IterMask3D: Unsupervised anomaly detection and segmentation with test-time iterative mask refinement in 3D brain MRI
Unsupervised anomaly detection and segmentation methods train a model to learn the training distribution as ‘normal’. In the testing phase, they identify patterns that deviate from this normal distribution as ‘anomalies’. To learn the ‘normal’ distribution, prevailing methods corrupt the images and...
Saved in:
| Published in | Medical image analysis Vol. 107; no. Pt A; p. 103763 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.01.2026
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1361-8415 1361-8423 1361-8431 1361-8423 |
| DOI | 10.1016/j.media.2025.103763 |
Cover
| Abstract | Unsupervised anomaly detection and segmentation methods train a model to learn the training distribution as ‘normal’. In the testing phase, they identify patterns that deviate from this normal distribution as ‘anomalies’. To learn the ‘normal’ distribution, prevailing methods corrupt the images and train a model to reconstruct them. During testing, the model attempts to reconstruct corrupted inputs based on the learned ‘normal’ distribution. Deviations from this distribution lead to high reconstruction errors, which indicate potential anomalies. However, corrupting an input image inevitably causes information loss even in normal regions, leading to suboptimal reconstruction and an increased risk of false positives. To alleviate this, we propose IterMask3D, an iterative spatial mask-refining strategy designed for 3D brain MRI. We iteratively spatially mask areas of the image as corruption and reconstruct them, then shrink the mask based on reconstruction error. This process iteratively unmasks ‘normal’ areas to the model, whose information further guides reconstruction of ‘normal’ patterns under the mask to be reconstructed accurately, reducing false positives. In addition, to achieve better reconstruction performance, we also propose using high-frequency image content as additional structural information to guide the reconstruction of the masked area. Extensive experiments on the detection of both synthetic and real-world imaging artifacts, as well as segmentation of various pathological lesions across multiple MRI sequences, consistently demonstrate the effectiveness of our proposed method. Code is available at https://github.com/ZiyunLiang/IterMask3D.
[Display omitted]
•Propose IterMask3D for 3D brain MRI anomaly segmentation and detection.•Reduce false positives via iterative spatial mask refinement during testing.•Guide reconstruction using high-frequency structural information.•Propose subject-specific thresholds to auto-stop mask refinement.•Evaluate on both artifact detection and pathology segmentation tasks. |
|---|---|
| AbstractList | Unsupervised anomaly detection and segmentation methods train a model to learn the training distribution as 'normal'. In the testing phase, they identify patterns that deviate from this normal distribution as 'anomalies'. To learn the 'normal' distribution, prevailing methods corrupt the images and train a model to reconstruct them. During testing, the model attempts to reconstruct corrupted inputs based on the learned 'normal' distribution. Deviations from this distribution lead to high reconstruction errors, which indicate potential anomalies. However, corrupting an input image inevitably causes information loss even in normal regions, leading to suboptimal reconstruction and an increased risk of false positives. To alleviate this, we propose IterMask3D, an iterative spatial mask-refining strategy designed for 3D brain MRI. We iteratively spatially mask areas of the image as corruption and reconstruct them, then shrink the mask based on reconstruction error. This process iteratively unmasks 'normal' areas to the model, whose information further guides reconstruction of 'normal' patterns under the mask to be reconstructed accurately, reducing false positives. In addition, to achieve better reconstruction performance, we also propose using high-frequency image content as additional structural information to guide the reconstruction of the masked area. Extensive experiments on the detection of both synthetic and real-world imaging artifacts, as well as segmentation of various pathological lesions across multiple MRI sequences, consistently demonstrate the effectiveness of our proposed method. Code is available at https://github.com/ZiyunLiang/IterMask3D.Unsupervised anomaly detection and segmentation methods train a model to learn the training distribution as 'normal'. In the testing phase, they identify patterns that deviate from this normal distribution as 'anomalies'. To learn the 'normal' distribution, prevailing methods corrupt the images and train a model to reconstruct them. During testing, the model attempts to reconstruct corrupted inputs based on the learned 'normal' distribution. Deviations from this distribution lead to high reconstruction errors, which indicate potential anomalies. However, corrupting an input image inevitably causes information loss even in normal regions, leading to suboptimal reconstruction and an increased risk of false positives. To alleviate this, we propose IterMask3D, an iterative spatial mask-refining strategy designed for 3D brain MRI. We iteratively spatially mask areas of the image as corruption and reconstruct them, then shrink the mask based on reconstruction error. This process iteratively unmasks 'normal' areas to the model, whose information further guides reconstruction of 'normal' patterns under the mask to be reconstructed accurately, reducing false positives. In addition, to achieve better reconstruction performance, we also propose using high-frequency image content as additional structural information to guide the reconstruction of the masked area. Extensive experiments on the detection of both synthetic and real-world imaging artifacts, as well as segmentation of various pathological lesions across multiple MRI sequences, consistently demonstrate the effectiveness of our proposed method. Code is available at https://github.com/ZiyunLiang/IterMask3D. Unsupervised anomaly detection and segmentation methods train a model to learn the training distribution as 'normal'. In the testing phase, they identify patterns that deviate from this normal distribution as 'anomalies'. To learn the 'normal' distribution, prevailing methods corrupt the images and train a model to reconstruct them. During testing, the model attempts to reconstruct corrupted inputs based on the learned 'normal' distribution. Deviations from this distribution lead to high reconstruction errors, which indicate potential anomalies. However, corrupting an input image inevitably causes information loss even in normal regions, leading to suboptimal reconstruction and an increased risk of false positives. To alleviate this, we propose IterMask3D, an iterative spatial mask-refining strategy designed for 3D brain MRI. We iteratively spatially mask areas of the image as corruption and reconstruct them, then shrink the mask based on reconstruction error. This process iteratively unmasks 'normal' areas to the model, whose information further guides reconstruction of 'normal' patterns under the mask to be reconstructed accurately, reducing false positives. In addition, to achieve better reconstruction performance, we also propose using high-frequency image content as additional structural information to guide the reconstruction of the masked area. Extensive experiments on the detection of both synthetic and real-world imaging artifacts, as well as segmentation of various pathological lesions across multiple MRI sequences, consistently demonstrate the effectiveness of our proposed method. Code is available at https://github.com/ZiyunLiang/IterMask3D. Unsupervised anomaly detection and segmentation methods train a model to learn the training distribution as ‘normal’. In the testing phase, they identify patterns that deviate from this normal distribution as ‘anomalies’. To learn the ‘normal’ distribution, prevailing methods corrupt the images and train a model to reconstruct them. During testing, the model attempts to reconstruct corrupted inputs based on the learned ‘normal’ distribution. Deviations from this distribution lead to high reconstruction errors, which indicate potential anomalies. However, corrupting an input image inevitably causes information loss even in normal regions, leading to suboptimal reconstruction and an increased risk of false positives. To alleviate this, we propose IterMask3D, an iterative spatial mask-refining strategy designed for 3D brain MRI. We iteratively spatially mask areas of the image as corruption and reconstruct them, then shrink the mask based on reconstruction error. This process iteratively unmasks ‘normal’ areas to the model, whose information further guides reconstruction of ‘normal’ patterns under the mask to be reconstructed accurately, reducing false positives. In addition, to achieve better reconstruction performance, we also propose using high-frequency image content as additional structural information to guide the reconstruction of the masked area. Extensive experiments on the detection of both synthetic and real-world imaging artifacts, as well as segmentation of various pathological lesions across multiple MRI sequences, consistently demonstrate the effectiveness of our proposed method. Code is available at https://github.com/ZiyunLiang/IterMask3D. [Display omitted] •Propose IterMask3D for 3D brain MRI anomaly segmentation and detection.•Reduce false positives via iterative spatial mask refinement during testing.•Guide reconstruction using high-frequency structural information.•Propose subject-specific thresholds to auto-stop mask refinement.•Evaluate on both artifact detection and pathology segmentation tasks. |
| ArticleNumber | 103763 |
| Author | Liang, Ziyun Voets, Natalie Kamnitsas, Konstantinos Xu, Wentian Ibrahim, Yasin Noble, J. Alison Guo, Xiaoqing Pretorius, Pieter M. |
| Author_xml | – sequence: 1 givenname: Ziyun surname: Liang fullname: Liang, Ziyun organization: Department of Engineering Science, University of Oxford, United Kingdom – sequence: 2 givenname: Xiaoqing orcidid: 0000-0002-9476-521X surname: Guo fullname: Guo, Xiaoqing organization: Department of Engineering Science, University of Oxford, United Kingdom – sequence: 3 givenname: Wentian surname: Xu fullname: Xu, Wentian organization: Department of Engineering Science, University of Oxford, United Kingdom – sequence: 4 givenname: Yasin orcidid: 0009-0007-5877-1309 surname: Ibrahim fullname: Ibrahim, Yasin organization: Department of Engineering Science, University of Oxford, United Kingdom – sequence: 5 givenname: Natalie orcidid: 0000-0001-8078-4471 surname: Voets fullname: Voets, Natalie organization: Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom – sequence: 6 givenname: Pieter M. surname: Pretorius fullname: Pretorius, Pieter M. organization: Department of Neuroradiology, Oxford University Hospitals NHS Foundation Trust, United Kingdom – sequence: 7 givenname: J. Alison surname: Noble fullname: Noble, J. Alison organization: Department of Engineering Science, University of Oxford, United Kingdom – sequence: 8 givenname: Konstantinos orcidid: 0000-0003-3281-6509 surname: Kamnitsas fullname: Kamnitsas, Konstantinos email: konstantinos.kamnitsas@eng.ox.ac.uk organization: Department of Engineering Science, University of Oxford, United Kingdom |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40945172$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkVtr3DAQhUVJaC7tLwgUPfbF29HFt0AfSpK2CwmB0jwL2Z5NtbHlrSRv2H_f2TjNY8iLNIzOOcx8OmEHfvTI2JmAhQBRfFkvBuycXUiQOXVUWah37FioQmSVlurgpRb5ETuJcQ0Apdbwnh1pqHUuSnnM0jJhuLHxQV2e8zsfpw2GrYvYcevHwfY73mHCNrnRU6fjEe8H9Mk-NR5d-sMTxpQlNyB3FEUPW-QDBfKAK-dxr-bOc3XJm2CpuPm1_MAOV7aP-PH5PmV3369-X_zMrm9_LC--XWetyouUIY1ZdnUF0grQoEtQMocKc1BNU9eVahtVWWGLrgDbFXUuqzJfrRRKaCqUhTples6d_MbuHm3fm01wgw07I8DsIZq1eYJo9hDNDJFsn2fbJox_J1rPDC622PfW4zhFs59C0lFpkn56lk4NBb3E_wdMAjUL2jDGSEjeOMHX2YVEZ-swmNg69C0JA32G6Ub3qv8fQcikBA |
| Cites_doi | 10.1038/sdata.2017.117 10.1109/42.811270 10.1016/j.media.2020.101952 10.1016/j.media.2022.102475 10.1016/j.media.2023.103033 10.1109/TMI.2011.2138152 10.1016/j.media.2023.102967 10.1109/42.668698 10.1038/s41598-023-34341-2 10.1109/PROC.1981.12022 10.1016/j.compbiomed.2024.108845 10.1016/j.media.2016.07.009 10.1016/j.cmpb.2021.106236 10.1016/j.media.2019.01.010 10.1016/j.media.2016.10.004 10.2349/biij.4.1.e15 10.1016/j.neuroimage.2022.119474 10.3174/ajnr.A7821 10.1007/s00234-023-03256-0 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2025 The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. |
| CorporateAuthor | Alzheimer’s Disease Neuroimaging Initiative |
| CorporateAuthor_xml | – name: Alzheimer’s Disease Neuroimaging Initiative |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.media.2025.103763 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1361-8423 |
| ExternalDocumentID | 10.1016/j.media.2025.103763 40945172 10_1016_j_media_2025_103763 S1361841525003093 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADTZH ADVLN AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- ~HD AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c356t-e4097d9802a104047032508e503bb9983cb38a1a6d60ad6952875ff3e20b8e263 |
| IEDL.DBID | UNPAY |
| ISSN | 1361-8415 1361-8423 1361-8431 |
| IngestDate | Fri Sep 19 05:59:48 EDT 2025 Thu Oct 02 21:26:46 EDT 2025 Tue Oct 14 01:30:30 EDT 2025 Thu Oct 16 04:33:48 EDT 2025 Sat Oct 25 16:49:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Pt A |
| Keywords | 3D brain MRI Anomaly detection Unsupervised anomaly segmentation |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c356t-e4097d9802a104047032508e503bb9983cb38a1a6d60ad6952875ff3e20b8e263 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0009-0007-5877-1309 0000-0001-8078-4471 0000-0002-9476-521X 0000-0003-3281-6509 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.media.2025.103763 |
| PMID | 40945172 |
| PQID | 3250232584 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1016_j_media_2025_103763 proquest_miscellaneous_3250232584 pubmed_primary_40945172 crossref_primary_10_1016_j_media_2025_103763 elsevier_sciencedirect_doi_10_1016_j_media_2025_103763 |
| PublicationCentury | 2000 |
| PublicationDate | 2026-01-01 |
| PublicationDateYYYYMMDD | 2026-01-01 |
| PublicationDate_xml | – month: 01 year: 2026 text: 2026-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Medical image analysis |
| PublicationTitleAlternate | Med Image Anal |
| PublicationYear | 2026 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Khader, Müller-Franzes, Tayebi Arasteh, Han, Haarburger, Schulze-Hagen, Schad, Engelhardt, Baeßler, Foersch (b19) 2023; 13 Isensee, Jäger, Full, Vollmuth, Maier-Hein (b16) 2021 Chappell (b9) 2019 Fisch, Zumdick, Barkhau, Emden, Ernsting, Leenings, Sarink, Winter, Risse, Dannlowski (b10) 2024; 179 Pinaya, Graham, Gray, Da Costa, Tudosiu, Wright, Mah, MacKinnon, Teo, Jager (b29) 2022 Bakas, Akbari, Sotiras, Bilello, Rozycki, Kirby, Freymann, Farahani, Davatzikos (b4) 2017; 4 Moratal, Vallés-Luch, Martí-Bonmatí, Brummer (b24) 2008; 4 Alzheimer’s Disease Neuroimaging Initiative (ADNI) (b1) 2004 Iglesias, Liu, Thompson, Tu (b15) 2011; 30 Bercea, Neumayr, Rueckert, Schnabel (b6) 2023 Kascenas, Pugeault, O’Neil (b18) 2022 Pérez-García, Sparks, Ourselin (b28) 2021; 208 Hoopes, Mora, Dalca, Fischl, Hoffmann (b14) 2022; 260 Sled, Zijdenbos, Evans (b34) 2002; 17 Atlason, Love, Sigurdsson, Gudnason, Ellingsen (b2) 2019; vol. 10949 Ho, Jain, Abbeel (b13) 2020; 33 Baur, Denner, Wiestler, Navab, Albarqouni (b5) 2021; 69 LaMontagne, Benzinger, Morris, Keefe, Hornbeck, Xiong, Grant, Hassenstab, Moulder, Vlassenko, Raichle, Cruchaga, Marcus (b20) 2019 Wu, Fu, Fang, Zhang, Yang, Xiong, Liu, Xu (b38) 2024 Pinaya, Tudosiu, Gray, Rees, Nachev, Ourselin, Cardoso (b30) 2022; 79 Liang, Anthony, Wagner, Kamnitsas (b21) 2023 Liang, Guo, Noble, Kamnitsas (b22) 2024 Zheng, Mo, Sun, Li, Wu, Wang, Vincent, Papież (b40) 2024 Ravi, Barkhof, Alexander, Puglisi, Parker, Eshaghi, Alzheimer’s Disease Neuroimaging Initiative (b31) 2024; 91 Van Leemput, Maes, Vandermeulen, Suetens (b36) 1999; 18 Bercea, Rueckert, Schnabel (b7) 2023 Pawlowski, Lee, Rajchl, McDonagh, Ferrante, Kamnitsas, Cooke, Stevenson, Khetani, Newman (b27) 2018 Zimmerer, Isensee, Petersen, Kohl, Maier-Hein (b41) 2019 Oppenheim, Lim, Kopec, Pohlig (b26) 1979; vol. 4 Rowley, Paukner, Eisenmenger, Field, Davidson, Johnson, Asthana, Chin, Prabhakaran, Bendlin (b32) 2023; 44 Hendriks, Mutsaerts, Joules, Peña-Nogales, Rodrigues, Wolz, Burchell, Barkhof, Schrantee (b12) 2024; 66 Cai, Chen, Cheng (b8) 2024 Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (b17) 2017; 36 Wolleb, Bieder, Sandkühler, Cattin (b37) 2022 Graham, Tudosiu, Wright, Pinaya, Teikari, Patel, U-King-Im, Mah, Teo, Jäger (b11) 2023; 90 Stollenga, Byeon, Liwicki, Schmidhuber (b35) 2015; 28 Xu, Moffat, Seale, Liang, Wagner, Whitehouse, Menon, Newcombe, Voets, Banerjee (b39) 2024 Schlegl, Seeböck, Waldstein, Langs, Schmidt-Erfurth (b33) 2019; 54 Maier, Menze, Von der Gablentz, Häni, Heinrich, Liebrand, Winzeck, Basit, Bentley, Chen (b23) 2017; 35 Baid, Ghodasara, Mohan, Bilello, Calabrese, Colak, Farahani, Kalpathy-Cramer, Kitamura, Pati (b3) 2021 Oppenheim, Lim (b25) 1981; 69 Liang (10.1016/j.media.2025.103763_b22) 2024 Baur (10.1016/j.media.2025.103763_b5) 2021; 69 Isensee (10.1016/j.media.2025.103763_b16) 2021 Oppenheim (10.1016/j.media.2025.103763_b26) 1979; vol. 4 Chappell (10.1016/j.media.2025.103763_b9) 2019 Zheng (10.1016/j.media.2025.103763_b40) 2024 Schlegl (10.1016/j.media.2025.103763_b33) 2019; 54 Wolleb (10.1016/j.media.2025.103763_b37) 2022 Moratal (10.1016/j.media.2025.103763_b24) 2008; 4 Oppenheim (10.1016/j.media.2025.103763_b25) 1981; 69 Bercea (10.1016/j.media.2025.103763_b6) 2023 Cai (10.1016/j.media.2025.103763_b8) 2024 Hendriks (10.1016/j.media.2025.103763_b12) 2024; 66 LaMontagne (10.1016/j.media.2025.103763_b20) 2019 Liang (10.1016/j.media.2025.103763_b21) 2023 Atlason (10.1016/j.media.2025.103763_b2) 2019; vol. 10949 Iglesias (10.1016/j.media.2025.103763_b15) 2011; 30 Pawlowski (10.1016/j.media.2025.103763_b27) 2018 Pinaya (10.1016/j.media.2025.103763_b29) 2022 Baid (10.1016/j.media.2025.103763_b3) 2021 Alzheimer’s Disease Neuroimaging Initiative (ADNI) (10.1016/j.media.2025.103763_b1) 2004 Stollenga (10.1016/j.media.2025.103763_b35) 2015; 28 Graham (10.1016/j.media.2025.103763_b11) 2023; 90 Van Leemput (10.1016/j.media.2025.103763_b36) 1999; 18 Hoopes (10.1016/j.media.2025.103763_b14) 2022; 260 Pinaya (10.1016/j.media.2025.103763_b30) 2022; 79 Rowley (10.1016/j.media.2025.103763_b32) 2023; 44 Ho (10.1016/j.media.2025.103763_b13) 2020; 33 Kascenas (10.1016/j.media.2025.103763_b18) 2022 Khader (10.1016/j.media.2025.103763_b19) 2023; 13 Ravi (10.1016/j.media.2025.103763_b31) 2024; 91 Pérez-García (10.1016/j.media.2025.103763_b28) 2021; 208 Bakas (10.1016/j.media.2025.103763_b4) 2017; 4 Zimmerer (10.1016/j.media.2025.103763_b41) 2019 Bercea (10.1016/j.media.2025.103763_b7) 2023 Xu (10.1016/j.media.2025.103763_b39) 2024 Maier (10.1016/j.media.2025.103763_b23) 2017; 35 Wu (10.1016/j.media.2025.103763_b38) 2024 Fisch (10.1016/j.media.2025.103763_b10) 2024; 179 Kamnitsas (10.1016/j.media.2025.103763_b17) 2017; 36 Sled (10.1016/j.media.2025.103763_b34) 2002; 17 |
| References_xml | – volume: 4 start-page: 1 year: 2017 end-page: 13 ident: b4 article-title: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features publication-title: Sci. Data – year: 2021 ident: b3 article-title: The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification – start-page: 544 year: 2024 end-page: 554 ident: b8 article-title: Rethinking autoencoders for medical anomaly detection from a theoretical perspective publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 79 year: 2022 ident: b30 article-title: Unsupervised brain imaging 3D anomaly detection and segmentation with transformers publication-title: Med. Image Anal. – volume: 30 start-page: 1617 year: 2011 end-page: 1634 ident: b15 article-title: Robust brain extraction across datasets and comparison with publicly available methods publication-title: IEEE Trans. Med. Imaging – volume: vol. 10949 start-page: 372 year: 2019 end-page: 378 ident: b2 article-title: Unsupervised brain lesion segmentation from MRI using a convolutional autoencoder publication-title: Medical Imaging 2019: Image Processing – volume: 13 start-page: 7303 year: 2023 ident: b19 article-title: Denoising diffusion probabilistic models for 3D medical image generation publication-title: Sci. Rep. – start-page: 35 year: 2022 end-page: 45 ident: b37 article-title: Diffusion models for medical anomaly detection publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – year: 2023 ident: b6 article-title: Mask, stitch, and re-sample: Enhancing robustness and generalizability in anomaly detection through automatic diffusion models – volume: 91 year: 2024 ident: b31 article-title: An efficient semi-supervised quality control system trained using physics-based MRI-artefact generators and adversarial training publication-title: Med. Image Anal. – year: 2004 ident: b1 article-title: Alzheimer’s disease neuroimaging initiative – volume: 44 start-page: 417 year: 2023 end-page: 423 ident: b32 article-title: Incidental findings from 16,400 brain MRI examinations of research volunteers publication-title: Am. J. Neuroradiol. – year: 2018 ident: b27 article-title: Unsupervised lesion detection in brain ct using bayesian convolutional autoencoders publication-title: Medical Imaging with Deep Learning – year: 2019 ident: b9 article-title: Principles of Medical Imaging for Engineers – volume: 66 start-page: 31 year: 2024 end-page: 42 ident: b12 article-title: A systematic review of (semi-) automatic quality control of T1-weighted MRI scans publication-title: Neuroradiology – volume: 69 year: 2021 ident: b5 article-title: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study publication-title: Med. Image Anal. – start-page: 304 year: 2023 end-page: 314 ident: b7 article-title: What do AEs learn? Challenging common assumptions in unsupervised anomaly detection publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 54 start-page: 30 year: 2019 end-page: 44 ident: b33 article-title: f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks publication-title: Med. Image Anal. – year: 2024 ident: b39 article-title: Feasibility and benefits of joint learning from MRI databases with different brain diseases and modalities for segmentation – start-page: 168 year: 2023 end-page: 181 ident: b21 article-title: Modality cycles with masked conditional diffusion for unsupervised anomaly segmentation in MRI publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – year: 2024 ident: b40 article-title: Deformation-recovery diffusion model (DRDM): Instance deformation for image manipulation and synthesis – volume: 17 start-page: 87 year: 2002 end-page: 97 ident: b34 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans. Med. Imaging – volume: 69 start-page: 529 year: 1981 end-page: 541 ident: b25 article-title: The importance of phase in signals publication-title: Proc. IEEE – volume: 4 year: 2008 ident: b24 article-title: K-space tutorial: an MRI educational tool for a better understanding of k-space publication-title: Biomed. Imaging Interv. J. – volume: 260 year: 2022 ident: b14 article-title: SynthStrip: skull-stripping for any brain image publication-title: NeuroImage – volume: 36 start-page: 61 year: 2017 end-page: 78 ident: b17 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. – start-page: 653 year: 2022 end-page: 664 ident: b18 article-title: Denoising autoencoders for unsupervised anomaly detection in brain MRI publication-title: International Conference on Medical Imaging with Deep Learning – volume: 90 year: 2023 ident: b11 article-title: Latent transformer models for out-of-distribution detection publication-title: Med. Image Anal. – volume: 28 year: 2015 ident: b35 article-title: Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation publication-title: Adv. Neural Inf. Process. Syst. – volume: 35 start-page: 250 year: 2017 end-page: 269 ident: b23 article-title: ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI publication-title: Med. Image Anal. – year: 2019 ident: b20 article-title: OASIS-3: Longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and alzheimer disease – start-page: 118 year: 2021 end-page: 132 ident: b16 article-title: nnU-net for brain tumor segmentation publication-title: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part II 6 – volume: 208 year: 2021 ident: b28 article-title: TorchIO: a python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning publication-title: Comput. Methods Programs Biomed. – start-page: 339 year: 2024 end-page: 348 ident: b22 article-title: IterMask 2: Iterative unsupervised anomaly segmentation via spatial and frequency masking for brain lesions in MRI publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 33 start-page: 6840 year: 2020 end-page: 6851 ident: b13 article-title: Denoising diffusion probabilistic models publication-title: Adv. Neural Inf. Process. Syst. – volume: 18 start-page: 897 year: 1999 end-page: 908 ident: b36 article-title: Automated model-based tissue classification of MR images of the brain publication-title: IEEE Trans. Med. Imaging – volume: vol. 4 start-page: 632 year: 1979 end-page: 637 ident: b26 article-title: Phase in speech and pictures publication-title: ICASSP’79. IEEE International Conference on Acoustics, Speech, and Signal Processing – start-page: 705 year: 2022 end-page: 714 ident: b29 article-title: Fast unsupervised brain anomaly detection and segmentation with diffusion models publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 179 year: 2024 ident: b10 article-title: Deepbet: Fast brain extraction of T1-weighted MRI using convolutional neural networks publication-title: Comput. Biol. Med. – start-page: 1623 year: 2024 end-page: 1639 ident: b38 article-title: Medsegdiff: Medical image segmentation with diffusion probabilistic model publication-title: Medical Imaging with Deep Learning – start-page: 289 year: 2019 end-page: 297 ident: b41 article-title: Unsupervised anomaly localization using variational auto-encoders publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part IV 22 – volume: 4 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.media.2025.103763_b4 article-title: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features publication-title: Sci. Data doi: 10.1038/sdata.2017.117 – start-page: 544 year: 2024 ident: 10.1016/j.media.2025.103763_b8 article-title: Rethinking autoencoders for medical anomaly detection from a theoretical perspective – volume: 18 start-page: 897 issue: 10 year: 1999 ident: 10.1016/j.media.2025.103763_b36 article-title: Automated model-based tissue classification of MR images of the brain publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.811270 – volume: vol. 10949 start-page: 372 year: 2019 ident: 10.1016/j.media.2025.103763_b2 article-title: Unsupervised brain lesion segmentation from MRI using a convolutional autoencoder – volume: 69 year: 2021 ident: 10.1016/j.media.2025.103763_b5 article-title: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101952 – volume: 79 year: 2022 ident: 10.1016/j.media.2025.103763_b30 article-title: Unsupervised brain imaging 3D anomaly detection and segmentation with transformers publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102475 – year: 2024 ident: 10.1016/j.media.2025.103763_b39 – volume: 91 year: 2024 ident: 10.1016/j.media.2025.103763_b31 article-title: An efficient semi-supervised quality control system trained using physics-based MRI-artefact generators and adversarial training publication-title: Med. Image Anal. doi: 10.1016/j.media.2023.103033 – start-page: 118 year: 2021 ident: 10.1016/j.media.2025.103763_b16 article-title: nnU-net for brain tumor segmentation – year: 2019 ident: 10.1016/j.media.2025.103763_b20 – volume: 30 start-page: 1617 issue: 9 year: 2011 ident: 10.1016/j.media.2025.103763_b15 article-title: Robust brain extraction across datasets and comparison with publicly available methods publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2138152 – start-page: 339 year: 2024 ident: 10.1016/j.media.2025.103763_b22 article-title: IterMask 2: Iterative unsupervised anomaly segmentation via spatial and frequency masking for brain lesions in MRI – start-page: 705 year: 2022 ident: 10.1016/j.media.2025.103763_b29 article-title: Fast unsupervised brain anomaly detection and segmentation with diffusion models – volume: 90 year: 2023 ident: 10.1016/j.media.2025.103763_b11 article-title: Latent transformer models for out-of-distribution detection publication-title: Med. Image Anal. doi: 10.1016/j.media.2023.102967 – volume: 17 start-page: 87 issue: 1 year: 2002 ident: 10.1016/j.media.2025.103763_b34 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.668698 – volume: 13 start-page: 7303 issue: 1 year: 2023 ident: 10.1016/j.media.2025.103763_b19 article-title: Denoising diffusion probabilistic models for 3D medical image generation publication-title: Sci. Rep. doi: 10.1038/s41598-023-34341-2 – start-page: 289 year: 2019 ident: 10.1016/j.media.2025.103763_b41 article-title: Unsupervised anomaly localization using variational auto-encoders – volume: 69 start-page: 529 issue: 5 year: 1981 ident: 10.1016/j.media.2025.103763_b25 article-title: The importance of phase in signals publication-title: Proc. IEEE doi: 10.1109/PROC.1981.12022 – volume: 179 year: 2024 ident: 10.1016/j.media.2025.103763_b10 article-title: Deepbet: Fast brain extraction of T1-weighted MRI using convolutional neural networks publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2024.108845 – start-page: 35 year: 2022 ident: 10.1016/j.media.2025.103763_b37 article-title: Diffusion models for medical anomaly detection – volume: 33 start-page: 6840 year: 2020 ident: 10.1016/j.media.2025.103763_b13 article-title: Denoising diffusion probabilistic models publication-title: Adv. Neural Inf. Process. Syst. – start-page: 1623 year: 2024 ident: 10.1016/j.media.2025.103763_b38 article-title: Medsegdiff: Medical image segmentation with diffusion probabilistic model – volume: 35 start-page: 250 year: 2017 ident: 10.1016/j.media.2025.103763_b23 article-title: ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.07.009 – volume: vol. 4 start-page: 632 year: 1979 ident: 10.1016/j.media.2025.103763_b26 article-title: Phase in speech and pictures – year: 2018 ident: 10.1016/j.media.2025.103763_b27 article-title: Unsupervised lesion detection in brain ct using bayesian convolutional autoencoders – volume: 208 year: 2021 ident: 10.1016/j.media.2025.103763_b28 article-title: TorchIO: a python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2021.106236 – volume: 54 start-page: 30 year: 2019 ident: 10.1016/j.media.2025.103763_b33 article-title: f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.01.010 – volume: 36 start-page: 61 year: 2017 ident: 10.1016/j.media.2025.103763_b17 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.10.004 – year: 2024 ident: 10.1016/j.media.2025.103763_b40 – volume: 4 issue: 1 year: 2008 ident: 10.1016/j.media.2025.103763_b24 article-title: K-space tutorial: an MRI educational tool for a better understanding of k-space publication-title: Biomed. Imaging Interv. J. doi: 10.2349/biij.4.1.e15 – year: 2004 ident: 10.1016/j.media.2025.103763_b1 – start-page: 653 year: 2022 ident: 10.1016/j.media.2025.103763_b18 article-title: Denoising autoencoders for unsupervised anomaly detection in brain MRI – volume: 260 year: 2022 ident: 10.1016/j.media.2025.103763_b14 article-title: SynthStrip: skull-stripping for any brain image publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.119474 – volume: 28 year: 2015 ident: 10.1016/j.media.2025.103763_b35 article-title: Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation publication-title: Adv. Neural Inf. Process. Syst. – volume: 44 start-page: 417 issue: 4 year: 2023 ident: 10.1016/j.media.2025.103763_b32 article-title: Incidental findings from 16,400 brain MRI examinations of research volunteers publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A7821 – year: 2021 ident: 10.1016/j.media.2025.103763_b3 – year: 2023 ident: 10.1016/j.media.2025.103763_b6 – year: 2019 ident: 10.1016/j.media.2025.103763_b9 – start-page: 304 year: 2023 ident: 10.1016/j.media.2025.103763_b7 article-title: What do AEs learn? Challenging common assumptions in unsupervised anomaly detection – volume: 66 start-page: 31 issue: 1 year: 2024 ident: 10.1016/j.media.2025.103763_b12 article-title: A systematic review of (semi-) automatic quality control of T1-weighted MRI scans publication-title: Neuroradiology doi: 10.1007/s00234-023-03256-0 – start-page: 168 year: 2023 ident: 10.1016/j.media.2025.103763_b21 article-title: Modality cycles with masked conditional diffusion for unsupervised anomaly segmentation in MRI |
| SSID | ssj0007440 |
| Score | 2.4659224 |
| Snippet | Unsupervised anomaly detection and segmentation methods train a model to learn the training distribution as ‘normal’. In the testing phase, they identify... Unsupervised anomaly detection and segmentation methods train a model to learn the training distribution as 'normal'. In the testing phase, they identify... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 103763 |
| SubjectTerms | 3D brain MRI Algorithms Anomaly detection Brain - diagnostic imaging Humans Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Magnetic Resonance Imaging - methods Unsupervised anomaly segmentation Unsupervised Machine Learning |
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hDlAOiNIWllJkJI51NxvH3tBbBUWAtBygK3Gz7NhBC7veFckKceG3dyYPoEJFiGOiSTKeccbz2fMA2Mutl1J4wXG5MQhQnOPWxJYneZbEcZ5I4Sg5eXCmjofJ6aW8XICDNheGwiob21_b9MpaN3e6jTS7s9Goe9ET1KyE-vfU53mUwZ70qYvBj4enMA8qgFfnXvU4UbeVh6oYryo7A0FiLKvkcyX-tzq99D5XYHkeZub-zozHz1akozVYbVxJ9qvm9iMs-LAOK88KDK7D0qA5Ov8E5QlKcGCKG3H4kw1DMZ-RlSi8YyZMJ2Z8z5wvq7isgHccK_zVpMlLCox2axk6pSWnXvSsLsWMdpJN8IUMh4GfIGo2CkwcMkt9J9jg_OQzDI9-_zk45k3LBZ4JqUruqfyV20-j2CBOixK0Byje1MtIWIvITGRWpKZnlFORcWpfIuCSeS58HNnUx0p8gcUwDX4TmMyQTvgsTxD0IA0VAkPnTiCUV2nfRR343opaz-rKGroNObvWlWY0aUbXmumAatWh_5kgGm3_6w_utsrT-OvQeYgJfjovNA0NHUp0wTqwUWv1kROCvRKduw7wRzW_hc2t97L5FT7gVbO7sw2L5e3cf0N_p7Q71YT-C51b-yo priority: 102 providerName: Elsevier |
| Title | IterMask3D: Unsupervised anomaly detection and segmentation with test-time iterative mask refinement in 3D brain MRI |
| URI | https://dx.doi.org/10.1016/j.media.2025.103763 https://www.ncbi.nlm.nih.gov/pubmed/40945172 https://www.proquest.com/docview/3250232584 https://doi.org/10.1016/j.media.2025.103763 |
| UnpaywallVersion | publishedVersion |
| Volume | 107 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: ACRLP dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: .~1 dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIKHN dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AKRWK dateStart: 19960301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xVgL2wMcYWwdURuIRV2kcexlvhTFaoBVCFI0ny44dxNa6FUmExsP-ds6JM41Pjac4kZPYd_74ne37HcCTXFvOmWUUpxuFBooxVKtY0yTPkjjOE86Md06ezsR4nrw-5seBZ9v7wvy0f1-fw6o9KNCQi3ntIC7YBnQFR-Ddge589m70qfGsGtI0qeMVhHQd2C2k2bDlG_rzF_82J_2OOTfhRuXW6uybWiwuzUNHtxsH76KmL_THT04HVakH2fdfyB2vWMU7cCvgUTJqGtBduGbdFmxeYincguvTsP9-D8oJqmGqilN2-IzMXVGt_VBTWEOUWy3V4owYW9aHuxw-MaSwn5fBuckRv-RLENmW1Ae0Jw2fMw62ZIkfJCgV_IXPTb44wg6J9sEryPT9ZBvmRy8_vBjTELeBZoyLklrPoWUO0ihWaOxFCQ4qCLRSyyOmNZp3LNMsVUMljIiUEQccrTae58zGkU5tLNh96LiVs7tAeIb5mM3yBC0nzOPZxBAhMqtjke6bqAdPW83JdUPPIdtzayeylqv0cpWNXHsgWu3KgDAa5CBRKf9-8XHbFiT2P7-popxdVYX0VUNUijiuBztNI7koibedOSLEHtCLVnOVYu79Z_4HcBPvwsrQQ-iUXyv7CLFSqfuwMTgf9qE7mrwZz_D66vnbj6N-6Dk_ALrEDNU |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlF6qKBQWErBSBwxm41jN-0N9aFdaHqArtSbZccOWtj1rkhWqBd-e2fyaIsqKtRrMknGM854PnseAO8L66UUXnBcbgwCFOe4NbHlSZEncVwkUjhKTs5O1XCcfD6X5ytw0OXCUFhla_sbm15b6_ZKv5VmfzGZ9L8NBDUrof49zXneA3iYyHiXENjHP9dxHlQBr0m-GnAi70oP1UFedXoGosRY1tnnSvxrebrtfq7D2jIszMVvM53eWJKOn8BG60uyTw27T2HFh01Yv1FhcBMeZe3Z-TOoRijCzJQ_xeE-G4dyuSAzUXrHTJjPzPSCOV_VgVkBrzhW-u-zNjEpMNquZeiVVpya0bOmFjMaSjbDFzIcBn6CqNkkMHHILDWeYNnX0XMYHx-dHQx523OB50Kqinuqf-X20ig2CNSiBA0Cyjf1MhLWIjQTuRWpGRjlVGSc2pOIuGRRCB9HNvWxEluwGubBvwQmc6QTPi8SRD1IQ5XA0LsTiOVVuuuiHnzoRK0XTWkN3cWc_dC1ZjRpRjea6YHq1KH_miEajf_dD77rlKfx36EDERP8fFlqGhp6lOiD9eBFo9UrTgj3SvTuesCv1Pw_bL66L5tvYW14lp3ok9Hpl214jHfarZ7XsFr9WvoddH4q-6ae3JdORP5N |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7RRaJwgEJ5LH3ISD3WKBvHJnBDUASVFiHESvRk2bGDgF3viiRC8OsZJw6i0CK4OZHj2DN-fGN7vgH4kWvLObOM4nKj0EAxhmoVa5rkWRLHecKZ8c7J_WNxOEh-n_PzwLPtfWH-Or-v72HVHhRoyMW8dhAX7ANMC47AuwPTg-OT3T-NZ1WPpkkdryCk68BuIc16Ld_Qv0v835r0EnPOwcfKTdTdrRoOn6xDBwuNg3dR0xf66yfXm1WpN7P7Z-SOb2ziJ5gPeJTsNh1oEaasW4K5JyyFSzDTD-fvn6E8QjX0VXHN9nfIwBXVxE81hTVEufFIDe-IsWV9ucvhG0MKezEKzk2O-C1fgsi2pD6gPWn4nHGyJSMskKBU8Bc-N7l0hO0T7YNXkP7p0TIMDn6d7R3SELeBZoyLklrPoWW20yhWaOxFCU4qCLRSyyOmNZp3LNMsVT0ljIiUEdscrTae58zGkU5tLNgKdNzY2TUgPMN8zGZ5gpYT5vFsYogQmdWxSLdM1IWfrebkpKHnkO29tStZy1V6ucpGrl0QrXZlQBgNcpColNc_3Gj7gsTx5w9VlLPjqpC-aYhKEcd1YbXpJI818bYzR4TYBfrYa95SzfV35v8Cs_gUdoa-Qqe8qew3xEql_h7GyAPVugi6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IterMask3D%3A+Unsupervised+anomaly+detection+and+segmentation+with+test-time+iterative+mask+refinement+in+3D+brain+MRI&rft.jtitle=Medical+image+analysis&rft.au=Liang%2C+Ziyun&rft.au=Guo%2C+Xiaoqing&rft.au=Xu%2C+Wentian&rft.au=Ibrahim%2C+Yasin&rft.date=2026-01-01&rft.issn=1361-8423&rft.eissn=1361-8423&rft.volume=107&rft.issue=Pt+A&rft.spage=103763&rft_id=info:doi/10.1016%2Fj.media.2025.103763&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |