Unconstrained Optimization of Real Functions in Complex Variables

Nonlinear optimization problems in complex variables are frequently encountered in applied mathematics and engineering applications such as control theory, signal processing, and electrical engineering. Optimization of these problems often requires a first- or second-order approximation of the objec...

Full description

Saved in:
Bibliographic Details
Published inSIAM journal on optimization Vol. 22; no. 3; pp. 879 - 898
Main Authors Sorber, Laurent, Barel, Marc Van, Lathauwer, Lieven De
Format Journal Article
LanguageEnglish
Published Philadelphia Society for Industrial and Applied Mathematics 01.01.2012
Subjects
Online AccessGet full text
ISSN1052-6234
1095-7189
DOI10.1137/110832124

Cover

Abstract Nonlinear optimization problems in complex variables are frequently encountered in applied mathematics and engineering applications such as control theory, signal processing, and electrical engineering. Optimization of these problems often requires a first- or second-order approximation of the objective function to generate a new step or descent direction. However, such methods cannot be applied to real functions of complex variables because they are necessarily nonanalytic in their argument, i.e., the Taylor series expansion in their argument alone does not exist. To overcome this problem, the objective function is usually redefined as a function of the real and imaginary parts of its complex argument so that standard optimization methods can be applied. However, this approach may needlessly disguise any inherent structure present in the derivatives of such complex problems. Although little known, it is possible to construct an expansion of the objective function in its original complex variables by noting that functions of complex variables can be analytic in their argument and its complex conjugate as a whole. We use these complex Taylor series expansions to generalize existing optimization algorithms for both general nonlinear optimization problems and nonlinear least squares problems. We then apply these methods to two case studies which demonstrate that complex derivatives can lead to greater insight in the structure of the problem, and that this structure can often be exploited to improve computational complexity and storage cost. [PUBLICATION ABSTRACT]
AbstractList Nonlinear optimization problems in complex variables are frequently encountered in applied mathematics and engineering applications such as control theory, signal processing, and electrical engineering. Optimization of these problems often requires a first- or second-order approximation of the objective function to generate a new step or descent direction. However, such methods cannot be applied to real functions of complex variables because they are necessarily nonanalytic in their argument, i.e., the Taylor series expansion in their argument alone does not exist. To overcome this problem, the objective function is usually redefined as a function of the real and imaginary parts of its complex argument so that standard optimization methods can be applied. However, this approach may needlessly disguise any inherent structure present in the derivatives of such complex problems. Although little known, it is possible to construct an expansion of the objective function in its original complex variables by noting that functions of complex variables can be analytic in their argument and its complex conjugate as a whole. We use these complex Taylor series expansions to generalize existing optimization algorithms for both general nonlinear optimization problems and nonlinear least squares problems. We then apply these methods to two case studies which demonstrate that complex derivatives can lead to greater insight in the structure of the problem, and that this structure can often be exploited to improve computational complexity and storage cost.
Nonlinear optimization problems in complex variables are frequently encountered in applied mathematics and engineering applications such as control theory, signal processing, and electrical engineering. Optimization of these problems often requires a first- or second-order approximation of the objective function to generate a new step or descent direction. However, such methods cannot be applied to real functions of complex variables because they are necessarily nonanalytic in their argument, i.e., the Taylor series expansion in their argument alone does not exist. To overcome this problem, the objective function is usually redefined as a function of the real and imaginary parts of its complex argument so that standard optimization methods can be applied. However, this approach may needlessly disguise any inherent structure present in the derivatives of such complex problems. Although little known, it is possible to construct an expansion of the objective function in its original complex variables by noting that functions of complex variables can be analytic in their argument and its complex conjugate as a whole. We use these complex Taylor series expansions to generalize existing optimization algorithms for both general nonlinear optimization problems and nonlinear least squares problems. We then apply these methods to two case studies which demonstrate that complex derivatives can lead to greater insight in the structure of the problem, and that this structure can often be exploited to improve computational complexity and storage cost. [PUBLICATION ABSTRACT]
Author Sorber, Laurent
Lathauwer, Lieven De
Barel, Marc Van
Author_xml – sequence: 1
  givenname: Laurent
  surname: Sorber
  fullname: Sorber, Laurent
– sequence: 2
  givenname: Marc Van
  surname: Barel
  fullname: Barel, Marc Van
– sequence: 3
  givenname: Lieven De
  surname: Lathauwer
  fullname: Lathauwer, Lieven De
BookMark eNptkFFLwzAUhYNMcJs--A8KvuhDXdI0afI4hlNhMBDna8nSW8hok5q0oP56Uyc-DJ_u5fLdwzlnhibWWUDomuB7QmixIAQLmpEsP0NTgiVLCyLkZNxZlvKM5hdoFsIBYywkF1O03FntbOi9MhaqZNv1pjVfqjfOJq5OXkA1yXqwejyExNhk5dqugY_kTXmj9g2ES3ReqybA1e-co9364XX1lG62j8-r5SbVlPE-rQkHxSqpCGSE5kAYx3IPsM9Hawo4LSQnggKjlWKghJIUg6p0JSTRWU3n6Pao23n3PkDoy9YEDU2jLLghlDE-j1q5EBG9OUEPbvA2uisJprigBZNFpO6OlPYuBA912XnTKv8ZoVGtKP_KjOzihNWm_2lpbK755-MbI412Ig
CitedBy_id crossref_primary_10_1137_20M1313933
crossref_primary_10_1109_ACCESS_2019_2926616
crossref_primary_10_1109_TAP_2022_3140527
crossref_primary_10_1007_s10898_019_00843_5
crossref_primary_10_1137_120868323
crossref_primary_10_1016_j_cam_2024_116385
crossref_primary_10_11948_20180256
crossref_primary_10_1007_s10589_015_9761_5
crossref_primary_10_1002_nla_2190
crossref_primary_10_1007_s00034_024_02757_4
crossref_primary_10_1088_1361_6420_aac8ef
crossref_primary_10_1093_gji_ggae389
crossref_primary_10_1016_j_laa_2021_12_008
crossref_primary_10_1093_mnras_stv418
crossref_primary_10_1021_acs_jctc_1c00238
crossref_primary_10_1007_s10589_021_00297_0
crossref_primary_10_1088_1402_4896_ab1e7f
crossref_primary_10_1016_j_procs_2015_05_205
crossref_primary_10_1007_s00500_021_06415_8
crossref_primary_10_1364_OE_24_024719
crossref_primary_10_1364_OE_27_008143
crossref_primary_10_1109_TCYB_2015_2490170
crossref_primary_10_1145_3568991
crossref_primary_10_1137_130932387
crossref_primary_10_1016_j_eswa_2023_121166
crossref_primary_10_1007_s10898_023_01355_z
crossref_primary_10_1109_TNNLS_2015_2440473
crossref_primary_10_1016_j_sigpro_2024_109738
crossref_primary_10_1080_03081087_2021_2017832
crossref_primary_10_1093_imanum_drad071
crossref_primary_10_1587_nolta_16_197
crossref_primary_10_1061_JENMDT_EMENG_6953
crossref_primary_10_1137_141002256
crossref_primary_10_3934_naco_2019051
crossref_primary_10_1002_mrm_28007
crossref_primary_10_1063_1_4908073
crossref_primary_10_1021_acs_jctc_8b00731
crossref_primary_10_1109_JPHOT_2021_3111921
crossref_primary_10_1109_TPWRS_2018_2794401
crossref_primary_10_1109_TNNLS_2015_2441697
crossref_primary_10_1007_s10107_021_01702_6
crossref_primary_10_3182_20140824_6_ZA_1003_00973
crossref_primary_10_1155_2015_104531
crossref_primary_10_1103_PhysRevA_99_053838
crossref_primary_10_3390_electronics12081797
crossref_primary_10_1038_s41598_020_69646_z
crossref_primary_10_1109_LSP_2017_2697680
crossref_primary_10_1186_s13634_015_0257_3
crossref_primary_10_5194_ars_12_171_2014
crossref_primary_10_1016_j_neucom_2017_06_018
crossref_primary_10_1109_JBHI_2015_2491645
crossref_primary_10_1137_20M1344780
crossref_primary_10_1007_s10092_021_00437_2
crossref_primary_10_1109_TSP_2015_2399865
crossref_primary_10_1016_j_neunet_2014_10_003
crossref_primary_10_1016_j_cam_2016_12_022
crossref_primary_10_1007_s10444_013_9337_9
crossref_primary_10_1103_PhysRevB_97_245131
crossref_primary_10_1109_TCOMM_2021_3075519
crossref_primary_10_1007_s11571_023_09940_4
crossref_primary_10_1038_s41598_019_52289_0
crossref_primary_10_1109_TPWRS_2020_2991886
crossref_primary_10_1364_OE_27_018653
crossref_primary_10_1109_OAJPE_2021_3090579
crossref_primary_10_1016_j_ifacol_2017_08_2077
crossref_primary_10_1177_0954406218786981
crossref_primary_10_1016_j_laa_2018_07_004
crossref_primary_10_1093_mnras_sty1221
crossref_primary_10_1016_j_mcat_2025_114914
crossref_primary_10_1137_16M110112X
crossref_primary_10_1137_15M1034386
crossref_primary_10_1109_TCYB_2016_2632159
crossref_primary_10_1016_j_cma_2024_117418
crossref_primary_10_1007_s40305_023_00504_1
crossref_primary_10_1063_1_4996988
crossref_primary_10_1109_TSIPN_2016_2612122
crossref_primary_10_1364_OE_530136
crossref_primary_10_1088_0266_5611_30_3_035011
crossref_primary_10_1088_1361_6420_aadb20
crossref_primary_10_1063_1_4906344
crossref_primary_10_1007_s11045_019_00685_0
crossref_primary_10_1109_TNNLS_2021_3135553
crossref_primary_10_1364_OE_454796
crossref_primary_10_1109_TSP_2021_3137746
crossref_primary_10_1109_TPWRS_2019_2909150
crossref_primary_10_1016_j_sigpro_2013_09_026
crossref_primary_10_1038_s41598_019_42797_4
crossref_primary_10_1109_TPWRS_2019_2922269
crossref_primary_10_1109_TNNLS_2016_2635676
crossref_primary_10_1109_TCOMM_2020_2985967
crossref_primary_10_1002_nme_7182
crossref_primary_10_1109_TSG_2018_2824018
crossref_primary_10_1515_ijeeps_2023_0459
crossref_primary_10_1109_ACCESS_2019_2897711
crossref_primary_10_1093_gji_ggae045
crossref_primary_10_1016_j_neunet_2020_01_011
crossref_primary_10_1109_JSTSP_2015_2400415
crossref_primary_10_3389_fams_2022_836433
crossref_primary_10_1137_17M1152371
crossref_primary_10_1137_18M1223915
crossref_primary_10_1364_OE_422768
crossref_primary_10_1063_5_0064862
crossref_primary_10_1103_PhysRevA_108_032409
crossref_primary_10_1109_TMI_2014_2322815
crossref_primary_10_1088_1361_6420_abb61d
crossref_primary_10_1137_17M1145689
crossref_primary_10_3390_app10175764
crossref_primary_10_1007_s10092_018_0298_8
crossref_primary_10_1088_1742_6596_744_1_012175
crossref_primary_10_1016_j_cpc_2021_108185
crossref_primary_10_1109_TSP_2020_2979550
Cites_doi 10.1137/030601880
10.1007/BF01593790
10.1109/75.631201
10.1093/imamat/6.3.222
10.1007/BF01580735
10.1137/1019005
10.1109/78.80955
10.1049/ip-vis:19941555
10.1007/BF01589113
10.1090/S0025-5718-1980-0572855-7
10.1145/355984.355989
10.1137/0802003
10.1093/comjnl/13.3.317
10.1145/192115.192132
10.1109/TCS.1976.1084181
10.1090/S0025-5718-1970-0274029-X
10.1137/1011036
10.6028/jres.049.044
10.1093/comjnl/7.2.149
10.1007/BF02310791
10.1007/BF00932218
10.1090/S0025-5718-1970-0258249-6
10.1002/sapm192761164
10.1214/aoms/1177729893
10.1007/BF01589116
10.1137/07070111X
ContentType Journal Article
Copyright 2012, Society for Industrial and Applied Mathematics
Copyright_xml – notice: 2012, Society for Industrial and Applied Mathematics
DBID AAYXX
CITATION
3V.
7RQ
7WY
7WZ
7X2
7XB
87Z
88A
88F
88I
88K
8AL
8FE
8FG
8FH
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KB.
L.-
L6V
LK8
M0C
M0K
M0N
M1Q
M2O
M2P
M2T
M7P
M7S
MBDVC
P5Z
P62
PATMY
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
U9A
7SC
7TB
8FD
FR3
H8D
KR7
L7M
L~C
L~D
DOI 10.1137/110832124
DatabaseName CrossRef
ProQuest Central (Corporate)
Career & Technical Education Database (Proquest)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
Telecommunications (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (Proquest)
Materials Science Database (Proquest)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global
Agricultural Science Database
Computing Database
Military Database
Research Library (Proquest)
Science Database
Telecommunications Database
Biological Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Military Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Telecommunications
ProQuest One Applied & Life Sciences
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Career and Technical Education (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
ProQuest Telecommunications (Alumni Edition)
Biological Science Database
ProQuest Business Collection
Environmental Science Collection
ProQuest Career and Technical Education
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database
Agricultural Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1095-7189
EndPage 898
ExternalDocumentID 2726680841
10_1137_110832124
GroupedDBID -~X
.4S
.DC
123
4.4
7RQ
7WY
7X2
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8G5
8V8
AALVN
AASXH
AAYXX
ABDBF
ABDPE
ABJCF
ABKAD
ABMZU
ABUWG
ACGFO
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AEMOZ
AENEX
AFFNX
AFKRA
AFRAH
AHQJS
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ANXRF
ARAPS
ARCSS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BPHCQ
CCPQU
CITATION
CS3
CZ9
D1I
D1J
D1K
DQ2
DU5
DWQXO
EAP
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F5P
FRNLG
GNUQQ
GUQSH
H13
HCIFZ
H~9
I-F
K1G
K6-
K60
K6V
K6~
K7-
KB.
KC.
L6V
LK5
LK8
M0C
M0K
M1Q
M2O
M2P
M7P
M7R
M7S
P1Q
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
PYCSY
RJG
RNS
RSI
TH9
TN5
TUS
TWZ
YNT
3V.
7XB
88A
88K
8AL
8FK
JQ2
L.-
M0N
M2T
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
U9A
7SC
7TB
8FD
FR3
H8D
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c356t-f16ea5d9a1e2134e15609beeb41052ae63796183e53da5ea8a930eadcd891c2f3
IEDL.DBID BENPR
ISSN 1052-6234
IngestDate Fri Sep 05 13:48:35 EDT 2025
Wed Aug 13 09:52:15 EDT 2025
Wed Oct 01 04:41:41 EDT 2025
Thu Apr 24 23:13:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-f16ea5d9a1e2134e15609beeb41052ae63796183e53da5ea8a930eadcd891c2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1030737597
PQPubID 666300
PageCount 20
ParticipantIDs proquest_miscellaneous_1136410488
proquest_journals_1030737597
crossref_primary_10_1137_110832124
crossref_citationtrail_10_1137_110832124
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle SIAM journal on optimization
PublicationYear 2012
Publisher Society for Industrial and Applied Mathematics
Publisher_xml – name: Society for Industrial and Applied Mathematics
References atyp_ref5
atyp_ref1
D. (atyp_ref3) 1983; 130
Khatri C. G. (atyp_ref24) 1968; 30
atyp_ref9
atyp_ref43
atyp_ref7
atyp_ref6
atyp_ref45
atyp_ref13
atyp_ref14
M. J. (atyp_ref36) 1970
atyp_ref15
atyp_ref16
F. (atyp_ref21) 1927; 7
atyp_ref38
atyp_ref19
Hager W. W. (atyp_ref17) 2006; 2
Polak E. (atyp_ref35) 1969; 3
Sherman J. (atyp_ref46) 1949; 20
F. (atyp_ref20) 1927; 6
atyp_ref50
atyp_ref51
atyp_ref30
atyp_ref10
atyp_ref32
atyp_ref11
atyp_ref12
atyp_ref34
atyp_ref25
atyp_ref47
atyp_ref27
atyp_ref28
Bai Z. (atyp_ref2) 1995
Harshman R. A. (atyp_ref18) 1970; 16
M. J. (atyp_ref37) 1970
References_xml – ident: atyp_ref16
  doi: 10.1137/030601880
– ident: atyp_ref38
  doi: 10.1007/BF01593790
– ident: atyp_ref43
  doi: 10.1109/75.631201
– start-page: 115
  year: 1995
  ident: atyp_ref2
  publication-title: Heidelberg
– ident: atyp_ref5
  doi: 10.1093/imamat/6.3.222
– ident: atyp_ref6
  doi: 10.1007/BF01580735
– ident: atyp_ref10
  doi: 10.1137/1019005
– ident: atyp_ref1
  doi: 10.1109/78.80955
– start-page: 87
  year: 1970
  ident: atyp_ref36
  publication-title: London
– start-page: 31
  year: 1970
  ident: atyp_ref37
  publication-title: New York
– ident: atyp_ref50
  doi: 10.1049/ip-vis:19941555
– ident: atyp_ref13
  doi: 10.1007/BF01589113
– ident: atyp_ref32
  doi: 10.1090/S0025-5718-1980-0572855-7
– volume: 16
  start-page: 1
  year: 1970
  ident: atyp_ref18
  publication-title: multi-modal factor analysis, UCLA Working Papers in Phonetics
– ident: atyp_ref34
  doi: 10.1145/355984.355989
– ident: atyp_ref14
  doi: 10.1137/0802003
– ident: atyp_ref11
  doi: 10.1093/comjnl/13.3.317
– ident: atyp_ref28
  doi: 10.1145/192115.192132
– ident: atyp_ref30
  doi: 10.1109/TCS.1976.1084181
– volume: 3
  start-page: 35
  year: 1969
  ident: atyp_ref35
  publication-title: Rev. Française Informat. Recherche Operationnelle
– ident: atyp_ref45
  doi: 10.1090/S0025-5718-1970-0274029-X
– volume: 7
  start-page: 39
  year: 1927
  ident: atyp_ref21
  publication-title: J. Math. Phys.
– ident: atyp_ref51
  doi: 10.1137/1011036
– ident: atyp_ref19
  doi: 10.6028/jres.049.044
– ident: atyp_ref12
  doi: 10.1093/comjnl/7.2.149
– volume: 130
  start-page: 11
  year: 1983
  ident: atyp_ref3
  publication-title: Proc. IEE-H
– ident: atyp_ref7
  doi: 10.1007/BF02310791
– ident: atyp_ref9
  doi: 10.1007/BF00932218
– ident: atyp_ref15
  doi: 10.1090/S0025-5718-1970-0258249-6
– volume: 6
  start-page: 164
  year: 1927
  ident: atyp_ref20
  publication-title: J. Math. Phys.
  doi: 10.1002/sapm192761164
– ident: atyp_ref47
  doi: 10.1214/aoms/1177729893
– ident: atyp_ref27
  doi: 10.1007/BF01589116
– volume: 20
  start-page: 621
  year: 1949
  ident: atyp_ref46
  publication-title: Ann. Math. Statistics
– volume: 2
  start-page: 35
  year: 2006
  ident: atyp_ref17
  publication-title: Pac. J. Optim.
– volume: 30
  start-page: 167
  year: 1968
  ident: atyp_ref24
  publication-title: Sankhya Indian J. of Stat.
– ident: atyp_ref25
  doi: 10.1137/07070111X
SSID ssj0008968
Score 2.442694
Snippet Nonlinear optimization problems in complex variables are frequently encountered in applied mathematics and engineering applications such as control theory,...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 879
SubjectTerms Algorithms
Applied mathematics
Approximation
Calculus
Case studies
Complex variables
Computer engineering
Control theory
Derivatives
Electrical engineering
Mathematical analysis
Mathematical functions
Mathematical models
Nonlinearity
Optimization
Taylor series
Title Unconstrained Optimization of Real Functions in Complex Variables
URI https://www.proquest.com/docview/1030737597
https://www.proquest.com/docview/1136410488
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-7189
  dateEnd: 20140731
  omitProxy: true
  ssIdentifier: ssj0008968
  issn: 1052-6234
  databaseCode: BENPR
  dateStart: 19910201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1095-7189
  dateEnd: 20140731
  omitProxy: true
  ssIdentifier: ssj0008968
  issn: 1052-6234
  databaseCode: 8FG
  dateStart: 19910201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8QwEB10vehB_MT1iygevAS3SdptDyIqriK4irjiraTpFIS1q-4K_nxnumlVEI-laSDJ9M1LJvMG4CC2oTFZEUvrTCRN4gpJvFlJU3QiROXIx3OC800_uhqY66fwaQb6dS4MX6usMbEC6nzk-Iz8KKissUv89-T1TXLVKI6u1iU0rC-tkB9XEmOzMKdYGasFc2cX_bv7BpvjxCfHhUqS4zdeayjQ3SO-D6_pK_PbQ_0G6Mrr9JZg0dNFcTpd32WYwXIFFn6ICNLTTaO8Ol6F00HpmPJx5QfMxS0hwotPtRSjQtwTLxQ98mWVuYnnUjAgDPFTPNKmmdOoxmsw6F08nF9JXyZBOh1GE1kEEdowT2yALM-GnBudZIgZ3-BUFiPd5bIuGkOd2xBtbBPdIQNyeZwEThV6HVrlqMQNEMqgirOMGuvAWNfJsFOYKpTpQpMFURsO66lJndcQ5wEN02ovobtpM4tt2G-avk6FM_5qtF3Pb-r_nXH6vdJt2Gtek9VzKMOWOPoYczcRDY_QZ_P_LrZgniiOmh6abENr8v6BO0QjJtkuzMa9y11vIV87IsXL
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1ROLQ9VP1CLN2CWxWpF4uN7WSTA6qgsFoKu0WIRdyC40ykSpClza7a_rn-ts5knbRIiBvHKJYlT8Yzb2K_NwAfYhsakxWxtM5E0iSukISblTRFL0JUjnI8E5xH42g4MV8uwosl-NNwYfhaZRMT60CdTx3_I98Oam_sE_79dPNdctcoPl1tWmhY31oh36klxjyx4wh__6QSrto53KfvvaXU4ODs81D6LgPS6TCaySKI0IZ5YgNkdTNkanGSIWZ8AVJZjHSfu6JoDHVuQ7SxTXSP7O_yOAmcKjTN-whWjDYJFX8rewfjk9M2F8SJJ-OFShLQMF7bKND9bb5_rylxmNsZ8XZCqLPc4Dk88_BU7C786QUsYfkSnv4nWkhPo1bptXoFu5PSMcTkThOYi68Uga49tVNMC3FKOFQMKHfW7i2-lYID0BX-EudUpDNtq3oNkwcx2Cosl9MS10AogyrOMhqsA2NdL8NeYeqjUxeaLIg68LExTeq8Zjkv6CqtaxfdT1srduB9O_RmIdRx16BuY9_U79Uq_edZHXjXvqZdxkcntsTpvOJpIloeRbv1-6fYhMfDs9Fxenw4PnoDTwheqcUPmy4sz37M8S1BmFm24f1EwOVDu-ZfwvECYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unconstrained+Optimization+of+Real+Functions+in+Complex+Variables&rft.jtitle=SIAM+journal+on+optimization&rft.au=Sorber%2C+Laurent&rft.au=Van+Barel%2C+Marc&rft.au=De+Lathauwer%2C+Lieven&rft.date=2012-01-01&rft.issn=1052-6234&rft.eissn=1095-7189&rft.volume=22&rft.issue=3&rft.spage=879&rft.epage=898&rft_id=info:doi/10.1137%2F110832124&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1052-6234&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1052-6234&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1052-6234&client=summon