ProBAN: Neural network algorithm for predicting binding affinity in protein–protein complexes

Determining binding affinities in protein–protein and protein–peptide complexes is a challenging task that directly impacts the development of peptide and protein pharmaceuticals. Although several models have been proposed to predict the value of the dissociation constant and the Gibbs free energy,...

Full description

Saved in:
Bibliographic Details
Published inProteins, structure, function, and bioinformatics Vol. 92; no. 9; pp. 1127 - 1136
Main Authors Bogdanova, Elizaveta Alexandrovna, Novoseletsky, Valery Nikolaevich
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.09.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0887-3585
1097-0134
1097-0134
DOI10.1002/prot.26700

Cover

Abstract Determining binding affinities in protein–protein and protein–peptide complexes is a challenging task that directly impacts the development of peptide and protein pharmaceuticals. Although several models have been proposed to predict the value of the dissociation constant and the Gibbs free energy, they are currently not capable of making stable predictions with high accuracy, in particular for complexes consisting of more than two molecules. In this work, we present ProBAN, a new method for predicting binding affinity in protein–protein complexes based on a deep convolutional neural network. Prediction is carried out for the spatial structures of complexes, presented in the format of a 4D tensor, which includes information about the location of atoms and their abilities to participate in various types of interactions realized in protein–protein and protein–peptide complexes. The effectiveness of the model was assessed both on an internal test data set containing complexes consisting of three or more molecules, as well as on an external test for the PPI‐Affinity service. As a result, we managed to achieve the best prediction quality on these data sets among all the analyzed models: on the internal test, Pearson correlation R = 0.6, MAE = 1.60, on the external test, R = 0.55, MAE = 1.75. The open‐source code, the trained ProBAN model, and the collected dataset are freely available at the following link https://github.com/EABogdanova/ProBAN.
AbstractList Determining binding affinities in protein–protein and protein–peptide complexes is a challenging task that directly impacts the development of peptide and protein pharmaceuticals. Although several models have been proposed to predict the value of the dissociation constant and the Gibbs free energy, they are currently not capable of making stable predictions with high accuracy, in particular for complexes consisting of more than two molecules. In this work, we present ProBAN, a new method for predicting binding affinity in protein–protein complexes based on a deep convolutional neural network. Prediction is carried out for the spatial structures of complexes, presented in the format of a 4D tensor, which includes information about the location of atoms and their abilities to participate in various types of interactions realized in protein–protein and protein–peptide complexes. The effectiveness of the model was assessed both on an internal test data set containing complexes consisting of three or more molecules, as well as on an external test for the PPI‐Affinity service. As a result, we managed to achieve the best prediction quality on these data sets among all the analyzed models: on the internal test, Pearson correlation R = 0.6, MAE = 1.60, on the external test, R = 0.55, MAE = 1.75. The open‐source code, the trained ProBAN model, and the collected dataset are freely available at the following link https://github.com/EABogdanova/ProBAN.
Determining binding affinities in protein-protein and protein-peptide complexes is a challenging task that directly impacts the development of peptide and protein pharmaceuticals. Although several models have been proposed to predict the value of the dissociation constant and the Gibbs free energy, they are currently not capable of making stable predictions with high accuracy, in particular for complexes consisting of more than two molecules. In this work, we present ProBAN, a new method for predicting binding affinity in protein-protein complexes based on a deep convolutional neural network. Prediction is carried out for the spatial structures of complexes, presented in the format of a 4D tensor, which includes information about the location of atoms and their abilities to participate in various types of interactions realized in protein-protein and protein-peptide complexes. The effectiveness of the model was assessed both on an internal test data set containing complexes consisting of three or more molecules, as well as on an external test for the PPI-Affinity service. As a result, we managed to achieve the best prediction quality on these data sets among all the analyzed models: on the internal test, Pearson correlation R = 0.6, MAE = 1.60, on the external test, R = 0.55, MAE = 1.75. The open-source code, the trained ProBAN model, and the collected dataset are freely available at the following link https://github.com/EABogdanova/ProBAN.Determining binding affinities in protein-protein and protein-peptide complexes is a challenging task that directly impacts the development of peptide and protein pharmaceuticals. Although several models have been proposed to predict the value of the dissociation constant and the Gibbs free energy, they are currently not capable of making stable predictions with high accuracy, in particular for complexes consisting of more than two molecules. In this work, we present ProBAN, a new method for predicting binding affinity in protein-protein complexes based on a deep convolutional neural network. Prediction is carried out for the spatial structures of complexes, presented in the format of a 4D tensor, which includes information about the location of atoms and their abilities to participate in various types of interactions realized in protein-protein and protein-peptide complexes. The effectiveness of the model was assessed both on an internal test data set containing complexes consisting of three or more molecules, as well as on an external test for the PPI-Affinity service. As a result, we managed to achieve the best prediction quality on these data sets among all the analyzed models: on the internal test, Pearson correlation R = 0.6, MAE = 1.60, on the external test, R = 0.55, MAE = 1.75. The open-source code, the trained ProBAN model, and the collected dataset are freely available at the following link https://github.com/EABogdanova/ProBAN.
Determining binding affinities in protein–protein and protein–peptide complexes is a challenging task that directly impacts the development of peptide and protein pharmaceuticals. Although several models have been proposed to predict the value of the dissociation constant and the Gibbs free energy, they are currently not capable of making stable predictions with high accuracy, in particular for complexes consisting of more than two molecules. In this work, we present ProBAN, a new method for predicting binding affinity in protein–protein complexes based on a deep convolutional neural network. Prediction is carried out for the spatial structures of complexes, presented in the format of a 4D tensor, which includes information about the location of atoms and their abilities to participate in various types of interactions realized in protein–protein and protein–peptide complexes. The effectiveness of the model was assessed both on an internal test data set containing complexes consisting of three or more molecules, as well as on an external test for the PPI‐Affinity service. As a result, we managed to achieve the best prediction quality on these data sets among all the analyzed models: on the internal test, Pearson correlation R  = 0.6, MAE = 1.60, on the external test, R  = 0.55, MAE = 1.75. The open‐source code, the trained ProBAN model, and the collected dataset are freely available at the following link https://github.com/EABogdanova/ProBAN .
Author Novoseletsky, Valery Nikolaevich
Bogdanova, Elizaveta Alexandrovna
Author_xml – sequence: 1
  givenname: Elizaveta Alexandrovna
  orcidid: 0009-0002-4019-157X
  surname: Bogdanova
  fullname: Bogdanova, Elizaveta Alexandrovna
  email: eabogdanova.bioinf@gmail.com
  organization: Lomonosov Moscow State University
– sequence: 2
  givenname: Valery Nikolaevich
  surname: Novoseletsky
  fullname: Novoseletsky, Valery Nikolaevich
  organization: Shenzhen MSU‐BIT University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38722047$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1OHDEQhS1EBMOQDQeILGWDIjWU7e5pd3aA8ichQIisLY-7DCbd9mC7RWaXO-SGnISezLBBEbWpWnzv6enVHtn2wSMhBwyOGAA_XsSQj_isBtgiEwZNXQAT5TaZgJR1ISpZ7ZK9lO4BYNaI2Q7ZFbLmHMp6QtRVDKcnF5_pBQ5Rd9RjfgzxF9XdbYgu3_XUhkgXEVtnsvO3dO58u9raWuddXlLn6SoAOv_05-_moib0iw5_Y9on76zuEr7f7Cn5-fXLzdn34vzy24-zk_PCiKqGQmphLYrGNEzinHM-nvNKihJLYUUpsGG1MbK0LfJ2ZhFMDdZyCbJEoUUjpuRw7TsmeBgwZdW7ZLDrtMcwJCWgEo0EBnxEP75C78MQ_ZhupGTDWCXGmZIPG2qY99iqRXS9jkv1Ut0IwBowMaQU0Srjss4u-By16xQDtfqOWlWi_n1nlHx6JXlx_S_M1vCj63D5Bqmuri9v1ppn0JChJQ
CitedBy_id crossref_primary_10_1002_prot_26821
crossref_primary_10_31857_S0006302924050053
crossref_primary_10_1134_S0006350924700933
crossref_primary_10_1021_acs_jcim_4c01641
Cites_doi 10.1002/prot.26503
10.3389/fgene.2019.00637
10.1038/s41467-017-00081-x
10.1007/s00726-011-1101-1
10.1109/BIBM47256.2019.8982964
10.1007/978-1-4684-7615-6_18
10.1007/s12551‐017‐0337‐8
10.1016/j.jmb.2016.12.004
10.1038/nmeth.4067
10.1111/j.1399-3011.1990.tb00958.x
10.1186/s13040-020-00231-w
10.1007/978-1-4939-0366-5_9
10.7717/peerj.7362
10.1093/protein/gzt063
10.1530/JOE-13-0584
10.1126/science.1241145
10.1038/s41598‐020‐70680‐0
10.1021/acs.jproteome.2c00020
10.1039/c8sc04221g
10.1098/rsif.2012.0835
10.3389/fbinf.2022.1065703
10.1002/pro.3673
10.3390/ijms22010068
10.1126/science.1202617
10.1093/bioinformatics/btw514
10.1016/j.softx.2015.06.001
10.1093/bioinformatics/bty374
10.1074/jbc.273.25.15458
10.1021/acs.jmedchem.7b00318
10.1371/journal.pcbi.1000807
10.1021/acs.jcim.7b00650
10.1002/prot.22550
10.1093/bioinformatics/bty635
10.1016/j.bmcl.2014.03.095
10.1016/j.isci.2022.105169
10.1002/prot.20019
10.1038/srep24131
10.1080/17460441.2018.1430763
10.1016/j.biomaterials.2017.11.024
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
DOI 10.1002/prot.26700
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
CrossRef
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1097-0134
EndPage 1136
ExternalDocumentID 38722047
10_1002_prot_26700
PROT26700
Genre article
Journal Article
GrantInformation_xml – fundername: Non‐commercial Foundation for the Advancement of Science and Education INTELLECT
– fundername: Non-commercial Foundation for the Advancement of Science and Education INTELLECT
GroupedDBID -~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FA8
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c3570-8a3ffe39c918eb22239cb5834e43f343e917cc84fde2d6fe0c70ff28084e3a393
IEDL.DBID DR2
ISSN 0887-3585
1097-0134
IngestDate Thu Oct 02 06:02:58 EDT 2025
Tue Oct 07 06:44:25 EDT 2025
Mon Jul 21 06:07:14 EDT 2025
Wed Oct 01 01:19:24 EDT 2025
Thu Apr 24 22:58:48 EDT 2025
Wed Jun 11 08:24:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords interaction energy
multiprotein complexes
protein binding
neural networks
structure‐based features
Language English
License 2024 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3570-8a3ffe39c918eb22239cb5834e43f343e917cc84fde2d6fe0c70ff28084e3a393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0002-4019-157X
PMID 38722047
PQID 3089115333
PQPubID 1016441
PageCount 10
ParticipantIDs proquest_miscellaneous_3053980102
proquest_journals_3089115333
pubmed_primary_38722047
crossref_citationtrail_10_1002_prot_26700
crossref_primary_10_1002_prot_26700
wiley_primary_10_1002_prot_26700_PROT26700
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
2024-Sep
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hokoben
PublicationTitle Proteins, structure, function, and bioinformatics
PublicationTitleAlternate Proteins
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2010; 78
2019; 7
2019; 2019
2015; 1–2
2017; 8
1990; 36
2019; 10
2019; 35
2000; 9
2016; 32
1985; 101
2014; 27
2022; 25
2014; 24
2020; 13
2013; 341
2018; 61
2022; 21
2020; 10
2011; 332
1998; 273
2017; 429
2016; 6
2013; 10
2017; 14
2018; 156
2004; 56
2019; 28
2020; 22
2022; 2
2014; 220
2018; 34
2014; 1137
2018; 10
2012; 43
2010; 6
2018; 58
2023; 91
2018; 13
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Esposito L (e_1_2_7_41_1) 2000; 9
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 332
  start-page: 816
  year: 2011
  end-page: 821
  article-title: Computational design of proteins targeting the conserved stem region of influenza hemagglutinin
  publication-title: Science
– volume: 6
  year: 2016
  article-title: Concentration dependent ion‐protein interaction patterns underlying protein oligomerization behaviours
  publication-title: Sci Rep
– volume: 24
  start-page: 2546
  year: 2014
  end-page: 2554
  article-title: Hot spot‐based design of small‐molecule inhibitors for protein–protein interactions
  publication-title: Bioorg Med Chem Lett
– volume: 101
  year: 1985
– volume: 28
  start-page: 1734
  year: 2019
  end-page: 1743
  article-title: ProtDCal‐suite: a web server for the numerical codification and functional analysis of proteins
  publication-title: Protein Sci
– volume: 58
  start-page: 287
  issue: 2
  year: 2018
  end-page: 296
  article-title: KDEEP: protein–ligand absolute binding affinity prediction via 3D‐convolutional neural networks
  publication-title: J Chem Inf Model
– volume: 36
  start-page: 147
  issue: 2
  year: 1990
  end-page: 155
  article-title: Conformations of disulfide bridges in proteins
  publication-title: Int J Pept Protein Res
– volume: 22
  start-page: 68
  year: 2020
  article-title: TCR recognition of peptide–MHC‐I: rule makers and breakers
  publication-title: Int J Mol Sci
– volume: 9
  start-page: 2038
  issue: 10
  year: 2000
  end-page: 2042
  article-title: Pyramidalization of backbone carbonyl carbon atoms in proteins
  publication-title: Protein Sci
– volume: 21
  start-page: 1829
  year: 2022
  end-page: 1841
  article-title: PPI‐affinity: a web tool for the prediction and optimization of protein–peptide and protein–protein binding affinity
  publication-title: J Proteome Res
– volume: 10
  start-page: 637
  year: 2019
  article-title: PredPRBA: prediction of protein‐RNA binding affinity using gradient boosted regression trees
  publication-title: Front Genet
– volume: 91
  start-page: 1245
  year: 2023
  end-page: 1253
  article-title: An updated dataset and a structure‐based prediction model for protein–RNA binding affinity
  publication-title: Proteins
– volume: 429
  start-page: 365
  issue: 3
  year: 2017
  end-page: 371
  article-title: Arpeggio: a web server for calculating and visualising interatomic interactions in protein structures
  publication-title: J Mol Biol
– volume: 10
  start-page: 909
  issue: 3
  year: 2018
  end-page: 917
  article-title: Relative orientation of the carbonyl groups determines the nature of orbital interactions in carbonyl‐carbonyl short contacts
  publication-title: Chem Sci
– volume: 273
  start-page: 15458
  issue: 25
  year: 1998
  end-page: 15463
  article-title: pi‐Stacking interactions. Alive and well in proteins
  publication-title: J Biol Chem
– volume: 14
  start-page: 71
  issue: 1
  year: 2017
  end-page: 73
  article-title: CHARMM36m: an improved force field for folded and intrinsically disordered proteins
  publication-title: Nat Methods
– volume: 27
  start-page: 65
  issue: 3
  year: 2014
  end-page: 72
  article-title: Occurrence of protein disulfide bonds in different domains of life: a comparison of proteins from the Protein Data Bank
  publication-title: Protein Eng Des Sel
– volume: 35
  start-page: 462
  year: 2019
  end-page: 469
  article-title: SKEMPI 2.0: an updated benchmark of changes in protein–protein binding energy, kinetics and thermodynamics upon mutation
  publication-title: Bioinformatics
– volume: 1137
  start-page: 119
  year: 2014
  end-page: 130
  article-title: SPOT‐seq‐RNA: predicting protein‐RNA complex structure and RNA‐binding function by fold recognition and binding affinity prediction
  publication-title: Methods Mol Biol
– volume: 2
  year: 2022
  article-title: Machine learning methods for protein–protein binding affinity prediction in protein design
  publication-title: Front Bioinform
– volume: 78
  start-page: 400
  year: 2010
  end-page: 419
  article-title: PIE‐efficient filters and coarse grained potentials for unbound protein–protein docking
  publication-title: Proteins
– volume: 13
  start-page: 327
  year: 2018
  end-page: 338
  article-title: Hot‐spot analysis for drug discovery targeting protein–protein interactions
  publication-title: Expert Opin Drug Discov
– volume: 43
  start-page: 531
  issue: 2
  year: 2012
  end-page: 543
  article-title: Structure‐based prediction of protein–protein binding affinity with consideration of allosteric effect
  publication-title: Amino Acids
– volume: 156
  start-page: 1
  year: 2018
  end-page: 15
  article-title: Structure‐based design for binding peptides in anti‐cancer therapy
  publication-title: Biomaterials
– volume: 220
  start-page: T1
  year: 2014
  end-page: T23
  article-title: Insulin signaling, resistance, and metabolic syndrome: insights from mouse models into disease mechanisms
  publication-title: J Endocrinol
– volume: 10
  year: 2013
  article-title: On the binding affinity of macromolecular interactions: daring to ask why proteins interact
  publication-title: J R Soc Interface
– volume: 7
  year: 2019
  article-title: DeepBindRG: a deep learning based method for estimating effective protein–ligand affinity
  publication-title: PeerJ
– volume: 56
  start-page: 93
  year: 2004
  end-page: 101
  article-title: A physical reference state unifies the structure‐derived potential of mean force for protein folding and binding
  publication-title: Proteins
– volume: 10
  start-page: 13696
  year: 2020
  article-title: Antibody‐protein binding and conformational changes: identifying allosteric signalling pathways to engineer a better effector response
  publication-title: Sci Rep
– volume: 341
  start-page: 1192
  year: 2013
  end-page: 1198
  article-title: Antibody therapeutics in cancer
  publication-title: Science
– volume: 61
  start-page: 1382
  year: 2018
  end-page: 1414
  article-title: The current state of peptide drug discovery: back to the future?
  publication-title: J Med Chem
– volume: 25
  issue: 10
  year: 2022
  article-title: ADH‐PPI: an attention‐based deep hybrid model for protein–protein interaction prediction
  publication-title: iScience
– volume: 13
  start-page: 1
  year: 2020
  end-page: 13
  article-title: ISLAND: in‐silico proteins binding affinity prediction using sequence information
  publication-title: BioData Min
– volume: 6
  year: 2010
  article-title: Protein–protein interactions essentials: key concepts to building and analyzing interactome networks
  publication-title: PLoS Comput Biol
– volume: 34
  start-page: 3666
  issue: 21
  year: 2018
  end-page: 3674
  article-title: Development and evaluation of a deep learning model for protein–ligand binding affinity prediction
  publication-title: Bioinformatics
– volume: 2019
  start-page: 303
  year: 2019
  end-page: 310
  article-title: DeepAtom: a framework for protein–ligand binding affinity prediction
  publication-title: IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– volume: 10
  start-page: 235
  year: 2018
  end-page: 239
  article-title: Ion–protein interactions of a potassium ion channel studied by attenuated total reflection Fourier transform infrared spectroscopy
  publication-title: Biophys Rev
– volume: 1–2
  start-page: 19
  year: 2015
  end-page: 25
  article-title: GROMACS: high performance molecular simulations through multi‐level parallelism from laptops to supercomputers
  publication-title: SoftwareX
– volume: 32
  year: 2016
  article-title: PRODIGY: a web server for predicting the binding affinity of protein–protein complexes
  publication-title: Bioinformatics
– volume: 8
  start-page: 78
  issue: 1
  year: 2017
  article-title: Reciprocal carbonyl‐carbonyl interactions in small molecules and proteins
  publication-title: Nat Commun
– ident: e_1_2_7_24_1
  doi: 10.1002/prot.26503
– ident: e_1_2_7_23_1
  doi: 10.3389/fgene.2019.00637
– ident: e_1_2_7_43_1
  doi: 10.1038/s41467-017-00081-x
– volume: 9
  start-page: 2038
  issue: 10
  year: 2000
  ident: e_1_2_7_41_1
  article-title: Pyramidalization of backbone carbonyl carbon atoms in proteins
  publication-title: Protein Sci
– ident: e_1_2_7_28_1
  doi: 10.1007/s00726-011-1101-1
– ident: e_1_2_7_20_1
  doi: 10.1109/BIBM47256.2019.8982964
– ident: e_1_2_7_35_1
  doi: 10.1007/978-1-4684-7615-6_18
– ident: e_1_2_7_37_1
  doi: 10.1007/s12551‐017‐0337‐8
– ident: e_1_2_7_29_1
– ident: e_1_2_7_34_1
  doi: 10.1016/j.jmb.2016.12.004
– ident: e_1_2_7_32_1
  doi: 10.1038/nmeth.4067
– ident: e_1_2_7_40_1
  doi: 10.1111/j.1399-3011.1990.tb00958.x
– ident: e_1_2_7_15_1
  doi: 10.1186/s13040-020-00231-w
– ident: e_1_2_7_22_1
  doi: 10.1007/978-1-4939-0366-5_9
– ident: e_1_2_7_21_1
  doi: 10.7717/peerj.7362
– ident: e_1_2_7_39_1
  doi: 10.1093/protein/gzt063
– ident: e_1_2_7_3_1
  doi: 10.1530/JOE-13-0584
– ident: e_1_2_7_33_1
– ident: e_1_2_7_6_1
  doi: 10.1126/science.1241145
– ident: e_1_2_7_11_1
  doi: 10.1038/s41598‐020‐70680‐0
– ident: e_1_2_7_17_1
  doi: 10.1021/acs.jproteome.2c00020
– ident: e_1_2_7_42_1
  doi: 10.1039/c8sc04221g
– ident: e_1_2_7_25_1
  doi: 10.1098/rsif.2012.0835
– ident: e_1_2_7_26_1
  doi: 10.3389/fbinf.2022.1065703
– ident: e_1_2_7_44_1
  doi: 10.1002/pro.3673
– ident: e_1_2_7_4_1
  doi: 10.3390/ijms22010068
– ident: e_1_2_7_5_1
  doi: 10.1126/science.1202617
– ident: e_1_2_7_14_1
  doi: 10.1093/bioinformatics/btw514
– ident: e_1_2_7_31_1
  doi: 10.1016/j.softx.2015.06.001
– ident: e_1_2_7_18_1
  doi: 10.1093/bioinformatics/bty374
– ident: e_1_2_7_30_1
– ident: e_1_2_7_36_1
  doi: 10.1074/jbc.273.25.15458
– ident: e_1_2_7_9_1
  doi: 10.1021/acs.jmedchem.7b00318
– ident: e_1_2_7_2_1
  doi: 10.1371/journal.pcbi.1000807
– ident: e_1_2_7_19_1
  doi: 10.1021/acs.jcim.7b00650
– ident: e_1_2_7_13_1
  doi: 10.1002/prot.22550
– ident: e_1_2_7_27_1
  doi: 10.1093/bioinformatics/bty635
– ident: e_1_2_7_7_1
  doi: 10.1016/j.bmcl.2014.03.095
– ident: e_1_2_7_16_1
  doi: 10.1016/j.isci.2022.105169
– ident: e_1_2_7_12_1
  doi: 10.1002/prot.20019
– ident: e_1_2_7_38_1
  doi: 10.1038/srep24131
– ident: e_1_2_7_8_1
  doi: 10.1080/17460441.2018.1430763
– ident: e_1_2_7_10_1
  doi: 10.1016/j.biomaterials.2017.11.024
SSID ssj0006936
Score 2.4917698
Snippet Determining binding affinities in protein–protein and protein–peptide complexes is a challenging task that directly impacts the development of peptide and...
Determining binding affinities in protein-protein and protein-peptide complexes is a challenging task that directly impacts the development of peptide and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1127
SubjectTerms Affinity
Algorithms
Artificial neural networks
Binding
Binding Sites
Computational Biology - methods
Databases, Protein
Datasets
Energy of dissociation
Free energy
Gibbs free energy
Impact prediction
interaction energy
multiprotein complexes
Neural networks
Neural Networks, Computer
Peptides
Predictions
Protein Binding
Protein Interaction Mapping - methods
Proteins
Proteins - chemistry
Proteins - metabolism
Source code
structure‐based features
Tensors
Thermodynamics
Title ProBAN: Neural network algorithm for predicting binding affinity in protein–protein complexes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.26700
https://www.ncbi.nlm.nih.gov/pubmed/38722047
https://www.proquest.com/docview/3089115333
https://www.proquest.com/docview/3053980102
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0887-3585
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0134
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006936
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxUxEB5KQfTFS-tltUpEERT2NCfJ7mbFl9NiKT7UUlroiyxJNtHFdk85F7A--R_8h_4SJ8nuHqoi6FtgZ3Of5Jtk8g3A80KicazEOJU1damwNk9VbWnKSifQFtOy0IHt8yDfPxHvTrPTNXjTv4WJ_BDDgZvXjLBeewVXer69Ig31PAYj5l-Z4AI85nmwp45W3FF5GeIDRi1CUDxwk7Lt1a9Xd6PfIOZVxBq2nL1b8KGvbPQ0-TxaLvTIfP2Fx_F_W3MbbnZYlEzi5LkDa7bdgM1Ji3b4-SV5QYJ3aDh234BrO33q-m4fI24TqsPZdGdy8Jp4jg_Mqo1O5USdfZzOmsWnc4KYmFzM_G2Q968mugmvaIhyrsHF5JI0LQlUEU3749v3LkWCn7v9Yud34WTv7fHuftqFbEgNzwqaSsWds7w05ViizY7YozQ6k1xYwR0X3KJ1aIwUrraszp2lpqDOMUmlsFzxkt-D9Xba2gdAuB7rTDnlapmLWgvlL4gxB0OpwaxFAi_7oatMx2fuw2qcVZGJmVW-0lXo0wSeDbIXkcXjj1Jb_QyoOk2eV5xK3A8QFPMEng6fsZv9xYpq7XTpZTJeSs_Ol8D9OHOGYrgsGKOiSOBVGP-_lF8dHr0_DqmH_yL8CG4wRFrR8W0L1hezpX2MSGmhnwSN-Akc5BEt
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1BESovXFougQJGICSQsvXaTuLwtq2oFihLVW2lvlm2Y0NEm632IlGe-Af-kC_Bl2xWBYQEb5YysWNnxj5jj88APCu4c44l66e8wjZlxuSprAxOSWmZ88UUL1Rg-xzlwyP29jg7bmNz_F2YyA_Rbbh5ywjztTdwvyG9vWIN9UQGPeKvmVyGKyx3jorHRIcr9qi8DBkCox05WNyxk5Lt1bsX16PfQOZFzBoWnb0bMbPqLHAV-liTz73FXPX011-YHP-7PzfhegtH0SDqzy24ZJoN2Bw0zhU_PUfPUQgQDTvvG3B1Z1la312midsEcTCd7AxGr5Cn-XBVNTGuHMmTj5NpPf90ihwsRmdTfyDkQ6yRqsNFGiStrd18co7qBgW2iLr58e17W0Ih1N18MbPbcLT3erw7TNusDammWYFTLqm1hpa67HPntjv4UWqVccoMo5YyapyDqDVntjKkyq3BusDWEo45M1TSkt6BtWbSmHuAqOqrTFppK56zSjHpz4hdDRpj7apmCbxY_juhW0pzn1njREQyZiL8R4swpgk87WTPIpHHH6W2liogWmOeCYq5WxIcLqYJPOkeu2H2ZyuyMZOFl8loyT1BXwJ3o-p0zVBeEIJZkcDLoAB_aV8cHH4Yh9L9fxF-DOvD8ft9sf9m9O4BXCMOeMU4uC1Ym08X5qEDTnP1KJjHTyd4FU4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZbtQwFL2CIigvLF1ooIARCAmkTD22kzi8TVtGZdEwqlqpb5bj2CVqmxnNIlGe-Af-kC_BSyajAkKCN0txnMS51z7XPj4X4EXGbXAsWTfmJTYx0zqNZalxTHLDbCxW8Kzwap-D9OCYvT9JThpujjsLE_Qh2gU35xl-vHYOrsel2Vmqhjohgw5xx0yuww2W5Nwx-vYPl-pRae4zBAY_srC4VSclO8t7r85Hv4HMq5jVTzr9uyGz6tRrFTquyVlnPis66usvSo7__T334E4DR1Ev2M99uKbrNVjv1TYUv7hEL5EniPqV9zW4ubsore4t0sStgxhORru9wRvkZD5sU3XglSN5fjqaVLPPF8jCYjSeuA0hR7FGReUP0iBpTGXHk0tU1cirRVT1j2_fmxLyVHf9RU834Lj_9mjvIG6yNsSKJhmOuaTGaJqrvMtt2G7hR66KhFOmGTWUUW0DRKU4M6UmZWo0Vhk2hnDMmaaS5nQTVupRrbcA0aJbJNJIU_KUlQWTbo_YtqAwVrZpFsGrxb8TqpE0d5k1zkUQYybCvbTwfRrB87buOAh5_LHW9sIEROPMU0Ext1OCxcU0gmftZdvNbm9F1no0d3USmnMn0BfBg2A67WMozwjBLIvgtTeAvzxfDA8_HfnSw3-p_BRuDff74uO7wYdHcJtY3BVocNuwMpvM9WOLm2bFE-8dPwGzixTS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ProBAN%3A+Neural+network+algorithm+for+predicting+binding+affinity+in+protein%E2%80%93protein+complexes&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Bogdanova%2C+Elizaveta+Alexandrovna&rft.au=Novoseletsky%2C+Valery+Nikolaevich&rft.date=2024-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0887-3585&rft.eissn=1097-0134&rft.volume=92&rft.issue=9&rft.spage=1127&rft.epage=1136&rft_id=info:doi/10.1002%2Fprot.26700&rft.externalDBID=10.1002%252Fprot.26700&rft.externalDocID=PROT26700
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon