Dynamic reconfiguration of brain functional networks in world class gymnasts: a resting-state functional MRI study

Long-term intensive training has enabled world class gymnasts to attain exceptional skill levels, inducing notable neuroplastic changes in their brains. Previous studies have identified optimized brain modularity related to long-term intensive training based on resting-state functional MRI, which is...

Full description

Saved in:
Bibliographic Details
Published inBrain communications Vol. 7; no. 2; p. fcaf083
Main Authors Cao, Bolin, Guo, Yu, Xia, Fengguang, Li, Lunxiong, Ren, Zhanbing, Lu, Min, Wang, Jun, Huang, Ruiwang
Format Journal Article
LanguageEnglish
Published England Oxford University Press 2025
Subjects
Online AccessGet full text
ISSN2632-1297
2632-1297
DOI10.1093/braincomms/fcaf083

Cover

Abstract Long-term intensive training has enabled world class gymnasts to attain exceptional skill levels, inducing notable neuroplastic changes in their brains. Previous studies have identified optimized brain modularity related to long-term intensive training based on resting-state functional MRI, which is associated with higher efficiency in motor and cognitive functions. However, most studies assumed that functional topological networks remain static during the scans, neglecting the inherent dynamic changes over time. This study applied a multilayer network model to identify the effect of long-term intensive training on dynamic functional network properties in gymnasts. The imaging data were collected from 13 gymnasts and 14 age- and gender-matched non-athlete controls. We first construct dynamic functional connectivity matrices for each subject to capture the temporal information underlying these brain signals. Then, we applied a multilayer community detection approach to analyse how brain regions form modules and how this modularity changes over time. Graph theoretical parameters, including flexibility, promiscuity, cohesion and disjointedness, were estimated to characterize the dynamic properties of functional networks across global, network, and nodal levels in the gymnasts. The gymnasts showed significantly lower flexibility, cohesion and disjointedness at the global level than the controls. Then, we observed lower flexibility and cohesion in the auditory, dorsal attention, sensorimotor, subcortical, cingulo-opercular and default mode networks in the gymnasts than in the controls. Furthermore, these gymnasts showed decreased flexibility and cohesion in several regions associated with motor function. Together, we found brain functional neuroplasticity related to long-term intensive training, primarily characterized by decreased flexibility of brain dynamics in the gymnasts, which provided new insights into brain reorganization in motor skill learning.
AbstractList Long-term intensive training has enabled world class gymnasts to attain exceptional skill levels, inducing notable neuroplastic changes in their brains. Previous studies have identified optimized brain modularity related to long-term intensive training based on resting-state functional MRI, which is associated with higher efficiency in motor and cognitive functions. However, most studies assumed that functional topological networks remain static during the scans, neglecting the inherent dynamic changes over time. This study applied a multilayer network model to identify the effect of long-term intensive training on dynamic functional network properties in gymnasts. The imaging data were collected from 13 gymnasts and 14 age- and gender-matched non-athlete controls. We first construct dynamic functional connectivity matrices for each subject to capture the temporal information underlying these brain signals. Then, we applied a multilayer community detection approach to analyse how brain regions form modules and how this modularity changes over time. Graph theoretical parameters, including flexibility, promiscuity, cohesion and disjointedness, were estimated to characterize the dynamic properties of functional networks across global, network, and nodal levels in the gymnasts. The gymnasts showed significantly lower flexibility, cohesion and disjointedness at the global level than the controls. Then, we observed lower flexibility and cohesion in the auditory, dorsal attention, sensorimotor, subcortical, cingulo-opercular and default mode networks in the gymnasts than in the controls. Furthermore, these gymnasts showed decreased flexibility and cohesion in several regions associated with motor function. Together, we found brain functional neuroplasticity related to long-term intensive training, primarily characterized by decreased flexibility of brain dynamics in the gymnasts, which provided new insights into brain reorganization in motor skill learning. Cao et al. report the properties of network dynamic reconfiguration in world class gymnasts by using a multilayer network analysis and found decreased flexibility across multiple scales compared with non-athlete controls. This result suggests that long-term intensive training may promote a more stable and efficient brain functional configuration. Graphical Abstract
Long-term intensive training has enabled world class gymnasts to attain exceptional skill levels, inducing notable neuroplastic changes in their brains. Previous studies have identified optimized brain modularity related to long-term intensive training based on resting-state functional MRI, which is associated with higher efficiency in motor and cognitive functions. However, most studies assumed that functional topological networks remain static during the scans, neglecting the inherent dynamic changes over time. This study applied a multilayer network model to identify the effect of long-term intensive training on dynamic functional network properties in gymnasts. The imaging data were collected from 13 gymnasts and 14 age- and gender-matched non-athlete controls. We first construct dynamic functional connectivity matrices for each subject to capture the temporal information underlying these brain signals. Then, we applied a multilayer community detection approach to analyse how brain regions form modules and how this modularity changes over time. Graph theoretical parameters, including flexibility, promiscuity, cohesion and disjointedness, were estimated to characterize the dynamic properties of functional networks across global, network, and nodal levels in the gymnasts. The gymnasts showed significantly lower flexibility, cohesion and disjointedness at the global level than the controls. Then, we observed lower flexibility and cohesion in the auditory, dorsal attention, sensorimotor, subcortical, cingulo-opercular and default mode networks in the gymnasts than in the controls. Furthermore, these gymnasts showed decreased flexibility and cohesion in several regions associated with motor function. Together, we found brain functional neuroplasticity related to long-term intensive training, primarily characterized by decreased flexibility of brain dynamics in the gymnasts, which provided new insights into brain reorganization in motor skill learning.Long-term intensive training has enabled world class gymnasts to attain exceptional skill levels, inducing notable neuroplastic changes in their brains. Previous studies have identified optimized brain modularity related to long-term intensive training based on resting-state functional MRI, which is associated with higher efficiency in motor and cognitive functions. However, most studies assumed that functional topological networks remain static during the scans, neglecting the inherent dynamic changes over time. This study applied a multilayer network model to identify the effect of long-term intensive training on dynamic functional network properties in gymnasts. The imaging data were collected from 13 gymnasts and 14 age- and gender-matched non-athlete controls. We first construct dynamic functional connectivity matrices for each subject to capture the temporal information underlying these brain signals. Then, we applied a multilayer community detection approach to analyse how brain regions form modules and how this modularity changes over time. Graph theoretical parameters, including flexibility, promiscuity, cohesion and disjointedness, were estimated to characterize the dynamic properties of functional networks across global, network, and nodal levels in the gymnasts. The gymnasts showed significantly lower flexibility, cohesion and disjointedness at the global level than the controls. Then, we observed lower flexibility and cohesion in the auditory, dorsal attention, sensorimotor, subcortical, cingulo-opercular and default mode networks in the gymnasts than in the controls. Furthermore, these gymnasts showed decreased flexibility and cohesion in several regions associated with motor function. Together, we found brain functional neuroplasticity related to long-term intensive training, primarily characterized by decreased flexibility of brain dynamics in the gymnasts, which provided new insights into brain reorganization in motor skill learning.
Long-term intensive training has enabled world class gymnasts to attain exceptional skill levels, inducing notable neuroplastic changes in their brains. Previous studies have identified optimized brain modularity related to long-term intensive training based on resting-state functional MRI, which is associated with higher efficiency in motor and cognitive functions. However, most studies assumed that functional topological networks remain static during the scans, neglecting the inherent dynamic changes over time. This study applied a multilayer network model to identify the effect of long-term intensive training on dynamic functional network properties in gymnasts. The imaging data were collected from 13 gymnasts and 14 age- and gender-matched non-athlete controls. We first construct dynamic functional connectivity matrices for each subject to capture the temporal information underlying these brain signals. Then, we applied a multilayer community detection approach to analyse how brain regions form modules and how this modularity changes over time. Graph theoretical parameters, including flexibility, promiscuity, cohesion and disjointedness, were estimated to characterize the dynamic properties of functional networks across global, network, and nodal levels in the gymnasts. The gymnasts showed significantly lower flexibility, cohesion and disjointedness at the global level than the controls. Then, we observed lower flexibility and cohesion in the auditory, dorsal attention, sensorimotor, subcortical, cingulo-opercular and default mode networks in the gymnasts than in the controls. Furthermore, these gymnasts showed decreased flexibility and cohesion in several regions associated with motor function. Together, we found brain functional neuroplasticity related to long-term intensive training, primarily characterized by decreased flexibility of brain dynamics in the gymnasts, which provided new insights into brain reorganization in motor skill learning.
Author Cao, Bolin
Guo, Yu
Xia, Fengguang
Li, Lunxiong
Lu, Min
Huang, Ruiwang
Wang, Jun
Ren, Zhanbing
Author_xml – sequence: 1
  givenname: Bolin
  surname: Cao
  fullname: Cao, Bolin
– sequence: 2
  givenname: Yu
  surname: Guo
  fullname: Guo, Yu
– sequence: 3
  givenname: Fengguang
  surname: Xia
  fullname: Xia, Fengguang
– sequence: 4
  givenname: Lunxiong
  surname: Li
  fullname: Li, Lunxiong
– sequence: 5
  givenname: Zhanbing
  surname: Ren
  fullname: Ren, Zhanbing
– sequence: 6
  givenname: Min
  surname: Lu
  fullname: Lu, Min
– sequence: 7
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
– sequence: 8
  givenname: Ruiwang
  orcidid: 0000-0003-3889-169X
  surname: Huang
  fullname: Huang, Ruiwang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40066110$$D View this record in MEDLINE/PubMed
BookMark eNqNUUtv1DAQtqqivugf4IB87CXUj8RJuKCqQKlUhITK2Zr4sRgSe7GdVvn3uN2Fbm-9jEcz30P-5hjt--ANQm8oeUdJz8-HCM6rME3p3CqwpON76IgJzirK-nZ_pz9Epyn9IoSwpm543x2gw5oQISglRyh-XDxMTuFoVPDWreYI2QWPg8WPFtjOXj1MYMTe5PsQfydcxqUZNVYjpIRXy-Qh5fQeQ9FJ2flVlTJks0v--v0apzzr5TV6ZWFM5nT7nqAfnz_dXn6pbr5dXV9e3FSKNyJXgoqhHhQAkK4ZWqFrI4S2ltm201o0yrS9HrjSTNT9wGvGGtOWVWF1g9KWnyC-0Z39GpZ7GEe5jm6CuEhK5EOI8ilEuQ2xsD5sWOt5mIxWxucIT8wATj7fePdTrsKdpLTraUNZUTjbKsTwZy5xyMklZcYRvAlzkpy2Td-W2hXo212z_y7_7lMAbANQMaQUjX3JF_4ClFOuIQ
Cites_doi 10.1038/ncomms13217
10.1146/annurev-psych-122414-033634
10.5114/biolsport.2020.96855
10.1038/nn.3993
10.1093/braincomms/fcad143
10.1016/j.neuroscience.2023.08.020
10.1016/j.neuroimage.2017.12.093
10.1007/s12021-016-9299-4
10.1016/j.tics.2019.01.014
10.1016/j.neuron.2006.11.001
10.1073/pnas.2111358118
10.3389/fnbeh.2017.00072
10.1016/j.humov.2009.07.001
10.1016/j.neuroimage.2017.06.081
10.1016/j.neuroimage.2013.05.079
10.1016/j.brainres.2024.148889
10.1038/nrn2672
10.1016/j.neuroimage.2016.05.078
10.1103/PhysRevE.94.032908
10.1002/hbm.26057
10.1007/s00429-015-1116-6
10.1073/pnas.1018985108
10.3389/fnhum.2019.00006
10.1016/j.neuroimage.2011.10.018
10.1177/1073858412440596
10.1097/MOP.0b013e3283659087
10.1007/s11682-020-00331-5
10.1038/nrn3214
10.1093/cercor/bhs352
10.1093/cercor/bhae076
10.3389/fspor.2024.1393988
10.1523/JNEUROSCI.5894-08.2010
10.1371/journal.pcbi.1003171
10.3389/fnbeh.2021.698555
10.1093/braincomms/fcad069
10.1093/cercor/bhp247
10.1007/s00429-017-1479-y
10.1063/1.4790830
10.1002/mrm.1910350312
10.1016/j.neuron.2011.09.006
10.1007/s00429-019-01867-z
10.1109/JPROC.2017.2786710
10.1093/cercor/bhac378
10.1126/science.1184819
10.1038/nrn2575
10.1016/j.psychsport.2024.102678
10.1002/hbm.23699
10.1038/nn.3470
10.1016/j.tins.2011.02.001
10.1073/pnas.1422487112
10.1097/WNN.0000000000000043
10.1016/j.neuroimage.2016.12.061
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press on behalf of the Guarantors of Brain.
The Author(s) 2025. Published by Oxford University Press on behalf of the Guarantors of Brain. 2025
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press on behalf of the Guarantors of Brain.
– notice: The Author(s) 2025. Published by Oxford University Press on behalf of the Guarantors of Brain. 2025
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/braincomms/fcaf083
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2632-1297
ExternalDocumentID 10.1093/braincomms/fcaf083
PMC11891512
40066110
10_1093_braincomms_fcaf083
Genre Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: 32371101; 82171914
– fundername: ;
  grantid: 2023B0303020002
– fundername: ;
  grantid: 2018YFC1705006
– fundername: ;
  grantid: 2022A1515011022
GroupedDBID 0R~
53G
AAFWJ
AAPXW
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABXVV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMNDL
CITATION
EBS
EMOBN
GROUPED_DOAJ
KSI
M~E
OK1
RPM
TOX
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c356t-616b4bcaaa085b76d4e66dff2f78dd65ce79db3cd2649b34225e778d6b48bcdf3
IEDL.DBID UNPAY
ISSN 2632-1297
IngestDate Sun Oct 26 04:13:57 EDT 2025
Tue Sep 30 17:04:39 EDT 2025
Fri Jul 11 12:22:36 EDT 2025
Thu Mar 13 03:47:30 EDT 2025
Wed Oct 01 06:35:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords motor skill learning
multilayer network
modularity
neuroplasticity
temporal core-periphery organization
Language English
License https://creativecommons.org/licenses/by/4.0
The Author(s) 2025. Published by Oxford University Press on behalf of the Guarantors of Brain.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-616b4bcaaa085b76d4e66dff2f78dd65ce79db3cd2649b34225e778d6b48bcdf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3889-169X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/braincomms/fcaf083
PMID 40066110
PQID 3175973178
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1093_braincomms_fcaf083
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11891512
proquest_miscellaneous_3175973178
pubmed_primary_40066110
crossref_primary_10_1093_braincomms_fcaf083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: UK
PublicationTitle Brain communications
PublicationTitleAlternate Brain Commun
PublicationYear 2025
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Seghier (2025032523025788400_fcaf083-B53) 2013; 19
Arbabyazd (2025032523025788400_fcaf083-B15) 2023; 7
Bassett (2025032523025788400_fcaf083-B24) 2015; 18
Harlalka (2025032523025788400_fcaf083-B37) 2019; 13
Telesford (2025032523025788400_fcaf083-B21) 2017; 38
Guo (2025032523025788400_fcaf083-B32) 2023; 5
Papadopoulos (2025032523025788400_fcaf083-B40) 2016; 94
Yan (2025032523025788400_fcaf083-B6) 2024; 34
Zheng (2025032523025788400_fcaf083-B18) 2024; 1838
Yarrow (2025032523025788400_fcaf083-B2) 2009; 10
Guo (2025032523025788400_fcaf083-B45) 2017; 11
Li (2025032523025788400_fcaf083-B48) 2021; 15
Huang (2025032523025788400_fcaf083-B5) 2017; 223
Preti (2025032523025788400_fcaf083-B41) 2017; 160
Newell (2025032523025788400_fcaf083-B44) 2009; 28
Mohr (2025032523025788400_fcaf083-B33) 2016; 7
Guth (2025032523025788400_fcaf083-B55) 2013; 25
Zhang (2025032523025788400_fcaf083-B7) 2024; 6
Di Cesare (2025032523025788400_fcaf083-B52) 2021; 118
Mucha (2025032523025788400_fcaf083-B20) 2010; 328
Gao (2025032523025788400_fcaf083-B47) 2023; 44
Garcia (2025032523025788400_fcaf083-B30) 2018; 106
Shi (2025032523025788400_fcaf083-B54) 2020; 37
Telesford (2025032523025788400_fcaf083-B36) 2016; 142
Gallen (2025032523025788400_fcaf083-B10) 2019; 23
Bullmore (2025032523025788400_fcaf083-B4) 2012; 13
Li (2025032523025788400_fcaf083-B25) 2019; 224
Hart (2025032523025788400_fcaf083-B8) 2010; 30
Bassett (2025032523025788400_fcaf083-B9) 2011; 108
Fu (2025032523025788400_fcaf083-B49) 2011; 34
Sporns (2025032523025788400_fcaf083-B12) 2016; 67
Standage (2025032523025788400_fcaf083-B13) 2023; 33
Allen (2025032523025788400_fcaf083-B14) 2014; 24
Bassett (2025032523025788400_fcaf083-B39) 2013; 9
Reddy (2025032523025788400_fcaf083-B42) 2018; 171
Bassett (2025032523025788400_fcaf083-B23) 2013; 23
Sizemore (2025032523025788400_fcaf083-B38) 2018; 180
Hutchison (2025032523025788400_fcaf083-B16) 2013; 80
Braun (2025032523025788400_fcaf083-B26) 2015; 112
Wang (2025032523025788400_fcaf083-B1) 2016; 221
Gao (2025032523025788400_fcaf083-B19) 2021; 15
Callan (2025032523025788400_fcaf083-B46) 2014; 27
Bullmore (2025032523025788400_fcaf083-B3) 2009; 10
Cao (2025032523025788400_fcaf083-B35) 2024; 74
Karmarkar (2025032523025788400_fcaf083-B50) 2006; 52
Yan (2025032523025788400_fcaf083-B27) 2016; 14
Ghahremani (2025032523025788400_fcaf083-B43) 2010; 20
Cole (2025032523025788400_fcaf083-B34) 2013; 16
von Schwanenflug (2025032523025788400_fcaf083-B22) 2023; 5
Power (2025032523025788400_fcaf083-B29) 2012; 59
Power (2025032523025788400_fcaf083-B31) 2011; 72
Raju (2025032523025788400_fcaf083-B51) 2025
Fornito (2025032523025788400_fcaf083-B11) 2016
Li (2025032523025788400_fcaf083-B17) 2023; 530
Friston (2025032523025788400_fcaf083-B28) 1996; 35
References_xml – volume: 7
  start-page: 13217
  year: 2016
  ident: 2025032523025788400_fcaf083-B33
  article-title: Integration and segregation of large-scale brain networks during short-term task automatization
  publication-title: Nat Commun
  doi: 10.1038/ncomms13217
– volume: 67
  start-page: 613
  year: 2016
  ident: 2025032523025788400_fcaf083-B12
  article-title: Modular brain networks
  publication-title: Annu Rev Psychol
  doi: 10.1146/annurev-psych-122414-033634
– volume: 37
  start-page: 405
  issue: 4
  year: 2020
  ident: 2025032523025788400_fcaf083-B54
  article-title: Effect of different motor skills training on motor control network in the frontal lobe and basal ganglia
  publication-title: Biol Sport
  doi: 10.5114/biolsport.2020.96855
– volume: 18
  start-page: 744
  issue: 5
  year: 2015
  ident: 2025032523025788400_fcaf083-B24
  article-title: Learning-induced autonomy of sensorimotor systems
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3993
– volume: 5
  start-page: fcad143
  issue: 3
  year: 2023
  ident: 2025032523025788400_fcaf083-B22
  article-title: Increased flexibility of brain dynamics in patients with multiple sclerosis
  publication-title: Brain Commun
  doi: 10.1093/braincomms/fcad143
– volume: 530
  start-page: 133
  year: 2023
  ident: 2025032523025788400_fcaf083-B17
  article-title: Long-term intensive soccer training induced dynamic reconfiguration of brain network
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2023.08.020
– volume: 171
  start-page: 135
  year: 2018
  ident: 2025032523025788400_fcaf083-B42
  article-title: Brain state flexibility accompanies motor-skill acquisition
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.12.093
– volume: 14
  start-page: 339
  issue: 3
  year: 2016
  ident: 2025032523025788400_fcaf083-B27
  article-title: DPABI: Data processing & analysis for (resting-state) brain imaging
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-016-9299-4
– volume: 23
  start-page: 293
  issue: 4
  year: 2019
  ident: 2025032523025788400_fcaf083-B10
  article-title: Brain modularity: A biomarker of intervention-related plasticity
  publication-title: Trends Cogn Sci.
  doi: 10.1016/j.tics.2019.01.014
– volume: 7
  start-page: 1420
  issue: 4
  year: 2023
  ident: 2025032523025788400_fcaf083-B15
  article-title: State-switching and high-order spatiotemporal organization of dynamic functional connectivity are disrupted by Alzheimer’s disease
  publication-title: Netw Neurosci
– volume: 52
  start-page: 577
  issue: 4
  year: 2006
  ident: 2025032523025788400_fcaf083-B50
  article-title: Experience-dependent plasticity in adult visual cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.11.001
– volume: 118
  start-page: e2111358118
  issue: 44
  year: 2021
  ident: 2025032523025788400_fcaf083-B52
  article-title: The middle cingulate cortex and dorso-central insula: A mirror circuit encoding observation and execution of vitality forms
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.2111358118
– volume: 11
  start-page: 72
  year: 2017
  ident: 2025032523025788400_fcaf083-B45
  article-title: Neural efficiency” of athletes’ brain during visuo-spatial task: An fMRI study on table tennis players
  publication-title: Front Behav Neurosci
  doi: 10.3389/fnbeh.2017.00072
– volume: 28
  start-page: 655
  issue: 6
  year: 2009
  ident: 2025032523025788400_fcaf083-B44
  article-title: Adaptation and learning: Characteristic time scales of performance dynamics
  publication-title: Hum Mov Sci
  doi: 10.1016/j.humov.2009.07.001
– volume: 180
  start-page: 417
  year: 2018
  ident: 2025032523025788400_fcaf083-B38
  article-title: Dynamic graph metrics: Tutorial, toolbox, and tale
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.06.081
– volume: 80
  start-page: 360
  year: 2013
  ident: 2025032523025788400_fcaf083-B16
  article-title: Dynamic functional connectivity: Promise, issues, and interpretations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.079
– volume-title: Statpearls [internet]
  year: 2025
  ident: 2025032523025788400_fcaf083-B51
– volume: 1838
  start-page: 148889
  year: 2024
  ident: 2025032523025788400_fcaf083-B18
  article-title: Long-term table tennis training alters dynamic functional connectivity and white matter microstructure in large scale brain regions
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2024.148889
– volume: 10
  start-page: 585
  issue: 8
  year: 2009
  ident: 2025032523025788400_fcaf083-B2
  article-title: Inside the brain of an elite athlete: The neural processes that support high achievement in sports
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2672
– volume-title: Fundamentals of brain network analysis
  year: 2016
  ident: 2025032523025788400_fcaf083-B11
– volume: 142
  start-page: 198
  year: 2016
  ident: 2025032523025788400_fcaf083-B36
  article-title: Detection of functional brain network reconfiguration during task-driven cognitive states
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.05.078
– volume: 94
  start-page: 032908
  issue: 3–1
  year: 2016
  ident: 2025032523025788400_fcaf083-B40
  article-title: Evolution of network architecture in a granular material under compression
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.94.032908
– volume: 44
  start-page: 388
  issue: 2
  year: 2023
  ident: 2025032523025788400_fcaf083-B47
  article-title: Neural efficiency and proficiency adaptation of effective connectivity corresponding to early and advanced skill levels in athletes of racket sports
  publication-title: Hum Brain Mapp.
  doi: 10.1002/hbm.26057
– volume: 221
  start-page: 3503
  issue: 7
  year: 2016
  ident: 2025032523025788400_fcaf083-B1
  article-title: Exploring brain functional plasticity in world class gymnasts: A network analysis
  publication-title: Brain Struct Funct.
  doi: 10.1007/s00429-015-1116-6
– volume: 108
  start-page: 7641
  issue: 18
  year: 2011
  ident: 2025032523025788400_fcaf083-B9
  article-title: Dynamic reconfiguration of human brain networks during learning
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.1018985108
– volume: 13
  start-page: 6
  year: 2019
  ident: 2025032523025788400_fcaf083-B37
  article-title: Atypical flexibility in dynamic functional connectivity quantifies the severity in autism Spectrum disorder
  publication-title: Front Hum Neurosci.
  doi: 10.3389/fnhum.2019.00006
– volume: 59
  start-page: 2142
  issue: 3
  year: 2012
  ident: 2025032523025788400_fcaf083-B29
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 19
  start-page: 43
  issue: 1
  year: 2013
  ident: 2025032523025788400_fcaf083-B53
  article-title: The angular gyrus: Multiple functions and multiple subdivisions
  publication-title: Neuroscientist
  doi: 10.1177/1073858412440596
– volume: 25
  start-page: 653
  issue: 6
  year: 2013
  ident: 2025032523025788400_fcaf083-B55
  article-title: Genetic influence on athletic performance
  publication-title: Curr Opin Pediatr
  doi: 10.1097/MOP.0b013e3283659087
– volume: 15
  start-page: 1323
  issue: 3
  year: 2021
  ident: 2025032523025788400_fcaf083-B19
  article-title: Altered dynamics of functional connectivity density associated with early and advanced stages of motor training in tennis and table tennis athletes
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-020-00331-5
– volume: 13
  start-page: 336
  issue: 5
  year: 2012
  ident: 2025032523025788400_fcaf083-B4
  article-title: The economy of brain network organization
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3214
– volume: 24
  start-page: 663
  issue: 3
  year: 2014
  ident: 2025032523025788400_fcaf083-B14
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhs352
– volume: 34
  start-page: bhae076
  issue: 3
  year: 2024
  ident: 2025032523025788400_fcaf083-B6
  article-title: Altered resting-state brain function in endurance athletes
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhae076
– volume: 6
  start-page: 1393988
  year: 2024
  ident: 2025032523025788400_fcaf083-B7
  article-title: Sports promote brain evolution: A resting-state fMRI study of volleyball athlete
  publication-title: Front Sports Act Living
  doi: 10.3389/fspor.2024.1393988
– volume: 30
  start-page: 1322
  issue: 4
  year: 2010
  ident: 2025032523025788400_fcaf083-B8
  article-title: A neural basis for motor primitives in the spinal cord
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5894-08.2010
– volume: 9
  start-page: e1003171
  issue: 9
  year: 2013
  ident: 2025032523025788400_fcaf083-B39
  article-title: Task-based core-periphery organization of human brain dynamics
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003171
– volume: 15
  start-page: 698555
  year: 2021
  ident: 2025032523025788400_fcaf083-B48
  article-title: Neural efficiency in athletes: A systematic review
  publication-title: Front Behav Neurosci
  doi: 10.3389/fnbeh.2021.698555
– volume: 5
  start-page: fcad069
  issue: 2
  year: 2023
  ident: 2025032523025788400_fcaf083-B32
  article-title: Disrupted multi-scale topological organization of directed functional brain networks in patients with disorders of consciousness
  publication-title: Brain Commun
  doi: 10.1093/braincomms/fcad069
– volume: 20
  start-page: 1843
  issue: 8
  year: 2010
  ident: 2025032523025788400_fcaf083-B43
  article-title: Neural components underlying behavioral flexibility in human reversal learning
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhp247
– volume: 223
  start-page: 131
  year: 2017
  ident: 2025032523025788400_fcaf083-B5
  article-title: Long-term intensive gymnastic training induced changes in intra- and inter-network functional connectivity: An independent component analysis
  publication-title: Brain Struct Funct.
  doi: 10.1007/s00429-017-1479-y
– volume: 23
  start-page: 013142
  issue: 1
  year: 2013
  ident: 2025032523025788400_fcaf083-B23
  article-title: Robust detection of dynamic community structure in networks
  publication-title: Chaos
  doi: 10.1063/1.4790830
– volume: 35
  start-page: 346
  issue: 3
  year: 1996
  ident: 2025032523025788400_fcaf083-B28
  article-title: Movement-related effects in fMRI time-series
  publication-title: Magnet Reson Med
  doi: 10.1002/mrm.1910350312
– volume: 72
  start-page: 665
  issue: 4
  year: 2011
  ident: 2025032523025788400_fcaf083-B31
  article-title: Functional network organization of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
– volume: 224
  start-page: 1781
  issue: 5
  year: 2019
  ident: 2025032523025788400_fcaf083-B25
  article-title: Dynamic reconfiguration of the functional brain network after musical training in young adults
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-019-01867-z
– volume: 106
  start-page: 846
  issue: 5
  year: 2018
  ident: 2025032523025788400_fcaf083-B30
  article-title: Applications of community detection techniques to brain graphs: Algorithmic considerations and implications for neural function
  publication-title: Proc IEEE Inst Electr Electron Eng
  doi: 10.1109/JPROC.2017.2786710
– volume: 33
  start-page: 4761
  issue: 8
  year: 2023
  ident: 2025032523025788400_fcaf083-B13
  article-title: Whole-brain dynamics of human sensorimotor adaptation
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhac378
– volume: 328
  start-page: 876
  issue: 5980
  year: 2010
  ident: 2025032523025788400_fcaf083-B20
  article-title: Community structure in time-dependent, multiscale, and multiplex networks
  publication-title: Science
  doi: 10.1126/science.1184819
– volume: 10
  start-page: 186
  issue: 3
  year: 2009
  ident: 2025032523025788400_fcaf083-B3
  article-title: Complex brain networks: Graph theoretical analysis of structural and functional systems
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2575
– volume: 74
  start-page: 102678
  year: 2024
  ident: 2025032523025788400_fcaf083-B35
  article-title: The long-term intensive gymnastic training influences functional stability and integration: A resting-state fMRI study
  publication-title: Psychol Sport Exerc
  doi: 10.1016/j.psychsport.2024.102678
– volume: 38
  start-page: 4744
  issue: 9
  year: 2017
  ident: 2025032523025788400_fcaf083-B21
  article-title: Cohesive network reconfiguration accompanies extended training
  publication-title: Hum Brain Mapp.
  doi: 10.1002/hbm.23699
– volume: 16
  start-page: 1348
  issue: 9
  year: 2013
  ident: 2025032523025788400_fcaf083-B34
  article-title: Multi-task connectivity reveals flexible hubs for adaptive task control
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3470
– volume: 34
  start-page: 177
  issue: 4
  year: 2011
  ident: 2025032523025788400_fcaf083-B49
  article-title: Experience-dependent structural plasticity in the cortex
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2011.02.001
– volume: 112
  start-page: 11678
  issue: 37
  year: 2015
  ident: 2025032523025788400_fcaf083-B26
  article-title: Dynamic reconfiguration of frontal brain networks during executive cognition in humans
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.1422487112
– volume: 27
  start-page: 183
  issue: 4
  year: 2014
  ident: 2025032523025788400_fcaf083-B46
  article-title: Neural processes distinguishing elite from expert and novice athletes
  publication-title: Cogn Behav Neurol
  doi: 10.1097/WNN.0000000000000043
– volume: 160
  start-page: 41
  year: 2017
  ident: 2025032523025788400_fcaf083-B41
  article-title: The dynamic functional connectome: State-of-the-art and perspectives
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.12.061
SSID ssj0002545398
Score 2.2949407
Snippet Long-term intensive training has enabled world class gymnasts to attain exceptional skill levels, inducing notable neuroplastic changes in their brains....
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage fcaf083
SubjectTerms Original
Title Dynamic reconfiguration of brain functional networks in world class gymnasts: a resting-state functional MRI study
URI https://www.ncbi.nlm.nih.gov/pubmed/40066110
https://www.proquest.com/docview/3175973178
https://pubmed.ncbi.nlm.nih.gov/PMC11891512
https://doi.org/10.1093/braincomms/fcaf083
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2632-1297
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002545398
  issn: 2632-1297
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2632-1297
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002545398
  issn: 2632-1297
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2632-1297
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002545398
  issn: 2632-1297
  databaseCode: RPM
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2632-1297
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002545398
  issn: 2632-1297
  databaseCode: TOX
  dateStart: 20190701
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD5iRdr2wm23wqg8aW9bQKsdJ-GtgiFAAk3TKrGnyNdSrU2rJhEqv55jO3QUeIDX2D5KfOycz8f29wF8TVXMtKAqSo1iEUu7JhKW0iiTRtPYOIYRz_Z5wU_67OwyvmxoctxdmKX9-4zuSyeUgH0_LvetEhYBwytY5THi7has9i9-9f469ThOnUJHljS3Yp5uuBx5HsHJx6ci39TFVMyvxWh0L-QcrwftotIzFbqTJv_26kruqZsHPI7P-5oNWGuQJ-mFobIJK6bYgtfnzd76O5gdBXF64tfIdjiow-AgE0u8ReJiYEgdkiKcHi8JPvakq0Q5GE4G83Ehyqo8III41Q8MjJG_s3S_8fnvU-Jpbd9D__jnn8OTqFFkiBSNeYXrTC6ZVEIIRGoy4ZoZzrW1XZukWvNYmSTTkiqNMCuTlOHPwiRYhK1SqbSlH6BVTArzCQjaU1ZbaQy1jCojECv9MAIRg0hxFZW24dudt_JpIN7Iw4Y5zf93Y950Yxu-3Dk0x_nhNj1EYSZ1mTt85OS5ErT4MTh4YY85wIX4pw3pkusXFRz39nJJMbzyHNy4LsscWGrD98UoecZ7br-s-g687Tq9YZ_y-QytalabXQRBlez45EHHZ6c6zUy4BV8yEss
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTuQwEC0xjTTDhWXYmk1G4jYENG3HSbghFgESCCFaglPklUFAGnUSoebrKduhoQcOcI3jUuKqpJ5d9nsAG6mKmRZURalRLGJpx0TCUhpl0mgaG8cw4tk-z_hRl51cxVcNTY47CzNSv8_otnRCCTj2D-W2VcIiYPgB4zxG3N2C8e7Z-e61U4_j1Cl0ZElzKubzjqOZ5wOc_Lgr8lddPIrBk7i_f5dyDqeCdlHpmQrdTpO7rbqSW-r5Px7Hr73NNEw2yJPshlCZgTFT_Iafp01tfRb6-0Gcnvg5sr29qUNwkJ4l3iJxOTAsHZIi7B4vCV72pKtEORhObgYPhSircocI4lQ_MDFG_szS-86nF8fE09rOQffw4HLvKGoUGSJFY17hPJNLJpUQApGaTLhmhnNtbccmqdY8VibJtKRKI8zKJGX4szAJNmGvVCpt6Ty0il5hFoGgPWW1lcZQy6gyArHSXyMQMYgUZ1FpG_68eit_DMQbeSiY0_xtGPNmGNuw_urQHL8PV_QQhenVZe7wkZPnStDiQnDw0B5zgAvxTxvSEdcPb3Dc26Mtxe0_z8GN87LMgaU2bA6j5AvPufS925dhouP0hv2Szwq0qn5tVhEEVXKtif4XjycQxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+reconfiguration+of+brain+functional+networks+in+world+class+gymnasts%3A+a+resting-state+functional+MRI+study&rft.jtitle=Brain+communications&rft.au=Cao%2C+Bolin&rft.au=Guo%2C+Yu&rft.au=Xia%2C+Fengguang&rft.au=Li%2C+Lunxiong&rft.date=2025&rft.eissn=2632-1297&rft.volume=7&rft.issue=2&rft.spage=fcaf083&rft_id=info:doi/10.1093%2Fbraincomms%2Ffcaf083&rft_id=info%3Apmid%2F40066110&rft.externalDocID=40066110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-1297&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-1297&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-1297&client=summon