Evaluation and Prognostication of Gd‐EOB‐DTPA MRI and CT in Patients With Macrotrabecular‐Massive Hepatocellular Carcinoma

Background Macrotrabecular‐massive hepatocellular carcinoma (MTM‐HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium (Gd‐EOB‐DTPA) MRI for MTM‐HCC are lacking. Purpose To compare the performance of Gd‐EOB‐DTPA MRI and CT for differentiating MTM‐HCC from non‐MTM‐H...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 59; no. 6; pp. 2071 - 2081
Main Authors Cheng, Jie, Li, Xiaofeng, Wang, Limei, Chen, Fengxi, Li, Yiman, Zuo, Guojiao, Pei, Mi, Zhang, Huarong, Yu, Linze, Liu, Chen, Wang, Jian, Han, Qi, Cai, Ping, Li, Xiaoming
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.06.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1053-1807
1522-2586
1522-2586
DOI10.1002/jmri.29052

Cover

Abstract Background Macrotrabecular‐massive hepatocellular carcinoma (MTM‐HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium (Gd‐EOB‐DTPA) MRI for MTM‐HCC are lacking. Purpose To compare the performance of Gd‐EOB‐DTPA MRI and CT for differentiating MTM‐HCC from non‐MTM‐HCC, and determine the prognostic indicator. Study Type Retrospective. Subjects Post‐surgery HCC patients, divided into the training (N = 272) and external validation (N = 44) cohorts. Field Strength/Sequence 3.0 T, T1‐weighted imaging, in‐opp phase, and T1‐weighted volumetric interpolated breath‐hold examination/liver acquisition with volume acceleration; enhanced CT. Assessment Three radiologists evaluated clinical characteristics (sex, age, liver disease, liver function, blood routine, alpha‐fetoprotein [AFP] and prothrombin time international normalization ratio [PT‐INR]) and imaging features (tumor length, intratumor fat, hemorrhage, arterial phase peritumoral enhancement, intratumor necrosis or ischemia, capsule, and peritumoral hepatobiliary phase [HBP] hypointensity). Compared the performance of CT and MRI for diagnosing MTM‐HCC. Follow‐up occurred every 3–6 months, and nomogram demonstrated the probability of MTM‐HCC. Statistical Tests Fisher test, t‐test or Wilcoxon rank‐sum test, area under the curve (AUC), 95% confidence interval (CI), multivariable logistic regression, Kaplan–Meier curve, and Cox proportional hazards. Significance level: P < 0.05. Results Gd‐EOB‐DTPA MRI (AUC: 0.793; 95% CI, 0.740–0.839) outperformed CT (AUC: 0.747; 95% CI, 0.691–0.797) in the training cohort. The nomogram, incorporating AFP, PT‐INR, and MRI features (non‐intratumor fat, incomplete capsule, intratumor necrosis or ischemia, and peritumoral HBP hypointensity) demonstrated powerful performance for diagnosing MTM‐HCC with an AUC of 0.826 (95% CI, 0.631–1.000) in the external validation cohort. Median follow‐up was 347 days (interquartile range [IQR], 606 days) for the training cohort and 222 days (IQR, 441 days) for external validation cohort. Intratumor necrosis or ischemia was an independent indicator for poor prognosis. Data Conclusion Gd‐EOB‐DTPA MRI might assist in preoperative diagnosis of MTM‐HCC, and intratumor necrosis or ischemia was associated with poor prognosis. Evidence Level 4 Technical Efficacy Stage 2
AbstractList Macrotrabecular-massive hepatocellular carcinoma (MTM-HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium (Gd-EOB-DTPA) MRI for MTM-HCC are lacking.BACKGROUNDMacrotrabecular-massive hepatocellular carcinoma (MTM-HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium (Gd-EOB-DTPA) MRI for MTM-HCC are lacking.To compare the performance of Gd-EOB-DTPA MRI and CT for differentiating MTM-HCC from non-MTM-HCC, and determine the prognostic indicator.PURPOSETo compare the performance of Gd-EOB-DTPA MRI and CT for differentiating MTM-HCC from non-MTM-HCC, and determine the prognostic indicator.Retrospective.STUDY TYPERetrospective.Post-surgery HCC patients, divided into the training (N = 272) and external validation (N = 44) cohorts.SUBJECTSPost-surgery HCC patients, divided into the training (N = 272) and external validation (N = 44) cohorts.3.0 T, T1-weighted imaging, in-opp phase, and T1-weighted volumetric interpolated breath-hold examination/liver acquisition with volume acceleration; enhanced CT.FIELD STRENGTH/SEQUENCE3.0 T, T1-weighted imaging, in-opp phase, and T1-weighted volumetric interpolated breath-hold examination/liver acquisition with volume acceleration; enhanced CT.Three radiologists evaluated clinical characteristics (sex, age, liver disease, liver function, blood routine, alpha-fetoprotein [AFP] and prothrombin time international normalization ratio [PT-INR]) and imaging features (tumor length, intratumor fat, hemorrhage, arterial phase peritumoral enhancement, intratumor necrosis or ischemia, capsule, and peritumoral hepatobiliary phase [HBP] hypointensity). Compared the performance of CT and MRI for diagnosing MTM-HCC. Follow-up occurred every 3-6 months, and nomogram demonstrated the probability of MTM-HCC.ASSESSMENTThree radiologists evaluated clinical characteristics (sex, age, liver disease, liver function, blood routine, alpha-fetoprotein [AFP] and prothrombin time international normalization ratio [PT-INR]) and imaging features (tumor length, intratumor fat, hemorrhage, arterial phase peritumoral enhancement, intratumor necrosis or ischemia, capsule, and peritumoral hepatobiliary phase [HBP] hypointensity). Compared the performance of CT and MRI for diagnosing MTM-HCC. Follow-up occurred every 3-6 months, and nomogram demonstrated the probability of MTM-HCC.Fisher test, t-test or Wilcoxon rank-sum test, area under the curve (AUC), 95% confidence interval (CI), multivariable logistic regression, Kaplan-Meier curve, and Cox proportional hazards. Significance level: P < 0.05.STATISTICAL TESTSFisher test, t-test or Wilcoxon rank-sum test, area under the curve (AUC), 95% confidence interval (CI), multivariable logistic regression, Kaplan-Meier curve, and Cox proportional hazards. Significance level: P < 0.05.Gd-EOB-DTPA MRI (AUC: 0.793; 95% CI, 0.740-0.839) outperformed CT (AUC: 0.747; 95% CI, 0.691-0.797) in the training cohort. The nomogram, incorporating AFP, PT-INR, and MRI features (non-intratumor fat, incomplete capsule, intratumor necrosis or ischemia, and peritumoral HBP hypointensity) demonstrated powerful performance for diagnosing MTM-HCC with an AUC of 0.826 (95% CI, 0.631-1.000) in the external validation cohort. Median follow-up was 347 days (interquartile range [IQR], 606 days) for the training cohort and 222 days (IQR, 441 days) for external validation cohort. Intratumor necrosis or ischemia was an independent indicator for poor prognosis.RESULTSGd-EOB-DTPA MRI (AUC: 0.793; 95% CI, 0.740-0.839) outperformed CT (AUC: 0.747; 95% CI, 0.691-0.797) in the training cohort. The nomogram, incorporating AFP, PT-INR, and MRI features (non-intratumor fat, incomplete capsule, intratumor necrosis or ischemia, and peritumoral HBP hypointensity) demonstrated powerful performance for diagnosing MTM-HCC with an AUC of 0.826 (95% CI, 0.631-1.000) in the external validation cohort. Median follow-up was 347 days (interquartile range [IQR], 606 days) for the training cohort and 222 days (IQR, 441 days) for external validation cohort. Intratumor necrosis or ischemia was an independent indicator for poor prognosis.Gd-EOB-DTPA MRI might assist in preoperative diagnosis of MTM-HCC, and intratumor necrosis or ischemia was associated with poor prognosis.DATA CONCLUSIONGd-EOB-DTPA MRI might assist in preoperative diagnosis of MTM-HCC, and intratumor necrosis or ischemia was associated with poor prognosis.4 TECHNICAL EFFICACY: Stage 2.EVIDENCE LEVEL4 TECHNICAL EFFICACY: Stage 2.
Background Macrotrabecular‐massive hepatocellular carcinoma (MTM‐HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium (Gd‐EOB‐DTPA) MRI for MTM‐HCC are lacking. Purpose To compare the performance of Gd‐EOB‐DTPA MRI and CT for differentiating MTM‐HCC from non‐MTM‐HCC, and determine the prognostic indicator. Study Type Retrospective. Subjects Post‐surgery HCC patients, divided into the training (N = 272) and external validation (N = 44) cohorts. Field Strength/Sequence 3.0 T, T1‐weighted imaging, in‐opp phase, and T1‐weighted volumetric interpolated breath‐hold examination/liver acquisition with volume acceleration; enhanced CT. Assessment Three radiologists evaluated clinical characteristics (sex, age, liver disease, liver function, blood routine, alpha‐fetoprotein [AFP] and prothrombin time international normalization ratio [PT‐INR]) and imaging features (tumor length, intratumor fat, hemorrhage, arterial phase peritumoral enhancement, intratumor necrosis or ischemia, capsule, and peritumoral hepatobiliary phase [HBP] hypointensity). Compared the performance of CT and MRI for diagnosing MTM‐HCC. Follow‐up occurred every 3–6 months, and nomogram demonstrated the probability of MTM‐HCC. Statistical Tests Fisher test, t‐test or Wilcoxon rank‐sum test, area under the curve (AUC), 95% confidence interval (CI), multivariable logistic regression, Kaplan–Meier curve, and Cox proportional hazards. Significance level: P < 0.05. Results Gd‐EOB‐DTPA MRI (AUC: 0.793; 95% CI, 0.740–0.839) outperformed CT (AUC: 0.747; 95% CI, 0.691–0.797) in the training cohort. The nomogram, incorporating AFP, PT‐INR, and MRI features (non‐intratumor fat, incomplete capsule, intratumor necrosis or ischemia, and peritumoral HBP hypointensity) demonstrated powerful performance for diagnosing MTM‐HCC with an AUC of 0.826 (95% CI, 0.631–1.000) in the external validation cohort. Median follow‐up was 347 days (interquartile range [IQR], 606 days) for the training cohort and 222 days (IQR, 441 days) for external validation cohort. Intratumor necrosis or ischemia was an independent indicator for poor prognosis. Data Conclusion Gd‐EOB‐DTPA MRI might assist in preoperative diagnosis of MTM‐HCC, and intratumor necrosis or ischemia was associated with poor prognosis. Evidence Level 4 Technical Efficacy Stage 2
BackgroundMacrotrabecular‐massive hepatocellular carcinoma (MTM‐HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium (Gd‐EOB‐DTPA) MRI for MTM‐HCC are lacking.PurposeTo compare the performance of Gd‐EOB‐DTPA MRI and CT for differentiating MTM‐HCC from non‐MTM‐HCC, and determine the prognostic indicator.Study TypeRetrospective.SubjectsPost‐surgery HCC patients, divided into the training (N = 272) and external validation (N = 44) cohorts.Field Strength/Sequence3.0 T, T1‐weighted imaging, in‐opp phase, and T1‐weighted volumetric interpolated breath‐hold examination/liver acquisition with volume acceleration; enhanced CT.AssessmentThree radiologists evaluated clinical characteristics (sex, age, liver disease, liver function, blood routine, alpha‐fetoprotein [AFP] and prothrombin time international normalization ratio [PT‐INR]) and imaging features (tumor length, intratumor fat, hemorrhage, arterial phase peritumoral enhancement, intratumor necrosis or ischemia, capsule, and peritumoral hepatobiliary phase [HBP] hypointensity). Compared the performance of CT and MRI for diagnosing MTM‐HCC. Follow‐up occurred every 3–6 months, and nomogram demonstrated the probability of MTM‐HCC.Statistical TestsFisher test, t‐test or Wilcoxon rank‐sum test, area under the curve (AUC), 95% confidence interval (CI), multivariable logistic regression, Kaplan–Meier curve, and Cox proportional hazards. Significance level: P < 0.05.ResultsGd‐EOB‐DTPA MRI (AUC: 0.793; 95% CI, 0.740–0.839) outperformed CT (AUC: 0.747; 95% CI, 0.691–0.797) in the training cohort. The nomogram, incorporating AFP, PT‐INR, and MRI features (non‐intratumor fat, incomplete capsule, intratumor necrosis or ischemia, and peritumoral HBP hypointensity) demonstrated powerful performance for diagnosing MTM‐HCC with an AUC of 0.826 (95% CI, 0.631–1.000) in the external validation cohort. Median follow‐up was 347 days (interquartile range [IQR], 606 days) for the training cohort and 222 days (IQR, 441 days) for external validation cohort. Intratumor necrosis or ischemia was an independent indicator for poor prognosis.Data ConclusionGd‐EOB‐DTPA MRI might assist in preoperative diagnosis of MTM‐HCC, and intratumor necrosis or ischemia was associated with poor prognosis.Evidence Level4Technical EfficacyStage 2
Macrotrabecular-massive hepatocellular carcinoma (MTM-HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium (Gd-EOB-DTPA) MRI for MTM-HCC are lacking. To compare the performance of Gd-EOB-DTPA MRI and CT for differentiating MTM-HCC from non-MTM-HCC, and determine the prognostic indicator. Retrospective. Post-surgery HCC patients, divided into the training (N = 272) and external validation (N = 44) cohorts. 3.0 T, T1-weighted imaging, in-opp phase, and T1-weighted volumetric interpolated breath-hold examination/liver acquisition with volume acceleration; enhanced CT. Three radiologists evaluated clinical characteristics (sex, age, liver disease, liver function, blood routine, alpha-fetoprotein [AFP] and prothrombin time international normalization ratio [PT-INR]) and imaging features (tumor length, intratumor fat, hemorrhage, arterial phase peritumoral enhancement, intratumor necrosis or ischemia, capsule, and peritumoral hepatobiliary phase [HBP] hypointensity). Compared the performance of CT and MRI for diagnosing MTM-HCC. Follow-up occurred every 3-6 months, and nomogram demonstrated the probability of MTM-HCC. Fisher test, t-test or Wilcoxon rank-sum test, area under the curve (AUC), 95% confidence interval (CI), multivariable logistic regression, Kaplan-Meier curve, and Cox proportional hazards. Significance level: P < 0.05. Gd-EOB-DTPA MRI (AUC: 0.793; 95% CI, 0.740-0.839) outperformed CT (AUC: 0.747; 95% CI, 0.691-0.797) in the training cohort. The nomogram, incorporating AFP, PT-INR, and MRI features (non-intratumor fat, incomplete capsule, intratumor necrosis or ischemia, and peritumoral HBP hypointensity) demonstrated powerful performance for diagnosing MTM-HCC with an AUC of 0.826 (95% CI, 0.631-1.000) in the external validation cohort. Median follow-up was 347 days (interquartile range [IQR], 606 days) for the training cohort and 222 days (IQR, 441 days) for external validation cohort. Intratumor necrosis or ischemia was an independent indicator for poor prognosis. Gd-EOB-DTPA MRI might assist in preoperative diagnosis of MTM-HCC, and intratumor necrosis or ischemia was associated with poor prognosis. 4 TECHNICAL EFFICACY: Stage 2.
Author Wang, Jian
Wang, Limei
Liu, Chen
Li, Xiaoming
Li, Yiman
Han, Qi
Pei, Mi
Yu, Linze
Zuo, Guojiao
Cheng, Jie
Chen, Fengxi
Cai, Ping
Li, Xiaofeng
Zhang, Huarong
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0003-2580-1878
  surname: Cheng
  fullname: Cheng, Jie
  organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University)
– sequence: 2
  givenname: Xiaofeng
  orcidid: 0009-0009-6118-6498
  surname: Li
  fullname: Li, Xiaofeng
  organization: The Third Affiliated Hospital of Chongqing Medical University
– sequence: 3
  givenname: Limei
  orcidid: 0009-0007-7454-0658
  surname: Wang
  fullname: Wang, Limei
  organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University)
– sequence: 4
  givenname: Fengxi
  orcidid: 0000-0002-8951-5339
  surname: Chen
  fullname: Chen, Fengxi
  organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University)
– sequence: 5
  givenname: Yiman
  orcidid: 0009-0000-7243-6784
  surname: Li
  fullname: Li, Yiman
  organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University)
– sequence: 6
  givenname: Guojiao
  orcidid: 0009-0000-1521-5774
  surname: Zuo
  fullname: Zuo, Guojiao
  organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University)
– sequence: 7
  givenname: Mi
  orcidid: 0009-0007-0634-5703
  surname: Pei
  fullname: Pei, Mi
  organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University)
– sequence: 8
  givenname: Huarong
  orcidid: 0000-0001-9994-0112
  surname: Zhang
  fullname: Zhang, Huarong
  organization: Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University)
– sequence: 9
  givenname: Linze
  orcidid: 0000-0002-1975-9530
  surname: Yu
  fullname: Yu, Linze
  organization: School of Medical Imaging, North Sichuan Medical College
– sequence: 10
  givenname: Chen
  orcidid: 0000-0001-5149-2496
  surname: Liu
  fullname: Liu, Chen
  organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University)
– sequence: 11
  givenname: Jian
  orcidid: 0000-0003-1210-0837
  surname: Wang
  fullname: Wang, Jian
  organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University)
– sequence: 12
  givenname: Qi
  orcidid: 0000-0002-3136-4662
  surname: Han
  fullname: Han, Qi
  organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University)
– sequence: 13
  givenname: Ping
  orcidid: 0000-0002-2728-5531
  surname: Cai
  fullname: Cai, Ping
  email: 530305942@qq.com
  organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University)
– sequence: 14
  givenname: Xiaoming
  orcidid: 0000-0002-7229-5915
  surname: Li
  fullname: Li, Xiaoming
  email: 359261069@qq.com
  organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37840197$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1OGzEUha2Kqvx1wwMgS91USKH-GY9nljSkQEVEhIK6tGyPhzqasYM9E8SOvgGPwLPwKDxJnYR2gRAb27r-ztW952yDDeedAWAPo0OMEPk2a4M9JCVi5APYwoyQAWFFvpHeiNEBLhDfBNsxzhBCZZmxT2CT8iJDuORb4M9oIZtedtY7KF0FJ8FfOx87q1e1p0dfw5Pq-f5hdPE9ncfTyREcX56t2OEUWgcnCTSui_CX7X7DsdTBd0Eqo_tGhiQZyxjtwsBTM5ed16Zplh9wKIO2zrdyF3ysZRPN55d7B1z9GE2Hp4Pzi5Oz4dH5QFPG00ooJ1TzgkuMaK200WkXVaGsxpJmRsk6Z1opgjNalqrUXJWVMpQzQ-uaFRXdAV_XfefB3_QmdqK1cTmOdMb3UZCCFwgXhPGEfnmFznwfXJpO0ORyTnCOWaL2X6hetaYS82BbGe7EP3MTcLAGkiUxBlP_RzASy-TEMjmxSi7B6BWsbbfKILlpm7cleC25tY25e6e5-JkiW2v-ApxirvA
CitedBy_id crossref_primary_10_1002_jmri_29197
crossref_primary_10_1016_j_ejrad_2024_111695
crossref_primary_10_1007_s00330_024_11344_9
crossref_primary_10_1002_mp_17401
crossref_primary_10_1016_j_acra_2025_01_029
Cites_doi 10.1186/s12957-020-01996-4
10.1007/s00330-022-09322-0
10.1159/000514174
10.2147/JHC.S364742
10.1007/s00261-021-02989-x
10.1007/s00432-020-03331-6
10.1002/hep4.1823
10.1016/j.acra.2021.09.004
10.7150/jca.19181
10.1016/j.jhep.2017.04.024
10.1007/s00262-020-02691-9
10.1158/1078-0432.CCR-19-0859
10.1007/s00330-021-07898-7
10.1148/radiol.2020192230
10.1002/hep.29762
10.1155/2018/9674565
10.3348/kjr.2022.0822
10.21037/hbsn-20-480
10.1007/s00330-022-09105-7
10.1148/radiol.2221010767
10.1016/j.jhep.2017.05.014
10.1016/j.jhep.2020.08.013
10.1148/radiol.2021204288
10.1002/hep.32201
10.1016/j.jhep.2018.09.003
10.1016/j.ejrad.2015.12.015
10.1042/BSR20202603
10.1111/his.13975
10.1002/hep.29184
10.1001/jamasurg.2015.4257
10.1136/bmj.g7594
10.1148/radiol.15142394
10.1097/MD.0000000000018823
10.1002/hep.30814
10.1148/radiol.2021210379
10.1038/s41572-020-00240-3
10.1007/s00330-020-07499-w
10.2307/2529310
ContentType Journal Article
Copyright 2023 International Society for Magnetic Resonance in Medicine.
2024 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2023 International Society for Magnetic Resonance in Medicine.
– notice: 2024 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/jmri.29052
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 2081
ExternalDocumentID 37840197
10_1002_jmri_29052
JMRI29052
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of Chongqing
  funderid: CSTB2022NSCQMSX1371
– fundername: National Natural Science Foundation of Chongqing
  grantid: CSTB2022NSCQMSX1371
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3572-20623c787a103fbcec994bd04f1a34ebaf65cbb214399b9c7b9dbe375e3ff58d3
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Thu Jul 10 18:17:42 EDT 2025
Fri Jul 25 10:06:18 EDT 2025
Mon Jul 21 06:03:02 EDT 2025
Thu Apr 24 22:58:20 EDT 2025
Tue Jul 01 03:57:00 EDT 2025
Wed Jan 22 17:20:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords computed tomography
magnetic resonance imaging
macrotrabecular‐massive
hepatocellular carcinoma
Gd‐EOB‐DTPA
Language English
License 2023 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3572-20623c787a103fbcec994bd04f1a34ebaf65cbb214399b9c7b9dbe375e3ff58d3
Notes Jie Cheng, Xiaofeng Li, and Limei Wang contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5149-2496
0000-0002-3136-4662
0000-0002-2728-5531
0009-0007-0634-5703
0000-0002-1975-9530
0000-0003-1210-0837
0000-0002-7229-5915
0000-0002-8951-5339
0009-0000-1521-5774
0000-0003-2580-1878
0000-0001-9994-0112
0009-0007-7454-0658
0009-0009-6118-6498
0009-0000-7243-6784
PMID 37840197
PQID 3052621615
PQPubID 1006400
PageCount 11
ParticipantIDs proquest_miscellaneous_2878018257
proquest_journals_3052621615
pubmed_primary_37840197
crossref_primary_10_1002_jmri_29052
crossref_citationtrail_10_1002_jmri_29052
wiley_primary_10_1002_jmri_29052_JMRI29052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
2024-Jun
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 46
2021; 7
2017; 8
2021; 5
2019; 70
2023; 11
2023; 33
2021; 300
2020; 40
2021; 301
2017; 66
2017; 67
2022; 23
2020; 146
2020; 99
2020; 76
2021; 74
2022; 29
2021; 70
2020; 18
2018; 68
2015; 350
2018; 2018
2021; 10
2021; 31
2020; 295
2020; 71
2015; 276
2022; 9
2019; 25
2020; 9
2002; 222
2016; 85
1977; 33
2022; 75
2016; 151
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
Zhang HD (e_1_2_8_3_1) 2023; 11
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 70
  start-page: 417
  issue: 2
  year: 2021
  end-page: 429
  article-title: Coexpression of CMTM6 and PD‐L1 as a predictor of poor prognosis in macrotrabecular‐massive hepatocellular carcinoma
  publication-title: Cancer Immunol Immunother
– volume: 31
  start-page: 3627
  issue: 6
  year: 2021
  end-page: 3637
  article-title: Hepatobiliary phase of gadoxetic acid‐enhanced MRI in patients with HCC: Prognostic features before resection, ablation, or TACE
  publication-title: Eur Radiol
– volume: 301
  start-page: 250
  issue: 2
  year: 2021
  end-page: 262
  article-title: Quantification of liver fat content with CT and MRI: State of the art
  publication-title: Radiology
– volume: 10
  start-page: 181
  issue: 3
  year: 2021
  end-page: 223
  article-title: Management of hepatocellular carcinoma in Japan: JSH consensus statements and recommendations 2021 update
  publication-title: Liver Cancer
– volume: 29
  start-page: 819
  issue: 6
  year: 2022
  end-page: 829
  article-title: MRI‐based nomogram predicts the risk of progression of unresectable hepatocellular carcinoma after combined lenvatinib and anti‐PD‐1 antibody therapy
  publication-title: Acad Radiol
– volume: 25
  start-page: 5859
  issue: 19
  year: 2019
  end-page: 5865
  article-title: ESM1 as a marker of macrotrabecular‐massive hepatocellular carcinoma
  publication-title: Clin Cancer Res
– volume: 67
  start-page: 727
  issue: 4
  year: 2017
  end-page: 738
  article-title: Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification
  publication-title: J Hepatol
– volume: 9
  start-page: 379
  year: 2022
  end-page: 387
  article-title: Macrotrabecular‐massive hepatocellular carcinoma: What should we know?
  publication-title: J Hepatocell Carcinoma
– volume: 2018
  year: 2018
  article-title: Prediction of microvascular invasion in hepatocellular carcinoma: Preoperative Gd‐EOB‐DTPA‐dynamic enhanced MRI and histopathological correlation
  publication-title: Contrast Media Mol Imaging
– volume: 31
  start-page: 7696
  issue: 10
  year: 2021
  end-page: 7704
  article-title: Macrotrabecular‐massive hepatocellular carcinoma: Imaging identification and prediction based on gadoxetic acid‐enhanced magnetic resonance imaging
  publication-title: Eur Radiol
– volume: 146
  start-page: 2439
  issue: 10
  year: 2020
  end-page: 2446
  article-title: Effects of alpha‐fetoprotein on the occurrence and progression of hepatocellular carcinoma
  publication-title: J Cancer Res Clin Oncol
– volume: 46
  start-page: 3139
  issue: 7
  year: 2021
  end-page: 3148
  article-title: A radiomics nomogram based on contrast‐enhanced MRI for preoperative prediction of macrotrabecular‐massive hepatocellular carcinoma
  publication-title: Abdom Radiol (NY)
– volume: 68
  start-page: 103
  issue: 1
  year: 2018
  end-page: 112
  article-title: Macrotrabecular‐massive hepatocellular carcinoma: A distinctive histological subtype with clinical relevance
  publication-title: Hepatology
– volume: 99
  issue: 4
  year: 2020
  article-title: Methylation of the ataxia telangiectasia mutated gene (ATM) promoter as a radiotherapy outcome biomarker in patients with hepatocellular carcinoma
  publication-title: Medicine (Baltimore)
– volume: 75
  start-page: 1139
  issue: 5
  year: 2022
  end-page: 1153
  article-title: Immunovascular classification of HCC reflects reciprocal interaction between immune and angiogenic tumor microenvironments
  publication-title: Hepatology
– volume: 295
  start-page: 562
  issue: 3
  year: 2020
  end-page: 571
  article-title: Multiphase liver MRI for identifying the macrotrabecular‐massive subtype of hepatocellular carcinoma
  publication-title: Radiology
– volume: 300
  start-page: 230
  issue: 1
  year: 2021
  end-page: 232
  article-title: CT characterization of aggressive macrotrabecular‐massive hepatocellular carcinoma: A step forward to personalized medicine
  publication-title: Radiology
– volume: 40
  issue: 10
  year: 2020
  article-title: Identification of prognostic biomarkers and correlations with immune infiltrates among cGAS‐STING in hepatocellular carcinoma
  publication-title: Biosci Rep
– volume: 5
  start-page: 1972
  issue: 12
  year: 2021
  end-page: 1986
  article-title: Current and emerging tools for hepatocellular carcinoma surveillance
  publication-title: Hepatol Commun
– volume: 276
  start-page: 433
  issue: 2
  year: 2015
  end-page: 443
  article-title: Single hepatocellular carcinoma: Preoperative MR imaging to predict early recurrence after curative resection
  publication-title: Radiology
– volume: 33
  start-page: 1364
  issue: 2
  year: 2023
  end-page: 1377
  article-title: Comparison of imaging findings of macrotrabecular‐massive hepatocellular carcinoma using CT and gadoxetic acid‐enhanced MRI
  publication-title: Eur Radiol
– volume: 33
  start-page: 159
  issue: 1
  year: 1977
  end-page: 174
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
– volume: 18
  start-page: 219
  issue: 1
  year: 2020
  article-title: Application of Gd‐EOB‐DTPA‐enhanced magnetic resonance imaging (MRI) in hepatocellular carcinoma
  publication-title: World J Surg Oncol
– volume: 76
  start-page: 182
  issue: 2
  year: 2020
  end-page: 188
  article-title: The 2019 WHO classification of tumours of the digestive system
  publication-title: Histopathology
– volume: 74
  start-page: 109
  issue: 1
  year: 2021
  end-page: 121
  article-title: Gadoxetic acid‐enhanced MRI of macrotrabecular‐massive hepatocellular carcinoma and its prognostic implications
  publication-title: J Hepatol
– volume: 85
  start-page: 546
  issue: 3
  year: 2016
  end-page: 552
  article-title: MR liver imaging with Gd‐EOB‐DTPA: The need for different delay times of the hepatobiliary phase in patients with different liver function
  publication-title: Eur J Radiol
– volume: 70
  start-page: 58
  issue: 1
  year: 2019
  end-page: 65
  article-title: Intra‐tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma
  publication-title: J Hepatol
– volume: 9
  start-page: 452
  issue: 4
  year: 2020
  end-page: 463
  article-title: 2019 Chinese clinical guidelines for the management of hepatocellular carcinoma: Updates and insights
  publication-title: Hepatobiliary Surg Nutr
– volume: 151
  start-page: 356
  issue: 4
  year: 2016
  end-page: 363
  article-title: Nomogram for preoperative estimation of microvascular invasion risk in hepatitis B virus‐related hepatocellular carcinoma within the Milan criteria
  publication-title: JAMA Surg
– volume: 11
  start-page: 350
  issue: 2
  year: 2023
  end-page: 359
  article-title: Evaluation of preoperative microvascular invasion in hepatocellular carcinoma through multidimensional parameter combination modeling based on Gd‐EOB‐DTPA MRI
  publication-title: J Clin Transl Hepatol
– volume: 7
  start-page: 6
  issue: 1
  year: 2021
  article-title: Hepatocellular carcinoma
  publication-title: Nat Rev Dis Primers
– volume: 66
  start-page: 182
  issue: 1
  year: 2017
  end-page: 197
  article-title: Hypoxia mediates mitochondrial biogenesis in hepatocellular carcinoma to promote tumor growth through HMGB1 and TLR9 interaction
  publication-title: Hepatology
– volume: 33
  start-page: 4024
  issue: 6
  year: 2023
  end-page: 4033
  article-title: Preoperative prediction of macrotrabecular‐massive hepatocellular carcinoma based on B‐Mode US and CEUS
  publication-title: Eur Radiol
– volume: 67
  start-page: 526
  issue: 3
  year: 2017
  end-page: 534
  article-title: Preoperative gadoxetic acid‐enhanced MRI for predicting microvascular invasion in patients with single hepatocellular carcinoma
  publication-title: J Hepatol
– volume: 222
  start-page: 89
  issue: 1
  year: 2002
  end-page: 94
  article-title: Hepatocellular carcinoma in noncirrhotic liver: CT, clinical, and pathologic findings in 39 U.S. residents
  publication-title: Radiology
– volume: 23
  start-page: 1126
  issue: 12
  year: 2022
  end-page: 1240
  article-title: 2022 KLCA‐NCC Korea practice guidelines for the management of hepatocellular carcinoma
  publication-title: Korean J Radiol
– volume: 350
  year: 2015
  article-title: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement
  publication-title: BMJ
– volume: 71
  start-page: 183
  issue: 1
  year: 2020
  end-page: 195
  article-title: Vessels encapsulating tumor clusters (VETC) is a powerful predictor of aggressive hepatocellular carcinoma
  publication-title: Hepatology
– volume: 8
  start-page: 2079
  issue: 11
  year: 2017
  end-page: 2087
  article-title: A retrospective discussion of the prognostic value of combining prothrombin time (PT) and fibrinogen (Fbg) in patients with hepatocellular carcinoma
  publication-title: J Cancer
– ident: e_1_2_8_36_1
  doi: 10.1186/s12957-020-01996-4
– ident: e_1_2_8_5_1
  doi: 10.1007/s00330-022-09322-0
– ident: e_1_2_8_10_1
  doi: 10.1159/000514174
– ident: e_1_2_8_13_1
  doi: 10.2147/JHC.S364742
– ident: e_1_2_8_19_1
  doi: 10.1007/s00261-021-02989-x
– ident: e_1_2_8_28_1
  doi: 10.1007/s00432-020-03331-6
– ident: e_1_2_8_8_1
  doi: 10.1002/hep4.1823
– ident: e_1_2_8_33_1
  doi: 10.1016/j.acra.2021.09.004
– ident: e_1_2_8_39_1
  doi: 10.7150/jca.19181
– ident: e_1_2_8_23_1
  doi: 10.1016/j.jhep.2017.04.024
– ident: e_1_2_8_37_1
  doi: 10.1007/s00262-020-02691-9
– ident: e_1_2_8_4_1
  doi: 10.1158/1078-0432.CCR-19-0859
– ident: e_1_2_8_12_1
  doi: 10.1007/s00330-021-07898-7
– ident: e_1_2_8_22_1
  doi: 10.1148/radiol.2020192230
– ident: e_1_2_8_40_1
  doi: 10.1002/hep.29762
– ident: e_1_2_8_6_1
  doi: 10.1155/2018/9674565
– ident: e_1_2_8_11_1
  doi: 10.3348/kjr.2022.0822
– ident: e_1_2_8_9_1
  doi: 10.21037/hbsn-20-480
– ident: e_1_2_8_16_1
  doi: 10.1007/s00330-022-09105-7
– ident: e_1_2_8_20_1
  doi: 10.1148/radiol.2221010767
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jhep.2017.05.014
– ident: e_1_2_8_15_1
  doi: 10.1016/j.jhep.2020.08.013
– ident: e_1_2_8_35_1
  doi: 10.1148/radiol.2021204288
– ident: e_1_2_8_38_1
  doi: 10.1002/hep.32201
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jhep.2018.09.003
– ident: e_1_2_8_18_1
  doi: 10.1016/j.ejrad.2015.12.015
– ident: e_1_2_8_31_1
  doi: 10.1042/BSR20202603
– ident: e_1_2_8_2_1
  doi: 10.1111/his.13975
– ident: e_1_2_8_34_1
  doi: 10.1002/hep.29184
– ident: e_1_2_8_26_1
  doi: 10.1001/jamasurg.2015.4257
– volume: 11
  start-page: 350
  issue: 2
  year: 2023
  ident: e_1_2_8_3_1
  article-title: Evaluation of preoperative microvascular invasion in hepatocellular carcinoma through multidimensional parameter combination modeling based on Gd‐EOB‐DTPA MRI
  publication-title: J Clin Transl Hepatol
– ident: e_1_2_8_17_1
  doi: 10.1136/bmj.g7594
– ident: e_1_2_8_21_1
  doi: 10.1148/radiol.15142394
– ident: e_1_2_8_30_1
  doi: 10.1097/MD.0000000000018823
– ident: e_1_2_8_32_1
  doi: 10.1002/hep.30814
– ident: e_1_2_8_14_1
  doi: 10.1148/radiol.2021210379
– ident: e_1_2_8_29_1
  doi: 10.1038/s41572-020-00240-3
– ident: e_1_2_8_27_1
  doi: 10.1007/s00330-020-07499-w
– ident: e_1_2_8_25_1
  doi: 10.2307/2529310
SSID ssj0009945
Score 2.4851332
Snippet Background Macrotrabecular‐massive hepatocellular carcinoma (MTM‐HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium...
Macrotrabecular-massive hepatocellular carcinoma (MTM-HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium (Gd-EOB-DTPA)...
BackgroundMacrotrabecular‐massive hepatocellular carcinoma (MTM‐HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2071
SubjectTerms Adult
Aged
Carcinoma, Hepatocellular - diagnostic imaging
Computed tomography
Confidence intervals
Contrast Media
Diagnosis
Female
Field strength
Gadolinium
Gadolinium DTPA
Gd‐EOB‐DTPA
Hemorrhage
Hepatocellular carcinoma
Humans
Ischemia
Liver
Liver - diagnostic imaging
Liver - pathology
Liver cancer
Liver diseases
Liver Neoplasms - diagnostic imaging
macrotrabecular‐massive
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical imaging
Middle Aged
Necrosis
Nomograms
Patients
Prognosis
Prothrombin
Reproducibility of Results
Retrospective Studies
Statistical analysis
Statistical tests
Tomography, X-Ray Computed
Training
Title Evaluation and Prognostication of Gd‐EOB‐DTPA MRI and CT in Patients With Macrotrabecular‐Massive Hepatocellular Carcinoma
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.29052
https://www.ncbi.nlm.nih.gov/pubmed/37840197
https://www.proquest.com/docview/3052621615
https://www.proquest.com/docview/2878018257
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqHlAv_LT8LG2REVxAyjax43gj9VK2W5ZKC6tqK3pBkf8iFmhS7WYvnOANeIQ-Sx-lT8JMnM2qgJDgYkXyWE7smfFne_INIc8tgAwmhQ64sSqIJZoUN3mQCCeTNI0RpWO0xdtkeBofn4mzNbK__BfG80O0B25oGbW_RgNXer63Ig39dD6bdlkaCnTAEU-QOP_wZMUdBR2J-qpT8CDqhbLlJmV7q6Y3V6PfIOZNxFovOUd3yIfly_pIk8_dRaW75usvPI7_-zV3ye0Gi9IDrzz3yJorNsmtUXPbvkW-D1oqcKoKS8ezEsPyquaY7-qyzOlre_3tx-DdKygPJ-MDOjp5U8v2J3Ra0LFnbZ3T99PqIx0pGIVqprRPyAtNRgDdwd3SISyKVYmXCFhB-5jgqCjP1X1yejSY9IdBk7IhMFxIBjYHcMqAE1BRyHNtnIFp0DaM80jx2GmVJ8JozSLcBunUSJ1a7bgUjue56Fn-gKwXZeEeEWp7TMcqUVCGsY64NqGRoRNO9IyxueuQF8upy0zDZ45pNb5knomZZTimWT2mHfKslb3wLB5_lNpZakDWWPI840iIwxAXd8jTthpsEMdEFa5czDPQZ1joYa8tO-Sh15y2Gy5hCx2lUPOynv-_9J8dwxzVT4__RXibbDBAWj5-bYesV7OF2wWkVOkntUX8BIh0Eyk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQkYBL-YctBYzgAlK2iR3Hm2NZtmxLU1bVVvQW-S_qQpug3eyFE7wBj8Cz8Cg8CTNOmlUBIcElimRbVuz5-eyZfEPIMwsgg0mhA26sCmKJKsVNESTCySRNY0TpmG1xkIyP4r1jcdzm5uC_MA0_RHfhhprh7TUqOF5Ib61YQ9-fzWd9loYCLPBlH6BDTHS4Yo-CqYQPdgoeRINQduykbGs19qI_-g1kXsSs3unsXG8qqy48VyHmmnzoL2vdN59-YXL87--5QdZbOEq3G_m5SS658ha5krUB99vky6hjA6eqtHQyrzAzr25v-r5_qwr62v74_HX09iU8X00n2zQ73PV9h1M6K-mkIW5d0Hez-oRmCpahnivd1OSFIRmgd7C4dAx-sa4wjoANdIg1jsrqTN0hRzuj6XActFUbAsOFZKB2gKgM2AEVhbzQxhnYB23DuIgUj51WRSKM1izCk5BOjdSp1Y5L4XhRiIHld8laWZXuPqF2wHSsEgXPMNYR1yY0MnTCiYExtnA98vx873LTUppjZY3TvCFjZjmuae7XtEeedn0_NkQef-y1eS4CeavMi5wjJw5DaNwjT7pmUENcE1W6arnIQaTB18NxW_bIvUZ0umm4hFN0lELLCy8Af5k_34M98m8b_9L5Mbk6nmb7-f7uwZsH5BoD4NWks22StXq-dA8BONX6kVePn5-4F0c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtMwGLamIU3ccD4UBhjBDUjpEjuOG4mb0bV0g45q6sRukOWjKLBkatMbruANeASehUfhSfgdp6kGCAlurEi25eT3f_h8yPcj9NgAyCCcqYhqI6OUe5Oi2kUZszzL89SjdH_b4jAbHacHJ-xkAz1b_QsT-CHaDTdvGbW_9gZ-ZtzOmjT0_el81iV5zMABX0gziJMeEh2tyaNgJFafdTIaJb2Yt-SkZGfd93w4-g1jnoesdcwZXkZvV28brpp86C4r1dWffiFy_N_PuYIuNWAU7wbtuYo2bHENbY2b4_br6Mug5QLHsjB4Mi_9vbyq2ef7_q10-IX58fnr4PVzKPemk108Ptqv2_aneFbgSaBtXeA3s-odHkuQQjWXKmTkhS5jwO7gb_EIomJV-lMEX4H7PsNRUZ7KG-h4OJj2R1GTsyHSlHECRgd4SoMXkElMndJWwzQoE6cukTS1SrqMaaVI4tdBKtdc5UZZypmlzrGeoTfRZlEW9jbCpkdUKjMJZZyqhCodax5bZllPa-NsBz1ZTZ3QDaG5z6vxUQQqZiK8TEUt0w561LY9CzQef2y1vdIA0ZjyQlDPiEM8MO6gh201GKGXiSxsuVwIUGiI9LDY5h10K2hOOwzlsIZOcqh5Ws__X8YXBzBH9dOdf2n8AG1N9obi1f7hy7voIgHUFe6ybaPNar609wA1Vep-bRw_AVk3FfY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+and+Prognostication%C2%A0of+Gd%E2%80%90EOB%E2%80%90DTPA+MRI+and+CT+in+Patients+With+Macrotrabecular%E2%80%90Massive+Hepatocellular+Carcinoma&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Cheng%2C+Jie&rft.au=Li%2C+Xiaofeng&rft.au=Wang%2C+Limei&rft.au=Chen%2C+Fengxi&rft.date=2024-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=59&rft.issue=6&rft.spage=2071&rft.epage=2081&rft_id=info:doi/10.1002%2Fjmri.29052&rft.externalDBID=10.1002%252Fjmri.29052&rft.externalDocID=JMRI29052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon