Unconstrained Optimization of Real Functions in Complex Variables
Nonlinear optimization problems in complex variables are frequently encountered in applied mathematics and engineering applications such as control theory, signal processing, and electrical engineering. Optimization of these problems often requires a first- or second-order approximation of the objec...
Saved in:
| Published in | SIAM journal on optimization Vol. 22; no. 3; pp. 879 - 898 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2012
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1052-6234 1095-7189 |
| DOI | 10.1137/110832124 |
Cover
| Abstract | Nonlinear optimization problems in complex variables are frequently encountered in applied mathematics and engineering applications such as control theory, signal processing, and electrical engineering. Optimization of these problems often requires a first- or second-order approximation of the objective function to generate a new step or descent direction. However, such methods cannot be applied to real functions of complex variables because they are necessarily nonanalytic in their argument, i.e., the Taylor series expansion in their argument alone does not exist. To overcome this problem, the objective function is usually redefined as a function of the real and imaginary parts of its complex argument so that standard optimization methods can be applied. However, this approach may needlessly disguise any inherent structure present in the derivatives of such complex problems. Although little known, it is possible to construct an expansion of the objective function in its original complex variables by noting that functions of complex variables can be analytic in their argument and its complex conjugate as a whole. We use these complex Taylor series expansions to generalize existing optimization algorithms for both general nonlinear optimization problems and nonlinear least squares problems. We then apply these methods to two case studies which demonstrate that complex derivatives can lead to greater insight in the structure of the problem, and that this structure can often be exploited to improve computational complexity and storage cost. [PUBLICATION ABSTRACT] |
|---|---|
| AbstractList | Nonlinear optimization problems in complex variables are frequently encountered in applied mathematics and engineering applications such as control theory, signal processing, and electrical engineering. Optimization of these problems often requires a first- or second-order approximation of the objective function to generate a new step or descent direction. However, such methods cannot be applied to real functions of complex variables because they are necessarily nonanalytic in their argument, i.e., the Taylor series expansion in their argument alone does not exist. To overcome this problem, the objective function is usually redefined as a function of the real and imaginary parts of its complex argument so that standard optimization methods can be applied. However, this approach may needlessly disguise any inherent structure present in the derivatives of such complex problems. Although little known, it is possible to construct an expansion of the objective function in its original complex variables by noting that functions of complex variables can be analytic in their argument and its complex conjugate as a whole. We use these complex Taylor series expansions to generalize existing optimization algorithms for both general nonlinear optimization problems and nonlinear least squares problems. We then apply these methods to two case studies which demonstrate that complex derivatives can lead to greater insight in the structure of the problem, and that this structure can often be exploited to improve computational complexity and storage cost. Nonlinear optimization problems in complex variables are frequently encountered in applied mathematics and engineering applications such as control theory, signal processing, and electrical engineering. Optimization of these problems often requires a first- or second-order approximation of the objective function to generate a new step or descent direction. However, such methods cannot be applied to real functions of complex variables because they are necessarily nonanalytic in their argument, i.e., the Taylor series expansion in their argument alone does not exist. To overcome this problem, the objective function is usually redefined as a function of the real and imaginary parts of its complex argument so that standard optimization methods can be applied. However, this approach may needlessly disguise any inherent structure present in the derivatives of such complex problems. Although little known, it is possible to construct an expansion of the objective function in its original complex variables by noting that functions of complex variables can be analytic in their argument and its complex conjugate as a whole. We use these complex Taylor series expansions to generalize existing optimization algorithms for both general nonlinear optimization problems and nonlinear least squares problems. We then apply these methods to two case studies which demonstrate that complex derivatives can lead to greater insight in the structure of the problem, and that this structure can often be exploited to improve computational complexity and storage cost. [PUBLICATION ABSTRACT] |
| Author | Sorber, Laurent Lathauwer, Lieven De Barel, Marc Van |
| Author_xml | – sequence: 1 givenname: Laurent surname: Sorber fullname: Sorber, Laurent – sequence: 2 givenname: Marc Van surname: Barel fullname: Barel, Marc Van – sequence: 3 givenname: Lieven De surname: Lathauwer fullname: Lathauwer, Lieven De |
| BookMark | eNptkFFLwzAUhYNMcJs--A8KvuhDXdI0afI4hlNhMBDna8nSW8hok5q0oP56Uyc-DJ_u5fLdwzlnhibWWUDomuB7QmixIAQLmpEsP0NTgiVLCyLkZNxZlvKM5hdoFsIBYywkF1O03FntbOi9MhaqZNv1pjVfqjfOJq5OXkA1yXqwejyExNhk5dqugY_kTXmj9g2ES3ReqybA1e-co9364XX1lG62j8-r5SbVlPE-rQkHxSqpCGSE5kAYx3IPsM9Hawo4LSQnggKjlWKghJIUg6p0JSTRWU3n6Pao23n3PkDoy9YEDU2jLLghlDE-j1q5EBG9OUEPbvA2uisJprigBZNFpO6OlPYuBA912XnTKv8ZoVGtKP_KjOzihNWm_2lpbK755-MbI412Ig |
| CitedBy_id | crossref_primary_10_1137_20M1313933 crossref_primary_10_1109_ACCESS_2019_2926616 crossref_primary_10_1109_TAP_2022_3140527 crossref_primary_10_1007_s10898_019_00843_5 crossref_primary_10_1137_120868323 crossref_primary_10_1016_j_cam_2024_116385 crossref_primary_10_11948_20180256 crossref_primary_10_1007_s10589_015_9761_5 crossref_primary_10_1002_nla_2190 crossref_primary_10_1007_s00034_024_02757_4 crossref_primary_10_1088_1361_6420_aac8ef crossref_primary_10_1093_gji_ggae389 crossref_primary_10_1016_j_laa_2021_12_008 crossref_primary_10_1093_mnras_stv418 crossref_primary_10_1021_acs_jctc_1c00238 crossref_primary_10_1007_s10589_021_00297_0 crossref_primary_10_1088_1402_4896_ab1e7f crossref_primary_10_1016_j_procs_2015_05_205 crossref_primary_10_1007_s00500_021_06415_8 crossref_primary_10_1364_OE_24_024719 crossref_primary_10_1364_OE_27_008143 crossref_primary_10_1109_TCYB_2015_2490170 crossref_primary_10_1145_3568991 crossref_primary_10_1137_130932387 crossref_primary_10_1016_j_eswa_2023_121166 crossref_primary_10_1007_s10898_023_01355_z crossref_primary_10_1109_TNNLS_2015_2440473 crossref_primary_10_1016_j_sigpro_2024_109738 crossref_primary_10_1080_03081087_2021_2017832 crossref_primary_10_1093_imanum_drad071 crossref_primary_10_1587_nolta_16_197 crossref_primary_10_1061_JENMDT_EMENG_6953 crossref_primary_10_1137_141002256 crossref_primary_10_3934_naco_2019051 crossref_primary_10_1002_mrm_28007 crossref_primary_10_1063_1_4908073 crossref_primary_10_1021_acs_jctc_8b00731 crossref_primary_10_1109_JPHOT_2021_3111921 crossref_primary_10_1109_TPWRS_2018_2794401 crossref_primary_10_1109_TNNLS_2015_2441697 crossref_primary_10_1007_s10107_021_01702_6 crossref_primary_10_3182_20140824_6_ZA_1003_00973 crossref_primary_10_1155_2015_104531 crossref_primary_10_1103_PhysRevA_99_053838 crossref_primary_10_3390_electronics12081797 crossref_primary_10_1038_s41598_020_69646_z crossref_primary_10_1109_LSP_2017_2697680 crossref_primary_10_1186_s13634_015_0257_3 crossref_primary_10_5194_ars_12_171_2014 crossref_primary_10_1016_j_neucom_2017_06_018 crossref_primary_10_1109_JBHI_2015_2491645 crossref_primary_10_1137_20M1344780 crossref_primary_10_1007_s10092_021_00437_2 crossref_primary_10_1109_TSP_2015_2399865 crossref_primary_10_1016_j_neunet_2014_10_003 crossref_primary_10_1016_j_cam_2016_12_022 crossref_primary_10_1007_s10444_013_9337_9 crossref_primary_10_1103_PhysRevB_97_245131 crossref_primary_10_1109_TCOMM_2021_3075519 crossref_primary_10_1007_s11571_023_09940_4 crossref_primary_10_1038_s41598_019_52289_0 crossref_primary_10_1109_TPWRS_2020_2991886 crossref_primary_10_1364_OE_27_018653 crossref_primary_10_1109_OAJPE_2021_3090579 crossref_primary_10_1016_j_ifacol_2017_08_2077 crossref_primary_10_1177_0954406218786981 crossref_primary_10_1016_j_laa_2018_07_004 crossref_primary_10_1093_mnras_sty1221 crossref_primary_10_1016_j_mcat_2025_114914 crossref_primary_10_1137_16M110112X crossref_primary_10_1137_15M1034386 crossref_primary_10_1109_TCYB_2016_2632159 crossref_primary_10_1016_j_cma_2024_117418 crossref_primary_10_1007_s40305_023_00504_1 crossref_primary_10_1063_1_4996988 crossref_primary_10_1109_TSIPN_2016_2612122 crossref_primary_10_1364_OE_530136 crossref_primary_10_1088_0266_5611_30_3_035011 crossref_primary_10_1088_1361_6420_aadb20 crossref_primary_10_1063_1_4906344 crossref_primary_10_1007_s11045_019_00685_0 crossref_primary_10_1109_TNNLS_2021_3135553 crossref_primary_10_1364_OE_454796 crossref_primary_10_1109_TSP_2021_3137746 crossref_primary_10_1109_TPWRS_2019_2909150 crossref_primary_10_1016_j_sigpro_2013_09_026 crossref_primary_10_1038_s41598_019_42797_4 crossref_primary_10_1109_TPWRS_2019_2922269 crossref_primary_10_1109_TNNLS_2016_2635676 crossref_primary_10_1109_TCOMM_2020_2985967 crossref_primary_10_1002_nme_7182 crossref_primary_10_1109_TSG_2018_2824018 crossref_primary_10_1515_ijeeps_2023_0459 crossref_primary_10_1109_ACCESS_2019_2897711 crossref_primary_10_1093_gji_ggae045 crossref_primary_10_1016_j_neunet_2020_01_011 crossref_primary_10_1109_JSTSP_2015_2400415 crossref_primary_10_3389_fams_2022_836433 crossref_primary_10_1137_17M1152371 crossref_primary_10_1137_18M1223915 crossref_primary_10_1364_OE_422768 crossref_primary_10_1063_5_0064862 crossref_primary_10_1103_PhysRevA_108_032409 crossref_primary_10_1109_TMI_2014_2322815 crossref_primary_10_1088_1361_6420_abb61d crossref_primary_10_1137_17M1145689 crossref_primary_10_3390_app10175764 crossref_primary_10_1007_s10092_018_0298_8 crossref_primary_10_1088_1742_6596_744_1_012175 crossref_primary_10_1016_j_cpc_2021_108185 crossref_primary_10_1109_TSP_2020_2979550 |
| Cites_doi | 10.1137/030601880 10.1007/BF01593790 10.1109/75.631201 10.1093/imamat/6.3.222 10.1007/BF01580735 10.1137/1019005 10.1109/78.80955 10.1049/ip-vis:19941555 10.1007/BF01589113 10.1090/S0025-5718-1980-0572855-7 10.1145/355984.355989 10.1137/0802003 10.1093/comjnl/13.3.317 10.1145/192115.192132 10.1109/TCS.1976.1084181 10.1090/S0025-5718-1970-0274029-X 10.1137/1011036 10.6028/jres.049.044 10.1093/comjnl/7.2.149 10.1007/BF02310791 10.1007/BF00932218 10.1090/S0025-5718-1970-0258249-6 10.1002/sapm192761164 10.1214/aoms/1177729893 10.1007/BF01589116 10.1137/07070111X |
| ContentType | Journal Article |
| Copyright | 2012, Society for Industrial and Applied Mathematics |
| Copyright_xml | – notice: 2012, Society for Industrial and Applied Mathematics |
| DBID | AAYXX CITATION 3V. 7RQ 7WY 7WZ 7X2 7XB 87Z 88A 88F 88I 88K 8AL 8FE 8FG 8FH 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU D1I DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KB. L.- L6V LK8 M0C M0K M0N M1Q M2O M2P M2T M7P M7S MBDVC P5Z P62 PATMY PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U U9A 7SC 7TB 8FD FR3 H8D KR7 L7M L~C L~D |
| DOI | 10.1137/110832124 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Career & Technical Education Database (Proquest) ABI/INFORM Collection ABI/INFORM Global (PDF only) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Military Database (Alumni Edition) Science Database (Alumni Edition) Telecommunications (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (Proquest) Materials Science Database (Proquest) ABI/INFORM Professional Advanced ProQuest Engineering Collection Biological Sciences ABI/INFORM Global Agricultural Science Database Computing Database Military Database Research Library (Proquest) Science Database Telecommunications Database Biological Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Agricultural Science Database ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Military Collection ProQuest Central China ABI/INFORM Complete ProQuest Telecommunications ProQuest One Applied & Life Sciences Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Career and Technical Education (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Technology Collection ProQuest Telecommunications (Alumni Edition) Biological Science Database ProQuest Business Collection Environmental Science Collection ProQuest Career and Technical Education ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Research Library ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1095-7189 |
| EndPage | 898 |
| ExternalDocumentID | 2726680841 10_1137_110832124 |
| GroupedDBID | -~X .4S .DC 123 4.4 7RQ 7WY 7X2 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8G5 8V8 AALVN AASXH AAYXX ABDBF ABDPE ABJCF ABKAD ABMZU ABUWG ACGFO ACGOD ACIWK ACPRK ACUHS ADBBV AEMOZ AENEX AFFNX AFKRA AFRAH AHQJS AKVCP ALMA_UNASSIGNED_HOLDINGS ANXRF ARAPS ARCSS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BPHCQ CCPQU CITATION CS3 CZ9 D1I D1J D1K DQ2 DU5 DWQXO EAP EBR EBS EBU EDO EJD EMK EST ESX F5P FRNLG GNUQQ GUQSH H13 HCIFZ H~9 I-F K1G K6- K60 K6V K6~ K7- KB. KC. L6V LK5 LK8 M0C M0K M1Q M2O M2P M7P M7R M7S P1Q P2P P62 PATMY PDBOC PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS PUEGO PYCSY RJG RNS RSI TH9 TN5 TUS TWZ YNT 3V. 7XB 88A 88K 8AL 8FK JQ2 L.- M0N M2T MBDVC PKEHL PQEST PQUKI PRINS Q9U U9A 7SC 7TB 8FD FR3 H8D KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c356t-f16ea5d9a1e2134e15609beeb41052ae63796183e53da5ea8a930eadcd891c2f3 |
| IEDL.DBID | BENPR |
| ISSN | 1052-6234 |
| IngestDate | Fri Sep 05 13:48:35 EDT 2025 Wed Aug 13 09:52:15 EDT 2025 Wed Oct 01 04:41:41 EDT 2025 Thu Apr 24 23:13:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c356t-f16ea5d9a1e2134e15609beeb41052ae63796183e53da5ea8a930eadcd891c2f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 1030737597 |
| PQPubID | 666300 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_1136410488 proquest_journals_1030737597 crossref_primary_10_1137_110832124 crossref_citationtrail_10_1137_110832124 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2012-01-01 |
| PublicationDateYYYYMMDD | 2012-01-01 |
| PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Philadelphia |
| PublicationPlace_xml | – name: Philadelphia |
| PublicationTitle | SIAM journal on optimization |
| PublicationYear | 2012 |
| Publisher | Society for Industrial and Applied Mathematics |
| Publisher_xml | – name: Society for Industrial and Applied Mathematics |
| References | atyp_ref5 atyp_ref1 D. (atyp_ref3) 1983; 130 Khatri C. G. (atyp_ref24) 1968; 30 atyp_ref9 atyp_ref43 atyp_ref7 atyp_ref6 atyp_ref45 atyp_ref13 atyp_ref14 M. J. (atyp_ref36) 1970 atyp_ref15 atyp_ref16 F. (atyp_ref21) 1927; 7 atyp_ref38 atyp_ref19 Hager W. W. (atyp_ref17) 2006; 2 Polak E. (atyp_ref35) 1969; 3 Sherman J. (atyp_ref46) 1949; 20 F. (atyp_ref20) 1927; 6 atyp_ref50 atyp_ref51 atyp_ref30 atyp_ref10 atyp_ref32 atyp_ref11 atyp_ref12 atyp_ref34 atyp_ref25 atyp_ref47 atyp_ref27 atyp_ref28 Bai Z. (atyp_ref2) 1995 Harshman R. A. (atyp_ref18) 1970; 16 M. J. (atyp_ref37) 1970 |
| References_xml | – ident: atyp_ref16 doi: 10.1137/030601880 – ident: atyp_ref38 doi: 10.1007/BF01593790 – ident: atyp_ref43 doi: 10.1109/75.631201 – start-page: 115 year: 1995 ident: atyp_ref2 publication-title: Heidelberg – ident: atyp_ref5 doi: 10.1093/imamat/6.3.222 – ident: atyp_ref6 doi: 10.1007/BF01580735 – ident: atyp_ref10 doi: 10.1137/1019005 – ident: atyp_ref1 doi: 10.1109/78.80955 – start-page: 87 year: 1970 ident: atyp_ref36 publication-title: London – start-page: 31 year: 1970 ident: atyp_ref37 publication-title: New York – ident: atyp_ref50 doi: 10.1049/ip-vis:19941555 – ident: atyp_ref13 doi: 10.1007/BF01589113 – ident: atyp_ref32 doi: 10.1090/S0025-5718-1980-0572855-7 – volume: 16 start-page: 1 year: 1970 ident: atyp_ref18 publication-title: multi-modal factor analysis, UCLA Working Papers in Phonetics – ident: atyp_ref34 doi: 10.1145/355984.355989 – ident: atyp_ref14 doi: 10.1137/0802003 – ident: atyp_ref11 doi: 10.1093/comjnl/13.3.317 – ident: atyp_ref28 doi: 10.1145/192115.192132 – ident: atyp_ref30 doi: 10.1109/TCS.1976.1084181 – volume: 3 start-page: 35 year: 1969 ident: atyp_ref35 publication-title: Rev. Française Informat. Recherche Operationnelle – ident: atyp_ref45 doi: 10.1090/S0025-5718-1970-0274029-X – volume: 7 start-page: 39 year: 1927 ident: atyp_ref21 publication-title: J. Math. Phys. – ident: atyp_ref51 doi: 10.1137/1011036 – ident: atyp_ref19 doi: 10.6028/jres.049.044 – ident: atyp_ref12 doi: 10.1093/comjnl/7.2.149 – volume: 130 start-page: 11 year: 1983 ident: atyp_ref3 publication-title: Proc. IEE-H – ident: atyp_ref7 doi: 10.1007/BF02310791 – ident: atyp_ref9 doi: 10.1007/BF00932218 – ident: atyp_ref15 doi: 10.1090/S0025-5718-1970-0258249-6 – volume: 6 start-page: 164 year: 1927 ident: atyp_ref20 publication-title: J. Math. Phys. doi: 10.1002/sapm192761164 – ident: atyp_ref47 doi: 10.1214/aoms/1177729893 – ident: atyp_ref27 doi: 10.1007/BF01589116 – volume: 20 start-page: 621 year: 1949 ident: atyp_ref46 publication-title: Ann. Math. Statistics – volume: 2 start-page: 35 year: 2006 ident: atyp_ref17 publication-title: Pac. J. Optim. – volume: 30 start-page: 167 year: 1968 ident: atyp_ref24 publication-title: Sankhya Indian J. of Stat. – ident: atyp_ref25 doi: 10.1137/07070111X |
| SSID | ssj0008968 |
| Score | 2.442694 |
| Snippet | Nonlinear optimization problems in complex variables are frequently encountered in applied mathematics and engineering applications such as control theory,... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 879 |
| SubjectTerms | Algorithms Applied mathematics Approximation Calculus Case studies Complex variables Computer engineering Control theory Derivatives Electrical engineering Mathematical analysis Mathematical functions Mathematical models Nonlinearity Optimization Taylor series |
| Title | Unconstrained Optimization of Real Functions in Complex Variables |
| URI | https://www.proquest.com/docview/1030737597 https://www.proquest.com/docview/1136410488 |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-7189 dateEnd: 20140731 omitProxy: true ssIdentifier: ssj0008968 issn: 1052-6234 databaseCode: BENPR dateStart: 19910201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1095-7189 dateEnd: 20140731 omitProxy: true ssIdentifier: ssj0008968 issn: 1052-6234 databaseCode: 8FG dateStart: 19910201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8QwEB10vehB_MT1iygevAS3SdptDyIqriK4irjiraTpFIS1q-4K_nxnumlVEI-laSDJ9M1LJvMG4CC2oTFZEUvrTCRN4gpJvFlJU3QiROXIx3OC800_uhqY66fwaQb6dS4MX6usMbEC6nzk-Iz8KKissUv89-T1TXLVKI6u1iU0rC-tkB9XEmOzMKdYGasFc2cX_bv7BpvjxCfHhUqS4zdeayjQ3SO-D6_pK_PbQ_0G6Mrr9JZg0dNFcTpd32WYwXIFFn6ICNLTTaO8Ol6F00HpmPJx5QfMxS0hwotPtRSjQtwTLxQ98mWVuYnnUjAgDPFTPNKmmdOoxmsw6F08nF9JXyZBOh1GE1kEEdowT2yALM-GnBudZIgZ3-BUFiPd5bIuGkOd2xBtbBPdIQNyeZwEThV6HVrlqMQNEMqgirOMGuvAWNfJsFOYKpTpQpMFURsO66lJndcQ5wEN02ovobtpM4tt2G-avk6FM_5qtF3Pb-r_nXH6vdJt2Gtek9VzKMOWOPoYczcRDY_QZ_P_LrZgniiOmh6abENr8v6BO0QjJtkuzMa9y11vIV87IsXL |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1ROLQ9VP1CLN2CWxWpF4uN7WSTA6qgsFoKu0WIRdyC40ykSpClza7a_rn-ts5knbRIiBvHKJYlT8Yzb2K_NwAfYhsakxWxtM5E0iSukISblTRFL0JUjnI8E5xH42g4MV8uwosl-NNwYfhaZRMT60CdTx3_I98Oam_sE_79dPNdctcoPl1tWmhY31oh36klxjyx4wh__6QSrto53KfvvaXU4ODs81D6LgPS6TCaySKI0IZ5YgNkdTNkanGSIWZ8AVJZjHSfu6JoDHVuQ7SxTXSP7O_yOAmcKjTN-whWjDYJFX8rewfjk9M2F8SJJ-OFShLQMF7bKND9bb5_rylxmNsZ8XZCqLPc4Dk88_BU7C786QUsYfkSnv4nWkhPo1bptXoFu5PSMcTkThOYi68Uga49tVNMC3FKOFQMKHfW7i2-lYID0BX-EudUpDNtq3oNkwcx2Cosl9MS10AogyrOMhqsA2NdL8NeYeqjUxeaLIg68LExTeq8Zjkv6CqtaxfdT1srduB9O_RmIdRx16BuY9_U79Uq_edZHXjXvqZdxkcntsTpvOJpIloeRbv1-6fYhMfDs9Fxenw4PnoDTwheqcUPmy4sz37M8S1BmFm24f1EwOVDu-ZfwvECYg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unconstrained+Optimization+of+Real+Functions+in+Complex+Variables&rft.jtitle=SIAM+journal+on+optimization&rft.au=Sorber%2C+Laurent&rft.au=Van+Barel%2C+Marc&rft.au=De+Lathauwer%2C+Lieven&rft.date=2012-01-01&rft.issn=1052-6234&rft.eissn=1095-7189&rft.volume=22&rft.issue=3&rft.spage=879&rft.epage=898&rft_id=info:doi/10.1137%2F110832124&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1052-6234&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1052-6234&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1052-6234&client=summon |