3D extrusion bioprinting of microbial inks for biomedical applications
[Display omitted] In recent years, the field of 3D bioprinting has witnessed the intriguing development of a new type of bioink known as microbial inks. Bioinks, typically associated with mammalian cells, have been reimagined to involve microbes, enabling many new applications beyond tissue engineer...
Saved in:
Published in | Advanced drug delivery reviews Vol. 217; p. 115505 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0169-409X 1872-8294 1872-8294 |
DOI | 10.1016/j.addr.2024.115505 |
Cover
Summary: | [Display omitted]
In recent years, the field of 3D bioprinting has witnessed the intriguing development of a new type of bioink known as microbial inks. Bioinks, typically associated with mammalian cells, have been reimagined to involve microbes, enabling many new applications beyond tissue engineering and regenerative medicine. This review presents the latest advancements in microbial inks, including their definition, types, composition, salient characteristics, and biomedical applications. Herein, microbes are genetically engineered to produce 1) extrudable bioink and 2) life-like functionalities such as self-regeneration, self-healing, self-regulation, biosynthesis, biosensing, biosignaling, biosequestration, etc. We also discuss some of the promising applications of 3D extrusion printed microbial inks, such as 1) drugs and probiotics delivery, 2) metabolite production, 3) tissue engineering, 4) bioremediation, 5) biosensors and bioelectronics, 6) biominerals and biocomposites, and 7) infectious disease modeling. Finally, we describe some of the current challenges of microbial inks that needs to be addressed in the coming years, to make a greater impact in health science and technology and many other fields. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 0169-409X 1872-8294 1872-8294 |
DOI: | 10.1016/j.addr.2024.115505 |