Evaluation and Prognostication of Gd‐EOB‐DTPA MRI and CT in Patients With Macrotrabecular‐Massive Hepatocellular Carcinoma
Background Macrotrabecular‐massive hepatocellular carcinoma (MTM‐HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium (Gd‐EOB‐DTPA) MRI for MTM‐HCC are lacking. Purpose To compare the performance of Gd‐EOB‐DTPA MRI and CT for differentiating MTM‐HCC from non‐MTM‐H...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 59; no. 6; pp. 2071 - 2081 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.06.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1053-1807 1522-2586 1522-2586 |
DOI | 10.1002/jmri.29052 |
Cover
Abstract | Background
Macrotrabecular‐massive hepatocellular carcinoma (MTM‐HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium (Gd‐EOB‐DTPA) MRI for MTM‐HCC are lacking.
Purpose
To compare the performance of Gd‐EOB‐DTPA MRI and CT for differentiating MTM‐HCC from non‐MTM‐HCC, and determine the prognostic indicator.
Study Type
Retrospective.
Subjects
Post‐surgery HCC patients, divided into the training (N = 272) and external validation (N = 44) cohorts.
Field Strength/Sequence
3.0 T, T1‐weighted imaging, in‐opp phase, and T1‐weighted volumetric interpolated breath‐hold examination/liver acquisition with volume acceleration; enhanced CT.
Assessment
Three radiologists evaluated clinical characteristics (sex, age, liver disease, liver function, blood routine, alpha‐fetoprotein [AFP] and prothrombin time international normalization ratio [PT‐INR]) and imaging features (tumor length, intratumor fat, hemorrhage, arterial phase peritumoral enhancement, intratumor necrosis or ischemia, capsule, and peritumoral hepatobiliary phase [HBP] hypointensity). Compared the performance of CT and MRI for diagnosing MTM‐HCC. Follow‐up occurred every 3–6 months, and nomogram demonstrated the probability of MTM‐HCC.
Statistical Tests
Fisher test, t‐test or Wilcoxon rank‐sum test, area under the curve (AUC), 95% confidence interval (CI), multivariable logistic regression, Kaplan–Meier curve, and Cox proportional hazards. Significance level: P < 0.05.
Results
Gd‐EOB‐DTPA MRI (AUC: 0.793; 95% CI, 0.740–0.839) outperformed CT (AUC: 0.747; 95% CI, 0.691–0.797) in the training cohort. The nomogram, incorporating AFP, PT‐INR, and MRI features (non‐intratumor fat, incomplete capsule, intratumor necrosis or ischemia, and peritumoral HBP hypointensity) demonstrated powerful performance for diagnosing MTM‐HCC with an AUC of 0.826 (95% CI, 0.631–1.000) in the external validation cohort. Median follow‐up was 347 days (interquartile range [IQR], 606 days) for the training cohort and 222 days (IQR, 441 days) for external validation cohort. Intratumor necrosis or ischemia was an independent indicator for poor prognosis.
Data Conclusion
Gd‐EOB‐DTPA MRI might assist in preoperative diagnosis of MTM‐HCC, and intratumor necrosis or ischemia was associated with poor prognosis.
Evidence Level
4
Technical Efficacy
Stage 2 |
---|---|
AbstractList | Macrotrabecular-massive hepatocellular carcinoma (MTM-HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium (Gd-EOB-DTPA) MRI for MTM-HCC are lacking.BACKGROUNDMacrotrabecular-massive hepatocellular carcinoma (MTM-HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium (Gd-EOB-DTPA) MRI for MTM-HCC are lacking.To compare the performance of Gd-EOB-DTPA MRI and CT for differentiating MTM-HCC from non-MTM-HCC, and determine the prognostic indicator.PURPOSETo compare the performance of Gd-EOB-DTPA MRI and CT for differentiating MTM-HCC from non-MTM-HCC, and determine the prognostic indicator.Retrospective.STUDY TYPERetrospective.Post-surgery HCC patients, divided into the training (N = 272) and external validation (N = 44) cohorts.SUBJECTSPost-surgery HCC patients, divided into the training (N = 272) and external validation (N = 44) cohorts.3.0 T, T1-weighted imaging, in-opp phase, and T1-weighted volumetric interpolated breath-hold examination/liver acquisition with volume acceleration; enhanced CT.FIELD STRENGTH/SEQUENCE3.0 T, T1-weighted imaging, in-opp phase, and T1-weighted volumetric interpolated breath-hold examination/liver acquisition with volume acceleration; enhanced CT.Three radiologists evaluated clinical characteristics (sex, age, liver disease, liver function, blood routine, alpha-fetoprotein [AFP] and prothrombin time international normalization ratio [PT-INR]) and imaging features (tumor length, intratumor fat, hemorrhage, arterial phase peritumoral enhancement, intratumor necrosis or ischemia, capsule, and peritumoral hepatobiliary phase [HBP] hypointensity). Compared the performance of CT and MRI for diagnosing MTM-HCC. Follow-up occurred every 3-6 months, and nomogram demonstrated the probability of MTM-HCC.ASSESSMENTThree radiologists evaluated clinical characteristics (sex, age, liver disease, liver function, blood routine, alpha-fetoprotein [AFP] and prothrombin time international normalization ratio [PT-INR]) and imaging features (tumor length, intratumor fat, hemorrhage, arterial phase peritumoral enhancement, intratumor necrosis or ischemia, capsule, and peritumoral hepatobiliary phase [HBP] hypointensity). Compared the performance of CT and MRI for diagnosing MTM-HCC. Follow-up occurred every 3-6 months, and nomogram demonstrated the probability of MTM-HCC.Fisher test, t-test or Wilcoxon rank-sum test, area under the curve (AUC), 95% confidence interval (CI), multivariable logistic regression, Kaplan-Meier curve, and Cox proportional hazards. Significance level: P < 0.05.STATISTICAL TESTSFisher test, t-test or Wilcoxon rank-sum test, area under the curve (AUC), 95% confidence interval (CI), multivariable logistic regression, Kaplan-Meier curve, and Cox proportional hazards. Significance level: P < 0.05.Gd-EOB-DTPA MRI (AUC: 0.793; 95% CI, 0.740-0.839) outperformed CT (AUC: 0.747; 95% CI, 0.691-0.797) in the training cohort. The nomogram, incorporating AFP, PT-INR, and MRI features (non-intratumor fat, incomplete capsule, intratumor necrosis or ischemia, and peritumoral HBP hypointensity) demonstrated powerful performance for diagnosing MTM-HCC with an AUC of 0.826 (95% CI, 0.631-1.000) in the external validation cohort. Median follow-up was 347 days (interquartile range [IQR], 606 days) for the training cohort and 222 days (IQR, 441 days) for external validation cohort. Intratumor necrosis or ischemia was an independent indicator for poor prognosis.RESULTSGd-EOB-DTPA MRI (AUC: 0.793; 95% CI, 0.740-0.839) outperformed CT (AUC: 0.747; 95% CI, 0.691-0.797) in the training cohort. The nomogram, incorporating AFP, PT-INR, and MRI features (non-intratumor fat, incomplete capsule, intratumor necrosis or ischemia, and peritumoral HBP hypointensity) demonstrated powerful performance for diagnosing MTM-HCC with an AUC of 0.826 (95% CI, 0.631-1.000) in the external validation cohort. Median follow-up was 347 days (interquartile range [IQR], 606 days) for the training cohort and 222 days (IQR, 441 days) for external validation cohort. Intratumor necrosis or ischemia was an independent indicator for poor prognosis.Gd-EOB-DTPA MRI might assist in preoperative diagnosis of MTM-HCC, and intratumor necrosis or ischemia was associated with poor prognosis.DATA CONCLUSIONGd-EOB-DTPA MRI might assist in preoperative diagnosis of MTM-HCC, and intratumor necrosis or ischemia was associated with poor prognosis.4 TECHNICAL EFFICACY: Stage 2.EVIDENCE LEVEL4 TECHNICAL EFFICACY: Stage 2. Background Macrotrabecular‐massive hepatocellular carcinoma (MTM‐HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium (Gd‐EOB‐DTPA) MRI for MTM‐HCC are lacking. Purpose To compare the performance of Gd‐EOB‐DTPA MRI and CT for differentiating MTM‐HCC from non‐MTM‐HCC, and determine the prognostic indicator. Study Type Retrospective. Subjects Post‐surgery HCC patients, divided into the training (N = 272) and external validation (N = 44) cohorts. Field Strength/Sequence 3.0 T, T1‐weighted imaging, in‐opp phase, and T1‐weighted volumetric interpolated breath‐hold examination/liver acquisition with volume acceleration; enhanced CT. Assessment Three radiologists evaluated clinical characteristics (sex, age, liver disease, liver function, blood routine, alpha‐fetoprotein [AFP] and prothrombin time international normalization ratio [PT‐INR]) and imaging features (tumor length, intratumor fat, hemorrhage, arterial phase peritumoral enhancement, intratumor necrosis or ischemia, capsule, and peritumoral hepatobiliary phase [HBP] hypointensity). Compared the performance of CT and MRI for diagnosing MTM‐HCC. Follow‐up occurred every 3–6 months, and nomogram demonstrated the probability of MTM‐HCC. Statistical Tests Fisher test, t‐test or Wilcoxon rank‐sum test, area under the curve (AUC), 95% confidence interval (CI), multivariable logistic regression, Kaplan–Meier curve, and Cox proportional hazards. Significance level: P < 0.05. Results Gd‐EOB‐DTPA MRI (AUC: 0.793; 95% CI, 0.740–0.839) outperformed CT (AUC: 0.747; 95% CI, 0.691–0.797) in the training cohort. The nomogram, incorporating AFP, PT‐INR, and MRI features (non‐intratumor fat, incomplete capsule, intratumor necrosis or ischemia, and peritumoral HBP hypointensity) demonstrated powerful performance for diagnosing MTM‐HCC with an AUC of 0.826 (95% CI, 0.631–1.000) in the external validation cohort. Median follow‐up was 347 days (interquartile range [IQR], 606 days) for the training cohort and 222 days (IQR, 441 days) for external validation cohort. Intratumor necrosis or ischemia was an independent indicator for poor prognosis. Data Conclusion Gd‐EOB‐DTPA MRI might assist in preoperative diagnosis of MTM‐HCC, and intratumor necrosis or ischemia was associated with poor prognosis. Evidence Level 4 Technical Efficacy Stage 2 BackgroundMacrotrabecular‐massive hepatocellular carcinoma (MTM‐HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium (Gd‐EOB‐DTPA) MRI for MTM‐HCC are lacking.PurposeTo compare the performance of Gd‐EOB‐DTPA MRI and CT for differentiating MTM‐HCC from non‐MTM‐HCC, and determine the prognostic indicator.Study TypeRetrospective.SubjectsPost‐surgery HCC patients, divided into the training (N = 272) and external validation (N = 44) cohorts.Field Strength/Sequence3.0 T, T1‐weighted imaging, in‐opp phase, and T1‐weighted volumetric interpolated breath‐hold examination/liver acquisition with volume acceleration; enhanced CT.AssessmentThree radiologists evaluated clinical characteristics (sex, age, liver disease, liver function, blood routine, alpha‐fetoprotein [AFP] and prothrombin time international normalization ratio [PT‐INR]) and imaging features (tumor length, intratumor fat, hemorrhage, arterial phase peritumoral enhancement, intratumor necrosis or ischemia, capsule, and peritumoral hepatobiliary phase [HBP] hypointensity). Compared the performance of CT and MRI for diagnosing MTM‐HCC. Follow‐up occurred every 3–6 months, and nomogram demonstrated the probability of MTM‐HCC.Statistical TestsFisher test, t‐test or Wilcoxon rank‐sum test, area under the curve (AUC), 95% confidence interval (CI), multivariable logistic regression, Kaplan–Meier curve, and Cox proportional hazards. Significance level: P < 0.05.ResultsGd‐EOB‐DTPA MRI (AUC: 0.793; 95% CI, 0.740–0.839) outperformed CT (AUC: 0.747; 95% CI, 0.691–0.797) in the training cohort. The nomogram, incorporating AFP, PT‐INR, and MRI features (non‐intratumor fat, incomplete capsule, intratumor necrosis or ischemia, and peritumoral HBP hypointensity) demonstrated powerful performance for diagnosing MTM‐HCC with an AUC of 0.826 (95% CI, 0.631–1.000) in the external validation cohort. Median follow‐up was 347 days (interquartile range [IQR], 606 days) for the training cohort and 222 days (IQR, 441 days) for external validation cohort. Intratumor necrosis or ischemia was an independent indicator for poor prognosis.Data ConclusionGd‐EOB‐DTPA MRI might assist in preoperative diagnosis of MTM‐HCC, and intratumor necrosis or ischemia was associated with poor prognosis.Evidence Level4Technical EfficacyStage 2 Macrotrabecular-massive hepatocellular carcinoma (MTM-HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium (Gd-EOB-DTPA) MRI for MTM-HCC are lacking. To compare the performance of Gd-EOB-DTPA MRI and CT for differentiating MTM-HCC from non-MTM-HCC, and determine the prognostic indicator. Retrospective. Post-surgery HCC patients, divided into the training (N = 272) and external validation (N = 44) cohorts. 3.0 T, T1-weighted imaging, in-opp phase, and T1-weighted volumetric interpolated breath-hold examination/liver acquisition with volume acceleration; enhanced CT. Three radiologists evaluated clinical characteristics (sex, age, liver disease, liver function, blood routine, alpha-fetoprotein [AFP] and prothrombin time international normalization ratio [PT-INR]) and imaging features (tumor length, intratumor fat, hemorrhage, arterial phase peritumoral enhancement, intratumor necrosis or ischemia, capsule, and peritumoral hepatobiliary phase [HBP] hypointensity). Compared the performance of CT and MRI for diagnosing MTM-HCC. Follow-up occurred every 3-6 months, and nomogram demonstrated the probability of MTM-HCC. Fisher test, t-test or Wilcoxon rank-sum test, area under the curve (AUC), 95% confidence interval (CI), multivariable logistic regression, Kaplan-Meier curve, and Cox proportional hazards. Significance level: P < 0.05. Gd-EOB-DTPA MRI (AUC: 0.793; 95% CI, 0.740-0.839) outperformed CT (AUC: 0.747; 95% CI, 0.691-0.797) in the training cohort. The nomogram, incorporating AFP, PT-INR, and MRI features (non-intratumor fat, incomplete capsule, intratumor necrosis or ischemia, and peritumoral HBP hypointensity) demonstrated powerful performance for diagnosing MTM-HCC with an AUC of 0.826 (95% CI, 0.631-1.000) in the external validation cohort. Median follow-up was 347 days (interquartile range [IQR], 606 days) for the training cohort and 222 days (IQR, 441 days) for external validation cohort. Intratumor necrosis or ischemia was an independent indicator for poor prognosis. Gd-EOB-DTPA MRI might assist in preoperative diagnosis of MTM-HCC, and intratumor necrosis or ischemia was associated with poor prognosis. 4 TECHNICAL EFFICACY: Stage 2. |
Author | Wang, Jian Wang, Limei Liu, Chen Li, Xiaoming Li, Yiman Han, Qi Pei, Mi Yu, Linze Zuo, Guojiao Cheng, Jie Chen, Fengxi Cai, Ping Li, Xiaofeng Zhang, Huarong |
Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0003-2580-1878 surname: Cheng fullname: Cheng, Jie organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University) – sequence: 2 givenname: Xiaofeng orcidid: 0009-0009-6118-6498 surname: Li fullname: Li, Xiaofeng organization: The Third Affiliated Hospital of Chongqing Medical University – sequence: 3 givenname: Limei orcidid: 0009-0007-7454-0658 surname: Wang fullname: Wang, Limei organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University) – sequence: 4 givenname: Fengxi orcidid: 0000-0002-8951-5339 surname: Chen fullname: Chen, Fengxi organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University) – sequence: 5 givenname: Yiman orcidid: 0009-0000-7243-6784 surname: Li fullname: Li, Yiman organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University) – sequence: 6 givenname: Guojiao orcidid: 0009-0000-1521-5774 surname: Zuo fullname: Zuo, Guojiao organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University) – sequence: 7 givenname: Mi orcidid: 0009-0007-0634-5703 surname: Pei fullname: Pei, Mi organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University) – sequence: 8 givenname: Huarong orcidid: 0000-0001-9994-0112 surname: Zhang fullname: Zhang, Huarong organization: Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) – sequence: 9 givenname: Linze orcidid: 0000-0002-1975-9530 surname: Yu fullname: Yu, Linze organization: School of Medical Imaging, North Sichuan Medical College – sequence: 10 givenname: Chen orcidid: 0000-0001-5149-2496 surname: Liu fullname: Liu, Chen organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University) – sequence: 11 givenname: Jian orcidid: 0000-0003-1210-0837 surname: Wang fullname: Wang, Jian organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University) – sequence: 12 givenname: Qi orcidid: 0000-0002-3136-4662 surname: Han fullname: Han, Qi organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University) – sequence: 13 givenname: Ping orcidid: 0000-0002-2728-5531 surname: Cai fullname: Cai, Ping email: 530305942@qq.com organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University) – sequence: 14 givenname: Xiaoming orcidid: 0000-0002-7229-5915 surname: Li fullname: Li, Xiaoming email: 359261069@qq.com organization: 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37840197$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1OGzEUha2Kqvx1wwMgS91USKH-GY9nljSkQEVEhIK6tGyPhzqasYM9E8SOvgGPwLPwKDxJnYR2gRAb27r-ztW952yDDeedAWAPo0OMEPk2a4M9JCVi5APYwoyQAWFFvpHeiNEBLhDfBNsxzhBCZZmxT2CT8iJDuORb4M9oIZtedtY7KF0FJ8FfOx87q1e1p0dfw5Pq-f5hdPE9ncfTyREcX56t2OEUWgcnCTSui_CX7X7DsdTBd0Eqo_tGhiQZyxjtwsBTM5ed16Zplh9wKIO2zrdyF3ysZRPN55d7B1z9GE2Hp4Pzi5Oz4dH5QFPG00ooJ1TzgkuMaK200WkXVaGsxpJmRsk6Z1opgjNalqrUXJWVMpQzQ-uaFRXdAV_XfefB3_QmdqK1cTmOdMb3UZCCFwgXhPGEfnmFznwfXJpO0ORyTnCOWaL2X6hetaYS82BbGe7EP3MTcLAGkiUxBlP_RzASy-TEMjmxSi7B6BWsbbfKILlpm7cleC25tY25e6e5-JkiW2v-ApxirvA |
CitedBy_id | crossref_primary_10_1002_jmri_29197 crossref_primary_10_1016_j_ejrad_2024_111695 crossref_primary_10_1007_s00330_024_11344_9 crossref_primary_10_1002_mp_17401 crossref_primary_10_1016_j_acra_2025_01_029 |
Cites_doi | 10.1186/s12957-020-01996-4 10.1007/s00330-022-09322-0 10.1159/000514174 10.2147/JHC.S364742 10.1007/s00261-021-02989-x 10.1007/s00432-020-03331-6 10.1002/hep4.1823 10.1016/j.acra.2021.09.004 10.7150/jca.19181 10.1016/j.jhep.2017.04.024 10.1007/s00262-020-02691-9 10.1158/1078-0432.CCR-19-0859 10.1007/s00330-021-07898-7 10.1148/radiol.2020192230 10.1002/hep.29762 10.1155/2018/9674565 10.3348/kjr.2022.0822 10.21037/hbsn-20-480 10.1007/s00330-022-09105-7 10.1148/radiol.2221010767 10.1016/j.jhep.2017.05.014 10.1016/j.jhep.2020.08.013 10.1148/radiol.2021204288 10.1002/hep.32201 10.1016/j.jhep.2018.09.003 10.1016/j.ejrad.2015.12.015 10.1042/BSR20202603 10.1111/his.13975 10.1002/hep.29184 10.1001/jamasurg.2015.4257 10.1136/bmj.g7594 10.1148/radiol.15142394 10.1097/MD.0000000000018823 10.1002/hep.30814 10.1148/radiol.2021210379 10.1038/s41572-020-00240-3 10.1007/s00330-020-07499-w 10.2307/2529310 |
ContentType | Journal Article |
Copyright | 2023 International Society for Magnetic Resonance in Medicine. 2024 International Society for Magnetic Resonance in Medicine |
Copyright_xml | – notice: 2023 International Society for Magnetic Resonance in Medicine. – notice: 2024 International Society for Magnetic Resonance in Medicine |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/jmri.29052 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 2081 |
ExternalDocumentID | 37840197 10_1002_jmri_29052 JMRI29052 |
Genre | researchArticle Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of Chongqing funderid: CSTB2022NSCQMSX1371 – fundername: National Natural Science Foundation of Chongqing grantid: CSTB2022NSCQMSX1371 |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c3572-20623c787a103fbcec994bd04f1a34ebaf65cbb214399b9c7b9dbe375e3ff58d3 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Thu Jul 10 18:17:42 EDT 2025 Fri Jul 25 10:06:18 EDT 2025 Mon Jul 21 06:03:02 EDT 2025 Thu Apr 24 22:58:20 EDT 2025 Tue Jul 01 03:57:00 EDT 2025 Wed Jan 22 17:20:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | computed tomography magnetic resonance imaging macrotrabecular‐massive hepatocellular carcinoma Gd‐EOB‐DTPA |
Language | English |
License | 2023 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3572-20623c787a103fbcec994bd04f1a34ebaf65cbb214399b9c7b9dbe375e3ff58d3 |
Notes | Jie Cheng, Xiaofeng Li, and Limei Wang contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5149-2496 0000-0002-3136-4662 0000-0002-2728-5531 0009-0007-0634-5703 0000-0002-1975-9530 0000-0003-1210-0837 0000-0002-7229-5915 0000-0002-8951-5339 0009-0000-1521-5774 0000-0003-2580-1878 0000-0001-9994-0112 0009-0007-7454-0658 0009-0009-6118-6498 0009-0000-7243-6784 |
PMID | 37840197 |
PQID | 3052621615 |
PQPubID | 1006400 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2878018257 proquest_journals_3052621615 pubmed_primary_37840197 crossref_primary_10_1002_jmri_29052 crossref_citationtrail_10_1002_jmri_29052 wiley_primary_10_1002_jmri_29052_JMRI29052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 2024-Jun 20240601 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Nashville |
PublicationSubtitle | JMRI |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J Magn Reson Imaging |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2021; 46 2021; 7 2017; 8 2021; 5 2019; 70 2023; 11 2023; 33 2021; 300 2020; 40 2021; 301 2017; 66 2017; 67 2022; 23 2020; 146 2020; 99 2020; 76 2021; 74 2022; 29 2021; 70 2020; 18 2018; 68 2015; 350 2018; 2018 2021; 10 2021; 31 2020; 295 2020; 71 2015; 276 2022; 9 2019; 25 2020; 9 2002; 222 2016; 85 1977; 33 2022; 75 2016; 151 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 Zhang HD (e_1_2_8_3_1) 2023; 11 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 70 start-page: 417 issue: 2 year: 2021 end-page: 429 article-title: Coexpression of CMTM6 and PD‐L1 as a predictor of poor prognosis in macrotrabecular‐massive hepatocellular carcinoma publication-title: Cancer Immunol Immunother – volume: 31 start-page: 3627 issue: 6 year: 2021 end-page: 3637 article-title: Hepatobiliary phase of gadoxetic acid‐enhanced MRI in patients with HCC: Prognostic features before resection, ablation, or TACE publication-title: Eur Radiol – volume: 301 start-page: 250 issue: 2 year: 2021 end-page: 262 article-title: Quantification of liver fat content with CT and MRI: State of the art publication-title: Radiology – volume: 10 start-page: 181 issue: 3 year: 2021 end-page: 223 article-title: Management of hepatocellular carcinoma in Japan: JSH consensus statements and recommendations 2021 update publication-title: Liver Cancer – volume: 29 start-page: 819 issue: 6 year: 2022 end-page: 829 article-title: MRI‐based nomogram predicts the risk of progression of unresectable hepatocellular carcinoma after combined lenvatinib and anti‐PD‐1 antibody therapy publication-title: Acad Radiol – volume: 25 start-page: 5859 issue: 19 year: 2019 end-page: 5865 article-title: ESM1 as a marker of macrotrabecular‐massive hepatocellular carcinoma publication-title: Clin Cancer Res – volume: 67 start-page: 727 issue: 4 year: 2017 end-page: 738 article-title: Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification publication-title: J Hepatol – volume: 9 start-page: 379 year: 2022 end-page: 387 article-title: Macrotrabecular‐massive hepatocellular carcinoma: What should we know? publication-title: J Hepatocell Carcinoma – volume: 2018 year: 2018 article-title: Prediction of microvascular invasion in hepatocellular carcinoma: Preoperative Gd‐EOB‐DTPA‐dynamic enhanced MRI and histopathological correlation publication-title: Contrast Media Mol Imaging – volume: 31 start-page: 7696 issue: 10 year: 2021 end-page: 7704 article-title: Macrotrabecular‐massive hepatocellular carcinoma: Imaging identification and prediction based on gadoxetic acid‐enhanced magnetic resonance imaging publication-title: Eur Radiol – volume: 146 start-page: 2439 issue: 10 year: 2020 end-page: 2446 article-title: Effects of alpha‐fetoprotein on the occurrence and progression of hepatocellular carcinoma publication-title: J Cancer Res Clin Oncol – volume: 46 start-page: 3139 issue: 7 year: 2021 end-page: 3148 article-title: A radiomics nomogram based on contrast‐enhanced MRI for preoperative prediction of macrotrabecular‐massive hepatocellular carcinoma publication-title: Abdom Radiol (NY) – volume: 68 start-page: 103 issue: 1 year: 2018 end-page: 112 article-title: Macrotrabecular‐massive hepatocellular carcinoma: A distinctive histological subtype with clinical relevance publication-title: Hepatology – volume: 99 issue: 4 year: 2020 article-title: Methylation of the ataxia telangiectasia mutated gene (ATM) promoter as a radiotherapy outcome biomarker in patients with hepatocellular carcinoma publication-title: Medicine (Baltimore) – volume: 75 start-page: 1139 issue: 5 year: 2022 end-page: 1153 article-title: Immunovascular classification of HCC reflects reciprocal interaction between immune and angiogenic tumor microenvironments publication-title: Hepatology – volume: 295 start-page: 562 issue: 3 year: 2020 end-page: 571 article-title: Multiphase liver MRI for identifying the macrotrabecular‐massive subtype of hepatocellular carcinoma publication-title: Radiology – volume: 300 start-page: 230 issue: 1 year: 2021 end-page: 232 article-title: CT characterization of aggressive macrotrabecular‐massive hepatocellular carcinoma: A step forward to personalized medicine publication-title: Radiology – volume: 40 issue: 10 year: 2020 article-title: Identification of prognostic biomarkers and correlations with immune infiltrates among cGAS‐STING in hepatocellular carcinoma publication-title: Biosci Rep – volume: 5 start-page: 1972 issue: 12 year: 2021 end-page: 1986 article-title: Current and emerging tools for hepatocellular carcinoma surveillance publication-title: Hepatol Commun – volume: 276 start-page: 433 issue: 2 year: 2015 end-page: 443 article-title: Single hepatocellular carcinoma: Preoperative MR imaging to predict early recurrence after curative resection publication-title: Radiology – volume: 33 start-page: 1364 issue: 2 year: 2023 end-page: 1377 article-title: Comparison of imaging findings of macrotrabecular‐massive hepatocellular carcinoma using CT and gadoxetic acid‐enhanced MRI publication-title: Eur Radiol – volume: 33 start-page: 159 issue: 1 year: 1977 end-page: 174 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics – volume: 18 start-page: 219 issue: 1 year: 2020 article-title: Application of Gd‐EOB‐DTPA‐enhanced magnetic resonance imaging (MRI) in hepatocellular carcinoma publication-title: World J Surg Oncol – volume: 76 start-page: 182 issue: 2 year: 2020 end-page: 188 article-title: The 2019 WHO classification of tumours of the digestive system publication-title: Histopathology – volume: 74 start-page: 109 issue: 1 year: 2021 end-page: 121 article-title: Gadoxetic acid‐enhanced MRI of macrotrabecular‐massive hepatocellular carcinoma and its prognostic implications publication-title: J Hepatol – volume: 85 start-page: 546 issue: 3 year: 2016 end-page: 552 article-title: MR liver imaging with Gd‐EOB‐DTPA: The need for different delay times of the hepatobiliary phase in patients with different liver function publication-title: Eur J Radiol – volume: 70 start-page: 58 issue: 1 year: 2019 end-page: 65 article-title: Intra‐tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma publication-title: J Hepatol – volume: 9 start-page: 452 issue: 4 year: 2020 end-page: 463 article-title: 2019 Chinese clinical guidelines for the management of hepatocellular carcinoma: Updates and insights publication-title: Hepatobiliary Surg Nutr – volume: 151 start-page: 356 issue: 4 year: 2016 end-page: 363 article-title: Nomogram for preoperative estimation of microvascular invasion risk in hepatitis B virus‐related hepatocellular carcinoma within the Milan criteria publication-title: JAMA Surg – volume: 11 start-page: 350 issue: 2 year: 2023 end-page: 359 article-title: Evaluation of preoperative microvascular invasion in hepatocellular carcinoma through multidimensional parameter combination modeling based on Gd‐EOB‐DTPA MRI publication-title: J Clin Transl Hepatol – volume: 7 start-page: 6 issue: 1 year: 2021 article-title: Hepatocellular carcinoma publication-title: Nat Rev Dis Primers – volume: 66 start-page: 182 issue: 1 year: 2017 end-page: 197 article-title: Hypoxia mediates mitochondrial biogenesis in hepatocellular carcinoma to promote tumor growth through HMGB1 and TLR9 interaction publication-title: Hepatology – volume: 33 start-page: 4024 issue: 6 year: 2023 end-page: 4033 article-title: Preoperative prediction of macrotrabecular‐massive hepatocellular carcinoma based on B‐Mode US and CEUS publication-title: Eur Radiol – volume: 67 start-page: 526 issue: 3 year: 2017 end-page: 534 article-title: Preoperative gadoxetic acid‐enhanced MRI for predicting microvascular invasion in patients with single hepatocellular carcinoma publication-title: J Hepatol – volume: 222 start-page: 89 issue: 1 year: 2002 end-page: 94 article-title: Hepatocellular carcinoma in noncirrhotic liver: CT, clinical, and pathologic findings in 39 U.S. residents publication-title: Radiology – volume: 23 start-page: 1126 issue: 12 year: 2022 end-page: 1240 article-title: 2022 KLCA‐NCC Korea practice guidelines for the management of hepatocellular carcinoma publication-title: Korean J Radiol – volume: 350 year: 2015 article-title: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement publication-title: BMJ – volume: 71 start-page: 183 issue: 1 year: 2020 end-page: 195 article-title: Vessels encapsulating tumor clusters (VETC) is a powerful predictor of aggressive hepatocellular carcinoma publication-title: Hepatology – volume: 8 start-page: 2079 issue: 11 year: 2017 end-page: 2087 article-title: A retrospective discussion of the prognostic value of combining prothrombin time (PT) and fibrinogen (Fbg) in patients with hepatocellular carcinoma publication-title: J Cancer – ident: e_1_2_8_36_1 doi: 10.1186/s12957-020-01996-4 – ident: e_1_2_8_5_1 doi: 10.1007/s00330-022-09322-0 – ident: e_1_2_8_10_1 doi: 10.1159/000514174 – ident: e_1_2_8_13_1 doi: 10.2147/JHC.S364742 – ident: e_1_2_8_19_1 doi: 10.1007/s00261-021-02989-x – ident: e_1_2_8_28_1 doi: 10.1007/s00432-020-03331-6 – ident: e_1_2_8_8_1 doi: 10.1002/hep4.1823 – ident: e_1_2_8_33_1 doi: 10.1016/j.acra.2021.09.004 – ident: e_1_2_8_39_1 doi: 10.7150/jca.19181 – ident: e_1_2_8_23_1 doi: 10.1016/j.jhep.2017.04.024 – ident: e_1_2_8_37_1 doi: 10.1007/s00262-020-02691-9 – ident: e_1_2_8_4_1 doi: 10.1158/1078-0432.CCR-19-0859 – ident: e_1_2_8_12_1 doi: 10.1007/s00330-021-07898-7 – ident: e_1_2_8_22_1 doi: 10.1148/radiol.2020192230 – ident: e_1_2_8_40_1 doi: 10.1002/hep.29762 – ident: e_1_2_8_6_1 doi: 10.1155/2018/9674565 – ident: e_1_2_8_11_1 doi: 10.3348/kjr.2022.0822 – ident: e_1_2_8_9_1 doi: 10.21037/hbsn-20-480 – ident: e_1_2_8_16_1 doi: 10.1007/s00330-022-09105-7 – ident: e_1_2_8_20_1 doi: 10.1148/radiol.2221010767 – ident: e_1_2_8_24_1 doi: 10.1016/j.jhep.2017.05.014 – ident: e_1_2_8_15_1 doi: 10.1016/j.jhep.2020.08.013 – ident: e_1_2_8_35_1 doi: 10.1148/radiol.2021204288 – ident: e_1_2_8_38_1 doi: 10.1002/hep.32201 – ident: e_1_2_8_7_1 doi: 10.1016/j.jhep.2018.09.003 – ident: e_1_2_8_18_1 doi: 10.1016/j.ejrad.2015.12.015 – ident: e_1_2_8_31_1 doi: 10.1042/BSR20202603 – ident: e_1_2_8_2_1 doi: 10.1111/his.13975 – ident: e_1_2_8_34_1 doi: 10.1002/hep.29184 – ident: e_1_2_8_26_1 doi: 10.1001/jamasurg.2015.4257 – volume: 11 start-page: 350 issue: 2 year: 2023 ident: e_1_2_8_3_1 article-title: Evaluation of preoperative microvascular invasion in hepatocellular carcinoma through multidimensional parameter combination modeling based on Gd‐EOB‐DTPA MRI publication-title: J Clin Transl Hepatol – ident: e_1_2_8_17_1 doi: 10.1136/bmj.g7594 – ident: e_1_2_8_21_1 doi: 10.1148/radiol.15142394 – ident: e_1_2_8_30_1 doi: 10.1097/MD.0000000000018823 – ident: e_1_2_8_32_1 doi: 10.1002/hep.30814 – ident: e_1_2_8_14_1 doi: 10.1148/radiol.2021210379 – ident: e_1_2_8_29_1 doi: 10.1038/s41572-020-00240-3 – ident: e_1_2_8_27_1 doi: 10.1007/s00330-020-07499-w – ident: e_1_2_8_25_1 doi: 10.2307/2529310 |
SSID | ssj0009945 |
Score | 2.4851332 |
Snippet | Background
Macrotrabecular‐massive hepatocellular carcinoma (MTM‐HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium... Macrotrabecular-massive hepatocellular carcinoma (MTM-HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium (Gd-EOB-DTPA)... BackgroundMacrotrabecular‐massive hepatocellular carcinoma (MTM‐HCC) is highly aggressive. Comparing the diagnosis ability of CT and gadoxetate disodium... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2071 |
SubjectTerms | Adult Aged Carcinoma, Hepatocellular - diagnostic imaging Computed tomography Confidence intervals Contrast Media Diagnosis Female Field strength Gadolinium Gadolinium DTPA Gd‐EOB‐DTPA Hemorrhage Hepatocellular carcinoma Humans Ischemia Liver Liver - diagnostic imaging Liver - pathology Liver cancer Liver diseases Liver Neoplasms - diagnostic imaging macrotrabecular‐massive Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Medical imaging Middle Aged Necrosis Nomograms Patients Prognosis Prothrombin Reproducibility of Results Retrospective Studies Statistical analysis Statistical tests Tomography, X-Ray Computed Training |
Title | Evaluation and Prognostication of Gd‐EOB‐DTPA MRI and CT in Patients With Macrotrabecular‐Massive Hepatocellular Carcinoma |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.29052 https://www.ncbi.nlm.nih.gov/pubmed/37840197 https://www.proquest.com/docview/3052621615 https://www.proquest.com/docview/2878018257 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqHlAv_LT8LG2REVxAyjax43gj9VK2W5ZKC6tqK3pBkf8iFmhS7WYvnOANeIQ-Sx-lT8JMnM2qgJDgYkXyWE7smfFne_INIc8tgAwmhQ64sSqIJZoUN3mQCCeTNI0RpWO0xdtkeBofn4mzNbK__BfG80O0B25oGbW_RgNXer63Ig39dD6bdlkaCnTAEU-QOP_wZMUdBR2J-qpT8CDqhbLlJmV7q6Y3V6PfIOZNxFovOUd3yIfly_pIk8_dRaW75usvPI7_-zV3ye0Gi9IDrzz3yJorNsmtUXPbvkW-D1oqcKoKS8ezEsPyquaY7-qyzOlre_3tx-DdKygPJ-MDOjp5U8v2J3Ra0LFnbZ3T99PqIx0pGIVqprRPyAtNRgDdwd3SISyKVYmXCFhB-5jgqCjP1X1yejSY9IdBk7IhMFxIBjYHcMqAE1BRyHNtnIFp0DaM80jx2GmVJ8JozSLcBunUSJ1a7bgUjue56Fn-gKwXZeEeEWp7TMcqUVCGsY64NqGRoRNO9IyxueuQF8upy0zDZ45pNb5knomZZTimWT2mHfKslb3wLB5_lNpZakDWWPI840iIwxAXd8jTthpsEMdEFa5czDPQZ1joYa8tO-Sh15y2Gy5hCx2lUPOynv-_9J8dwxzVT4__RXibbDBAWj5-bYesV7OF2wWkVOkntUX8BIh0Eyk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQkYBL-YctBYzgAlK2iR3Hm2NZtmxLU1bVVvQW-S_qQpug3eyFE7wBj8Cz8Cg8CTNOmlUBIcElimRbVuz5-eyZfEPIMwsgg0mhA26sCmKJKsVNESTCySRNY0TpmG1xkIyP4r1jcdzm5uC_MA0_RHfhhprh7TUqOF5Ib61YQ9-fzWd9loYCLPBlH6BDTHS4Yo-CqYQPdgoeRINQduykbGs19qI_-g1kXsSs3unsXG8qqy48VyHmmnzoL2vdN59-YXL87--5QdZbOEq3G_m5SS658ha5krUB99vky6hjA6eqtHQyrzAzr25v-r5_qwr62v74_HX09iU8X00n2zQ73PV9h1M6K-mkIW5d0Hez-oRmCpahnivd1OSFIRmgd7C4dAx-sa4wjoANdIg1jsrqTN0hRzuj6XActFUbAsOFZKB2gKgM2AEVhbzQxhnYB23DuIgUj51WRSKM1izCk5BOjdSp1Y5L4XhRiIHld8laWZXuPqF2wHSsEgXPMNYR1yY0MnTCiYExtnA98vx873LTUppjZY3TvCFjZjmuae7XtEeedn0_NkQef-y1eS4CeavMi5wjJw5DaNwjT7pmUENcE1W6arnIQaTB18NxW_bIvUZ0umm4hFN0lELLCy8Af5k_34M98m8b_9L5Mbk6nmb7-f7uwZsH5BoD4NWks22StXq-dA8BONX6kVePn5-4F0c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtMwGLamIU3ccD4UBhjBDUjpEjuOG4mb0bV0g45q6sRukOWjKLBkatMbruANeASehUfhSfgdp6kGCAlurEi25eT3f_h8yPcj9NgAyCCcqYhqI6OUe5Oi2kUZszzL89SjdH_b4jAbHacHJ-xkAz1b_QsT-CHaDTdvGbW_9gZ-ZtzOmjT0_el81iV5zMABX0gziJMeEh2tyaNgJFafdTIaJb2Yt-SkZGfd93w4-g1jnoesdcwZXkZvV28brpp86C4r1dWffiFy_N_PuYIuNWAU7wbtuYo2bHENbY2b4_br6Mug5QLHsjB4Mi_9vbyq2ef7_q10-IX58fnr4PVzKPemk108Ptqv2_aneFbgSaBtXeA3s-odHkuQQjWXKmTkhS5jwO7gb_EIomJV-lMEX4H7PsNRUZ7KG-h4OJj2R1GTsyHSlHECRgd4SoMXkElMndJWwzQoE6cukTS1SrqMaaVI4tdBKtdc5UZZypmlzrGeoTfRZlEW9jbCpkdUKjMJZZyqhCodax5bZllPa-NsBz1ZTZ3QDaG5z6vxUQQqZiK8TEUt0w561LY9CzQef2y1vdIA0ZjyQlDPiEM8MO6gh201GKGXiSxsuVwIUGiI9LDY5h10K2hOOwzlsIZOcqh5Ws__X8YXBzBH9dOdf2n8AG1N9obi1f7hy7voIgHUFe6ybaPNar609wA1Vep-bRw_AVk3FfY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+and+Prognostication%C2%A0of+Gd%E2%80%90EOB%E2%80%90DTPA+MRI+and+CT+in+Patients+With+Macrotrabecular%E2%80%90Massive+Hepatocellular+Carcinoma&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Cheng%2C+Jie&rft.au=Li%2C+Xiaofeng&rft.au=Wang%2C+Limei&rft.au=Chen%2C+Fengxi&rft.date=2024-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=59&rft.issue=6&rft.spage=2071&rft.epage=2081&rft_id=info:doi/10.1002%2Fjmri.29052&rft.externalDBID=10.1002%252Fjmri.29052&rft.externalDocID=JMRI29052 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |