Estimated temperature-dependent interfacial heat transfer coefficient during gas cooling based on firefly algorithm and finite element method

The interfacial heat transfer coefficient (IHTC) is one of the most important thermal-physical parameters in heat conduction problem. To solve the IHTC in gas cooling, a 304 stainless steel sample is heated up to 800 °C by an induction heating device and then cooled by a high-pressure gas source. Th...

Full description

Saved in:
Bibliographic Details
Published inHeat and mass transfer Vol. 55; no. 9; pp. 2545 - 2558
Main Authors Wang, Xiaowei, Li, Huiping, He, Lianfang, Li, Zhichao, Wang, Zhaozhi
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0947-7411
1432-1181
DOI10.1007/s00231-019-02608-y

Cover

Abstract The interfacial heat transfer coefficient (IHTC) is one of the most important thermal-physical parameters in heat conduction problem. To solve the IHTC in gas cooling, a 304 stainless steel sample is heated up to 800 °C by an induction heating device and then cooled by a high-pressure gas source. The IHTC between the high-pressure gas and the sample is evaluated by ZFA-FEM (normal distribution method, firefly algorithm (FA) and finite element method (FEM)) and ZGFA-FEM (normal distribution method, global optimization factor (G), firefly algorithm and finite element method) according to the temperature curve attained in the experiment. The research results show that, these IHTCs attained in the solution of IHCP according to those temperature curves of CFD simulation and the experiment are consistent, and the trend of IHTC attained in the experiment is consistent with that in the literature. The group scale of fireflies in ZGFA is much smaller than that in ZFA. Only 20 fireflies in ZGFA can ensure all fireflies move to the optimal position due to global optimization factor used in ZGFA. The convergence, iteration and CPU time of ZGFA are better than ZFA.
AbstractList The interfacial heat transfer coefficient (IHTC) is one of the most important thermal-physical parameters in heat conduction problem. To solve the IHTC in gas cooling, a 304 stainless steel sample is heated up to 800 °C by an induction heating device and then cooled by a high-pressure gas source. The IHTC between the high-pressure gas and the sample is evaluated by ZFA-FEM (normal distribution method, firefly algorithm (FA) and finite element method (FEM)) and ZGFA-FEM (normal distribution method, global optimization factor (G), firefly algorithm and finite element method) according to the temperature curve attained in the experiment. The research results show that, these IHTCs attained in the solution of IHCP according to those temperature curves of CFD simulation and the experiment are consistent, and the trend of IHTC attained in the experiment is consistent with that in the literature. The group scale of fireflies in ZGFA is much smaller than that in ZFA. Only 20 fireflies in ZGFA can ensure all fireflies move to the optimal position due to global optimization factor used in ZGFA. The convergence, iteration and CPU time of ZGFA are better than ZFA.
The interfacial heat transfer coefficient (IHTC) is one of the most important thermal-physical parameters in heat conduction problem. To solve the IHTC in gas cooling, a 304 stainless steel sample is heated up to 800 °C by an induction heating device and then cooled by a high-pressure gas source. The IHTC between the high-pressure gas and the sample is evaluated by ZFA-FEM (normal distribution method, firefly algorithm (FA) and finite element method (FEM)) and ZGFA-FEM (normal distribution method, global optimization factor (G), firefly algorithm and finite element method) according to the temperature curve attained in the experiment. The research results show that, these IHTCs attained in the solution of IHCP according to those temperature curves of CFD simulation and the experiment are consistent, and the trend of IHTC attained in the experiment is consistent with that in the literature. The group scale of fireflies in ZGFA is much smaller than that in ZFA. Only 20 fireflies in ZGFA can ensure all fireflies move to the optimal position due to global optimization factor used in ZGFA. The convergence, iteration and CPU time of ZGFA are better than ZFA.
Author Wang, Xiaowei
Li, Zhichao
Wang, Zhaozhi
Li, Huiping
He, Lianfang
Author_xml – sequence: 1
  givenname: Xiaowei
  surname: Wang
  fullname: Wang, Xiaowei
  organization: School of Materials Science and Engineering, Shandong University of Science and Technology
– sequence: 2
  givenname: Huiping
  surname: Li
  fullname: Li, Huiping
  email: lihuiping99@163.com
  organization: School of Materials Science and Engineering, Shandong University of Science and Technology
– sequence: 3
  givenname: Lianfang
  surname: He
  fullname: He, Lianfang
  organization: School of Materials Science and Engineering, Shandong University of Science and Technology
– sequence: 4
  givenname: Zhichao
  surname: Li
  fullname: Li, Zhichao
  organization: School of Materials Science and Engineering, Shandong University of Science and Technology
– sequence: 5
  givenname: Zhaozhi
  surname: Wang
  fullname: Wang, Zhaozhi
  organization: School of Materials Science and Engineering, Shandong University of Science and Technology
BookMark eNp9kMuKFDEUhoOMYM_oC7gKuI7mUrcsZRgvMOBG1-FUctKdoSopk_SiH8J3NmULgotZJRz-78_Jd0tuYopIyFvB3wvOxw-Fc6kE40IzLgc-scsLchCdkkyISdyQA9fdyMZOiFfktpSnFh86qQ7k10OpYYWKjlZcN8xQzxmZww2jw1hpiBWzBxtgoSeESmuGWDxmahN6H2zYU-6cQzzSI5Q2Tst-n6G00hSpDxn9cqGwHFMO9bRSiK5NY6hIccF1L1ixnpJ7TV56WAq--XvekR-fHr7ff2GP3z5_vf_4yKzqh8o6GPuRu1lpjSg6LZ1EDVL0sx4HNQP3dnY9tPWwd17bYfIgBjmMEiR4q9QdeXft3XL6ecZSzVM659ieNFKO3aAnLcaWkteUzamU9gmz5eYqX4zgZtdurtpN027-aDeXBk3_QTZUqCHFJi4sz6PqipZtt4n531bPUL8BXYeeWg
CitedBy_id crossref_primary_10_1016_j_jmrt_2021_08_086
crossref_primary_10_1007_s11665_024_10036_1
crossref_primary_10_1016_j_micpro_2020_103800
crossref_primary_10_1016_j_jmst_2024_01_032
crossref_primary_10_1007_s00231_021_03113_x
Cites_doi 10.1016/j.eswa.2013.06.070
10.1016/j.jmatprotec.2007.08.059
10.4028/www.scientific.net/AMM.66-68.673
10.1016/j.ijheatmasstransfer.2008.01.002
10.1080/10407799608914987
10.1016/j.jmatprotec.2004.04.279
10.1016/j.jmatprotec.2013.03.010
10.1016/S0017-9310(98)00280-4
10.1002/srin.199605527
10.1016/j.ijheatmasstransfer.2017.05.009
10.1007/s00231-018-2365-8
10.1016/j.icheatmasstransfer.2012.04.001
10.1016/j.apm.2013.10.019
10.1007/s11665-018-3492-6
10.1016/j.eswa.2014.03.053
10.1016/j.applthermaleng.2016.11.173
10.1080/10407790.2015.1012446
10.1166/jctn.2008.858
10.1016/j.jmatprotec.2012.04.008
10.1016/j.applthermaleng.2016.09.154
10.1016/j.commatsci.2003.11.003
10.1007/s00231-015-1602-7
10.1080/10407790.2016.1277915
10.1016/j.applthermaleng.2007.12.007
10.1016/j.ijmachtools.2011.12.005
10.1016/j.finel.2006.04.002
10.1016/j.jmatprotec.2013.06.025
10.1016/j.ijheatmasstransfer.2008.11.015
10.1016/j.icheatmasstransfer.2011.09.015
10.1016/j.ijheatmasstransfer.2015.07.102
10.1016/j.applthermaleng.2015.10.021
10.1016/j.jmatprotec.2017.04.005
10.1016/j.ijheatmasstransfer.2013.09.010
10.1016/j.commatsci.2006.04.004
10.4028/www.scientific.net/AMM.15.35
10.1108/09615531211215765
10.1016/j.ijheatmasstransfer.2011.12.007
10.1142/S0219876213410028
10.1109/ICNN.1995.488968
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s00231-019-02608-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1432-1181
EndPage 2558
ExternalDocumentID 10_1007_s00231_019_02608_y
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51575324
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Shandong university of science and technology Postgraduate technology innovation project
  grantid: SDKDYC180241
GroupedDBID -5B
-5G
-BR
-EM
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29I
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ARCEE
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
EJD
H13
KOW
N2Q
NDZJH
O9-
R4E
RNI
RZK
S1Z
S26
S28
SCLPG
SCV
STPWE
T16
UZXMN
VFIZW
ID FETCH-LOGICAL-c356t-4a7570db399ee1492d2e9a215b9763ba0fcbd5aeffe5df9c68fa162672a2afc33
IEDL.DBID U2A
ISSN 0947-7411
IngestDate Wed Sep 17 23:58:37 EDT 2025
Wed Oct 01 05:07:59 EDT 2025
Thu Apr 24 22:52:15 EDT 2025
Fri Feb 21 02:26:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-4a7570db399ee1492d2e9a215b9763ba0fcbd5aeffe5df9c68fa162672a2afc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2274698917
PQPubID 2043585
PageCount 14
ParticipantIDs proquest_journals_2274698917
crossref_primary_10_1007_s00231_019_02608_y
crossref_citationtrail_10_1007_s00231_019_02608_y
springer_journals_10_1007_s00231_019_02608_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Wärme- und Stoffübertragung
PublicationTitle Heat and mass transfer
PublicationTitleAbbrev Heat Mass Transfer
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Abdullah, Deris (CR31) 2012; 151
Li, Zhao, Niu (CR6) 2006; 42
Yu, Zhu, Ma, Mao (CR27) 2015; 263
Tseng, Zhao (CR22) 1995; 29
Wang, Gu, Shan, Zhang (CR40) 2008; 202
Dousti, Ranjbar, Famouri, Ghaderi (CR10) 2012; 22
Wang, Li, Li (CR34) 2018; 54
Gür, Tekkaya, Schuler (CR39) 1996; 67
CR36
Fister, Yang, Brest (CR26) 2013; 40
CR35
CR30
Czél, Woodbury, Gróf (CR18) 2014; 68
Hu, Ying, Li (CR4) 2013; 213
Li, He, Zhang (CR3) 2015; 91
Liu, Ji, Fakir, Fang, Gharbi (CR9) 2017; 247
Li, Zhao, Niu, Luan (CR1) 2007; 38
Ilkhchy, Jabbari, Davami (CR8) 2012; 39
Taler, Zima (CR21) 1999; 2
Cortés-Aburto, Urquiza, Alfredo Hernández (CR11) 2009; 15
Ding, Sun (CR12) 2015; 68
Pourgholi, Dana, Tabasi (CR16) 2014; 38
Zhou, Zhao (CR33) 2017; 71
Hao, Gu, Chen, Zuo (CR42) 2008; 28
Dou, Wen, Zhou (CR47) 2016; 93
Gu, Pan, Hu (CR2) 1998; 32
Bai, Lin, Zhan, Zhang (CR20) 2012; 56
CR28
Kavousi-Fard, Samet, Marzbani (CR29) 2014; 41
Li, He, Zhang, Cui (CR37) 2016; 52
Ding, Dou, Chen, Tian, Guo, Wen (CR38) 2017; 36
Gosselin, Tye-Gingras, Mathieu-Potvin (CR14) 2009; 52
Wang, Luo, Yu, Yin (CR24) 2017; 111
CR25
Cheng, Xie, Li (CR43) 2004; 29
Liu (CR15) 2008; 51
Mirsepahi, Chen, O'Neill (CR19) 2013; 39
Wang, Yu, Cai (CR5) 2012; 212
Kazemzadeh-Parsi (CR32) 2015; 39
Yang, Zuo, Wu, Ren (CR17) 2008; 5
Yu, Luo (CR23) 2017; 114
Lior (CR45) 2004; 155-156
Jung, Lee, Lee (CR46) 2018; 27
Cosentino, Warnken, Gebelin, Reed (CR41) 2013; 213
Luo, Yang (CR7) 2017; 112
Liu (CR13) 2012; 55
Wang, Wang, Shang (CR44) 2011; 66-68
O Cortés-Aburto (2608_CR11) 2009; 15
AF Ilkhchy (2608_CR8) 2012; 39
JF Gu (2608_CR2) 1998; 32
HM Wang (2608_CR5) 2012; 212
CJ Ding (2608_CR38) 2017; 36
MJ Kazemzadeh-Parsi (2608_CR32) 2015; 39
N Lior (2608_CR45) 2004; 155-156
F Cosentino (2608_CR41) 2013; 213
J Taler (2608_CR21) 1999; 2
L Gosselin (2608_CR14) 2009; 52
AA Tseng (2608_CR22) 1995; 29
2608_CR35
2608_CR36
HM Cheng (2608_CR43) 2004; 29
Q Bai (2608_CR20) 2012; 56
XW Hao (2608_CR42) 2008; 28
X Luo (2608_CR7) 2017; 112
I Fister (2608_CR26) 2013; 40
SH Yu (2608_CR27) 2015; 263
A Mirsepahi (2608_CR19) 2013; 39
H Yang (2608_CR17) 2008; 5
HP Li (2608_CR3) 2015; 91
XW Wang (2608_CR34) 2018; 54
HP Li (2608_CR6) 2006; 42
J Wang (2608_CR40) 2008; 202
P Hu (2608_CR4) 2013; 213
RF Dou (2608_CR47) 2016; 93
P Dousti (2608_CR10) 2012; 22
A Kavousi-Fard (2608_CR29) 2014; 41
A Abdullah (2608_CR31) 2012; 151
CH Gür (2608_CR39) 1996; 67
2608_CR30
P Ding (2608_CR12) 2015; 68
HP Li (2608_CR1) 2007; 38
FB Liu (2608_CR15) 2008; 51
Y Yu (2608_CR23) 2017; 114
ZJ Wang (2608_CR44) 2011; 66-68
FB Liu (2608_CR13) 2012; 55
B Czél (2608_CR18) 2014; 68
Y Wang (2608_CR24) 2017; 111
2608_CR25
HL Zhou (2608_CR33) 2017; 71
HP Li (2608_CR37) 2016; 52
MS Jung (2608_CR46) 2018; 27
XC Liu (2608_CR9) 2017; 247
2608_CR28
R Pourgholi (2608_CR16) 2014; 38
References_xml – volume: 40
  start-page: 7220
  issue: 18
  year: 2013
  end-page: 7230
  ident: CR26
  article-title: Modified firefly algorithm using quaternion representation
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.06.070
– volume: 202
  start-page: 188
  issue: 1
  year: 2008
  end-page: 194
  ident: CR40
  article-title: Numerical simulation of high pressure gas quenching of H13 steel
  publication-title: J Mater Process Tech
  doi: 10.1016/j.jmatprotec.2007.08.059
– volume: 66-68
  start-page: 673
  year: 2011
  end-page: 376
  ident: CR44
  article-title: The effects of nozzle and workpiece placements on cooling rate in the vacuum high-pressure gas quenching furnace based on CFD
  publication-title: Appl Mech Mater
  doi: 10.4028/www.scientific.net/AMM.66-68.673
– volume: 51
  start-page: 3745
  issue: 15
  year: 2008
  end-page: 3752
  ident: CR15
  article-title: A modified genetic algorithm for solving the inverse heat transfer problem of estimating plan heat source
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2008.01.002
– volume: 29
  start-page: 365
  issue: 3
  year: 1995
  end-page: 380
  ident: CR22
  article-title: Multidimensional inverse heat conduction problems by direct sensitivity coefficient method using a finite-element scheme
  publication-title: Numer Heat Tr B-Fund
  doi: 10.1080/10407799608914987
– volume: 155-156
  start-page: 1881
  year: 2004
  end-page: 1888
  ident: CR45
  article-title: The cooling process in gas quenching
  publication-title: J Mater Process Tech
  doi: 10.1016/j.jmatprotec.2004.04.279
– volume: 213
  start-page: 1475
  issue: 9
  year: 2013
  end-page: 1483
  ident: CR4
  article-title: Effect of oxide scale on temperature-dependent interfacial heat transfer in hot stamping process
  publication-title: J Mater Process Tech
  doi: 10.1016/j.jmatprotec.2013.03.010
– ident: CR30
– volume: 2
  start-page: 1123
  issue: 6
  year: 1999
  end-page: 1140
  ident: CR21
  article-title: Solution of inverse heat conduction problems using control volume approach
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/S0017-9310(98)00280-4
– volume: 67
  start-page: 501
  issue: 11
  year: 1996
  end-page: 506
  ident: CR39
  article-title: Effect of boundary conditions and workpiece geometry on residual stresses and microstructure in quenching process
  publication-title: Steel Research
  doi: 10.1002/srin.199605527
– volume: 112
  start-page: 1062
  year: 2017
  end-page: 1071
  ident: CR7
  article-title: A new approach for estimation of total heat exchange factor in reheating furnace by solving an inverse heat conduction problem
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2017.05.009
– ident: CR35
– volume: 54
  start-page: 3151
  year: 2018
  end-page: 3162
  ident: CR34
  article-title: Estimation of interfacial heat transfer coefficient in inverse heat conduction problems based on artificial fish swarm algorithm
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-018-2365-8
– volume: 39
  start-page: 705
  issue: 5
  year: 2012
  end-page: 712
  ident: CR8
  article-title: Effect of pressure on heat transfer coefficient at the metal/mold interface of A356 aluminum alloy
  publication-title: Int Commun Heat Mass
  doi: 10.1016/j.icheatmasstransfer.2012.04.001
– volume: 38
  start-page: 1948
  issue: 7–8
  year: 2014
  end-page: 1958
  ident: CR16
  article-title: Solving an inverse heat conduction problem using genetic algorithm: sequential and multi-core parallelization approach
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2013.10.019
– volume: 27
  start-page: 4355
  issue: 8
  year: 2018
  end-page: 4363
  ident: CR46
  article-title: Finite element simulation and optimization of gas-quenching process for tool steels
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-018-3492-6
– ident: CR25
– volume: 41
  start-page: 6047
  issue: 13
  year: 2014
  end-page: 6056
  ident: CR29
  article-title: A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.03.053
– volume: 114
  start-page: 36
  year: 2017
  end-page: 43
  ident: CR23
  article-title: Identification of heat transfer coefficients of steel billet in continuous casting by weight least square and improved difference evolution method
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.11.173
– volume: 263
  start-page: 214
  issue: C
  year: 2015
  end-page: 220
  ident: CR27
  article-title: A variable step size firefly algorithm for numerical optimization
  publication-title: Appl Math Comput
– volume: 68
  start-page: 158
  issue: 2
  year: 2015
  end-page: 168
  ident: CR12
  article-title: Resolution of unknown heat source inverse heat conduction problems using particle swarm optimization
  publication-title: Numer Heat Tr B Fund
  doi: 10.1080/10407790.2015.1012446
– volume: 5
  start-page: 1708
  issue: 8
  year: 2008
  end-page: 1712
  ident: CR17
  article-title: Inverse heat conduction analysis of quenching process based on finite element method and genetic algorithm
  publication-title: J Comput Theor Nanos
  doi: 10.1166/jctn.2008.858
– volume: 212
  start-page: 1825
  issue: 9
  year: 2012
  end-page: 1831
  ident: CR5
  article-title: Experimental study of heat transfer coefficient on hot steel plate during water jet impingement cooling
  publication-title: J Mater Process Tech
  doi: 10.1016/j.jmatprotec.2012.04.008
– volume: 111
  start-page: 989
  year: 2017
  end-page: 996
  ident: CR24
  article-title: Evaluation of heat transfer coefficients in continuous casting under large disturbance by weighted least squares Levenberg-Marquardt method
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.09.154
– volume: 29
  start-page: 453
  issue: 4
  year: 2004
  end-page: 458
  ident: CR43
  article-title: Determination of surface heat-transfer coefficients of steel cylinder with phase transformation during gas quenching with high pressures
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2003.11.003
– volume: 52
  start-page: 805
  year: 2016
  end-page: 817
  ident: CR37
  article-title: Solution of boundary heat transfer coefficients between hot stamping die and cooling water based on FEM and optimization method
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-015-1602-7
– volume: 39
  start-page: 367
  year: 2015
  end-page: 387
  ident: CR32
  article-title: Optimal shape design for heat conduction using smoothed fixed grid finite element method and modified firefly algorithm
  publication-title: Iran J Sci Technol A
– volume: 71
  start-page: 253
  issue: 3
  year: 2017
  end-page: 269
  ident: CR33
  article-title: Firefly algorithm combined with Newton method to identify boundary conditions for transient heat conduction problems
  publication-title: Numer Heat Tr B-Fund
  doi: 10.1080/10407790.2016.1277915
– volume: 28
  start-page: 1925
  issue: 14
  year: 2008
  end-page: 1931
  ident: CR42
  article-title: 3-D numerical analysis on heating process of loads within vacuum heat treatment furnace
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2007.12.007
– volume: 56
  start-page: 102
  year: 2012
  end-page: 110
  ident: CR20
  article-title: An efficient closed-form method for determining interfacial heat transfer coefficient in metal forming
  publication-title: Int J Mach Tool Manu
  doi: 10.1016/j.ijmachtools.2011.12.005
– volume: 42
  start-page: 1087
  issue: 12
  year: 2006
  end-page: 1096
  ident: CR6
  article-title: Inverse heat conduction analysis of quenching process using finite-element and optimization method
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2006.04.002
– volume: 213
  start-page: 2350
  issue: 12
  year: 2013
  end-page: 2360
  ident: CR41
  article-title: Numerical and experimental study of post-heat treatment gas quenching and its impact on microstructure and creep in CMSX-10 superalloy
  publication-title: J Mater Process Tech
  doi: 10.1016/j.jmatprotec.2013.06.025
– volume: 52
  start-page: 2169
  issue: 9
  year: 2009
  end-page: 2188
  ident: CR14
  article-title: Review of utilization of genetic algorithms in heat transfer problems
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2008.11.015
– volume: 39
  start-page: 40
  issue: 1
  year: 2013
  end-page: 45
  ident: CR19
  article-title: A comparative artificial intelligence approach to inverse heat transfer; modeling of an irradiative dryer
  publication-title: Int Commun Heat Mass
  doi: 10.1016/j.icheatmasstransfer.2011.09.015
– ident: CR36
– volume: 91
  start-page: 401
  year: 2015
  end-page: 415
  ident: CR3
  article-title: Research on the effect of boundary pressure on the boundary heat transfer coefficients between hot stamping die and boron steel
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2015.07.102
– volume: 93
  start-page: 468
  year: 2016
  end-page: 475
  ident: CR47
  article-title: 2D axisymmetric transient inverse heat conduction analysis of air jet impinging on stainless steel plate with finite thickness
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2015.10.021
– volume: 247
  start-page: 158
  year: 2017
  end-page: 170
  ident: CR9
  article-title: Determination of the interfacial heat transfer coefficient for a hot Aluminium stamping process
  publication-title: J Mater Process Tech
  doi: 10.1016/j.jmatprotec.2017.04.005
– ident: CR28
– volume: 68
  start-page: 1):1
  year: 2014
  end-page: 1)13
  ident: CR18
  article-title: Simultaneous estimation of temperature-dependent volumetric heat capacity and thermal conductivity functions via neural networks
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2013.09.010
– volume: 38
  start-page: 561
  year: 2007
  end-page: 570
  ident: CR1
  article-title: Technologic parameter optimization of gas quenching process using response surface method
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2006.04.004
– volume: 15
  start-page: 35
  year: 2009
  end-page: 40
  ident: CR11
  article-title: Inverse heat transfer using Levenberg-Marquardt and particle swarm optimization methods for heat source estimation
  publication-title: Appl Mech and Materials
  doi: 10.4028/www.scientific.net/AMM.15.35
– volume: 151
  start-page: 673
  issue: 4
  year: 2012
  end-page: 680
  ident: CR31
  article-title: A new hybrid firefly algorithm for complex and nonlinear problem
  publication-title: Technology and Society Magazine IEEE
– volume: 22
  start-page: 473
  issue: 4
  year: 2012
  end-page: 490
  ident: CR10
  article-title: An inverse problem in estimation of interfacial heat transfer coefficient during two–dimensional solidification of Al 5%Wt–Si based on PSO
  publication-title: Int J Numer Method H
  doi: 10.1108/09615531211215765
– volume: 36
  start-page: 28
  year: 2017
  end-page: 36
  ident: CR38
  article-title: Experimental measurement of air jet impinging heat transfer coefficient based on 2D transient inverse heat conduction method
  publication-title: Energy for metallurgical industry
– volume: 32
  start-page: 18
  year: 1998
  end-page: 22
  ident: CR2
  article-title: Inverse heat conduction analysis of synthetical surface heat transfer coefficient during quenching process
  publication-title: J Shanghai Jiaotong Univ
– volume: 55
  start-page: 2062
  issue: 7–8
  year: 2012
  end-page: 2068
  ident: CR13
  article-title: Particle swarm optimization-based algorithms for solving inverse heat conduction problems of estimating surface heat flux
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2011.12.007
– volume: 213
  start-page: 1475
  issue: 9
  year: 2013
  ident: 2608_CR4
  publication-title: J Mater Process Tech
  doi: 10.1016/j.jmatprotec.2013.03.010
– volume: 15
  start-page: 35
  year: 2009
  ident: 2608_CR11
  publication-title: Appl Mech and Materials
  doi: 10.4028/www.scientific.net/AMM.15.35
– volume: 111
  start-page: 989
  year: 2017
  ident: 2608_CR24
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.09.154
– volume: 54
  start-page: 3151
  year: 2018
  ident: 2608_CR34
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-018-2365-8
– volume: 27
  start-page: 4355
  issue: 8
  year: 2018
  ident: 2608_CR46
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-018-3492-6
– volume: 38
  start-page: 561
  year: 2007
  ident: 2608_CR1
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2006.04.004
– volume: 41
  start-page: 6047
  issue: 13
  year: 2014
  ident: 2608_CR29
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.03.053
– volume: 32
  start-page: 18
  year: 1998
  ident: 2608_CR2
  publication-title: J Shanghai Jiaotong Univ
– volume: 247
  start-page: 158
  year: 2017
  ident: 2608_CR9
  publication-title: J Mater Process Tech
  doi: 10.1016/j.jmatprotec.2017.04.005
– volume: 52
  start-page: 2169
  issue: 9
  year: 2009
  ident: 2608_CR14
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2008.11.015
– volume: 112
  start-page: 1062
  year: 2017
  ident: 2608_CR7
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2017.05.009
– volume: 38
  start-page: 1948
  issue: 7–8
  year: 2014
  ident: 2608_CR16
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2013.10.019
– volume: 91
  start-page: 401
  year: 2015
  ident: 2608_CR3
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2015.07.102
– volume: 68
  start-page: 158
  issue: 2
  year: 2015
  ident: 2608_CR12
  publication-title: Numer Heat Tr B Fund
  doi: 10.1080/10407790.2015.1012446
– volume: 93
  start-page: 468
  year: 2016
  ident: 2608_CR47
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2015.10.021
– volume: 151
  start-page: 673
  issue: 4
  year: 2012
  ident: 2608_CR31
  publication-title: Technology and Society Magazine IEEE
– volume: 40
  start-page: 7220
  issue: 18
  year: 2013
  ident: 2608_CR26
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.06.070
– volume: 71
  start-page: 253
  issue: 3
  year: 2017
  ident: 2608_CR33
  publication-title: Numer Heat Tr B-Fund
  doi: 10.1080/10407790.2016.1277915
– volume: 39
  start-page: 367
  year: 2015
  ident: 2608_CR32
  publication-title: Iran J Sci Technol A
– ident: 2608_CR25
  doi: 10.1142/S0219876213410028
– ident: 2608_CR30
– volume: 202
  start-page: 188
  issue: 1
  year: 2008
  ident: 2608_CR40
  publication-title: J Mater Process Tech
  doi: 10.1016/j.jmatprotec.2007.08.059
– volume: 28
  start-page: 1925
  issue: 14
  year: 2008
  ident: 2608_CR42
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2007.12.007
– volume: 212
  start-page: 1825
  issue: 9
  year: 2012
  ident: 2608_CR5
  publication-title: J Mater Process Tech
  doi: 10.1016/j.jmatprotec.2012.04.008
– volume: 42
  start-page: 1087
  issue: 12
  year: 2006
  ident: 2608_CR6
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2006.04.002
– ident: 2608_CR28
– volume: 213
  start-page: 2350
  issue: 12
  year: 2013
  ident: 2608_CR41
  publication-title: J Mater Process Tech
  doi: 10.1016/j.jmatprotec.2013.06.025
– volume: 29
  start-page: 453
  issue: 4
  year: 2004
  ident: 2608_CR43
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2003.11.003
– volume: 66-68
  start-page: 673
  year: 2011
  ident: 2608_CR44
  publication-title: Appl Mech Mater
  doi: 10.4028/www.scientific.net/AMM.66-68.673
– volume: 56
  start-page: 102
  year: 2012
  ident: 2608_CR20
  publication-title: Int J Mach Tool Manu
  doi: 10.1016/j.ijmachtools.2011.12.005
– ident: 2608_CR35
  doi: 10.1109/ICNN.1995.488968
– volume: 22
  start-page: 473
  issue: 4
  year: 2012
  ident: 2608_CR10
  publication-title: Int J Numer Method H
  doi: 10.1108/09615531211215765
– volume: 68
  start-page: 1):1
  year: 2014
  ident: 2608_CR18
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2013.09.010
– volume: 29
  start-page: 365
  issue: 3
  year: 1995
  ident: 2608_CR22
  publication-title: Numer Heat Tr B-Fund
  doi: 10.1080/10407799608914987
– ident: 2608_CR36
– volume: 52
  start-page: 805
  year: 2016
  ident: 2608_CR37
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-015-1602-7
– volume: 263
  start-page: 214
  issue: C
  year: 2015
  ident: 2608_CR27
  publication-title: Appl Math Comput
– volume: 2
  start-page: 1123
  issue: 6
  year: 1999
  ident: 2608_CR21
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/S0017-9310(98)00280-4
– volume: 67
  start-page: 501
  issue: 11
  year: 1996
  ident: 2608_CR39
  publication-title: Steel Research
  doi: 10.1002/srin.199605527
– volume: 39
  start-page: 705
  issue: 5
  year: 2012
  ident: 2608_CR8
  publication-title: Int Commun Heat Mass
  doi: 10.1016/j.icheatmasstransfer.2012.04.001
– volume: 155-156
  start-page: 1881
  year: 2004
  ident: 2608_CR45
  publication-title: J Mater Process Tech
  doi: 10.1016/j.jmatprotec.2004.04.279
– volume: 114
  start-page: 36
  year: 2017
  ident: 2608_CR23
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.11.173
– volume: 5
  start-page: 1708
  issue: 8
  year: 2008
  ident: 2608_CR17
  publication-title: J Comput Theor Nanos
  doi: 10.1166/jctn.2008.858
– volume: 36
  start-page: 28
  year: 2017
  ident: 2608_CR38
  publication-title: Energy for metallurgical industry
– volume: 55
  start-page: 2062
  issue: 7–8
  year: 2012
  ident: 2608_CR13
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2011.12.007
– volume: 51
  start-page: 3745
  issue: 15
  year: 2008
  ident: 2608_CR15
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2008.01.002
– volume: 39
  start-page: 40
  issue: 1
  year: 2013
  ident: 2608_CR19
  publication-title: Int Commun Heat Mass
  doi: 10.1016/j.icheatmasstransfer.2011.09.015
SSID ssj0026423
Score 2.2567317
Snippet The interfacial heat transfer coefficient (IHTC) is one of the most important thermal-physical parameters in heat conduction problem. To solve the IHTC in gas...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2545
SubjectTerms Algorithms
Austenitic stainless steels
Computer simulation
Conduction heating
Conductive heat transfer
Engineering
Engineering Thermodynamics
Experiments
Finite element analysis
Finite element method
Gas cooling
Global optimization
Heat
Heat and Mass Transfer
Heat transfer coefficients
Heuristic methods
Induction heating
Industrial Chemistry/Chemical Engineering
Nonlinear programming
Normal distribution
Original
Physical properties
Temperature dependence
Thermodynamics
Title Estimated temperature-dependent interfacial heat transfer coefficient during gas cooling based on firefly algorithm and finite element method
URI https://link.springer.com/article/10.1007/s00231-019-02608-y
https://www.proquest.com/docview/2274698917
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1181
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026423
  issn: 0947-7411
  databaseCode: AFBBN
  dateStart: 19680301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-1181
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026423
  issn: 0947-7411
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-1181
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0026423
  issn: 0947-7411
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB61RJXKAdG0VcMj2gM3WCl-bGwfE5SAQOXUSHCy9hkqBbtKzCE_gv_MzNpOKKKVOFlar33wzO584535PoATnVninRvyNLAppwJGriKV8ExicEkCkQ48ldLPm-HlLL66FbdNU9iqrXZvjyT9Tr1pdqPwQqlvxokHK-Xrj9ARROeFXjwLR5s0CxF1LSAfJxzjZdC0yrz9jr_D0RZjvjoW9dFmug97DUxko9quX-CDLbqw-4I8sAuffPGmXn2FpwmuU0Se1jBimmpoknmrb1sx4oRYOkl_xxltvqzycNUumS6t55CgWXXHIpvLFQ6Tls-cUYwzrCyYw53RLdZMLubl8nd1_8BkYXCUECuzdQk6q9Wov8FsOvl1fskbmQWuIzGseCwTkQyMQqhiLSZMoQltJhEKKIQqkZIDp5URkupLhHGZHqZOBpgHJaEMpdNR9B12irKwP4CJ2Jkg0wg59CB2QikdKlzgJpNauMTIHgTt1851w0FOUhiLfMOe7C2Uo4Vyb6F83YPTzTN_agaO_84-ao2YN6txlYfojiSUGSQ9OGsNu73977cdvG_6IXwOvW9RCdoR7FTLR3uMmKVSfeiMpuPxDV0v7q4nfe-yz-mv6QI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7RIFQ4tDzVtLTsgRssih8b20dUhYbyOBEJTtY-AyI4KDGH9D_wnzuztkOLAInrer2yd2dnvtmd-QZgV2eWeOe6PA1syimAkatIJTyTaFySQKQdT6V0dt7tD-Lfl-KyTgqbNtHuzZWk19TzZDcyL-T6Zpx4sFI--wCLMTooYQsWD39dnfTmjhZi6qqEfJxwtJhBnSzz8ij_G6QnlPnsYtTbm6PPMGi-tAozuT14KNWB_vOMxPG9v7IKn2oAyg4riVmDBVusw8o_tITrsOTDQvV0Ax57qAEQ01rDiMOqJmDmTeXckhHbxMRJOndnpNZZ6YGwnTA9tp6dgnpVuZBsKKfYTFWChoysp2HjgjnUuW40Y3I0HE9uyus7JguDrYSFma2C21lV53oTBke9i599Xhdw4DoS3ZLHMhFJxygEQdaiKxaa0GYSQYZCEBQp2XFaGSEpckUYl-lu6mSAHlYSylA6HUVb0CrGhf0CTMTOBJlGMKM7sRNK6VCh6jCZ1MIlRrYhaFYx1zW7ORXZGOVzXmY_6TlOeu4nPZ-1YW_-zn3F7fFm7-1GOPJ6n0_zEAWdSnAGSRv2m7V-evz6aF_f130HPvYvzk7z0-Pzk2-wHHrRoUC3bWiVkwf7HZFRqX7UG-EvMEYGHg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6xIFbLAfEU5bU-cAOL5uEmOSKgAhYQBypxi_wsSCWt2uyhP2L_8844SXkIkLgmjg-eseebeOb7AA50Zol3rsPTwKacChi5ilTCM4nBJQlE2vZUSje3nYtefPUgHl518ftq9-ZKsuppIJamojweGXc8a3yjUENpcMaJEyvl0x-wEBNRAnp0LzyZpVyIrisx-TjhGDuDum3m4znehqYXvPnuitRHnu4KLNeQkZ1UNl6FOVuswdIrIsE1WPSFnHqyDv_Occ8iCrWGEetUTZnMG63bkhE_xNhJ-lPO6CBmpYeudsz00Ho-CRpVdS-yvpzgY9L16TOKd4YNC-bwlHSDKZOD_nD8VD4-M1kYfEroldmqHJ1VytQb0Oue359e8FpygetIdEoey0QkbaMQtliLyVNoQptJXFeFsCVSsu20MkJSrYkwLtOd1MkAc6IklKF0Ooo2Yb4YFnYLmIidCTKN8EO3YyeU0qHCzW4yqYVLjGxB0Kx2rms-cpLFGOQzJmVvoRwtlHsL5dMWHM6-GVVsHF-O3m2MmNc7c5KH6JokmhkkLThqDPvy-vPZtr83_Df8vDvr5teXt3924Ffo3Ywq03Zhvhz_tXsIZUq17731P5mt7Ro
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimated+temperature-dependent+interfacial+heat+transfer+coefficient+during+gas+cooling+based+on+firefly+algorithm+and+finite+element+method&rft.jtitle=Heat+and+mass+transfer&rft.au=Wang%2C+Xiaowei&rft.au=Li%2C+Huiping&rft.au=He%2C+Lianfang&rft.au=Li%2C+Zhichao&rft.date=2019-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0947-7411&rft.eissn=1432-1181&rft.volume=55&rft.issue=9&rft.spage=2545&rft.epage=2558&rft_id=info:doi/10.1007%2Fs00231-019-02608-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-7411&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-7411&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-7411&client=summon