sci. Rep.
– volume: 1
  year: 2022
  publication-title: Nano Research Energy
– volume: 32
  start-page: 9479
  year: 2020
  publication-title: Chem. Mater.
– volume: 3
  start-page: 2539
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 18
  start-page: 2307
  year: 2006
  publication-title: Chem. Mater.
– volume: 54
  start-page: 3390
  year: 2021
  publication-title: Acc. Chem. Res.
– volume: 33
  start-page: 4170
  year: 2021
  publication-title: Chem. Mater.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 31
  start-page: 7574
  year: 2019
  publication-title: Chem. Mater.
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 468
  year: 2020
  publication-title: J. Power Sources
– volume: 525
  year: 2022
  publication-title: J. Power Sources
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 33
  start-page: 2110
  year: 2021
  publication-title: Chem. Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 6
  year: 2023
  publication-title: Batter Supercaps
– volume: 4
  start-page: 2418
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 162
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 1
  year: 2022
  publication-title: Materials Futures
– volume: 169
  year: 2022
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 1997
  year: 2017
  publication-title: ChemElectroChem
– volume: 33
  start-page: 859
  year: 2021
  publication-title: Chem. Mater.
– volume: 5
  start-page: 876
  year: 2022
  publication-title: Matter
– volume: 164
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 300
  start-page: 78
  year: 2017
  publication-title: Solid State Ion
– volume: 168
  year: 2021
  publication-title: J. Electrochem. Soc.
– volume: 346
  year: 2020
  publication-title: Electrochim. Acta
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 162
  start-page: 644
  year: 2006
  publication-title: J. Power Sources
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 941
  year: 2021
  publication-title: ACS Energy Lett.
– year: 2023
  publication-title: J. Electrochem. Soc.
– volume: 32
  start-page: 6123
  year: 2020
  publication-title: Chem. Mater.
– volume: 57
  start-page: 6480
  year: 2018
  publication-title: Angewandte Chemie – International Edition
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 26
  year: 2020
  publication-title: Nat. Energy
– volume: 31
  start-page: 3745
  year: 2019
  publication-title: Chem. Mater.
– volume: 173
  start-page: 556
  year: 2007
  publication-title: J. Power Sources
– volume: 170
  year: 2023
  publication-title: J. Electrochem. Soc.
– volume: 51
  start-page: 306
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 81
  start-page: 613
  year: 2006
  publication-title: Fusion Eng. Des.
– volume: 166
  year: 2019
  publication-title: J. Electrochem. Soc.
– ident: e_1_2_9_43_1
  doi: 10.1016/j.ensm.2022.06.048
– ident: e_1_2_9_44_1
  doi: 10.1016/j.fusengdes.2005.09.015
– ident: e_1_2_9_49_1
  doi: 10.1149/1945-7111/ac0d69
– ident: e_1_2_9_14_1
  doi: 10.1016/j.electacta.2020.136271
– ident: e_1_2_9_48_1
  doi: 10.1021/acs.chemmater.0c03518
– ident: e_1_2_9_37_1
  doi: 10.1016/j.jpowsour.2020.228204
– ident: e_1_2_9_56_1
  doi: 10.1021/acs.chemmater.0c01825
– ident: e_1_2_9_18_1
  doi: 10.1021/acsami.8b22529
– ident: e_1_2_9_26_1
  doi: 10.1021/acsami.8b13158
– ident: e_1_2_9_47_1
  doi: 10.1002/anie.201801533
– ident: e_1_2_9_8_1
  doi: 10.1002/aenm.202202993
– ident: e_1_2_9_29_1
  doi: 10.1149/2.1051506jes
– ident: e_1_2_9_21_1
  doi: 10.1021/acs.accounts.1c00333
– ident: e_1_2_9_38_1
  doi: 10.1002/adma.201900985
– ident: e_1_2_9_51_1
  doi: 10.1002/batt.202300085
– ident: e_1_2_9_19_1
  doi: 10.1149/1945-7111/ac0d3a
– ident: e_1_2_9_36_1
  doi: 10.1149/2.0011912jes
– ident: e_1_2_9_28_1
  doi: 10.1088/2752-5724/ac5b7d
– ident: e_1_2_9_12_1
  doi: 10.1021/jacs.7b08461
– ident: e_1_2_9_53_1
  doi: 10.1021/acs.chemmater.9b00770
– ident: e_1_2_9_6_1
  doi: 10.1149/2.0401802jes
– volume: 33
  year: 2023
  ident: e_1_2_9_23_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_9_1_1
  doi: 10.1038/s41560-019-0513-0
– ident: e_1_2_9_15_1
  doi: 10.1016/j.jpowsour.2007.04.083
– ident: e_1_2_9_9_1
  doi: 10.1021/acs.chemmater.0c02808
– ident: e_1_2_9_33_1
  doi: 10.1149/1945-7111/aceca6
– ident: e_1_2_9_54_1
  doi: 10.1016/j.ssi.2016.11.029
– ident: e_1_2_9_39_1
  doi: 10.1149/2.0921714jes
– ident: e_1_2_9_41_1
  doi: 10.1016/j.jpowsour.2006.07.028
– ident: e_1_2_9_10_1
  doi: 10.1149/1945-7111/ac4e5d
– ident: e_1_2_9_45_1
  doi: 10.1021/cm060122b
– ident: e_1_2_9_7_1
  doi: 10.1021/acsenergylett.1c00086
– ident: e_1_2_9_2_1
  doi: 10.1002/aenm.202002027
– ident: e_1_2_9_50_1
  doi: 10.1016/j.powera.2021.100071
– ident: e_1_2_9_55_1
  doi: 10.1021/acsenergylett.9b01693
– ident: e_1_2_9_11_1
  doi: 10.1149/1945-7111/abb9cd
– ident: e_1_2_9_25_1
  doi: 10.1021/acsenergylett.8b01457
– ident: e_1_2_9_30_1
  doi: 10.1038/s41598-020-79139-8
– ident: e_1_2_9_52_1
  doi: 10.1002/celc.201700129
– ident: e_1_2_9_24_1
  doi: 10.1016/j.jpowsour.2014.07.021
– ident: e_1_2_9_42_1
  doi: 10.1021/acsami.2c09358
– ident: e_1_2_9_31_1
  doi: 10.1021/acsami.2c22406
– ident: e_1_2_9_17_1
  doi: 10.1021/acsami.1c23128
– ident: e_1_2_9_35_1
  doi: 10.1021/acs.chemmater.9b02947
– ident: e_1_2_9_40_1
  doi: 10.26599/NRE.2022.9120016
– ident: e_1_2_9_4_1
  doi: 10.1016/j.jpowsour.2022.231111
– ident: e_1_2_9_13_1
  doi: 10.1021/acs.chemmater.1c00935
– ident: e_1_2_9_22_1
  doi: 10.1016/j.matt.2022.01.011
– ident: e_1_2_9_34_1
  doi: 10.1021/acs.chemmater.9b02372
– ident: e_1_2_9_46_1
  doi: 10.1021/acs.chemmater.0c04660
– year: 2023
  ident: e_1_2_9_32_1
  publication-title: J. Electrochem. Soc.
– ident: e_1_2_9_20_1
  doi: 10.1149/1945-7111/ac7ef0
– ident: e_1_2_9_27_1
  doi: 10.1002/adfm.202103716
– ident: e_1_2_9_16_1
  doi: 10.1149/2.1351915jes
– ident: e_1_2_9_3_1
  doi: 10.1002/aenm.202103005
– ident: e_1_2_9_5_1
  doi: 10.1002/aenm.201702028
SSID ssj0017734
Score 2.51846
Snippet Residual lithium compounds (RLCs) are known to form on the surface of nickel‐rich LiNi1‐x‐yCoxMnyO2 (NCM) oxides during synthesis and storage. In this study,...
Residual lithium compounds (RLCs) are known to form on the surface of nickel‐rich LiNi 1‐x‐y Co x Mn y O 2 (NCM) oxides during synthesis and storage. In this...
SourceID unpaywall
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms air stability of NCM
Electrochemical analysis
Heat treatment
High temperature
Lithium carbonate
Lithium compounds
Lithium oxides
lithium‐oxide
LPSCl
Nickel compounds
Ni‐rich NCM
residual lithium
Single crystals
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5V6aHlQFsKIqVFe0CCi9tmd_3ilj6itqKhIo0UTtZ6d1ZEpGmEYxU48QeQ-I38Enb8CgVVReJmS-OxvZ7Xema-AXjhTJwJjBWekZHypJWp57yg8fYjm6ZS-ZRro2qLfnAylGcjf7QER3UvTIkP0fxwI80o7DUp-MzY0s5X2X2-p4ylbnJO-IO-M8TLAaWZWrA87F9039NeK-hQaVdntDjmUY3d-BeD275pEXCu5NOZ-nKjJpPbIWzhg3prgPXTl6UnH3fzebqrv_4B7Pi_r7cOD6sglXVLqdqAJZw-gge_QRduwncnX6xXdz6ya8veYVY0drE34_mHcX7FyNTQ0KaMOYL--Oe3H9TFz_qH5-zt57HB7DW7pDQFOy06NYnKRaPsuBzMoyskA3axaG2g2wzyiXUXO24HzgEb1h0MDrLHMOwdXx6eeNVoB08LP-QeplKEFgk-UAQhQaSichsfgyijALGjhYniVEdGSR1rze0-hhxDmcZSh4Yr8QRa0-spPgUmRNhRQiutMXbRp4qsVFrwyImm5gHGbfDqj5roCvecxm9MkhKxmSe0zEmzzG142dDPSsSPOym3axlJKs3PEkEBsAu7_KANrxq5uZcTL2ThHrKke9Q7b862_p3_M1h1x7Is1NyG1vxTjjsumJqnzytd-QXH3BtM
  priority: 102
  providerName: Unpaywall
Title The Formation of Residual Lithium Compounds on Ni‐Rich NCM Oxides: Their Impact on the Electrochemical Performance of Sulfide‐Based ASSBs
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202313252
https://www.proquest.com/docview/3057578256
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adfm.202313252
UnpaywallVersion publishedVersion
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 20241003
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: ADMLS
  dateStart: 20130107
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1616-301X
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOQAHyqsi0EZ7QIKL23h37bW5pY-oIBqippHCydqniAhphWPxOPEHkPob-SXs-JUGCVWCmy3Nru31zOxnz8w3AM-9izOxcSwwPJEBd1wFfhc0QS9xSnEZYawNsy2G8fGEv5lG0ytV_BU_RPvDDS2j9Ndo4FLleyvSUGkcVpJT5B6M0AmHLCrjtKctf1QoRBVWjkNM8AqnDWtjj-6tD1_flVZQ83axuJDfvsj5fB28lrvPYBNkc99V0snH3WKpdvX3Pygd_-fB7sO9GpqSfqVLD-CGXTyEu1cICx_BT69VZNDUO5JzR05tXpZzkbez5YdZ8Ymgg8FWTTnxAsPZrx-XWLtPhgcn5N3XmbH5K3KGwQnyuqzPRCmPQclR1Y5H1_wFZLQqaMDLjIu584P9bPt-2zWkPx7v549hMjg6OzgO6oYOgWaRoIFVnAlnkTSQxQKJUa30nzvGWp7E1oaamSRVOjGS61Rr6npWUCu4SrkWhkq2BRuL84V9AoQxEUqmpdY29ZhTJo5LzWjiFVLT2KYdCJoXmuma7RybbsyziqeZZrjMWbvMHXjRyl9UPB9_ldxu9COr7T3PGMJeD7aiuAMvW525diZa6sE1Yln_cHDSnj39l0HP4I4_5lWi5jZsLD8XdseDqaXqwk3KR93SbLpwazIc9d__BnSFGms
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iB_UgPrFaNQdBL4ttkt3semvVUrWtYit4W7J5YKFWcVvUm39A8Df6S8zsq_YggscNkyzsZDLfZma-QWjfHnHKU4Y6ivnCYYZFjvWCyqn4JoqYcCHWBtkWHa95yy7u3DybEGphUn6I4sINLCM5r8HA4UL6aMIaKpSBUnIC5IOuPYXnmEcqsLEJuy4CCZyngWWvCile1buct7FCjqbnT_ulCdicHw-fxNuLGAym4WvifxrLaCkDjriWanoFzejhKlr8QSe4hj6sznEjr0bEjwbf6DgptsKt_ui-P37AYP7QSCnGVqDT_3r_hMp63Dlp46vXvtLxMe5B6ACfJ9WTIGURIj5Lm-XIjF0AX0_KDeA13fHA2Ml2tbp1igrXut16vI5uG2e9k6aTtVtwJHU5cXTEKDcaKP2ox4G2VAv7M6K0Zr6ndVVS5QeR9JVgMpCSmIrmRHMWBUxyRQTdQLPDx6HeRJhSXhVUCil1YBGh8A0TkhLfbhdJPB2UkJN_7FBmXOTQEmMQpizKJATlhIVySuigkH9KWTh-lSznugsza4xDCqDUQiHXK6HDQp9_rkQSdf8hFtZOG-3iaes_k_bQfLPXboWt887lNlqw4yxNqSyj2dHzWO9Y2DOKdpON_Q1yW_oc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5VVKJwaHm0Im3a7qESXAzx7tpr95YAFlBIEQEpN2u9DzUiJFEdC9oTfwCpv7G_pDt-hSAhpHK0NevHeh7feme-QeiLdXHKV4Y6igXCYYYljo2CymkFJkmY8GCvDbItuv7BBTvqe_17VfwFP0T9ww0sI_fXYOATZXZmpKFCGagkJ8A96Fkn_JL5dokFsOisJpByOS_2lX0XMrzcfkXb2CI78-Pnw9IMa77KRhPx61oMh_PoNQ8_0Rskqgcvsk4ut7Npsi1_P-B0fM6braDXJTbF7UKZVtELPVpDy_cYC9fRnVUrHFUFj3hs8JlO83oufDyY_hhkVxg8DPRqSrEV6A7-3v6B4n3c3T3B328GSqdf8TnsTuDDvEATpCwIxftFPx5ZEhjg01lFA9ymlw2NHWyv1rFxV-F2r9dJ36KLaP9898ApOzo4knqcODphlBsNrIHU58CMqoVd7yitWeBr7UqqgjCRgRJMhlIS09KcaM6SkEmuiKDv0MJoPNIbCFPKXUGlkFKHFnSKwDAhKQmsRkri67CBnOqDxrKkO4euG8O4IGomMUxzXE9zA23W8pOC6ONRyWalH3Fp8GlMAfdatOX5DbRV68yTVyK5HjwhFrf3opP66P3_DPqMFk_3ovj4sPvtA1qyp1mRtNlEC9Ofmf5ogdU0-ZTbzj8fMhqv
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5V6aHlQFsKIqVFe0CCi9tmd_3ilj6itqKhIo0UTtZ6d1ZEpGmEYxU48QeQ-I38Enb8CgVVReJmS-OxvZ7Xema-AXjhTJwJjBWekZHypJWp57yg8fYjm6ZS-ZRro2qLfnAylGcjf7QER3UvTIkP0fxwI80o7DUp-MzY0s5X2X2-p4ylbnJO-IO-M8TLAaWZWrA87F9039NeK-hQaVdntDjmUY3d-BeD275pEXCu5NOZ-nKjJpPbIWzhg3prgPXTl6UnH3fzebqrv_4B7Pi_r7cOD6sglXVLqdqAJZw-gge_QRduwncnX6xXdz6ya8veYVY0drE34_mHcX7FyNTQ0KaMOYL--Oe3H9TFz_qH5-zt57HB7DW7pDQFOy06NYnKRaPsuBzMoyskA3axaG2g2wzyiXUXO24HzgEb1h0MDrLHMOwdXx6eeNVoB08LP-QeplKEFgk-UAQhQaSichsfgyijALGjhYniVEdGSR1rze0-hhxDmcZSh4Yr8QRa0-spPgUmRNhRQiutMXbRp4qsVFrwyImm5gHGbfDqj5roCvecxm9MkhKxmSe0zEmzzG142dDPSsSPOym3axlJKs3PEkEBsAu7_KANrxq5uZcTL2ThHrKke9Q7b862_p3_M1h1x7Is1NyG1vxTjjsumJqnzytd-QXH3BtM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Formation+of+Residual+Lithium+Compounds+on+Ni%E2%80%90Rich+NCM+Oxides%3A+Their+Impact+on+the+Electrochemical+Performance+of+Sulfide%E2%80%90Based+ASSBs&rft.jtitle=Advanced+functional+materials&rft.au=Aktekin%2C+Burak&rft.au=Sedykh%2C+Alexander+E.&rft.au=M%C3%BCller%E2%80%90Buschbaum%2C+Klaus&rft.au=Henss%2C+Anja&rft.date=2024-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202313252&rft.externalDBID=10.1002%252Fadfm.202313252&rft.externalDocID=ADFM202313252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon