ProBAN: Neural network algorithm for predicting binding affinity in protein–protein complexes
Determining binding affinities in protein–protein and protein–peptide complexes is a challenging task that directly impacts the development of peptide and protein pharmaceuticals. Although several models have been proposed to predict the value of the dissociation constant and the Gibbs free energy,...
Saved in:
| Published in | Proteins, structure, function, and bioinformatics Vol. 92; no. 9; pp. 1127 - 1136 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
01.09.2024
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0887-3585 1097-0134 1097-0134 |
| DOI | 10.1002/prot.26700 |
Cover
| Abstract | Determining binding affinities in protein–protein and protein–peptide complexes is a challenging task that directly impacts the development of peptide and protein pharmaceuticals. Although several models have been proposed to predict the value of the dissociation constant and the Gibbs free energy, they are currently not capable of making stable predictions with high accuracy, in particular for complexes consisting of more than two molecules. In this work, we present ProBAN, a new method for predicting binding affinity in protein–protein complexes based on a deep convolutional neural network. Prediction is carried out for the spatial structures of complexes, presented in the format of a 4D tensor, which includes information about the location of atoms and their abilities to participate in various types of interactions realized in protein–protein and protein–peptide complexes. The effectiveness of the model was assessed both on an internal test data set containing complexes consisting of three or more molecules, as well as on an external test for the PPI‐Affinity service. As a result, we managed to achieve the best prediction quality on these data sets among all the analyzed models: on the internal test, Pearson correlation R = 0.6, MAE = 1.60, on the external test, R = 0.55, MAE = 1.75. The open‐source code, the trained ProBAN model, and the collected dataset are freely available at the following link https://github.com/EABogdanova/ProBAN. |
|---|---|
| AbstractList | Determining binding affinities in protein–protein and protein–peptide complexes is a challenging task that directly impacts the development of peptide and protein pharmaceuticals. Although several models have been proposed to predict the value of the dissociation constant and the Gibbs free energy, they are currently not capable of making stable predictions with high accuracy, in particular for complexes consisting of more than two molecules. In this work, we present ProBAN, a new method for predicting binding affinity in protein–protein complexes based on a deep convolutional neural network. Prediction is carried out for the spatial structures of complexes, presented in the format of a 4D tensor, which includes information about the location of atoms and their abilities to participate in various types of interactions realized in protein–protein and protein–peptide complexes. The effectiveness of the model was assessed both on an internal test data set containing complexes consisting of three or more molecules, as well as on an external test for the PPI‐Affinity service. As a result, we managed to achieve the best prediction quality on these data sets among all the analyzed models: on the internal test, Pearson correlation R = 0.6, MAE = 1.60, on the external test, R = 0.55, MAE = 1.75. The open‐source code, the trained ProBAN model, and the collected dataset are freely available at the following link https://github.com/EABogdanova/ProBAN. Determining binding affinities in protein-protein and protein-peptide complexes is a challenging task that directly impacts the development of peptide and protein pharmaceuticals. Although several models have been proposed to predict the value of the dissociation constant and the Gibbs free energy, they are currently not capable of making stable predictions with high accuracy, in particular for complexes consisting of more than two molecules. In this work, we present ProBAN, a new method for predicting binding affinity in protein-protein complexes based on a deep convolutional neural network. Prediction is carried out for the spatial structures of complexes, presented in the format of a 4D tensor, which includes information about the location of atoms and their abilities to participate in various types of interactions realized in protein-protein and protein-peptide complexes. The effectiveness of the model was assessed both on an internal test data set containing complexes consisting of three or more molecules, as well as on an external test for the PPI-Affinity service. As a result, we managed to achieve the best prediction quality on these data sets among all the analyzed models: on the internal test, Pearson correlation R = 0.6, MAE = 1.60, on the external test, R = 0.55, MAE = 1.75. The open-source code, the trained ProBAN model, and the collected dataset are freely available at the following link https://github.com/EABogdanova/ProBAN.Determining binding affinities in protein-protein and protein-peptide complexes is a challenging task that directly impacts the development of peptide and protein pharmaceuticals. Although several models have been proposed to predict the value of the dissociation constant and the Gibbs free energy, they are currently not capable of making stable predictions with high accuracy, in particular for complexes consisting of more than two molecules. In this work, we present ProBAN, a new method for predicting binding affinity in protein-protein complexes based on a deep convolutional neural network. Prediction is carried out for the spatial structures of complexes, presented in the format of a 4D tensor, which includes information about the location of atoms and their abilities to participate in various types of interactions realized in protein-protein and protein-peptide complexes. The effectiveness of the model was assessed both on an internal test data set containing complexes consisting of three or more molecules, as well as on an external test for the PPI-Affinity service. As a result, we managed to achieve the best prediction quality on these data sets among all the analyzed models: on the internal test, Pearson correlation R = 0.6, MAE = 1.60, on the external test, R = 0.55, MAE = 1.75. The open-source code, the trained ProBAN model, and the collected dataset are freely available at the following link https://github.com/EABogdanova/ProBAN. Determining binding affinities in protein–protein and protein–peptide complexes is a challenging task that directly impacts the development of peptide and protein pharmaceuticals. Although several models have been proposed to predict the value of the dissociation constant and the Gibbs free energy, they are currently not capable of making stable predictions with high accuracy, in particular for complexes consisting of more than two molecules. In this work, we present ProBAN, a new method for predicting binding affinity in protein–protein complexes based on a deep convolutional neural network. Prediction is carried out for the spatial structures of complexes, presented in the format of a 4D tensor, which includes information about the location of atoms and their abilities to participate in various types of interactions realized in protein–protein and protein–peptide complexes. The effectiveness of the model was assessed both on an internal test data set containing complexes consisting of three or more molecules, as well as on an external test for the PPI‐Affinity service. As a result, we managed to achieve the best prediction quality on these data sets among all the analyzed models: on the internal test, Pearson correlation R = 0.6, MAE = 1.60, on the external test, R = 0.55, MAE = 1.75. The open‐source code, the trained ProBAN model, and the collected dataset are freely available at the following link https://github.com/EABogdanova/ProBAN . |
| Author | Novoseletsky, Valery Nikolaevich Bogdanova, Elizaveta Alexandrovna |
| Author_xml | – sequence: 1 givenname: Elizaveta Alexandrovna orcidid: 0009-0002-4019-157X surname: Bogdanova fullname: Bogdanova, Elizaveta Alexandrovna email: eabogdanova.bioinf@gmail.com organization: Lomonosov Moscow State University – sequence: 2 givenname: Valery Nikolaevich surname: Novoseletsky fullname: Novoseletsky, Valery Nikolaevich organization: Shenzhen MSU‐BIT University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38722047$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1OHDEQhS1EBMOQDQeILGWDIjWU7e5pd3aA8ichQIisLY-7DCbd9mC7RWaXO-SGnISezLBBEbWpWnzv6enVHtn2wSMhBwyOGAA_XsSQj_isBtgiEwZNXQAT5TaZgJR1ISpZ7ZK9lO4BYNaI2Q7ZFbLmHMp6QtRVDKcnF5_pBQ5Rd9RjfgzxF9XdbYgu3_XUhkgXEVtnsvO3dO58u9raWuddXlLn6SoAOv_05-_moib0iw5_Y9on76zuEr7f7Cn5-fXLzdn34vzy24-zk_PCiKqGQmphLYrGNEzinHM-nvNKihJLYUUpsGG1MbK0LfJ2ZhFMDdZyCbJEoUUjpuRw7TsmeBgwZdW7ZLDrtMcwJCWgEo0EBnxEP75C78MQ_ZhupGTDWCXGmZIPG2qY99iqRXS9jkv1Ut0IwBowMaQU0Srjss4u-By16xQDtfqOWlWi_n1nlHx6JXlx_S_M1vCj63D5Bqmuri9v1ppn0JChJQ |
| CitedBy_id | crossref_primary_10_1002_prot_26821 crossref_primary_10_31857_S0006302924050053 crossref_primary_10_1134_S0006350924700933 crossref_primary_10_1021_acs_jcim_4c01641 |
| Cites_doi | 10.1002/prot.26503 10.3389/fgene.2019.00637 10.1038/s41467-017-00081-x 10.1007/s00726-011-1101-1 10.1109/BIBM47256.2019.8982964 10.1007/978-1-4684-7615-6_18 10.1007/s12551‐017‐0337‐8 10.1016/j.jmb.2016.12.004 10.1038/nmeth.4067 10.1111/j.1399-3011.1990.tb00958.x 10.1186/s13040-020-00231-w 10.1007/978-1-4939-0366-5_9 10.7717/peerj.7362 10.1093/protein/gzt063 10.1530/JOE-13-0584 10.1126/science.1241145 10.1038/s41598‐020‐70680‐0 10.1021/acs.jproteome.2c00020 10.1039/c8sc04221g 10.1098/rsif.2012.0835 10.3389/fbinf.2022.1065703 10.1002/pro.3673 10.3390/ijms22010068 10.1126/science.1202617 10.1093/bioinformatics/btw514 10.1016/j.softx.2015.06.001 10.1093/bioinformatics/bty374 10.1074/jbc.273.25.15458 10.1021/acs.jmedchem.7b00318 10.1371/journal.pcbi.1000807 10.1021/acs.jcim.7b00650 10.1002/prot.22550 10.1093/bioinformatics/bty635 10.1016/j.bmcl.2014.03.095 10.1016/j.isci.2022.105169 10.1002/prot.20019 10.1038/srep24131 10.1080/17460441.2018.1430763 10.1016/j.biomaterials.2017.11.024 |
| ContentType | Journal Article |
| Copyright | 2024 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2024 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 |
| DOI | 10.1002/prot.26700 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Virology and AIDS Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Biology |
| EISSN | 1097-0134 |
| EndPage | 1136 |
| ExternalDocumentID | 38722047 10_1002_prot_26700 PROT26700 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Non‐commercial Foundation for the Advancement of Science and Education INTELLECT – fundername: Non-commercial Foundation for the Advancement of Science and Education INTELLECT |
| GroupedDBID | -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBD EBS EJD EMOBN F00 F01 F04 F5P FA8 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AIQQE CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 |
| ID | FETCH-LOGICAL-c3570-8a3ffe39c918eb22239cb5834e43f343e917cc84fde2d6fe0c70ff28084e3a393 |
| IEDL.DBID | DR2 |
| ISSN | 0887-3585 1097-0134 |
| IngestDate | Thu Oct 02 06:02:58 EDT 2025 Tue Oct 07 06:44:25 EDT 2025 Mon Jul 21 06:07:14 EDT 2025 Wed Oct 01 01:19:24 EDT 2025 Thu Apr 24 22:58:48 EDT 2025 Wed Jun 11 08:24:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | interaction energy multiprotein complexes protein binding neural networks structure‐based features |
| Language | English |
| License | 2024 Wiley Periodicals LLC. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3570-8a3ffe39c918eb22239cb5834e43f343e917cc84fde2d6fe0c70ff28084e3a393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0002-4019-157X |
| PMID | 38722047 |
| PQID | 3089115333 |
| PQPubID | 1016441 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_3053980102 proquest_journals_3089115333 pubmed_primary_38722047 crossref_citationtrail_10_1002_prot_26700 crossref_primary_10_1002_prot_26700 wiley_primary_10_1002_prot_26700_PROT26700 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2024 2024-09-00 2024-Sep 20240901 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Hokoben |
| PublicationTitle | Proteins, structure, function, and bioinformatics |
| PublicationTitleAlternate | Proteins |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2010; 78 2019; 7 2019; 2019 2015; 1–2 2017; 8 1990; 36 2019; 10 2019; 35 2000; 9 2016; 32 1985; 101 2014; 27 2022; 25 2014; 24 2020; 13 2013; 341 2018; 61 2022; 21 2020; 10 2011; 332 1998; 273 2017; 429 2016; 6 2013; 10 2017; 14 2018; 156 2004; 56 2019; 28 2020; 22 2022; 2 2014; 220 2018; 34 2014; 1137 2018; 10 2012; 43 2010; 6 2018; 58 2023; 91 2018; 13 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Esposito L (e_1_2_7_41_1) 2000; 9 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
| References_xml | – volume: 332 start-page: 816 year: 2011 end-page: 821 article-title: Computational design of proteins targeting the conserved stem region of influenza hemagglutinin publication-title: Science – volume: 6 year: 2016 article-title: Concentration dependent ion‐protein interaction patterns underlying protein oligomerization behaviours publication-title: Sci Rep – volume: 24 start-page: 2546 year: 2014 end-page: 2554 article-title: Hot spot‐based design of small‐molecule inhibitors for protein–protein interactions publication-title: Bioorg Med Chem Lett – volume: 101 year: 1985 – volume: 28 start-page: 1734 year: 2019 end-page: 1743 article-title: ProtDCal‐suite: a web server for the numerical codification and functional analysis of proteins publication-title: Protein Sci – volume: 58 start-page: 287 issue: 2 year: 2018 end-page: 296 article-title: KDEEP: protein–ligand absolute binding affinity prediction via 3D‐convolutional neural networks publication-title: J Chem Inf Model – volume: 36 start-page: 147 issue: 2 year: 1990 end-page: 155 article-title: Conformations of disulfide bridges in proteins publication-title: Int J Pept Protein Res – volume: 22 start-page: 68 year: 2020 article-title: TCR recognition of peptide–MHC‐I: rule makers and breakers publication-title: Int J Mol Sci – volume: 9 start-page: 2038 issue: 10 year: 2000 end-page: 2042 article-title: Pyramidalization of backbone carbonyl carbon atoms in proteins publication-title: Protein Sci – volume: 21 start-page: 1829 year: 2022 end-page: 1841 article-title: PPI‐affinity: a web tool for the prediction and optimization of protein–peptide and protein–protein binding affinity publication-title: J Proteome Res – volume: 10 start-page: 637 year: 2019 article-title: PredPRBA: prediction of protein‐RNA binding affinity using gradient boosted regression trees publication-title: Front Genet – volume: 91 start-page: 1245 year: 2023 end-page: 1253 article-title: An updated dataset and a structure‐based prediction model for protein–RNA binding affinity publication-title: Proteins – volume: 429 start-page: 365 issue: 3 year: 2017 end-page: 371 article-title: Arpeggio: a web server for calculating and visualising interatomic interactions in protein structures publication-title: J Mol Biol – volume: 10 start-page: 909 issue: 3 year: 2018 end-page: 917 article-title: Relative orientation of the carbonyl groups determines the nature of orbital interactions in carbonyl‐carbonyl short contacts publication-title: Chem Sci – volume: 273 start-page: 15458 issue: 25 year: 1998 end-page: 15463 article-title: pi‐Stacking interactions. Alive and well in proteins publication-title: J Biol Chem – volume: 14 start-page: 71 issue: 1 year: 2017 end-page: 73 article-title: CHARMM36m: an improved force field for folded and intrinsically disordered proteins publication-title: Nat Methods – volume: 27 start-page: 65 issue: 3 year: 2014 end-page: 72 article-title: Occurrence of protein disulfide bonds in different domains of life: a comparison of proteins from the Protein Data Bank publication-title: Protein Eng Des Sel – volume: 35 start-page: 462 year: 2019 end-page: 469 article-title: SKEMPI 2.0: an updated benchmark of changes in protein–protein binding energy, kinetics and thermodynamics upon mutation publication-title: Bioinformatics – volume: 1137 start-page: 119 year: 2014 end-page: 130 article-title: SPOT‐seq‐RNA: predicting protein‐RNA complex structure and RNA‐binding function by fold recognition and binding affinity prediction publication-title: Methods Mol Biol – volume: 2 year: 2022 article-title: Machine learning methods for protein–protein binding affinity prediction in protein design publication-title: Front Bioinform – volume: 78 start-page: 400 year: 2010 end-page: 419 article-title: PIE‐efficient filters and coarse grained potentials for unbound protein–protein docking publication-title: Proteins – volume: 13 start-page: 327 year: 2018 end-page: 338 article-title: Hot‐spot analysis for drug discovery targeting protein–protein interactions publication-title: Expert Opin Drug Discov – volume: 43 start-page: 531 issue: 2 year: 2012 end-page: 543 article-title: Structure‐based prediction of protein–protein binding affinity with consideration of allosteric effect publication-title: Amino Acids – volume: 156 start-page: 1 year: 2018 end-page: 15 article-title: Structure‐based design for binding peptides in anti‐cancer therapy publication-title: Biomaterials – volume: 220 start-page: T1 year: 2014 end-page: T23 article-title: Insulin signaling, resistance, and metabolic syndrome: insights from mouse models into disease mechanisms publication-title: J Endocrinol – volume: 10 year: 2013 article-title: On the binding affinity of macromolecular interactions: daring to ask why proteins interact publication-title: J R Soc Interface – volume: 7 year: 2019 article-title: DeepBindRG: a deep learning based method for estimating effective protein–ligand affinity publication-title: PeerJ – volume: 56 start-page: 93 year: 2004 end-page: 101 article-title: A physical reference state unifies the structure‐derived potential of mean force for protein folding and binding publication-title: Proteins – volume: 10 start-page: 13696 year: 2020 article-title: Antibody‐protein binding and conformational changes: identifying allosteric signalling pathways to engineer a better effector response publication-title: Sci Rep – volume: 341 start-page: 1192 year: 2013 end-page: 1198 article-title: Antibody therapeutics in cancer publication-title: Science – volume: 61 start-page: 1382 year: 2018 end-page: 1414 article-title: The current state of peptide drug discovery: back to the future? publication-title: J Med Chem – volume: 25 issue: 10 year: 2022 article-title: ADH‐PPI: an attention‐based deep hybrid model for protein–protein interaction prediction publication-title: iScience – volume: 13 start-page: 1 year: 2020 end-page: 13 article-title: ISLAND: in‐silico proteins binding affinity prediction using sequence information publication-title: BioData Min – volume: 6 year: 2010 article-title: Protein–protein interactions essentials: key concepts to building and analyzing interactome networks publication-title: PLoS Comput Biol – volume: 34 start-page: 3666 issue: 21 year: 2018 end-page: 3674 article-title: Development and evaluation of a deep learning model for protein–ligand binding affinity prediction publication-title: Bioinformatics – volume: 2019 start-page: 303 year: 2019 end-page: 310 article-title: DeepAtom: a framework for protein–ligand binding affinity prediction publication-title: IEEE International Conference on Bioinformatics and Biomedicine (BIBM) – volume: 10 start-page: 235 year: 2018 end-page: 239 article-title: Ion–protein interactions of a potassium ion channel studied by attenuated total reflection Fourier transform infrared spectroscopy publication-title: Biophys Rev – volume: 1–2 start-page: 19 year: 2015 end-page: 25 article-title: GROMACS: high performance molecular simulations through multi‐level parallelism from laptops to supercomputers publication-title: SoftwareX – volume: 32 year: 2016 article-title: PRODIGY: a web server for predicting the binding affinity of protein–protein complexes publication-title: Bioinformatics – volume: 8 start-page: 78 issue: 1 year: 2017 article-title: Reciprocal carbonyl‐carbonyl interactions in small molecules and proteins publication-title: Nat Commun – ident: e_1_2_7_24_1 doi: 10.1002/prot.26503 – ident: e_1_2_7_23_1 doi: 10.3389/fgene.2019.00637 – ident: e_1_2_7_43_1 doi: 10.1038/s41467-017-00081-x – volume: 9 start-page: 2038 issue: 10 year: 2000 ident: e_1_2_7_41_1 article-title: Pyramidalization of backbone carbonyl carbon atoms in proteins publication-title: Protein Sci – ident: e_1_2_7_28_1 doi: 10.1007/s00726-011-1101-1 – ident: e_1_2_7_20_1 doi: 10.1109/BIBM47256.2019.8982964 – ident: e_1_2_7_35_1 doi: 10.1007/978-1-4684-7615-6_18 – ident: e_1_2_7_37_1 doi: 10.1007/s12551‐017‐0337‐8 – ident: e_1_2_7_29_1 – ident: e_1_2_7_34_1 doi: 10.1016/j.jmb.2016.12.004 – ident: e_1_2_7_32_1 doi: 10.1038/nmeth.4067 – ident: e_1_2_7_40_1 doi: 10.1111/j.1399-3011.1990.tb00958.x – ident: e_1_2_7_15_1 doi: 10.1186/s13040-020-00231-w – ident: e_1_2_7_22_1 doi: 10.1007/978-1-4939-0366-5_9 – ident: e_1_2_7_21_1 doi: 10.7717/peerj.7362 – ident: e_1_2_7_39_1 doi: 10.1093/protein/gzt063 – ident: e_1_2_7_3_1 doi: 10.1530/JOE-13-0584 – ident: e_1_2_7_33_1 – ident: e_1_2_7_6_1 doi: 10.1126/science.1241145 – ident: e_1_2_7_11_1 doi: 10.1038/s41598‐020‐70680‐0 – ident: e_1_2_7_17_1 doi: 10.1021/acs.jproteome.2c00020 – ident: e_1_2_7_42_1 doi: 10.1039/c8sc04221g – ident: e_1_2_7_25_1 doi: 10.1098/rsif.2012.0835 – ident: e_1_2_7_26_1 doi: 10.3389/fbinf.2022.1065703 – ident: e_1_2_7_44_1 doi: 10.1002/pro.3673 – ident: e_1_2_7_4_1 doi: 10.3390/ijms22010068 – ident: e_1_2_7_5_1 doi: 10.1126/science.1202617 – ident: e_1_2_7_14_1 doi: 10.1093/bioinformatics/btw514 – ident: e_1_2_7_31_1 doi: 10.1016/j.softx.2015.06.001 – ident: e_1_2_7_18_1 doi: 10.1093/bioinformatics/bty374 – ident: e_1_2_7_30_1 – ident: e_1_2_7_36_1 doi: 10.1074/jbc.273.25.15458 – ident: e_1_2_7_9_1 doi: 10.1021/acs.jmedchem.7b00318 – ident: e_1_2_7_2_1 doi: 10.1371/journal.pcbi.1000807 – ident: e_1_2_7_19_1 doi: 10.1021/acs.jcim.7b00650 – ident: e_1_2_7_13_1 doi: 10.1002/prot.22550 – ident: e_1_2_7_27_1 doi: 10.1093/bioinformatics/bty635 – ident: e_1_2_7_7_1 doi: 10.1016/j.bmcl.2014.03.095 – ident: e_1_2_7_16_1 doi: 10.1016/j.isci.2022.105169 – ident: e_1_2_7_12_1 doi: 10.1002/prot.20019 – ident: e_1_2_7_38_1 doi: 10.1038/srep24131 – ident: e_1_2_7_8_1 doi: 10.1080/17460441.2018.1430763 – ident: e_1_2_7_10_1 doi: 10.1016/j.biomaterials.2017.11.024 |
| SSID | ssj0006936 |
| Score | 2.4917698 |
| Snippet | Determining binding affinities in protein–protein and protein–peptide complexes is a challenging task that directly impacts the development of peptide and... Determining binding affinities in protein-protein and protein-peptide complexes is a challenging task that directly impacts the development of peptide and... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1127 |
| SubjectTerms | Affinity Algorithms Artificial neural networks Binding Binding Sites Computational Biology - methods Databases, Protein Datasets Energy of dissociation Free energy Gibbs free energy Impact prediction interaction energy multiprotein complexes Neural networks Neural Networks, Computer Peptides Predictions Protein Binding Protein Interaction Mapping - methods Proteins Proteins - chemistry Proteins - metabolism Source code structure‐based features Tensors Thermodynamics |
| Title | ProBAN: Neural network algorithm for predicting binding affinity in protein–protein complexes |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.26700 https://www.ncbi.nlm.nih.gov/pubmed/38722047 https://www.proquest.com/docview/3089115333 https://www.proquest.com/docview/3053980102 |
| Volume | 92 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0887-3585 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0134 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006936 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxUxEB5KQfTFS-tltUpEERT2NCfJ7mbFl9NiKT7UUlroiyxJNtHFdk85F7A--R_8h_4SJ8nuHqoi6FtgZ3Of5Jtk8g3A80KicazEOJU1damwNk9VbWnKSifQFtOy0IHt8yDfPxHvTrPTNXjTv4WJ_BDDgZvXjLBeewVXer69Ig31PAYj5l-Z4AI85nmwp45W3FF5GeIDRi1CUDxwk7Lt1a9Xd6PfIOZVxBq2nL1b8KGvbPQ0-TxaLvTIfP2Fx_F_W3MbbnZYlEzi5LkDa7bdgM1Ji3b4-SV5QYJ3aDh234BrO33q-m4fI24TqsPZdGdy8Jp4jg_Mqo1O5USdfZzOmsWnc4KYmFzM_G2Q968mugmvaIhyrsHF5JI0LQlUEU3749v3LkWCn7v9Yud34WTv7fHuftqFbEgNzwqaSsWds7w05ViizY7YozQ6k1xYwR0X3KJ1aIwUrraszp2lpqDOMUmlsFzxkt-D9Xba2gdAuB7rTDnlapmLWgvlL4gxB0OpwaxFAi_7oatMx2fuw2qcVZGJmVW-0lXo0wSeDbIXkcXjj1Jb_QyoOk2eV5xK3A8QFPMEng6fsZv9xYpq7XTpZTJeSs_Ol8D9OHOGYrgsGKOiSOBVGP-_lF8dHr0_DqmH_yL8CG4wRFrR8W0L1hezpX2MSGmhnwSN-Akc5BEt |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1BESovXFougQJGICSQsvXaTuLwtq2oFihLVW2lvlm2Y0NEm632IlGe-Af-kC_Bl2xWBYQEb5YysWNnxj5jj88APCu4c44l66e8wjZlxuSprAxOSWmZ88UUL1Rg-xzlwyP29jg7bmNz_F2YyA_Rbbh5ywjztTdwvyG9vWIN9UQGPeKvmVyGKyx3jorHRIcr9qi8DBkCox05WNyxk5Lt1bsX16PfQOZFzBoWnb0bMbPqLHAV-liTz73FXPX011-YHP-7PzfhegtH0SDqzy24ZJoN2Bw0zhU_PUfPUQgQDTvvG3B1Z1la312midsEcTCd7AxGr5Cn-XBVNTGuHMmTj5NpPf90ihwsRmdTfyDkQ6yRqsNFGiStrd18co7qBgW2iLr58e17W0Ih1N18MbPbcLT3erw7TNusDammWYFTLqm1hpa67HPntjv4UWqVccoMo5YyapyDqDVntjKkyq3BusDWEo45M1TSkt6BtWbSmHuAqOqrTFppK56zSjHpz4hdDRpj7apmCbxY_juhW0pzn1njREQyZiL8R4swpgk87WTPIpHHH6W2liogWmOeCYq5WxIcLqYJPOkeu2H2ZyuyMZOFl8loyT1BXwJ3o-p0zVBeEIJZkcDLoAB_aV8cHH4Yh9L9fxF-DOvD8ft9sf9m9O4BXCMOeMU4uC1Ym08X5qEDTnP1KJjHTyd4FU4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZbtQwFL2CIigvLF1ooIARCAmkTD22kzi8TVtGZdEwqlqpb5bj2CVqmxnNIlGe-Af-kC_BSyajAkKCN0txnMS51z7XPj4X4EXGbXAsWTfmJTYx0zqNZalxTHLDbCxW8Kzwap-D9OCYvT9JThpujjsLE_Qh2gU35xl-vHYOrsel2Vmqhjohgw5xx0yuww2W5Nwx-vYPl-pRae4zBAY_srC4VSclO8t7r85Hv4HMq5jVTzr9uyGz6tRrFTquyVlnPis66usvSo7__T334E4DR1Ev2M99uKbrNVjv1TYUv7hEL5EniPqV9zW4ubsore4t0sStgxhORru9wRvkZD5sU3XglSN5fjqaVLPPF8jCYjSeuA0hR7FGReUP0iBpTGXHk0tU1cirRVT1j2_fmxLyVHf9RU834Lj_9mjvIG6yNsSKJhmOuaTGaJqrvMtt2G7hR66KhFOmGTWUUW0DRKU4M6UmZWo0Vhk2hnDMmaaS5nQTVupRrbcA0aJbJNJIU_KUlQWTbo_YtqAwVrZpFsGrxb8TqpE0d5k1zkUQYybCvbTwfRrB87buOAh5_LHW9sIEROPMU0Ext1OCxcU0gmftZdvNbm9F1no0d3USmnMn0BfBg2A67WMozwjBLIvgtTeAvzxfDA8_HfnSw3-p_BRuDff74uO7wYdHcJtY3BVocNuwMpvM9WOLm2bFE-8dPwGzixTS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ProBAN%3A+Neural+network+algorithm+for+predicting+binding+affinity+in+protein%E2%80%93protein+complexes&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Bogdanova%2C+Elizaveta+Alexandrovna&rft.au=Novoseletsky%2C+Valery+Nikolaevich&rft.date=2024-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0887-3585&rft.eissn=1097-0134&rft.volume=92&rft.issue=9&rft.spage=1127&rft.epage=1136&rft_id=info:doi/10.1002%2Fprot.26700&rft.externalDBID=10.1002%252Fprot.26700&rft.externalDocID=PROT26700 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon |