The fractal feature and price trend in the gold future market at the Shanghai Futures Exchange (SFE)

The price of gold future is affected by many factors, which include the fluctuation of gold price and the change of trading environment. Fractal analysis can help investors gain better understandings of the price fluctuation and make reasonable investment decisions in the gold future market. After a...

Full description

Saved in:
Bibliographic Details
Published inPhysica A Vol. 474; pp. 99 - 106
Main Authors Wu, Binghui, Duan, Tingting
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.05.2017
Subjects
Online AccessGet full text
ISSN0378-4371
1873-2119
DOI10.1016/j.physa.2016.12.048

Cover

Abstract The price of gold future is affected by many factors, which include the fluctuation of gold price and the change of trading environment. Fractal analysis can help investors gain better understandings of the price fluctuation and make reasonable investment decisions in the gold future market. After analyzing gold future price from January 2th, 2014 to April 12th, 2016 at the Shanghai Futures Exchange (SFE) in China, the conclusion is drawn that the gold future market has sustainability in each trading day, with all Hurst indexes greater than 0.5. The changing features of Hurst index indicate the sustainability of gold future market is strengthened first and weakened then. As a complicatedly nonlinear system, the gold future market can be well reflected by Elman neural network, which is capable of memorizing previous prices and particularly suited for forecasting time series in comparison with other types of neural networks. After analyzing the price trend in the gold future market, the results show that the relative error between the actual value of gold future and the predictive value of Elman neural network is smaller. This model that has a better performance in data fitting and predication, can help investors analyze and foresee the price tendency in the gold future market. •The combination of fractal analysis and neural network researches the price fluctuations.•The Chinese gold future market is as research subject.•Fractal features is shown using trading data from SFE.•Elman neural network is chosen in this paper after comparing network structure.•The results show that trend reversal is not exist for Chinese gold future market.
AbstractList The price of gold future is affected by many factors, which include the fluctuation of gold price and the change of trading environment. Fractal analysis can help investors gain better understandings of the price fluctuation and make reasonable investment decisions in the gold future market. After analyzing gold future price from January 2th, 2014 to April 12th, 2016 at the Shanghai Futures Exchange (SFE) in China, the conclusion is drawn that the gold future market has sustainability in each trading day, with all Hurst indexes greater than 0.5. The changing features of Hurst index indicate the sustainability of gold future market is strengthened first and weakened then. As a complicatedly nonlinear system, the gold future market can be well reflected by Elman neural network, which is capable of memorizing previous prices and particularly suited for forecasting time series in comparison with other types of neural networks. After analyzing the price trend in the gold future market, the results show that the relative error between the actual value of gold future and the predictive value of Elman neural network is smaller. This model that has a better performance in data fitting and predication, can help investors analyze and foresee the price tendency in the gold future market. •The combination of fractal analysis and neural network researches the price fluctuations.•The Chinese gold future market is as research subject.•Fractal features is shown using trading data from SFE.•Elman neural network is chosen in this paper after comparing network structure.•The results show that trend reversal is not exist for Chinese gold future market.
Author Wu, Binghui
Duan, Tingting
Author_xml – sequence: 1
  givenname: Binghui
  surname: Wu
  fullname: Wu, Binghui
  email: vcmd@163.com
  organization: School of Economics and Management, South China Normal University, Guangzhou 510006, PR China
– sequence: 2
  givenname: Tingting
  surname: Duan
  fullname: Duan, Tingting
  organization: Department of Finance, Lanzhou University of Finance and Economics, Lanzhou 730020, PR China
BookMark eNqFkD1PwzAQhi1UJNrCL2DxCEOCP9LYGRhQ1QJSJYaW2TL2uXEpSeW4iP573JSJARaffXePpfcZoUHTNoDQNSU5JbS82-S7-tDpnKVHTllOCnmGhlQKnjFKqwEaEi5kVnBBL9Co6zaEECo4GyK7qgG7oE3UW-xAx30ArBuLd8EbwDFAuvsGx7S2brcWu32_8qHDO0SsYz9Z1rpZ19rjeT_t8OzLHFuAb5bz2e0lOnd628HVTx2j1_lsNX3KFi-Pz9OHRWb4pIxZRQSnvKykZZoZDhNpJ7Is3iqgjLBSpkM46qgoRUrNLWitGZWWCycLKwgfo-r0rwlt1wVwyvioo2-bGLTfKkrUUZfaqF6XOupSlKmkK7H8F5sMpJSHf6j7EwUp1qeHoDrjoTFgfQATlW39n_w3efiGdw
CitedBy_id crossref_primary_10_1016_j_physa_2022_128285
crossref_primary_10_1177_21582440211001866
crossref_primary_10_5937_industrija52_51865
crossref_primary_10_1109_ACCESS_2018_2842069
crossref_primary_10_1371_journal_pone_0266741
crossref_primary_10_1016_j_apenergy_2018_03_060
crossref_primary_10_1016_j_techfore_2021_120884
crossref_primary_10_1155_2021_6641298
crossref_primary_10_1016_j_future_2018_05_045
crossref_primary_10_1016_j_ins_2020_09_031
crossref_primary_10_1016_j_ribaf_2021_101495
crossref_primary_10_1088_1742_6596_1366_1_012126
crossref_primary_10_1016_j_iref_2023_05_007
crossref_primary_10_1111_acfi_12396
Cites_doi 10.1137/1010093
10.1016/j.eswa.2015.04.058
10.2469/faj.v45.n4.32
10.1108/eb043380
10.1016/j.frl.2015.12.009
10.1080/03610918.2013.786780
10.1016/j.eswa.2011.02.068
10.1109/IJCNN.2009.5178780
10.1007/s12197-008-9068-9
10.1016/j.jbankfin.2009.12.008
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physa.2016.12.048
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
EndPage 106
ExternalDocumentID 10_1016_j_physa_2016_12_048
S0378437116310342
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
AAFFL
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AGQPQ
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNTGB
BPUDD
BULVW
BZJEE
CITATION
EFKBS
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
SPG
VOH
WUQ
XJT
XOL
YYP
ZY4
~HD
ID FETCH-LOGICAL-c356t-907313698d2a2c3e58d5864b9e1202682027f1f17671013deaaa218d37f84d703
IEDL.DBID .~1
ISSN 0378-4371
IngestDate Wed Oct 01 02:17:25 EDT 2025
Thu Apr 24 22:53:43 EDT 2025
Fri Feb 23 02:35:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords SFE
Neural network
Hurst index
Gold future
Fractal analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-907313698d2a2c3e58d5864b9e1202682027f1f17671013deaaa218d37f84d703
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_physa_2016_12_048
crossref_primary_10_1016_j_physa_2016_12_048
elsevier_sciencedirect_doi_10_1016_j_physa_2016_12_048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-15
PublicationDateYYYYMMDD 2017-05-15
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-15
  day: 15
PublicationDecade 2010
PublicationTitle Physica A
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Baur, Mc Dermott (br000005) 2010; 34
Peters (br000095) 1989; 45
Mandelbrot, Van Ness (br000055) 1968; 10
Auer (br000065) 2015; 16
Guresen, Kayakutlu, Daim (br000080) 2011; 38
Chen, Chen, Chiu (br000090) 2015; 45
Zhang, Xu, Chen (br000025) 2007; 7
Xu, Ren (br000015) 2014; 2
Mandelbrot (br000060) 1983
E.J. Levin, R.E. Wright, Short-run and long-run determinants of the price of gold, Working paper, World Gold Council. 2006.
Pantisa, Piyamas (br000045) 2010; 34
br000100
Levin, Ghosh, MacMillan, Wright (br000020) 2004; 22
Chen, Chen, Feng (br000050) 2012; 7
A.G. Malliaris, M. Malliaris, Time series and neural networks comparison on gold, oil and the Euro, in: Proceedings of International Joint Conference on Neural Networks, Atlanta, Georgia, USA, June 14–19, 2009, pp. 1961–1967.
Jonathan, Brian (br000040) 2007
Yin, Zhang, Zhang (br000070) 2013; 16
Wang, Guo (br000075) 2015; 34
Wang (br000030) 2010; 11
Kristjanpoller, Minutolo (br000085) 2015; 42
Xu (10.1016/j.physa.2016.12.048_br000015) 2014; 2
Wang (10.1016/j.physa.2016.12.048_br000030) 2010; 11
Pantisa (10.1016/j.physa.2016.12.048_br000045) 2010; 34
Levin (10.1016/j.physa.2016.12.048_br000020) 2004; 22
Mandelbrot (10.1016/j.physa.2016.12.048_br000055) 1968; 10
Kristjanpoller (10.1016/j.physa.2016.12.048_br000085) 2015; 42
Chen (10.1016/j.physa.2016.12.048_br000050) 2012; 7
Guresen (10.1016/j.physa.2016.12.048_br000080) 2011; 38
Jonathan (10.1016/j.physa.2016.12.048_br000040) 2007
Mandelbrot (10.1016/j.physa.2016.12.048_br000060) 1983
Zhang (10.1016/j.physa.2016.12.048_br000025) 2007; 7
Auer (10.1016/j.physa.2016.12.048_br000065) 2015; 16
Wang (10.1016/j.physa.2016.12.048_br000075) 2015; 34
10.1016/j.physa.2016.12.048_br000035
Baur (10.1016/j.physa.2016.12.048_br000005) 2010; 34
Yin (10.1016/j.physa.2016.12.048_br000070) 2013; 16
Peters (10.1016/j.physa.2016.12.048_br000095) 1989; 45
10.1016/j.physa.2016.12.048_br000010
Chen (10.1016/j.physa.2016.12.048_br000090) 2015; 45
References_xml – volume: 45
  start-page: 1213
  year: 2015
  end-page: 1225
  ident: br000090
  article-title: The integration of artificial neural networks and text mining to forecast gold futures prices
  publication-title: Comm. Statist. Simulation Comput.
– volume: 10
  start-page: 422
  year: 1968
  end-page: 437
  ident: br000055
  article-title: Fractional Brownian motions, fractional noises and applications
  publication-title: SIAM Rev.
– start-page: 101
  year: 2007
  end-page: 103
  ident: br000040
  article-title: Volatility in the gold futures market
  publication-title: Institute for International Integration Studies
– ident: br000100
– volume: 2
  start-page: 64
  year: 2014
  end-page: 67
  ident: br000015
  article-title: An empirical analysis on the correlation between gold price and CPI
  publication-title: Econ. Probl.
– volume: 38
  start-page: 10389
  year: 2011
  end-page: 10397
  ident: br000080
  article-title: Using artificial neural network models in stock market index prediction
  publication-title: Expert Syst. Appl.
– year: 1983
  ident: br000060
  article-title: The Fractal Geometry of Nature, Vol. 173
– volume: 7
  start-page: 35
  year: 2007
  end-page: 39
  ident: br000025
  article-title: An empirical study on the relationship between prices of petroleum and gold industry
  publication-title: Res. Financ. Econ. Issues
– volume: 16
  start-page: 144
  year: 2013
  end-page: 163
  ident: br000070
  article-title: Fractal analysis of the gold market in China
  publication-title: Roman. J. Econ. Forecast.
– volume: 34
  start-page: 455
  year: 2010
  end-page: 467
  ident: br000045
  article-title: Price discovery in the Indian gold futures market
  publication-title: J. Econ. Financ.
– volume: 42
  start-page: 7245
  year: 2015
  end-page: 7251
  ident: br000085
  article-title: Gold price volatility: A forecasting approach using the artificial neural network-GARCH model
  publication-title: Expert Syst. Appl.
– reference: E.J. Levin, R.E. Wright, Short-run and long-run determinants of the price of gold, Working paper, World Gold Council. 2006.
– volume: 22
  start-page: 1
  year: 2004
  end-page: 25
  ident: br000020
  article-title: Gold as an inflation hedge?
  publication-title: Stud. Econ. Financ.
– reference: A.G. Malliaris, M. Malliaris, Time series and neural networks comparison on gold, oil and the Euro, in: Proceedings of International Joint Conference on Neural Networks, Atlanta, Georgia, USA, June 14–19, 2009, pp. 1961–1967.
– volume: 45
  start-page: 32
  year: 1989
  end-page: 37
  ident: br000095
  article-title: Fractal structure in the capital markets
  publication-title: Financ. Anal. J.
– volume: 7
  start-page: 19
  year: 2012
  end-page: 25
  ident: br000050
  article-title: Price discovery function of China’s gold futures market
  publication-title: Zhejiang Soc. Sci.
– volume: 34
  start-page: 1
  year: 2015
  end-page: 16
  ident: br000075
  article-title: Multifractal analysis for the cross-correlation between the international gold futures prices and US dollar indexes
  publication-title: J. Appl. Stat. Manag.
– volume: 34
  start-page: 1886
  year: 2010
  end-page: 1898
  ident: br000005
  article-title: Is gold a safe heaven? International evidence
  publication-title: J. Bank. Finance
– volume: 16
  start-page: 255
  year: 2015
  end-page: 267
  ident: br000065
  article-title: On the performance of simple trading rules derived from the fractal dynamics of gold and silver price fluctuations
  publication-title: Finance Res. Lett.
– volume: 11
  start-page: 25
  year: 2010
  end-page: 26
  ident: br000030
  article-title: An empirical analysis between gold price and crude price
  publication-title: Econ. Forum
– volume: 11
  start-page: 25
  year: 2010
  ident: 10.1016/j.physa.2016.12.048_br000030
  article-title: An empirical analysis between gold price and crude price
  publication-title: Econ. Forum
– volume: 10
  start-page: 422
  issue: 4
  year: 1968
  ident: 10.1016/j.physa.2016.12.048_br000055
  article-title: Fractional Brownian motions, fractional noises and applications
  publication-title: SIAM Rev.
  doi: 10.1137/1010093
– volume: 42
  start-page: 7245
  issue: 20
  year: 2015
  ident: 10.1016/j.physa.2016.12.048_br000085
  article-title: Gold price volatility: A forecasting approach using the artificial neural network-GARCH model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.04.058
– start-page: 101
  year: 2007
  ident: 10.1016/j.physa.2016.12.048_br000040
  article-title: Volatility in the gold futures market
– volume: 45
  start-page: 32
  issue: 4
  year: 1989
  ident: 10.1016/j.physa.2016.12.048_br000095
  article-title: Fractal structure in the capital markets
  publication-title: Financ. Anal. J.
  doi: 10.2469/faj.v45.n4.32
– volume: 22
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.physa.2016.12.048_br000020
  article-title: Gold as an inflation hedge?
  publication-title: Stud. Econ. Financ.
  doi: 10.1108/eb043380
– year: 1983
  ident: 10.1016/j.physa.2016.12.048_br000060
– volume: 16
  start-page: 255
  year: 2015
  ident: 10.1016/j.physa.2016.12.048_br000065
  article-title: On the performance of simple trading rules derived from the fractal dynamics of gold and silver price fluctuations
  publication-title: Finance Res. Lett.
  doi: 10.1016/j.frl.2015.12.009
– volume: 16
  start-page: 144
  issue: 3
  year: 2013
  ident: 10.1016/j.physa.2016.12.048_br000070
  article-title: Fractal analysis of the gold market in China
  publication-title: Roman. J. Econ. Forecast.
– volume: 45
  start-page: 1213
  issue: 4
  year: 2015
  ident: 10.1016/j.physa.2016.12.048_br000090
  article-title: The integration of artificial neural networks and text mining to forecast gold futures prices
  publication-title: Comm. Statist. Simulation Comput.
  doi: 10.1080/03610918.2013.786780
– volume: 34
  start-page: 1
  issue: 199
  year: 2015
  ident: 10.1016/j.physa.2016.12.048_br000075
  article-title: Multifractal analysis for the cross-correlation between the international gold futures prices and US dollar indexes
  publication-title: J. Appl. Stat. Manag.
– volume: 38
  start-page: 10389
  issue: 8
  year: 2011
  ident: 10.1016/j.physa.2016.12.048_br000080
  article-title: Using artificial neural network models in stock market index prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.068
– volume: 2
  start-page: 64
  year: 2014
  ident: 10.1016/j.physa.2016.12.048_br000015
  article-title: An empirical analysis on the correlation between gold price and CPI
  publication-title: Econ. Probl.
– volume: 7
  start-page: 35
  year: 2007
  ident: 10.1016/j.physa.2016.12.048_br000025
  article-title: An empirical study on the relationship between prices of petroleum and gold industry
  publication-title: Res. Financ. Econ. Issues
– ident: 10.1016/j.physa.2016.12.048_br000035
  doi: 10.1109/IJCNN.2009.5178780
– volume: 34
  start-page: 455
  year: 2010
  ident: 10.1016/j.physa.2016.12.048_br000045
  article-title: Price discovery in the Indian gold futures market
  publication-title: J. Econ. Financ.
  doi: 10.1007/s12197-008-9068-9
– ident: 10.1016/j.physa.2016.12.048_br000010
– volume: 34
  start-page: 1886
  issue: 8
  year: 2010
  ident: 10.1016/j.physa.2016.12.048_br000005
  article-title: Is gold a safe heaven? International evidence
  publication-title: J. Bank. Finance
  doi: 10.1016/j.jbankfin.2009.12.008
– volume: 7
  start-page: 19
  year: 2012
  ident: 10.1016/j.physa.2016.12.048_br000050
  article-title: Price discovery function of China’s gold futures market
  publication-title: Zhejiang Soc. Sci.
SSID ssj0001732
Score 2.2963161
Snippet The price of gold future is affected by many factors, which include the fluctuation of gold price and the change of trading environment. Fractal analysis can...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 99
SubjectTerms Fractal analysis
Gold future
Hurst index
Neural network
SFE
Title The fractal feature and price trend in the gold future market at the Shanghai Futures Exchange (SFE)
URI https://dx.doi.org/10.1016/j.physa.2016.12.048
Volume 474
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCF7EJ77JwYOCdc27PcqyZVX0si7sraRNoitrd9EKnvztZtLWB8gevDYZCJNkZjL95huEjoVNgCeNRE6QOOLMyih2lkWxEbHJtbIksOvf3sn-kF-PxGgBddtaGIBVNra_tunBWjdfOo02O7PxuDO4YCrmTBEfURAgsoMKdq6gi8H5xzfMgyhW_0lQsBRFWuahgPGC7AGQDxEZcoLQBOgv7_TD46RraLUJFfFlvZp1tGDLDbQcIJvF6yYyfoexgyInP8nZQNCJdWnwDHiCcAVgVzwusY_w8MN0YnBNH4KfQ50z1lUYGUDC-FGPcRpGX3Hvva4FxieDtHe6hYZp777bj5qeCVHBhKwi_9ZlhMkkNlTTglkBSpc8Tyyh_rkVQ67DEUeU9KEFYcZqrb2XN0y5mBt__bfRYjkt7Q7C3Pm7q6VgVOXcaZtfGJpwSpXW0vFC7CLa6iorGkJx6GsxyVrk2FMWFJyBgjNCM6_gXXT2JTSr-TTmT5ftJmS_jkXmLf48wb3_Cu6jFQqeGwhaxQFarF7e7KGPO6r8KBysI7R0eXXTv_sEQ2fVXQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA46InoRV9zNwYOCdczeOYrMMK6XUfAW0ibREa2DU8GTv928tHUB8eC1yYPwkryt3_uC0K5wHeBJI4kXJE04czJJvWNJakVqM6Mciez6l1eyf8PPbsXtBDppemEAVlnb_sqmR2tdf2nX2myPhsP24IiplDNFQkRBgMhuEk1xQRVkYIfvXzgPolj1K0HBWhRpqIciyAvKB8A-RGQsCsIrQL-5p28upzeP5upYER9Xy1lAE65YRNMRs5mPl5ANW4w9dDmFSd5Fhk5sCotHQBSES0C74mGBQ4iH754fLa74Q_BTbHTGpowjA6gY35sh7sXRMe6-Vc3AeG_Q6-4vo5te9_qkn9SPJiQ5E7JMQrLLCJOd1FJDc-YEaF3yrOMIDflWCsUOTzxRMsQWhFlnjAlu3jLlU27D_V9BreK5cKsIcx8ur5GCUZVxb1x2ZGmHU6qMkZ7nYg3RRlc6rxnF4WGLR91Axx50VLAGBWtCdVDwGjr4FBpVhBp_T5fNJugf50IHk_-X4Pp_BXfQTP_68kJfnF6db6BZCm4c2FrFJmqVL69uKwQhZbYdD9kHW_rW8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+fractal+feature+and+price+trend+in+the+gold+future+market+at+the+Shanghai+Futures+Exchange+%28SFE%29&rft.jtitle=Physica+A&rft.au=Wu%2C+Binghui&rft.au=Duan%2C+Tingting&rft.date=2017-05-15&rft.pub=Elsevier+B.V&rft.issn=0378-4371&rft.eissn=1873-2119&rft.volume=474&rft.spage=99&rft.epage=106&rft_id=info:doi/10.1016%2Fj.physa.2016.12.048&rft.externalDocID=S0378437116310342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon