The Formation of Residual Lithium Compounds on Ni‐Rich NCM Oxides: Their Impact on the Electrochemical Performance of Sulfide‐Based ASSBs
Residual lithium compounds (RLCs) are known to form on the surface of nickel‐rich LiNi1‐x‐yCoxMnyO2 (NCM) oxides during synthesis and storage. In this study, the impact of RLCs on cathode performance in sulfide‐based all‐solid‐state batteries (ASSBs) is investigated by employing practically relevant...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 21 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 1616-3028 |
DOI | 10.1002/adfm.202313252 |
Cover
Abstract | Residual lithium compounds (RLCs) are known to form on the surface of nickel‐rich LiNi1‐x‐yCoxMnyO2 (NCM) oxides during synthesis and storage. In this study, the impact of RLCs on cathode performance in sulfide‐based all‐solid‐state batteries (ASSBs) is investigated by employing practically relevant approaches to generate (or remove) RLCs on (or from) NCM single crystal particles. It is revealed that Li2CO3 is the predominant component in samples exposed to air. Surprisingly, heat treatment at high temperatures does not remove RLCs but increases the overall RLC content, accompanied by the partial transformation of existing RLCs into Li2O. These samples exhibit compromised electrochemical performance due to asymmetric overpotential increase during cell discharge. However, it is possible to recover performance through controlled ambient air storage which enables the conversion of existing Li2O into Li2CO3 and formation of fresh Li2CO3 on the surface. Notably, the beneficial effects are not replicated with pure CO2 or moisturized air storage, emphasizing the significance of storage conditions and reaction pathways for Li2CO3 formation. This study demonstrates that removal of Li2O residuals through the formation of Li2CO3 under controlled ambient air exposure proves to be advantageous for sulfide‐based ASSBs, thereby offering valuable guidance for the development of optimized NCM‐based ASSB systems.
This study reveals that Li2CO3 is the predominant residual lithium compound (RLC) forming on nickel‐rich NCM oxides exposed to air. High temperature annealing increases the overall RLC content due to transformation of existing RLCs into Li2O. Li2O‐rich samples exhibit compromised electrochemical performance in ASSBs due to high resistance and asymmetric overpotential. Ambient air storage transforms Li2O back to Li2CO3 and recovers the performance. These findings offer valuable guidance for the development of optimized NCM‐based ASSB systems. |
---|---|
AbstractList | Residual lithium compounds (RLCs) are known to form on the surface of nickel‐rich LiNi1‐x‐yCoxMnyO2 (NCM) oxides during synthesis and storage. In this study, the impact of RLCs on cathode performance in sulfide‐based all‐solid‐state batteries (ASSBs) is investigated by employing practically relevant approaches to generate (or remove) RLCs on (or from) NCM single crystal particles. It is revealed that Li2CO3 is the predominant component in samples exposed to air. Surprisingly, heat treatment at high temperatures does not remove RLCs but increases the overall RLC content, accompanied by the partial transformation of existing RLCs into Li2O. These samples exhibit compromised electrochemical performance due to asymmetric overpotential increase during cell discharge. However, it is possible to recover performance through controlled ambient air storage which enables the conversion of existing Li2O into Li2CO3 and formation of fresh Li2CO3 on the surface. Notably, the beneficial effects are not replicated with pure CO2 or moisturized air storage, emphasizing the significance of storage conditions and reaction pathways for Li2CO3 formation. This study demonstrates that removal of Li2O residuals through the formation of Li2CO3 under controlled ambient air exposure proves to be advantageous for sulfide‐based ASSBs, thereby offering valuable guidance for the development of optimized NCM‐based ASSB systems.
This study reveals that Li2CO3 is the predominant residual lithium compound (RLC) forming on nickel‐rich NCM oxides exposed to air. High temperature annealing increases the overall RLC content due to transformation of existing RLCs into Li2O. Li2O‐rich samples exhibit compromised electrochemical performance in ASSBs due to high resistance and asymmetric overpotential. Ambient air storage transforms Li2O back to Li2CO3 and recovers the performance. These findings offer valuable guidance for the development of optimized NCM‐based ASSB systems. Residual lithium compounds (RLCs) are known to form on the surface of nickel‐rich LiNi1‐x‐yCoxMnyO2 (NCM) oxides during synthesis and storage. In this study, the impact of RLCs on cathode performance in sulfide‐based all‐solid‐state batteries (ASSBs) is investigated by employing practically relevant approaches to generate (or remove) RLCs on (or from) NCM single crystal particles. It is revealed that Li2CO3 is the predominant component in samples exposed to air. Surprisingly, heat treatment at high temperatures does not remove RLCs but increases the overall RLC content, accompanied by the partial transformation of existing RLCs into Li2O. These samples exhibit compromised electrochemical performance due to asymmetric overpotential increase during cell discharge. However, it is possible to recover performance through controlled ambient air storage which enables the conversion of existing Li2O into Li2CO3 and formation of fresh Li2CO3 on the surface. Notably, the beneficial effects are not replicated with pure CO2 or moisturized air storage, emphasizing the significance of storage conditions and reaction pathways for Li2CO3 formation. This study demonstrates that removal of Li2O residuals through the formation of Li2CO3 under controlled ambient air exposure proves to be advantageous for sulfide‐based ASSBs, thereby offering valuable guidance for the development of optimized NCM‐based ASSB systems. Residual lithium compounds (RLCs) are known to form on the surface of nickel‐rich LiNi 1‐x‐y Co x Mn y O 2 (NCM) oxides during synthesis and storage. In this study, the impact of RLCs on cathode performance in sulfide‐based all‐solid‐state batteries (ASSBs) is investigated by employing practically relevant approaches to generate (or remove) RLCs on (or from) NCM single crystal particles. It is revealed that Li 2 CO 3 is the predominant component in samples exposed to air. Surprisingly, heat treatment at high temperatures does not remove RLCs but increases the overall RLC content, accompanied by the partial transformation of existing RLCs into Li 2 O. These samples exhibit compromised electrochemical performance due to asymmetric overpotential increase during cell discharge. However, it is possible to recover performance through controlled ambient air storage which enables the conversion of existing Li 2 O into Li 2 CO 3 and formation of fresh Li 2 CO 3 on the surface. Notably, the beneficial effects are not replicated with pure CO 2 or moisturized air storage, emphasizing the significance of storage conditions and reaction pathways for Li 2 CO 3 formation. This study demonstrates that removal of Li 2 O residuals through the formation of Li 2 CO 3 under controlled ambient air exposure proves to be advantageous for sulfide‐based ASSBs, thereby offering valuable guidance for the development of optimized NCM‐based ASSB systems. |
Author | Aktekin, Burak Sedykh, Alexander E. Müller‐Buschbaum, Klaus Henss, Anja Janek, Jürgen |
Author_xml | – sequence: 1 givenname: Burak orcidid: 0000-0002-8659-7519 surname: Aktekin fullname: Aktekin, Burak email: burak.aktekin@phys.chemie.uni-giessen.de organization: Justus‐Liebig‐Universität Giessen – sequence: 2 givenname: Alexander E. surname: Sedykh fullname: Sedykh, Alexander E. organization: Justus‐Liebig‐Universität Giessen – sequence: 3 givenname: Klaus surname: Müller‐Buschbaum fullname: Müller‐Buschbaum, Klaus organization: Justus‐Liebig‐Universität Giessen – sequence: 4 givenname: Anja surname: Henss fullname: Henss, Anja organization: Justus‐Liebig‐Universität Giessen – sequence: 5 givenname: Jürgen orcidid: 0000-0002-9221-4756 surname: Janek fullname: Janek, Jürgen email: juergen.janek@phys.chemie.uni-giessen.de organization: Justus‐Liebig‐Universität Giessen |
BookMark | eNqFkM1OGzEURi1EpQJl27WlrhP8MzOe6S6kCSAlAREqdWc59h3FaGY8tWcE2fUFKvGMPAmepqISUsXq3sV3zr36jtFh4xpA6DMlY0oIO1OmrMeMME45S9kBOqIZzUacsPzwdac_PqLjEO4JoULw5Aj9vtsCnjtfq866BrsS30KwplcVXthua_saT13dur4xAcfAyj7_erq1eotX0yW-frQGwlccJdbjq7pVuhtSXZTOKtCdd3oLtdVRdwO-HO40GoYz674qIxxt5yqAwZP1-jx8Qh9KVQU4_TtP0Pf57G56OVpcX1xNJ4uR5qlgI9gkXJTA0yLnmaCioKBElhuAJM8AqOYmLzY6NyrRhdasJCAYiGRTJFoYpvgJOtt7-6ZVuwdVVbL1tlZ-JymRQ5tyaFO-thmJL3ui9e5nD6GT9673TXxScpKKVOQszWIq2ae0dyF4KKW23Z9mO69s9X_5-A327jfFHniwFezeScvJt_nyH_sC-amqPQ |
CitedBy_id | crossref_primary_10_1021_acsaem_4c02211 crossref_primary_10_1021_acsnano_4c14322 crossref_primary_10_1021_acs_chemmater_4c03086 crossref_primary_10_1021_acsenergylett_5c00095 crossref_primary_10_1002_smll_202407284 crossref_primary_10_1016_j_jallcom_2024_176688 crossref_primary_10_1016_j_cclet_2024_110729 crossref_primary_10_3390_batteries10120453 |
Cites_doi | 10.1016/j.ensm.2022.06.048 10.1016/j.fusengdes.2005.09.015 10.1149/1945-7111/ac0d69 10.1016/j.electacta.2020.136271 10.1021/acs.chemmater.0c03518 10.1016/j.jpowsour.2020.228204 10.1021/acs.chemmater.0c01825 10.1021/acsami.8b22529 10.1021/acsami.8b13158 10.1002/anie.201801533 10.1002/aenm.202202993 10.1149/2.1051506jes 10.1021/acs.accounts.1c00333 10.1002/adma.201900985 10.1002/batt.202300085 10.1149/1945-7111/ac0d3a 10.1149/2.0011912jes 10.1088/2752-5724/ac5b7d 10.1021/jacs.7b08461 10.1021/acs.chemmater.9b00770 10.1149/2.0401802jes 10.1038/s41560-019-0513-0 10.1016/j.jpowsour.2007.04.083 10.1021/acs.chemmater.0c02808 10.1149/1945-7111/aceca6 10.1016/j.ssi.2016.11.029 10.1149/2.0921714jes 10.1016/j.jpowsour.2006.07.028 10.1149/1945-7111/ac4e5d 10.1021/cm060122b 10.1021/acsenergylett.1c00086 10.1002/aenm.202002027 10.1016/j.powera.2021.100071 10.1021/acsenergylett.9b01693 10.1149/1945-7111/abb9cd 10.1021/acsenergylett.8b01457 10.1038/s41598-020-79139-8 10.1002/celc.201700129 10.1016/j.jpowsour.2014.07.021 10.1021/acsami.2c09358 10.1021/acsami.2c22406 10.1021/acsami.1c23128 10.1021/acs.chemmater.9b02947 10.26599/NRE.2022.9120016 10.1016/j.jpowsour.2022.231111 10.1021/acs.chemmater.1c00935 10.1016/j.matt.2022.01.011 10.1021/acs.chemmater.9b02372 10.1021/acs.chemmater.0c04660 10.1149/1945-7111/ac7ef0 10.1002/adfm.202103716 10.1149/2.1351915jes 10.1002/aenm.202103005 10.1002/aenm.201702028 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M ADTOC UNPAY |
DOI | 10.1002/adfm.202313252 |
DatabaseName | Wiley Online Library Open Access CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10.1002/adfm.202313252 10_1002_adfm_202313252 ADFM202313252 |
Genre | article |
GrantInformation_xml | – fundername: Bundesministerium für Bildung und Forschung funderid: FB2‐Char; 03XP0433D |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M ADTOC UNPAY |
ID | FETCH-LOGICAL-c3572-eb437fe35983671791ea768dee486ee1c3d89bc8da4c9cc2f0e72e74b94c7d2a3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X 1616-3028 |
IngestDate | Wed Oct 01 15:38:46 EDT 2025 Mon Jul 14 09:08:12 EDT 2025 Wed Oct 01 01:01:27 EDT 2025 Thu Apr 24 23:06:55 EDT 2025 Sun Jul 06 04:45:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | Attribution-NonCommercial-NoDerivs cc-by-nc-nd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3572-eb437fe35983671791ea768dee486ee1c3d89bc8da4c9cc2f0e72e74b94c7d2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8659-7519 0000-0002-9221-4756 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202313252 |
PQID | 3057578256 |
PQPubID | 2045204 |
PageCount | 12 |
ParticipantIDs | unpaywall_primary_10_1002_adfm_202313252 proquest_journals_3057578256 crossref_citationtrail_10_1002_adfm_202313252 crossref_primary_10_1002_adfm_202313252 wiley_primary_10_1002_adfm_202313252_ADFM202313252 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 162 2018; 165 2021; 6 2023; 13 2019; 4 2023; 33 2017; 4 2021; 168 2019; 31 2019; 11 2023; 15 2023; 6 2022; 51 2020; 468 2020; 346 2006; 18 2020; 167 2020; 10 2020; 32 2019; 166 2017; 139 2006; 81 2020; 5 2018; 8 2021; 54 2018; 3 2021; 31 2023; 170 2021; 11 2021; 33 2023 2007; 173 2022; 5 2006; 162 2022; 14 2022; 1 2017; 164 2018; 10 2017; 300 2022; 525 2014; 269 2022; 169 2018; 57 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 Lee D. J. (e_1_2_9_23_1) 2023; 33 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 Ruess R. (e_1_2_9_32_1) 2023 e_1_2_9_13_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 269 start-page: 396 year: 2014 publication-title: J. Power Sources – volume: 11 year: 2021 publication-title: Journal of Power Sources Advances – volume: 15 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 165 start-page: A132 year: 2018 publication-title: J. Electrochem. Soc. – volume: 31 start-page: 9664 year: 2019 publication-title: Chem. Mater. – volume: 11 start-page: 1 year: 2021 publication-title: Sci. Rep. – volume: 1 year: 2022 publication-title: Nano Research Energy – volume: 32 start-page: 9479 year: 2020 publication-title: Chem. Mater. – volume: 3 start-page: 2539 year: 2018 publication-title: ACS Energy Lett. – volume: 18 start-page: 2307 year: 2006 publication-title: Chem. Mater. – volume: 54 start-page: 3390 year: 2021 publication-title: Acc. Chem. Res. – volume: 33 start-page: 4170 year: 2021 publication-title: Chem. Mater. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 31 start-page: 7574 year: 2019 publication-title: Chem. Mater. – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 468 year: 2020 publication-title: J. Power Sources – volume: 525 year: 2022 publication-title: J. Power Sources – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 33 start-page: 2110 year: 2021 publication-title: Chem. Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 6 year: 2023 publication-title: Batter Supercaps – volume: 4 start-page: 2418 year: 2019 publication-title: ACS Energy Lett. – volume: 162 year: 2015 publication-title: J. Electrochem. Soc. – volume: 1 year: 2022 publication-title: Materials Futures – volume: 169 year: 2022 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 1997 year: 2017 publication-title: ChemElectroChem – volume: 33 start-page: 859 year: 2021 publication-title: Chem. Mater. – volume: 5 start-page: 876 year: 2022 publication-title: Matter – volume: 164 year: 2017 publication-title: J. Electrochem. Soc. – volume: 300 start-page: 78 year: 2017 publication-title: Solid State Ion – volume: 168 year: 2021 publication-title: J. Electrochem. Soc. – volume: 346 year: 2020 publication-title: Electrochim. Acta – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 162 start-page: 644 year: 2006 publication-title: J. Power Sources – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 941 year: 2021 publication-title: ACS Energy Lett. – year: 2023 publication-title: J. Electrochem. Soc. – volume: 32 start-page: 6123 year: 2020 publication-title: Chem. Mater. – volume: 57 start-page: 6480 year: 2018 publication-title: Angewandte Chemie – International Edition – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 26 year: 2020 publication-title: Nat. Energy – volume: 31 start-page: 3745 year: 2019 publication-title: Chem. Mater. – volume: 173 start-page: 556 year: 2007 publication-title: J. Power Sources – volume: 170 year: 2023 publication-title: J. Electrochem. Soc. – volume: 51 start-page: 306 year: 2022 publication-title: Energy Storage Mater. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 81 start-page: 613 year: 2006 publication-title: Fusion Eng. Des. – volume: 166 year: 2019 publication-title: J. Electrochem. Soc. – ident: e_1_2_9_43_1 doi: 10.1016/j.ensm.2022.06.048 – ident: e_1_2_9_44_1 doi: 10.1016/j.fusengdes.2005.09.015 – ident: e_1_2_9_49_1 doi: 10.1149/1945-7111/ac0d69 – ident: e_1_2_9_14_1 doi: 10.1016/j.electacta.2020.136271 – ident: e_1_2_9_48_1 doi: 10.1021/acs.chemmater.0c03518 – ident: e_1_2_9_37_1 doi: 10.1016/j.jpowsour.2020.228204 – ident: e_1_2_9_56_1 doi: 10.1021/acs.chemmater.0c01825 – ident: e_1_2_9_18_1 doi: 10.1021/acsami.8b22529 – ident: e_1_2_9_26_1 doi: 10.1021/acsami.8b13158 – ident: e_1_2_9_47_1 doi: 10.1002/anie.201801533 – ident: e_1_2_9_8_1 doi: 10.1002/aenm.202202993 – ident: e_1_2_9_29_1 doi: 10.1149/2.1051506jes – ident: e_1_2_9_21_1 doi: 10.1021/acs.accounts.1c00333 – ident: e_1_2_9_38_1 doi: 10.1002/adma.201900985 – ident: e_1_2_9_51_1 doi: 10.1002/batt.202300085 – ident: e_1_2_9_19_1 doi: 10.1149/1945-7111/ac0d3a – ident: e_1_2_9_36_1 doi: 10.1149/2.0011912jes – ident: e_1_2_9_28_1 doi: 10.1088/2752-5724/ac5b7d – ident: e_1_2_9_12_1 doi: 10.1021/jacs.7b08461 – ident: e_1_2_9_53_1 doi: 10.1021/acs.chemmater.9b00770 – ident: e_1_2_9_6_1 doi: 10.1149/2.0401802jes – volume: 33 year: 2023 ident: e_1_2_9_23_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_9_1_1 doi: 10.1038/s41560-019-0513-0 – ident: e_1_2_9_15_1 doi: 10.1016/j.jpowsour.2007.04.083 – ident: e_1_2_9_9_1 doi: 10.1021/acs.chemmater.0c02808 – ident: e_1_2_9_33_1 doi: 10.1149/1945-7111/aceca6 – ident: e_1_2_9_54_1 doi: 10.1016/j.ssi.2016.11.029 – ident: e_1_2_9_39_1 doi: 10.1149/2.0921714jes – ident: e_1_2_9_41_1 doi: 10.1016/j.jpowsour.2006.07.028 – ident: e_1_2_9_10_1 doi: 10.1149/1945-7111/ac4e5d – ident: e_1_2_9_45_1 doi: 10.1021/cm060122b – ident: e_1_2_9_7_1 doi: 10.1021/acsenergylett.1c00086 – ident: e_1_2_9_2_1 doi: 10.1002/aenm.202002027 – ident: e_1_2_9_50_1 doi: 10.1016/j.powera.2021.100071 – ident: e_1_2_9_55_1 doi: 10.1021/acsenergylett.9b01693 – ident: e_1_2_9_11_1 doi: 10.1149/1945-7111/abb9cd – ident: e_1_2_9_25_1 doi: 10.1021/acsenergylett.8b01457 – ident: e_1_2_9_30_1 doi: 10.1038/s41598-020-79139-8 – ident: e_1_2_9_52_1 doi: 10.1002/celc.201700129 – ident: e_1_2_9_24_1 doi: 10.1016/j.jpowsour.2014.07.021 – ident: e_1_2_9_42_1 doi: 10.1021/acsami.2c09358 – ident: e_1_2_9_31_1 doi: 10.1021/acsami.2c22406 – ident: e_1_2_9_17_1 doi: 10.1021/acsami.1c23128 – ident: e_1_2_9_35_1 doi: 10.1021/acs.chemmater.9b02947 – ident: e_1_2_9_40_1 doi: 10.26599/NRE.2022.9120016 – ident: e_1_2_9_4_1 doi: 10.1016/j.jpowsour.2022.231111 – ident: e_1_2_9_13_1 doi: 10.1021/acs.chemmater.1c00935 – ident: e_1_2_9_22_1 doi: 10.1016/j.matt.2022.01.011 – ident: e_1_2_9_34_1 doi: 10.1021/acs.chemmater.9b02372 – ident: e_1_2_9_46_1 doi: 10.1021/acs.chemmater.0c04660 – year: 2023 ident: e_1_2_9_32_1 publication-title: J. Electrochem. Soc. – ident: e_1_2_9_20_1 doi: 10.1149/1945-7111/ac7ef0 – ident: e_1_2_9_27_1 doi: 10.1002/adfm.202103716 – ident: e_1_2_9_16_1 doi: 10.1149/2.1351915jes – ident: e_1_2_9_3_1 doi: 10.1002/aenm.202103005 – ident: e_1_2_9_5_1 doi: 10.1002/aenm.201702028 |
SSID | ssj0017734 |
Score | 2.51846 |
Snippet | Residual lithium compounds (RLCs) are known to form on the surface of nickel‐rich LiNi1‐x‐yCoxMnyO2 (NCM) oxides during synthesis and storage. In this study,... Residual lithium compounds (RLCs) are known to form on the surface of nickel‐rich LiNi 1‐x‐y Co x Mn y O 2 (NCM) oxides during synthesis and storage. In this... |
SourceID | unpaywall proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | air stability of NCM Electrochemical analysis Heat treatment High temperature Lithium carbonate Lithium compounds Lithium oxides lithium‐oxide LPSCl Nickel compounds Ni‐rich NCM residual lithium Single crystals |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5V6aHlQFsKIqVFe0CCi9tmd_3ilj6itqKhIo0UTtZ6d1ZEpGmEYxU48QeQ-I38Enb8CgVVReJmS-OxvZ7Xema-AXjhTJwJjBWekZHypJWp57yg8fYjm6ZS-ZRro2qLfnAylGcjf7QER3UvTIkP0fxwI80o7DUp-MzY0s5X2X2-p4ylbnJO-IO-M8TLAaWZWrA87F9039NeK-hQaVdntDjmUY3d-BeD275pEXCu5NOZ-nKjJpPbIWzhg3prgPXTl6UnH3fzebqrv_4B7Pi_r7cOD6sglXVLqdqAJZw-gge_QRduwncnX6xXdz6ya8veYVY0drE34_mHcX7FyNTQ0KaMOYL--Oe3H9TFz_qH5-zt57HB7DW7pDQFOy06NYnKRaPsuBzMoyskA3axaG2g2wzyiXUXO24HzgEb1h0MDrLHMOwdXx6eeNVoB08LP-QeplKEFgk-UAQhQaSichsfgyijALGjhYniVEdGSR1rze0-hhxDmcZSh4Yr8QRa0-spPgUmRNhRQiutMXbRp4qsVFrwyImm5gHGbfDqj5roCvecxm9MkhKxmSe0zEmzzG142dDPSsSPOym3axlJKs3PEkEBsAu7_KANrxq5uZcTL2ThHrKke9Q7b862_p3_M1h1x7Is1NyG1vxTjjsumJqnzytd-QXH3BtM priority: 102 providerName: Unpaywall |
Title | The Formation of Residual Lithium Compounds on Ni‐Rich NCM Oxides: Their Impact on the Electrochemical Performance of Sulfide‐Based ASSBs |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202313252 https://www.proquest.com/docview/3057578256 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adfm.202313252 |
UnpaywallVersion | publishedVersion |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1616-3028 dateEnd: 20241003 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: ADMLS dateStart: 20130107 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1616-301X databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOQAHyqsi0EZ7QIKL23h37bW5pY-oIBqippHCydqniAhphWPxOPEHkPob-SXs-JUGCVWCmy3Nru31zOxnz8w3AM-9izOxcSwwPJEBd1wFfhc0QS9xSnEZYawNsy2G8fGEv5lG0ytV_BU_RPvDDS2j9Ndo4FLleyvSUGkcVpJT5B6M0AmHLCrjtKctf1QoRBVWjkNM8AqnDWtjj-6tD1_flVZQ83axuJDfvsj5fB28lrvPYBNkc99V0snH3WKpdvX3Pygd_-fB7sO9GpqSfqVLD-CGXTyEu1cICx_BT69VZNDUO5JzR05tXpZzkbez5YdZ8Ymgg8FWTTnxAsPZrx-XWLtPhgcn5N3XmbH5K3KGwQnyuqzPRCmPQclR1Y5H1_wFZLQqaMDLjIu584P9bPt-2zWkPx7v549hMjg6OzgO6oYOgWaRoIFVnAlnkTSQxQKJUa30nzvGWp7E1oaamSRVOjGS61Rr6npWUCu4SrkWhkq2BRuL84V9AoQxEUqmpdY29ZhTJo5LzWjiFVLT2KYdCJoXmuma7RybbsyziqeZZrjMWbvMHXjRyl9UPB9_ldxu9COr7T3PGMJeD7aiuAMvW525diZa6sE1Yln_cHDSnj39l0HP4I4_5lWi5jZsLD8XdseDqaXqwk3KR93SbLpwazIc9d__BnSFGms |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iB_UgPrFaNQdBL4ttkt3semvVUrWtYit4W7J5YKFWcVvUm39A8Df6S8zsq_YggscNkyzsZDLfZma-QWjfHnHKU4Y6ivnCYYZFjvWCyqn4JoqYcCHWBtkWHa95yy7u3DybEGphUn6I4sINLCM5r8HA4UL6aMIaKpSBUnIC5IOuPYXnmEcqsLEJuy4CCZyngWWvCile1buct7FCjqbnT_ulCdicHw-fxNuLGAym4WvifxrLaCkDjriWanoFzejhKlr8QSe4hj6sznEjr0bEjwbf6DgptsKt_ui-P37AYP7QSCnGVqDT_3r_hMp63Dlp46vXvtLxMe5B6ACfJ9WTIGURIj5Lm-XIjF0AX0_KDeA13fHA2Ml2tbp1igrXut16vI5uG2e9k6aTtVtwJHU5cXTEKDcaKP2ox4G2VAv7M6K0Zr6ndVVS5QeR9JVgMpCSmIrmRHMWBUxyRQTdQLPDx6HeRJhSXhVUCil1YBGh8A0TkhLfbhdJPB2UkJN_7FBmXOTQEmMQpizKJATlhIVySuigkH9KWTh-lSznugsza4xDCqDUQiHXK6HDQp9_rkQSdf8hFtZOG-3iaes_k_bQfLPXboWt887lNlqw4yxNqSyj2dHzWO9Y2DOKdpON_Q1yW_oc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5VVKJwaHm0Im3a7qESXAzx7tpr95YAFlBIEQEpN2u9DzUiJFEdC9oTfwCpv7G_pDt-hSAhpHK0NevHeh7feme-QeiLdXHKV4Y6igXCYYYljo2CymkFJkmY8GCvDbItuv7BBTvqe_17VfwFP0T9ww0sI_fXYOATZXZmpKFCGagkJ8A96Fkn_JL5dokFsOisJpByOS_2lX0XMrzcfkXb2CI78-Pnw9IMa77KRhPx61oMh_PoNQ8_0Rskqgcvsk4ut7Npsi1_P-B0fM6braDXJTbF7UKZVtELPVpDy_cYC9fRnVUrHFUFj3hs8JlO83oufDyY_hhkVxg8DPRqSrEV6A7-3v6B4n3c3T3B328GSqdf8TnsTuDDvEATpCwIxftFPx5ZEhjg01lFA9ymlw2NHWyv1rFxV-F2r9dJ36KLaP9898ApOzo4knqcODphlBsNrIHU58CMqoVd7yitWeBr7UqqgjCRgRJMhlIS09KcaM6SkEmuiKDv0MJoPNIbCFPKXUGlkFKHFnSKwDAhKQmsRkri67CBnOqDxrKkO4euG8O4IGomMUxzXE9zA23W8pOC6ONRyWalH3Fp8GlMAfdatOX5DbRV68yTVyK5HjwhFrf3opP66P3_DPqMFk_3ovj4sPvtA1qyp1mRtNlEC9Ofmf5ogdU0-ZTbzj8fMhqv |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5V6aHlQFsKIqVFe0CCi9tmd_3ilj6itqKhIo0UTtZ6d1ZEpGmEYxU48QeQ-I38Enb8CgVVReJmS-OxvZ7Xema-AXjhTJwJjBWekZHypJWp57yg8fYjm6ZS-ZRro2qLfnAylGcjf7QER3UvTIkP0fxwI80o7DUp-MzY0s5X2X2-p4ylbnJO-IO-M8TLAaWZWrA87F9039NeK-hQaVdntDjmUY3d-BeD275pEXCu5NOZ-nKjJpPbIWzhg3prgPXTl6UnH3fzebqrv_4B7Pi_r7cOD6sglXVLqdqAJZw-gge_QRduwncnX6xXdz6ya8veYVY0drE34_mHcX7FyNTQ0KaMOYL--Oe3H9TFz_qH5-zt57HB7DW7pDQFOy06NYnKRaPsuBzMoyskA3axaG2g2wzyiXUXO24HzgEb1h0MDrLHMOwdXx6eeNVoB08LP-QeplKEFgk-UAQhQaSichsfgyijALGjhYniVEdGSR1rze0-hhxDmcZSh4Yr8QRa0-spPgUmRNhRQiutMXbRp4qsVFrwyImm5gHGbfDqj5roCvecxm9MkhKxmSe0zEmzzG142dDPSsSPOym3axlJKs3PEkEBsAu7_KANrxq5uZcTL2ThHrKke9Q7b862_p3_M1h1x7Is1NyG1vxTjjsumJqnzytd-QXH3BtM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Formation+of+Residual+Lithium+Compounds+on+Ni%E2%80%90Rich+NCM+Oxides%3A+Their+Impact+on+the+Electrochemical+Performance+of+Sulfide%E2%80%90Based+ASSBs&rft.jtitle=Advanced+functional+materials&rft.au=Aktekin%2C+Burak&rft.au=Sedykh%2C+Alexander+E.&rft.au=M%C3%BCller%E2%80%90Buschbaum%2C+Klaus&rft.au=Henss%2C+Anja&rft.date=2024-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202313252&rft.externalDBID=10.1002%252Fadfm.202313252&rft.externalDocID=ADFM202313252 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |