IterMask3D: Unsupervised anomaly detection and segmentation with test-time iterative mask refinement in 3D brain MRI

Unsupervised anomaly detection and segmentation methods train a model to learn the training distribution as ‘normal’. In the testing phase, they identify patterns that deviate from this normal distribution as ‘anomalies’. To learn the ‘normal’ distribution, prevailing methods corrupt the images and...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 107; no. Pt A; p. 103763
Main Authors Liang, Ziyun, Guo, Xiaoqing, Xu, Wentian, Ibrahim, Yasin, Voets, Natalie, Pretorius, Pieter M., Noble, J. Alison, Kamnitsas, Konstantinos
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2026
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8431
1361-8423
DOI10.1016/j.media.2025.103763

Cover

Abstract Unsupervised anomaly detection and segmentation methods train a model to learn the training distribution as ‘normal’. In the testing phase, they identify patterns that deviate from this normal distribution as ‘anomalies’. To learn the ‘normal’ distribution, prevailing methods corrupt the images and train a model to reconstruct them. During testing, the model attempts to reconstruct corrupted inputs based on the learned ‘normal’ distribution. Deviations from this distribution lead to high reconstruction errors, which indicate potential anomalies. However, corrupting an input image inevitably causes information loss even in normal regions, leading to suboptimal reconstruction and an increased risk of false positives. To alleviate this, we propose IterMask3D, an iterative spatial mask-refining strategy designed for 3D brain MRI. We iteratively spatially mask areas of the image as corruption and reconstruct them, then shrink the mask based on reconstruction error. This process iteratively unmasks ‘normal’ areas to the model, whose information further guides reconstruction of ‘normal’ patterns under the mask to be reconstructed accurately, reducing false positives. In addition, to achieve better reconstruction performance, we also propose using high-frequency image content as additional structural information to guide the reconstruction of the masked area. Extensive experiments on the detection of both synthetic and real-world imaging artifacts, as well as segmentation of various pathological lesions across multiple MRI sequences, consistently demonstrate the effectiveness of our proposed method. Code is available at https://github.com/ZiyunLiang/IterMask3D. [Display omitted] •Propose IterMask3D for 3D brain MRI anomaly segmentation and detection.•Reduce false positives via iterative spatial mask refinement during testing.•Guide reconstruction using high-frequency structural information.•Propose subject-specific thresholds to auto-stop mask refinement.•Evaluate on both artifact detection and pathology segmentation tasks.
AbstractList Unsupervised anomaly detection and segmentation methods train a model to learn the training distribution as 'normal'. In the testing phase, they identify patterns that deviate from this normal distribution as 'anomalies'. To learn the 'normal' distribution, prevailing methods corrupt the images and train a model to reconstruct them. During testing, the model attempts to reconstruct corrupted inputs based on the learned 'normal' distribution. Deviations from this distribution lead to high reconstruction errors, which indicate potential anomalies. However, corrupting an input image inevitably causes information loss even in normal regions, leading to suboptimal reconstruction and an increased risk of false positives. To alleviate this, we propose IterMask3D, an iterative spatial mask-refining strategy designed for 3D brain MRI. We iteratively spatially mask areas of the image as corruption and reconstruct them, then shrink the mask based on reconstruction error. This process iteratively unmasks 'normal' areas to the model, whose information further guides reconstruction of 'normal' patterns under the mask to be reconstructed accurately, reducing false positives. In addition, to achieve better reconstruction performance, we also propose using high-frequency image content as additional structural information to guide the reconstruction of the masked area. Extensive experiments on the detection of both synthetic and real-world imaging artifacts, as well as segmentation of various pathological lesions across multiple MRI sequences, consistently demonstrate the effectiveness of our proposed method. Code is available at https://github.com/ZiyunLiang/IterMask3D.Unsupervised anomaly detection and segmentation methods train a model to learn the training distribution as 'normal'. In the testing phase, they identify patterns that deviate from this normal distribution as 'anomalies'. To learn the 'normal' distribution, prevailing methods corrupt the images and train a model to reconstruct them. During testing, the model attempts to reconstruct corrupted inputs based on the learned 'normal' distribution. Deviations from this distribution lead to high reconstruction errors, which indicate potential anomalies. However, corrupting an input image inevitably causes information loss even in normal regions, leading to suboptimal reconstruction and an increased risk of false positives. To alleviate this, we propose IterMask3D, an iterative spatial mask-refining strategy designed for 3D brain MRI. We iteratively spatially mask areas of the image as corruption and reconstruct them, then shrink the mask based on reconstruction error. This process iteratively unmasks 'normal' areas to the model, whose information further guides reconstruction of 'normal' patterns under the mask to be reconstructed accurately, reducing false positives. In addition, to achieve better reconstruction performance, we also propose using high-frequency image content as additional structural information to guide the reconstruction of the masked area. Extensive experiments on the detection of both synthetic and real-world imaging artifacts, as well as segmentation of various pathological lesions across multiple MRI sequences, consistently demonstrate the effectiveness of our proposed method. Code is available at https://github.com/ZiyunLiang/IterMask3D.
Unsupervised anomaly detection and segmentation methods train a model to learn the training distribution as 'normal'. In the testing phase, they identify patterns that deviate from this normal distribution as 'anomalies'. To learn the 'normal' distribution, prevailing methods corrupt the images and train a model to reconstruct them. During testing, the model attempts to reconstruct corrupted inputs based on the learned 'normal' distribution. Deviations from this distribution lead to high reconstruction errors, which indicate potential anomalies. However, corrupting an input image inevitably causes information loss even in normal regions, leading to suboptimal reconstruction and an increased risk of false positives. To alleviate this, we propose IterMask3D, an iterative spatial mask-refining strategy designed for 3D brain MRI. We iteratively spatially mask areas of the image as corruption and reconstruct them, then shrink the mask based on reconstruction error. This process iteratively unmasks 'normal' areas to the model, whose information further guides reconstruction of 'normal' patterns under the mask to be reconstructed accurately, reducing false positives. In addition, to achieve better reconstruction performance, we also propose using high-frequency image content as additional structural information to guide the reconstruction of the masked area. Extensive experiments on the detection of both synthetic and real-world imaging artifacts, as well as segmentation of various pathological lesions across multiple MRI sequences, consistently demonstrate the effectiveness of our proposed method. Code is available at https://github.com/ZiyunLiang/IterMask3D.
Unsupervised anomaly detection and segmentation methods train a model to learn the training distribution as ‘normal’. In the testing phase, they identify patterns that deviate from this normal distribution as ‘anomalies’. To learn the ‘normal’ distribution, prevailing methods corrupt the images and train a model to reconstruct them. During testing, the model attempts to reconstruct corrupted inputs based on the learned ‘normal’ distribution. Deviations from this distribution lead to high reconstruction errors, which indicate potential anomalies. However, corrupting an input image inevitably causes information loss even in normal regions, leading to suboptimal reconstruction and an increased risk of false positives. To alleviate this, we propose IterMask3D, an iterative spatial mask-refining strategy designed for 3D brain MRI. We iteratively spatially mask areas of the image as corruption and reconstruct them, then shrink the mask based on reconstruction error. This process iteratively unmasks ‘normal’ areas to the model, whose information further guides reconstruction of ‘normal’ patterns under the mask to be reconstructed accurately, reducing false positives. In addition, to achieve better reconstruction performance, we also propose using high-frequency image content as additional structural information to guide the reconstruction of the masked area. Extensive experiments on the detection of both synthetic and real-world imaging artifacts, as well as segmentation of various pathological lesions across multiple MRI sequences, consistently demonstrate the effectiveness of our proposed method. Code is available at https://github.com/ZiyunLiang/IterMask3D. [Display omitted] •Propose IterMask3D for 3D brain MRI anomaly segmentation and detection.•Reduce false positives via iterative spatial mask refinement during testing.•Guide reconstruction using high-frequency structural information.•Propose subject-specific thresholds to auto-stop mask refinement.•Evaluate on both artifact detection and pathology segmentation tasks.
ArticleNumber 103763
Author Liang, Ziyun
Voets, Natalie
Kamnitsas, Konstantinos
Xu, Wentian
Ibrahim, Yasin
Noble, J. Alison
Guo, Xiaoqing
Pretorius, Pieter M.
Author_xml – sequence: 1
  givenname: Ziyun
  surname: Liang
  fullname: Liang, Ziyun
  organization: Department of Engineering Science, University of Oxford, United Kingdom
– sequence: 2
  givenname: Xiaoqing
  orcidid: 0000-0002-9476-521X
  surname: Guo
  fullname: Guo, Xiaoqing
  organization: Department of Engineering Science, University of Oxford, United Kingdom
– sequence: 3
  givenname: Wentian
  surname: Xu
  fullname: Xu, Wentian
  organization: Department of Engineering Science, University of Oxford, United Kingdom
– sequence: 4
  givenname: Yasin
  orcidid: 0009-0007-5877-1309
  surname: Ibrahim
  fullname: Ibrahim, Yasin
  organization: Department of Engineering Science, University of Oxford, United Kingdom
– sequence: 5
  givenname: Natalie
  orcidid: 0000-0001-8078-4471
  surname: Voets
  fullname: Voets, Natalie
  organization: Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
– sequence: 6
  givenname: Pieter M.
  surname: Pretorius
  fullname: Pretorius, Pieter M.
  organization: Department of Neuroradiology, Oxford University Hospitals NHS Foundation Trust, United Kingdom
– sequence: 7
  givenname: J. Alison
  surname: Noble
  fullname: Noble, J. Alison
  organization: Department of Engineering Science, University of Oxford, United Kingdom
– sequence: 8
  givenname: Konstantinos
  orcidid: 0000-0003-3281-6509
  surname: Kamnitsas
  fullname: Kamnitsas, Konstantinos
  email: konstantinos.kamnitsas@eng.ox.ac.uk
  organization: Department of Engineering Science, University of Oxford, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40945172$$D View this record in MEDLINE/PubMed
BookMark eNqNkVtr3DAQhUVJaC7tLwgUPfbF29HFt0AfSpK2CwmB0jwL2Z5NtbHlrSRv2H_f2TjNY8iLNIzOOcx8OmEHfvTI2JmAhQBRfFkvBuycXUiQOXVUWah37FioQmSVlurgpRb5ETuJcQ0Apdbwnh1pqHUuSnnM0jJhuLHxQV2e8zsfpw2GrYvYcevHwfY73mHCNrnRU6fjEe8H9Mk-NR5d-sMTxpQlNyB3FEUPW-QDBfKAK-dxr-bOc3XJm2CpuPm1_MAOV7aP-PH5PmV3369-X_zMrm9_LC--XWetyouUIY1ZdnUF0grQoEtQMocKc1BNU9eVahtVWWGLrgDbFXUuqzJfrRRKaCqUhTples6d_MbuHm3fm01wgw07I8DsIZq1eYJo9hDNDJFsn2fbJox_J1rPDC622PfW4zhFs59C0lFpkn56lk4NBb3E_wdMAjUL2jDGSEjeOMHX2YVEZ-swmNg69C0JA32G6Ub3qv8fQcikBA
Cites_doi 10.1038/sdata.2017.117
10.1109/42.811270
10.1016/j.media.2020.101952
10.1016/j.media.2022.102475
10.1016/j.media.2023.103033
10.1109/TMI.2011.2138152
10.1016/j.media.2023.102967
10.1109/42.668698
10.1038/s41598-023-34341-2
10.1109/PROC.1981.12022
10.1016/j.compbiomed.2024.108845
10.1016/j.media.2016.07.009
10.1016/j.cmpb.2021.106236
10.1016/j.media.2019.01.010
10.1016/j.media.2016.10.004
10.2349/biij.4.1.e15
10.1016/j.neuroimage.2022.119474
10.3174/ajnr.A7821
10.1007/s00234-023-03256-0
ContentType Journal Article
Copyright 2025 The Authors
Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2025 The Authors
– notice: Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.
CorporateAuthor Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: Alzheimer’s Disease Neuroimaging Initiative
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.media.2025.103763
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID 10.1016/j.media.2025.103763
40945172
10_1016_j_media_2025_103763
S1361841525003093
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
ADVLN
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
~HD
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c356t-e4097d9802a104047032508e503bb9983cb38a1a6d60ad6952875ff3e20b8e263
IEDL.DBID UNPAY
ISSN 1361-8415
1361-8423
1361-8431
IngestDate Fri Sep 19 05:59:48 EDT 2025
Thu Oct 02 21:26:46 EDT 2025
Tue Oct 14 01:30:30 EDT 2025
Thu Oct 16 04:33:48 EDT 2025
Sat Oct 25 16:49:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Pt A
Keywords 3D brain MRI
Anomaly detection
Unsupervised anomaly segmentation
Language English
License This is an open access article under the CC BY license.
Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-e4097d9802a104047032508e503bb9983cb38a1a6d60ad6952875ff3e20b8e263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0007-5877-1309
0000-0001-8078-4471
0000-0002-9476-521X
0000-0003-3281-6509
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.media.2025.103763
PMID 40945172
PQID 3250232584
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1016_j_media_2025_103763
proquest_miscellaneous_3250232584
pubmed_primary_40945172
crossref_primary_10_1016_j_media_2025_103763
elsevier_sciencedirect_doi_10_1016_j_media_2025_103763
PublicationCentury 2000
PublicationDate 2026-01-01
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: 2026-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Khader, Müller-Franzes, Tayebi Arasteh, Han, Haarburger, Schulze-Hagen, Schad, Engelhardt, Baeßler, Foersch (b19) 2023; 13
Isensee, Jäger, Full, Vollmuth, Maier-Hein (b16) 2021
Chappell (b9) 2019
Fisch, Zumdick, Barkhau, Emden, Ernsting, Leenings, Sarink, Winter, Risse, Dannlowski (b10) 2024; 179
Pinaya, Graham, Gray, Da Costa, Tudosiu, Wright, Mah, MacKinnon, Teo, Jager (b29) 2022
Bakas, Akbari, Sotiras, Bilello, Rozycki, Kirby, Freymann, Farahani, Davatzikos (b4) 2017; 4
Moratal, Vallés-Luch, Martí-Bonmatí, Brummer (b24) 2008; 4
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (b1) 2004
Iglesias, Liu, Thompson, Tu (b15) 2011; 30
Bercea, Neumayr, Rueckert, Schnabel (b6) 2023
Kascenas, Pugeault, O’Neil (b18) 2022
Pérez-García, Sparks, Ourselin (b28) 2021; 208
Hoopes, Mora, Dalca, Fischl, Hoffmann (b14) 2022; 260
Sled, Zijdenbos, Evans (b34) 2002; 17
Atlason, Love, Sigurdsson, Gudnason, Ellingsen (b2) 2019; vol. 10949
Ho, Jain, Abbeel (b13) 2020; 33
Baur, Denner, Wiestler, Navab, Albarqouni (b5) 2021; 69
LaMontagne, Benzinger, Morris, Keefe, Hornbeck, Xiong, Grant, Hassenstab, Moulder, Vlassenko, Raichle, Cruchaga, Marcus (b20) 2019
Wu, Fu, Fang, Zhang, Yang, Xiong, Liu, Xu (b38) 2024
Pinaya, Tudosiu, Gray, Rees, Nachev, Ourselin, Cardoso (b30) 2022; 79
Liang, Anthony, Wagner, Kamnitsas (b21) 2023
Liang, Guo, Noble, Kamnitsas (b22) 2024
Zheng, Mo, Sun, Li, Wu, Wang, Vincent, Papież (b40) 2024
Ravi, Barkhof, Alexander, Puglisi, Parker, Eshaghi, Alzheimer’s Disease Neuroimaging Initiative (b31) 2024; 91
Van Leemput, Maes, Vandermeulen, Suetens (b36) 1999; 18
Bercea, Rueckert, Schnabel (b7) 2023
Pawlowski, Lee, Rajchl, McDonagh, Ferrante, Kamnitsas, Cooke, Stevenson, Khetani, Newman (b27) 2018
Zimmerer, Isensee, Petersen, Kohl, Maier-Hein (b41) 2019
Oppenheim, Lim, Kopec, Pohlig (b26) 1979; vol. 4
Rowley, Paukner, Eisenmenger, Field, Davidson, Johnson, Asthana, Chin, Prabhakaran, Bendlin (b32) 2023; 44
Hendriks, Mutsaerts, Joules, Peña-Nogales, Rodrigues, Wolz, Burchell, Barkhof, Schrantee (b12) 2024; 66
Cai, Chen, Cheng (b8) 2024
Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (b17) 2017; 36
Wolleb, Bieder, Sandkühler, Cattin (b37) 2022
Graham, Tudosiu, Wright, Pinaya, Teikari, Patel, U-King-Im, Mah, Teo, Jäger (b11) 2023; 90
Stollenga, Byeon, Liwicki, Schmidhuber (b35) 2015; 28
Xu, Moffat, Seale, Liang, Wagner, Whitehouse, Menon, Newcombe, Voets, Banerjee (b39) 2024
Schlegl, Seeböck, Waldstein, Langs, Schmidt-Erfurth (b33) 2019; 54
Maier, Menze, Von der Gablentz, Häni, Heinrich, Liebrand, Winzeck, Basit, Bentley, Chen (b23) 2017; 35
Baid, Ghodasara, Mohan, Bilello, Calabrese, Colak, Farahani, Kalpathy-Cramer, Kitamura, Pati (b3) 2021
Oppenheim, Lim (b25) 1981; 69
Liang (10.1016/j.media.2025.103763_b22) 2024
Baur (10.1016/j.media.2025.103763_b5) 2021; 69
Isensee (10.1016/j.media.2025.103763_b16) 2021
Oppenheim (10.1016/j.media.2025.103763_b26) 1979; vol. 4
Chappell (10.1016/j.media.2025.103763_b9) 2019
Zheng (10.1016/j.media.2025.103763_b40) 2024
Schlegl (10.1016/j.media.2025.103763_b33) 2019; 54
Wolleb (10.1016/j.media.2025.103763_b37) 2022
Moratal (10.1016/j.media.2025.103763_b24) 2008; 4
Oppenheim (10.1016/j.media.2025.103763_b25) 1981; 69
Bercea (10.1016/j.media.2025.103763_b6) 2023
Cai (10.1016/j.media.2025.103763_b8) 2024
Hendriks (10.1016/j.media.2025.103763_b12) 2024; 66
LaMontagne (10.1016/j.media.2025.103763_b20) 2019
Liang (10.1016/j.media.2025.103763_b21) 2023
Atlason (10.1016/j.media.2025.103763_b2) 2019; vol. 10949
Iglesias (10.1016/j.media.2025.103763_b15) 2011; 30
Pawlowski (10.1016/j.media.2025.103763_b27) 2018
Pinaya (10.1016/j.media.2025.103763_b29) 2022
Baid (10.1016/j.media.2025.103763_b3) 2021
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (10.1016/j.media.2025.103763_b1) 2004
Stollenga (10.1016/j.media.2025.103763_b35) 2015; 28
Graham (10.1016/j.media.2025.103763_b11) 2023; 90
Van Leemput (10.1016/j.media.2025.103763_b36) 1999; 18
Hoopes (10.1016/j.media.2025.103763_b14) 2022; 260
Pinaya (10.1016/j.media.2025.103763_b30) 2022; 79
Rowley (10.1016/j.media.2025.103763_b32) 2023; 44
Ho (10.1016/j.media.2025.103763_b13) 2020; 33
Kascenas (10.1016/j.media.2025.103763_b18) 2022
Khader (10.1016/j.media.2025.103763_b19) 2023; 13
Ravi (10.1016/j.media.2025.103763_b31) 2024; 91
Pérez-García (10.1016/j.media.2025.103763_b28) 2021; 208
Bakas (10.1016/j.media.2025.103763_b4) 2017; 4
Zimmerer (10.1016/j.media.2025.103763_b41) 2019
Bercea (10.1016/j.media.2025.103763_b7) 2023
Xu (10.1016/j.media.2025.103763_b39) 2024
Maier (10.1016/j.media.2025.103763_b23) 2017; 35
Wu (10.1016/j.media.2025.103763_b38) 2024
Fisch (10.1016/j.media.2025.103763_b10) 2024; 179
Kamnitsas (10.1016/j.media.2025.103763_b17) 2017; 36
Sled (10.1016/j.media.2025.103763_b34) 2002; 17
References_xml – volume: 4
  start-page: 1
  year: 2017
  end-page: 13
  ident: b4
  article-title: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features
  publication-title: Sci. Data
– year: 2021
  ident: b3
  article-title: The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification
– start-page: 544
  year: 2024
  end-page: 554
  ident: b8
  article-title: Rethinking autoencoders for medical anomaly detection from a theoretical perspective
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 79
  year: 2022
  ident: b30
  article-title: Unsupervised brain imaging 3D anomaly detection and segmentation with transformers
  publication-title: Med. Image Anal.
– volume: 30
  start-page: 1617
  year: 2011
  end-page: 1634
  ident: b15
  article-title: Robust brain extraction across datasets and comparison with publicly available methods
  publication-title: IEEE Trans. Med. Imaging
– volume: vol. 10949
  start-page: 372
  year: 2019
  end-page: 378
  ident: b2
  article-title: Unsupervised brain lesion segmentation from MRI using a convolutional autoencoder
  publication-title: Medical Imaging 2019: Image Processing
– volume: 13
  start-page: 7303
  year: 2023
  ident: b19
  article-title: Denoising diffusion probabilistic models for 3D medical image generation
  publication-title: Sci. Rep.
– start-page: 35
  year: 2022
  end-page: 45
  ident: b37
  article-title: Diffusion models for medical anomaly detection
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2023
  ident: b6
  article-title: Mask, stitch, and re-sample: Enhancing robustness and generalizability in anomaly detection through automatic diffusion models
– volume: 91
  year: 2024
  ident: b31
  article-title: An efficient semi-supervised quality control system trained using physics-based MRI-artefact generators and adversarial training
  publication-title: Med. Image Anal.
– year: 2004
  ident: b1
  article-title: Alzheimer’s disease neuroimaging initiative
– volume: 44
  start-page: 417
  year: 2023
  end-page: 423
  ident: b32
  article-title: Incidental findings from 16,400 brain MRI examinations of research volunteers
  publication-title: Am. J. Neuroradiol.
– year: 2018
  ident: b27
  article-title: Unsupervised lesion detection in brain ct using bayesian convolutional autoencoders
  publication-title: Medical Imaging with Deep Learning
– year: 2019
  ident: b9
  article-title: Principles of Medical Imaging for Engineers
– volume: 66
  start-page: 31
  year: 2024
  end-page: 42
  ident: b12
  article-title: A systematic review of (semi-) automatic quality control of T1-weighted MRI scans
  publication-title: Neuroradiology
– volume: 69
  year: 2021
  ident: b5
  article-title: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study
  publication-title: Med. Image Anal.
– start-page: 304
  year: 2023
  end-page: 314
  ident: b7
  article-title: What do AEs learn? Challenging common assumptions in unsupervised anomaly detection
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 54
  start-page: 30
  year: 2019
  end-page: 44
  ident: b33
  article-title: f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks
  publication-title: Med. Image Anal.
– year: 2024
  ident: b39
  article-title: Feasibility and benefits of joint learning from MRI databases with different brain diseases and modalities for segmentation
– start-page: 168
  year: 2023
  end-page: 181
  ident: b21
  article-title: Modality cycles with masked conditional diffusion for unsupervised anomaly segmentation in MRI
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2024
  ident: b40
  article-title: Deformation-recovery diffusion model (DRDM): Instance deformation for image manipulation and synthesis
– volume: 17
  start-page: 87
  year: 2002
  end-page: 97
  ident: b34
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 69
  start-page: 529
  year: 1981
  end-page: 541
  ident: b25
  article-title: The importance of phase in signals
  publication-title: Proc. IEEE
– volume: 4
  year: 2008
  ident: b24
  article-title: K-space tutorial: an MRI educational tool for a better understanding of k-space
  publication-title: Biomed. Imaging Interv. J.
– volume: 260
  year: 2022
  ident: b14
  article-title: SynthStrip: skull-stripping for any brain image
  publication-title: NeuroImage
– volume: 36
  start-page: 61
  year: 2017
  end-page: 78
  ident: b17
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
– start-page: 653
  year: 2022
  end-page: 664
  ident: b18
  article-title: Denoising autoencoders for unsupervised anomaly detection in brain MRI
  publication-title: International Conference on Medical Imaging with Deep Learning
– volume: 90
  year: 2023
  ident: b11
  article-title: Latent transformer models for out-of-distribution detection
  publication-title: Med. Image Anal.
– volume: 28
  year: 2015
  ident: b35
  article-title: Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 35
  start-page: 250
  year: 2017
  end-page: 269
  ident: b23
  article-title: ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
  publication-title: Med. Image Anal.
– year: 2019
  ident: b20
  article-title: OASIS-3: Longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and alzheimer disease
– start-page: 118
  year: 2021
  end-page: 132
  ident: b16
  article-title: nnU-net for brain tumor segmentation
  publication-title: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part II 6
– volume: 208
  year: 2021
  ident: b28
  article-title: TorchIO: a python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning
  publication-title: Comput. Methods Programs Biomed.
– start-page: 339
  year: 2024
  end-page: 348
  ident: b22
  article-title: IterMask 2: Iterative unsupervised anomaly segmentation via spatial and frequency masking for brain lesions in MRI
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 33
  start-page: 6840
  year: 2020
  end-page: 6851
  ident: b13
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 18
  start-page: 897
  year: 1999
  end-page: 908
  ident: b36
  article-title: Automated model-based tissue classification of MR images of the brain
  publication-title: IEEE Trans. Med. Imaging
– volume: vol. 4
  start-page: 632
  year: 1979
  end-page: 637
  ident: b26
  article-title: Phase in speech and pictures
  publication-title: ICASSP’79. IEEE International Conference on Acoustics, Speech, and Signal Processing
– start-page: 705
  year: 2022
  end-page: 714
  ident: b29
  article-title: Fast unsupervised brain anomaly detection and segmentation with diffusion models
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 179
  year: 2024
  ident: b10
  article-title: Deepbet: Fast brain extraction of T1-weighted MRI using convolutional neural networks
  publication-title: Comput. Biol. Med.
– start-page: 1623
  year: 2024
  end-page: 1639
  ident: b38
  article-title: Medsegdiff: Medical image segmentation with diffusion probabilistic model
  publication-title: Medical Imaging with Deep Learning
– start-page: 289
  year: 2019
  end-page: 297
  ident: b41
  article-title: Unsupervised anomaly localization using variational auto-encoders
  publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part IV 22
– volume: 4
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.media.2025.103763_b4
  article-title: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features
  publication-title: Sci. Data
  doi: 10.1038/sdata.2017.117
– start-page: 544
  year: 2024
  ident: 10.1016/j.media.2025.103763_b8
  article-title: Rethinking autoencoders for medical anomaly detection from a theoretical perspective
– volume: 18
  start-page: 897
  issue: 10
  year: 1999
  ident: 10.1016/j.media.2025.103763_b36
  article-title: Automated model-based tissue classification of MR images of the brain
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.811270
– volume: vol. 10949
  start-page: 372
  year: 2019
  ident: 10.1016/j.media.2025.103763_b2
  article-title: Unsupervised brain lesion segmentation from MRI using a convolutional autoencoder
– volume: 69
  year: 2021
  ident: 10.1016/j.media.2025.103763_b5
  article-title: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101952
– volume: 79
  year: 2022
  ident: 10.1016/j.media.2025.103763_b30
  article-title: Unsupervised brain imaging 3D anomaly detection and segmentation with transformers
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102475
– year: 2024
  ident: 10.1016/j.media.2025.103763_b39
– volume: 91
  year: 2024
  ident: 10.1016/j.media.2025.103763_b31
  article-title: An efficient semi-supervised quality control system trained using physics-based MRI-artefact generators and adversarial training
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2023.103033
– start-page: 118
  year: 2021
  ident: 10.1016/j.media.2025.103763_b16
  article-title: nnU-net for brain tumor segmentation
– year: 2019
  ident: 10.1016/j.media.2025.103763_b20
– volume: 30
  start-page: 1617
  issue: 9
  year: 2011
  ident: 10.1016/j.media.2025.103763_b15
  article-title: Robust brain extraction across datasets and comparison with publicly available methods
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2138152
– start-page: 339
  year: 2024
  ident: 10.1016/j.media.2025.103763_b22
  article-title: IterMask 2: Iterative unsupervised anomaly segmentation via spatial and frequency masking for brain lesions in MRI
– start-page: 705
  year: 2022
  ident: 10.1016/j.media.2025.103763_b29
  article-title: Fast unsupervised brain anomaly detection and segmentation with diffusion models
– volume: 90
  year: 2023
  ident: 10.1016/j.media.2025.103763_b11
  article-title: Latent transformer models for out-of-distribution detection
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2023.102967
– volume: 17
  start-page: 87
  issue: 1
  year: 2002
  ident: 10.1016/j.media.2025.103763_b34
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.668698
– volume: 13
  start-page: 7303
  issue: 1
  year: 2023
  ident: 10.1016/j.media.2025.103763_b19
  article-title: Denoising diffusion probabilistic models for 3D medical image generation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-34341-2
– start-page: 289
  year: 2019
  ident: 10.1016/j.media.2025.103763_b41
  article-title: Unsupervised anomaly localization using variational auto-encoders
– volume: 69
  start-page: 529
  issue: 5
  year: 1981
  ident: 10.1016/j.media.2025.103763_b25
  article-title: The importance of phase in signals
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1981.12022
– volume: 179
  year: 2024
  ident: 10.1016/j.media.2025.103763_b10
  article-title: Deepbet: Fast brain extraction of T1-weighted MRI using convolutional neural networks
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2024.108845
– start-page: 35
  year: 2022
  ident: 10.1016/j.media.2025.103763_b37
  article-title: Diffusion models for medical anomaly detection
– volume: 33
  start-page: 6840
  year: 2020
  ident: 10.1016/j.media.2025.103763_b13
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1623
  year: 2024
  ident: 10.1016/j.media.2025.103763_b38
  article-title: Medsegdiff: Medical image segmentation with diffusion probabilistic model
– volume: 35
  start-page: 250
  year: 2017
  ident: 10.1016/j.media.2025.103763_b23
  article-title: ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.07.009
– volume: vol. 4
  start-page: 632
  year: 1979
  ident: 10.1016/j.media.2025.103763_b26
  article-title: Phase in speech and pictures
– year: 2018
  ident: 10.1016/j.media.2025.103763_b27
  article-title: Unsupervised lesion detection in brain ct using bayesian convolutional autoencoders
– volume: 208
  year: 2021
  ident: 10.1016/j.media.2025.103763_b28
  article-title: TorchIO: a python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.106236
– volume: 54
  start-page: 30
  year: 2019
  ident: 10.1016/j.media.2025.103763_b33
  article-title: f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.01.010
– volume: 36
  start-page: 61
  year: 2017
  ident: 10.1016/j.media.2025.103763_b17
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– year: 2024
  ident: 10.1016/j.media.2025.103763_b40
– volume: 4
  issue: 1
  year: 2008
  ident: 10.1016/j.media.2025.103763_b24
  article-title: K-space tutorial: an MRI educational tool for a better understanding of k-space
  publication-title: Biomed. Imaging Interv. J.
  doi: 10.2349/biij.4.1.e15
– year: 2004
  ident: 10.1016/j.media.2025.103763_b1
– start-page: 653
  year: 2022
  ident: 10.1016/j.media.2025.103763_b18
  article-title: Denoising autoencoders for unsupervised anomaly detection in brain MRI
– volume: 260
  year: 2022
  ident: 10.1016/j.media.2025.103763_b14
  article-title: SynthStrip: skull-stripping for any brain image
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119474
– volume: 28
  year: 2015
  ident: 10.1016/j.media.2025.103763_b35
  article-title: Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 44
  start-page: 417
  issue: 4
  year: 2023
  ident: 10.1016/j.media.2025.103763_b32
  article-title: Incidental findings from 16,400 brain MRI examinations of research volunteers
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A7821
– year: 2021
  ident: 10.1016/j.media.2025.103763_b3
– year: 2023
  ident: 10.1016/j.media.2025.103763_b6
– year: 2019
  ident: 10.1016/j.media.2025.103763_b9
– start-page: 304
  year: 2023
  ident: 10.1016/j.media.2025.103763_b7
  article-title: What do AEs learn? Challenging common assumptions in unsupervised anomaly detection
– volume: 66
  start-page: 31
  issue: 1
  year: 2024
  ident: 10.1016/j.media.2025.103763_b12
  article-title: A systematic review of (semi-) automatic quality control of T1-weighted MRI scans
  publication-title: Neuroradiology
  doi: 10.1007/s00234-023-03256-0
– start-page: 168
  year: 2023
  ident: 10.1016/j.media.2025.103763_b21
  article-title: Modality cycles with masked conditional diffusion for unsupervised anomaly segmentation in MRI
SSID ssj0007440
Score 2.4659224
Snippet Unsupervised anomaly detection and segmentation methods train a model to learn the training distribution as ‘normal’. In the testing phase, they identify...
Unsupervised anomaly detection and segmentation methods train a model to learn the training distribution as 'normal'. In the testing phase, they identify...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 103763
SubjectTerms 3D brain MRI
Algorithms
Anomaly detection
Brain - diagnostic imaging
Humans
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Magnetic Resonance Imaging - methods
Unsupervised anomaly segmentation
Unsupervised Machine Learning
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hDlAOiNIWllJkJI51NxvH3tBbBUWAtBygK3Gz7NhBC7veFckKceG3dyYPoEJFiGOiSTKeccbz2fMA2Mutl1J4wXG5MQhQnOPWxJYneZbEcZ5I4Sg5eXCmjofJ6aW8XICDNheGwiob21_b9MpaN3e6jTS7s9Goe9ET1KyE-vfU53mUwZ70qYvBj4enMA8qgFfnXvU4UbeVh6oYryo7A0FiLKvkcyX-tzq99D5XYHkeZub-zozHz1akozVYbVxJ9qvm9iMs-LAOK88KDK7D0qA5Ov8E5QlKcGCKG3H4kw1DMZ-RlSi8YyZMJ2Z8z5wvq7isgHccK_zVpMlLCox2axk6pSWnXvSsLsWMdpJN8IUMh4GfIGo2CkwcMkt9J9jg_OQzDI9-_zk45k3LBZ4JqUruqfyV20-j2CBOixK0Byje1MtIWIvITGRWpKZnlFORcWpfIuCSeS58HNnUx0p8gcUwDX4TmMyQTvgsTxD0IA0VAkPnTiCUV2nfRR343opaz-rKGroNObvWlWY0aUbXmumAatWh_5kgGm3_6w_utsrT-OvQeYgJfjovNA0NHUp0wTqwUWv1kROCvRKduw7wRzW_hc2t97L5FT7gVbO7sw2L5e3cf0N_p7Q71YT-C51b-yo
  priority: 102
  providerName: Elsevier
Title IterMask3D: Unsupervised anomaly detection and segmentation with test-time iterative mask refinement in 3D brain MRI
URI https://dx.doi.org/10.1016/j.media.2025.103763
https://www.ncbi.nlm.nih.gov/pubmed/40945172
https://www.proquest.com/docview/3250232584
https://doi.org/10.1016/j.media.2025.103763
UnpaywallVersion publishedVersion
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: ACRLP
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: .~1
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIKHN
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AKRWK
  dateStart: 19960301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xVgL2wMcYWwdURuIRV2kcexlvhTFaoBVCFI0ny44dxNa6FUmExsP-ds6JM41Pjac4kZPYd_74ne37HcCTXFvOmWUUpxuFBooxVKtY0yTPkjjOE86Md06ezsR4nrw-5seBZ9v7wvy0f1-fw6o9KNCQi3ntIC7YBnQFR-Ddge589m70qfGsGtI0qeMVhHQd2C2k2bDlG_rzF_82J_2OOTfhRuXW6uybWiwuzUNHtxsH76KmL_THT04HVakH2fdfyB2vWMU7cCvgUTJqGtBduGbdFmxeYincguvTsP9-D8oJqmGqilN2-IzMXVGt_VBTWEOUWy3V4owYW9aHuxw-MaSwn5fBuckRv-RLENmW1Ae0Jw2fMw62ZIkfJCgV_IXPTb44wg6J9sEryPT9ZBvmRy8_vBjTELeBZoyLklrPoWUO0ihWaOxFCQ4qCLRSyyOmNZp3LNMsVUMljIiUEQccrTae58zGkU5tLNh96LiVs7tAeIb5mM3yBC0nzOPZxBAhMqtjke6bqAdPW83JdUPPIdtzayeylqv0cpWNXHsgWu3KgDAa5CBRKf9-8XHbFiT2P7-popxdVYX0VUNUijiuBztNI7koibedOSLEHtCLVnOVYu79Z_4HcBPvwsrQQ-iUXyv7CLFSqfuwMTgf9qE7mrwZz_D66vnbj6N-6Dk_ALrEDNU
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlF6qKBQWErBSBwxm41jN-0N9aFdaHqArtSbZccOWtj1rkhWqBd-e2fyaIsqKtRrMknGM854PnseAO8L66UUXnBcbgwCFOe4NbHlSZEncVwkUjhKTs5O1XCcfD6X5ytw0OXCUFhla_sbm15b6_ZKv5VmfzGZ9L8NBDUrof49zXneA3iYyHiXENjHP9dxHlQBr0m-GnAi70oP1UFedXoGosRY1tnnSvxrebrtfq7D2jIszMVvM53eWJKOn8BG60uyTw27T2HFh01Yv1FhcBMeZe3Z-TOoRijCzJQ_xeE-G4dyuSAzUXrHTJjPzPSCOV_VgVkBrzhW-u-zNjEpMNquZeiVVpya0bOmFjMaSjbDFzIcBn6CqNkkMHHILDWeYNnX0XMYHx-dHQx523OB50Kqinuqf-X20ig2CNSiBA0Cyjf1MhLWIjQTuRWpGRjlVGSc2pOIuGRRCB9HNvWxEluwGubBvwQmc6QTPi8SRD1IQ5XA0LsTiOVVuuuiHnzoRK0XTWkN3cWc_dC1ZjRpRjea6YHq1KH_miEajf_dD77rlKfx36EDERP8fFlqGhp6lOiD9eBFo9UrTgj3SvTuesCv1Pw_bL66L5tvYW14lp3ok9Hpl214jHfarZ7XsFr9WvoddH4q-6ae3JdORP5N
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7RRaJwgEJ5LH3ISD3WKBvHJnBDUASVFiHESvRk2bGDgF3viiRC8OsZJw6i0CK4OZHj2DN-fGN7vgH4kWvLObOM4nKj0EAxhmoVa5rkWRLHecKZ8c7J_WNxOEh-n_PzwLPtfWH-Or-v72HVHhRoyMW8dhAX7ANMC47AuwPTg-OT3T-NZ1WPpkkdryCk68BuIc16Ld_Qv0v835r0EnPOwcfKTdTdrRoOn6xDBwuNg3dR0xf66yfXm1WpN7P7Z-SOb2ziJ5gPeJTsNh1oEaasW4K5JyyFSzDTD-fvn6E8QjX0VXHN9nfIwBXVxE81hTVEufFIDe-IsWV9ucvhG0MKezEKzk2O-C1fgsi2pD6gPWn4nHGyJSMskKBU8Bc-N7l0hO0T7YNXkP7p0TIMDn6d7R3SELeBZoyLklrPoWW20yhWaOxFCU4qCLRSyyOmNZp3LNMsVT0ljIiUEdscrTae58zGkU5tLNgKdNzY2TUgPMN8zGZ5gpYT5vFsYogQmdWxSLdM1IWfrebkpKHnkO29tStZy1V6ucpGrl0QrXZlQBgNcpColNc_3Gj7gsTx5w9VlLPjqpC-aYhKEcd1YbXpJI818bYzR4TYBfrYa95SzfV35v8Cs_gUdoa-Qqe8qew3xEql_h7GyAPVugi6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IterMask3D%3A+Unsupervised+anomaly+detection+and+segmentation+with+test-time+iterative+mask+refinement+in+3D+brain+MRI&rft.jtitle=Medical+image+analysis&rft.au=Liang%2C+Ziyun&rft.au=Guo%2C+Xiaoqing&rft.au=Xu%2C+Wentian&rft.au=Ibrahim%2C+Yasin&rft.date=2026-01-01&rft.issn=1361-8423&rft.eissn=1361-8423&rft.volume=107&rft.issue=Pt+A&rft.spage=103763&rft_id=info:doi/10.1016%2Fj.media.2025.103763&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon