Estimated temperature-dependent interfacial heat transfer coefficient during gas cooling based on firefly algorithm and finite element method
The interfacial heat transfer coefficient (IHTC) is one of the most important thermal-physical parameters in heat conduction problem. To solve the IHTC in gas cooling, a 304 stainless steel sample is heated up to 800 °C by an induction heating device and then cooled by a high-pressure gas source. Th...
        Saved in:
      
    
          | Published in | Heat and mass transfer Vol. 55; no. 9; pp. 2545 - 2558 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.09.2019
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0947-7411 1432-1181  | 
| DOI | 10.1007/s00231-019-02608-y | 
Cover
| Abstract | The interfacial heat transfer coefficient (IHTC) is one of the most important thermal-physical parameters in heat conduction problem. To solve the IHTC in gas cooling, a 304 stainless steel sample is heated up to 800 °C by an induction heating device and then cooled by a high-pressure gas source. The IHTC between the high-pressure gas and the sample is evaluated by ZFA-FEM (normal distribution method, firefly algorithm (FA) and finite element method (FEM)) and ZGFA-FEM (normal distribution method, global optimization factor (G), firefly algorithm and finite element method) according to the temperature curve attained in the experiment. The research results show that, these IHTCs attained in the solution of IHCP according to those temperature curves of CFD simulation and the experiment are consistent, and the trend of IHTC attained in the experiment is consistent with that in the literature. The group scale of fireflies in ZGFA is much smaller than that in ZFA. Only 20 fireflies in ZGFA can ensure all fireflies move to the optimal position due to global optimization factor used in ZGFA. The convergence, iteration and CPU time of ZGFA are better than ZFA. | 
    
|---|---|
| AbstractList | The interfacial heat transfer coefficient (IHTC) is one of the most important thermal-physical parameters in heat conduction problem. To solve the IHTC in gas cooling, a 304 stainless steel sample is heated up to 800 °C by an induction heating device and then cooled by a high-pressure gas source. The IHTC between the high-pressure gas and the sample is evaluated by ZFA-FEM (normal distribution method, firefly algorithm (FA) and finite element method (FEM)) and ZGFA-FEM (normal distribution method, global optimization factor (G), firefly algorithm and finite element method) according to the temperature curve attained in the experiment. The research results show that, these IHTCs attained in the solution of IHCP according to those temperature curves of CFD simulation and the experiment are consistent, and the trend of IHTC attained in the experiment is consistent with that in the literature. The group scale of fireflies in ZGFA is much smaller than that in ZFA. Only 20 fireflies in ZGFA can ensure all fireflies move to the optimal position due to global optimization factor used in ZGFA. The convergence, iteration and CPU time of ZGFA are better than ZFA. The interfacial heat transfer coefficient (IHTC) is one of the most important thermal-physical parameters in heat conduction problem. To solve the IHTC in gas cooling, a 304 stainless steel sample is heated up to 800 °C by an induction heating device and then cooled by a high-pressure gas source. The IHTC between the high-pressure gas and the sample is evaluated by ZFA-FEM (normal distribution method, firefly algorithm (FA) and finite element method (FEM)) and ZGFA-FEM (normal distribution method, global optimization factor (G), firefly algorithm and finite element method) according to the temperature curve attained in the experiment. The research results show that, these IHTCs attained in the solution of IHCP according to those temperature curves of CFD simulation and the experiment are consistent, and the trend of IHTC attained in the experiment is consistent with that in the literature. The group scale of fireflies in ZGFA is much smaller than that in ZFA. Only 20 fireflies in ZGFA can ensure all fireflies move to the optimal position due to global optimization factor used in ZGFA. The convergence, iteration and CPU time of ZGFA are better than ZFA.  | 
    
| Author | Wang, Xiaowei Li, Zhichao Wang, Zhaozhi Li, Huiping He, Lianfang  | 
    
| Author_xml | – sequence: 1 givenname: Xiaowei surname: Wang fullname: Wang, Xiaowei organization: School of Materials Science and Engineering, Shandong University of Science and Technology – sequence: 2 givenname: Huiping surname: Li fullname: Li, Huiping email: lihuiping99@163.com organization: School of Materials Science and Engineering, Shandong University of Science and Technology – sequence: 3 givenname: Lianfang surname: He fullname: He, Lianfang organization: School of Materials Science and Engineering, Shandong University of Science and Technology – sequence: 4 givenname: Zhichao surname: Li fullname: Li, Zhichao organization: School of Materials Science and Engineering, Shandong University of Science and Technology – sequence: 5 givenname: Zhaozhi surname: Wang fullname: Wang, Zhaozhi organization: School of Materials Science and Engineering, Shandong University of Science and Technology  | 
    
| BookMark | eNp9kMuKFDEUhoOMYM_oC7gKuI7mUrcsZRgvMOBG1-FUctKdoSopk_SiH8J3NmULgotZJRz-78_Jd0tuYopIyFvB3wvOxw-Fc6kE40IzLgc-scsLchCdkkyISdyQA9fdyMZOiFfktpSnFh86qQ7k10OpYYWKjlZcN8xQzxmZww2jw1hpiBWzBxtgoSeESmuGWDxmahN6H2zYU-6cQzzSI5Q2Tst-n6G00hSpDxn9cqGwHFMO9bRSiK5NY6hIccF1L1ixnpJ7TV56WAq--XvekR-fHr7ff2GP3z5_vf_4yKzqh8o6GPuRu1lpjSg6LZ1EDVL0sx4HNQP3dnY9tPWwd17bYfIgBjmMEiR4q9QdeXft3XL6ecZSzVM659ieNFKO3aAnLcaWkteUzamU9gmz5eYqX4zgZtdurtpN027-aDeXBk3_QTZUqCHFJi4sz6PqipZtt4n531bPUL8BXYeeWg | 
    
| CitedBy_id | crossref_primary_10_1016_j_jmrt_2021_08_086 crossref_primary_10_1007_s11665_024_10036_1 crossref_primary_10_1016_j_micpro_2020_103800 crossref_primary_10_1016_j_jmst_2024_01_032 crossref_primary_10_1007_s00231_021_03113_x  | 
    
| Cites_doi | 10.1016/j.eswa.2013.06.070 10.1016/j.jmatprotec.2007.08.059 10.4028/www.scientific.net/AMM.66-68.673 10.1016/j.ijheatmasstransfer.2008.01.002 10.1080/10407799608914987 10.1016/j.jmatprotec.2004.04.279 10.1016/j.jmatprotec.2013.03.010 10.1016/S0017-9310(98)00280-4 10.1002/srin.199605527 10.1016/j.ijheatmasstransfer.2017.05.009 10.1007/s00231-018-2365-8 10.1016/j.icheatmasstransfer.2012.04.001 10.1016/j.apm.2013.10.019 10.1007/s11665-018-3492-6 10.1016/j.eswa.2014.03.053 10.1016/j.applthermaleng.2016.11.173 10.1080/10407790.2015.1012446 10.1166/jctn.2008.858 10.1016/j.jmatprotec.2012.04.008 10.1016/j.applthermaleng.2016.09.154 10.1016/j.commatsci.2003.11.003 10.1007/s00231-015-1602-7 10.1080/10407790.2016.1277915 10.1016/j.applthermaleng.2007.12.007 10.1016/j.ijmachtools.2011.12.005 10.1016/j.finel.2006.04.002 10.1016/j.jmatprotec.2013.06.025 10.1016/j.ijheatmasstransfer.2008.11.015 10.1016/j.icheatmasstransfer.2011.09.015 10.1016/j.ijheatmasstransfer.2015.07.102 10.1016/j.applthermaleng.2015.10.021 10.1016/j.jmatprotec.2017.04.005 10.1016/j.ijheatmasstransfer.2013.09.010 10.1016/j.commatsci.2006.04.004 10.4028/www.scientific.net/AMM.15.35 10.1108/09615531211215765 10.1016/j.ijheatmasstransfer.2011.12.007 10.1142/S0219876213410028 10.1109/ICNN.1995.488968  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Copyright Springer Nature B.V. 2019  | 
    
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. 2019  | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1007/s00231-019-02608-y | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Physics  | 
    
| EISSN | 1432-1181 | 
    
| EndPage | 2558 | 
    
| ExternalDocumentID | 10_1007_s00231_019_02608_y | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51575324 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Shandong university of science and technology Postgraduate technology innovation project grantid: SDKDYC180241  | 
    
| GroupedDBID | -5B -5G -BR -EM -~C .86 .VR 06D 0R~ 0VY 1N0 203 29I 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW ARCEE ATHPR AYFIA BBWZM CAG CITATION COF EJD H13 KOW N2Q NDZJH O9- R4E RNI RZK S1Z S26 S28 SCLPG SCV STPWE T16 UZXMN VFIZW  | 
    
| ID | FETCH-LOGICAL-c356t-4a7570db399ee1492d2e9a215b9763ba0fcbd5aeffe5df9c68fa162672a2afc33 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0947-7411 | 
    
| IngestDate | Wed Sep 17 23:58:37 EDT 2025 Wed Oct 01 05:07:59 EDT 2025 Thu Apr 24 22:52:15 EDT 2025 Fri Feb 21 02:26:02 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c356t-4a7570db399ee1492d2e9a215b9763ba0fcbd5aeffe5df9c68fa162672a2afc33 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2274698917 | 
    
| PQPubID | 2043585 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | proquest_journals_2274698917 crossref_primary_10_1007_s00231_019_02608_y crossref_citationtrail_10_1007_s00231_019_02608_y springer_journals_10_1007_s00231_019_02608_y  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-09-01 | 
    
| PublicationDateYYYYMMDD | 2019-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationSubtitle | Wärme- und Stoffübertragung | 
    
| PublicationTitle | Heat and mass transfer | 
    
| PublicationTitleAbbrev | Heat Mass Transfer | 
    
| PublicationYear | 2019 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | Abdullah, Deris (CR31) 2012; 151 Li, Zhao, Niu (CR6) 2006; 42 Yu, Zhu, Ma, Mao (CR27) 2015; 263 Tseng, Zhao (CR22) 1995; 29 Wang, Gu, Shan, Zhang (CR40) 2008; 202 Dousti, Ranjbar, Famouri, Ghaderi (CR10) 2012; 22 Wang, Li, Li (CR34) 2018; 54 Gür, Tekkaya, Schuler (CR39) 1996; 67 CR36 Fister, Yang, Brest (CR26) 2013; 40 CR35 CR30 Czél, Woodbury, Gróf (CR18) 2014; 68 Hu, Ying, Li (CR4) 2013; 213 Li, He, Zhang (CR3) 2015; 91 Liu, Ji, Fakir, Fang, Gharbi (CR9) 2017; 247 Li, Zhao, Niu, Luan (CR1) 2007; 38 Ilkhchy, Jabbari, Davami (CR8) 2012; 39 Taler, Zima (CR21) 1999; 2 Cortés-Aburto, Urquiza, Alfredo Hernández (CR11) 2009; 15 Ding, Sun (CR12) 2015; 68 Pourgholi, Dana, Tabasi (CR16) 2014; 38 Zhou, Zhao (CR33) 2017; 71 Hao, Gu, Chen, Zuo (CR42) 2008; 28 Dou, Wen, Zhou (CR47) 2016; 93 Gu, Pan, Hu (CR2) 1998; 32 Bai, Lin, Zhan, Zhang (CR20) 2012; 56 CR28 Kavousi-Fard, Samet, Marzbani (CR29) 2014; 41 Li, He, Zhang, Cui (CR37) 2016; 52 Ding, Dou, Chen, Tian, Guo, Wen (CR38) 2017; 36 Gosselin, Tye-Gingras, Mathieu-Potvin (CR14) 2009; 52 Wang, Luo, Yu, Yin (CR24) 2017; 111 CR25 Cheng, Xie, Li (CR43) 2004; 29 Liu (CR15) 2008; 51 Mirsepahi, Chen, O'Neill (CR19) 2013; 39 Wang, Yu, Cai (CR5) 2012; 212 Kazemzadeh-Parsi (CR32) 2015; 39 Yang, Zuo, Wu, Ren (CR17) 2008; 5 Yu, Luo (CR23) 2017; 114 Lior (CR45) 2004; 155-156 Jung, Lee, Lee (CR46) 2018; 27 Cosentino, Warnken, Gebelin, Reed (CR41) 2013; 213 Luo, Yang (CR7) 2017; 112 Liu (CR13) 2012; 55 Wang, Wang, Shang (CR44) 2011; 66-68 O Cortés-Aburto (2608_CR11) 2009; 15 AF Ilkhchy (2608_CR8) 2012; 39 JF Gu (2608_CR2) 1998; 32 HM Wang (2608_CR5) 2012; 212 CJ Ding (2608_CR38) 2017; 36 MJ Kazemzadeh-Parsi (2608_CR32) 2015; 39 N Lior (2608_CR45) 2004; 155-156 F Cosentino (2608_CR41) 2013; 213 J Taler (2608_CR21) 1999; 2 L Gosselin (2608_CR14) 2009; 52 AA Tseng (2608_CR22) 1995; 29 2608_CR35 2608_CR36 HM Cheng (2608_CR43) 2004; 29 Q Bai (2608_CR20) 2012; 56 XW Hao (2608_CR42) 2008; 28 X Luo (2608_CR7) 2017; 112 I Fister (2608_CR26) 2013; 40 SH Yu (2608_CR27) 2015; 263 A Mirsepahi (2608_CR19) 2013; 39 H Yang (2608_CR17) 2008; 5 HP Li (2608_CR3) 2015; 91 XW Wang (2608_CR34) 2018; 54 HP Li (2608_CR6) 2006; 42 J Wang (2608_CR40) 2008; 202 P Hu (2608_CR4) 2013; 213 RF Dou (2608_CR47) 2016; 93 P Dousti (2608_CR10) 2012; 22 A Kavousi-Fard (2608_CR29) 2014; 41 A Abdullah (2608_CR31) 2012; 151 CH Gür (2608_CR39) 1996; 67 2608_CR30 P Ding (2608_CR12) 2015; 68 HP Li (2608_CR1) 2007; 38 FB Liu (2608_CR15) 2008; 51 Y Yu (2608_CR23) 2017; 114 ZJ Wang (2608_CR44) 2011; 66-68 FB Liu (2608_CR13) 2012; 55 B Czél (2608_CR18) 2014; 68 Y Wang (2608_CR24) 2017; 111 2608_CR25 HL Zhou (2608_CR33) 2017; 71 HP Li (2608_CR37) 2016; 52 MS Jung (2608_CR46) 2018; 27 XC Liu (2608_CR9) 2017; 247 2608_CR28 R Pourgholi (2608_CR16) 2014; 38  | 
    
| References_xml | – volume: 40 start-page: 7220 issue: 18 year: 2013 end-page: 7230 ident: CR26 article-title: Modified firefly algorithm using quaternion representation publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.06.070 – volume: 202 start-page: 188 issue: 1 year: 2008 end-page: 194 ident: CR40 article-title: Numerical simulation of high pressure gas quenching of H13 steel publication-title: J Mater Process Tech doi: 10.1016/j.jmatprotec.2007.08.059 – volume: 66-68 start-page: 673 year: 2011 end-page: 376 ident: CR44 article-title: The effects of nozzle and workpiece placements on cooling rate in the vacuum high-pressure gas quenching furnace based on CFD publication-title: Appl Mech Mater doi: 10.4028/www.scientific.net/AMM.66-68.673 – volume: 51 start-page: 3745 issue: 15 year: 2008 end-page: 3752 ident: CR15 article-title: A modified genetic algorithm for solving the inverse heat transfer problem of estimating plan heat source publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2008.01.002 – volume: 29 start-page: 365 issue: 3 year: 1995 end-page: 380 ident: CR22 article-title: Multidimensional inverse heat conduction problems by direct sensitivity coefficient method using a finite-element scheme publication-title: Numer Heat Tr B-Fund doi: 10.1080/10407799608914987 – volume: 155-156 start-page: 1881 year: 2004 end-page: 1888 ident: CR45 article-title: The cooling process in gas quenching publication-title: J Mater Process Tech doi: 10.1016/j.jmatprotec.2004.04.279 – volume: 213 start-page: 1475 issue: 9 year: 2013 end-page: 1483 ident: CR4 article-title: Effect of oxide scale on temperature-dependent interfacial heat transfer in hot stamping process publication-title: J Mater Process Tech doi: 10.1016/j.jmatprotec.2013.03.010 – ident: CR30 – volume: 2 start-page: 1123 issue: 6 year: 1999 end-page: 1140 ident: CR21 article-title: Solution of inverse heat conduction problems using control volume approach publication-title: Int J Heat Mass Tran doi: 10.1016/S0017-9310(98)00280-4 – volume: 67 start-page: 501 issue: 11 year: 1996 end-page: 506 ident: CR39 article-title: Effect of boundary conditions and workpiece geometry on residual stresses and microstructure in quenching process publication-title: Steel Research doi: 10.1002/srin.199605527 – volume: 112 start-page: 1062 year: 2017 end-page: 1071 ident: CR7 article-title: A new approach for estimation of total heat exchange factor in reheating furnace by solving an inverse heat conduction problem publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2017.05.009 – ident: CR35 – volume: 54 start-page: 3151 year: 2018 end-page: 3162 ident: CR34 article-title: Estimation of interfacial heat transfer coefficient in inverse heat conduction problems based on artificial fish swarm algorithm publication-title: Heat Mass Transf doi: 10.1007/s00231-018-2365-8 – volume: 39 start-page: 705 issue: 5 year: 2012 end-page: 712 ident: CR8 article-title: Effect of pressure on heat transfer coefficient at the metal/mold interface of A356 aluminum alloy publication-title: Int Commun Heat Mass doi: 10.1016/j.icheatmasstransfer.2012.04.001 – volume: 38 start-page: 1948 issue: 7–8 year: 2014 end-page: 1958 ident: CR16 article-title: Solving an inverse heat conduction problem using genetic algorithm: sequential and multi-core parallelization approach publication-title: Appl Math Model doi: 10.1016/j.apm.2013.10.019 – volume: 27 start-page: 4355 issue: 8 year: 2018 end-page: 4363 ident: CR46 article-title: Finite element simulation and optimization of gas-quenching process for tool steels publication-title: J Mater Eng Perform doi: 10.1007/s11665-018-3492-6 – ident: CR25 – volume: 41 start-page: 6047 issue: 13 year: 2014 end-page: 6056 ident: CR29 article-title: A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.03.053 – volume: 114 start-page: 36 year: 2017 end-page: 43 ident: CR23 article-title: Identification of heat transfer coefficients of steel billet in continuous casting by weight least square and improved difference evolution method publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.11.173 – volume: 263 start-page: 214 issue: C year: 2015 end-page: 220 ident: CR27 article-title: A variable step size firefly algorithm for numerical optimization publication-title: Appl Math Comput – volume: 68 start-page: 158 issue: 2 year: 2015 end-page: 168 ident: CR12 article-title: Resolution of unknown heat source inverse heat conduction problems using particle swarm optimization publication-title: Numer Heat Tr B Fund doi: 10.1080/10407790.2015.1012446 – volume: 5 start-page: 1708 issue: 8 year: 2008 end-page: 1712 ident: CR17 article-title: Inverse heat conduction analysis of quenching process based on finite element method and genetic algorithm publication-title: J Comput Theor Nanos doi: 10.1166/jctn.2008.858 – volume: 212 start-page: 1825 issue: 9 year: 2012 end-page: 1831 ident: CR5 article-title: Experimental study of heat transfer coefficient on hot steel plate during water jet impingement cooling publication-title: J Mater Process Tech doi: 10.1016/j.jmatprotec.2012.04.008 – volume: 111 start-page: 989 year: 2017 end-page: 996 ident: CR24 article-title: Evaluation of heat transfer coefficients in continuous casting under large disturbance by weighted least squares Levenberg-Marquardt method publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.09.154 – volume: 29 start-page: 453 issue: 4 year: 2004 end-page: 458 ident: CR43 article-title: Determination of surface heat-transfer coefficients of steel cylinder with phase transformation during gas quenching with high pressures publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2003.11.003 – volume: 52 start-page: 805 year: 2016 end-page: 817 ident: CR37 article-title: Solution of boundary heat transfer coefficients between hot stamping die and cooling water based on FEM and optimization method publication-title: Heat Mass Transf doi: 10.1007/s00231-015-1602-7 – volume: 39 start-page: 367 year: 2015 end-page: 387 ident: CR32 article-title: Optimal shape design for heat conduction using smoothed fixed grid finite element method and modified firefly algorithm publication-title: Iran J Sci Technol A – volume: 71 start-page: 253 issue: 3 year: 2017 end-page: 269 ident: CR33 article-title: Firefly algorithm combined with Newton method to identify boundary conditions for transient heat conduction problems publication-title: Numer Heat Tr B-Fund doi: 10.1080/10407790.2016.1277915 – volume: 28 start-page: 1925 issue: 14 year: 2008 end-page: 1931 ident: CR42 article-title: 3-D numerical analysis on heating process of loads within vacuum heat treatment furnace publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2007.12.007 – volume: 56 start-page: 102 year: 2012 end-page: 110 ident: CR20 article-title: An efficient closed-form method for determining interfacial heat transfer coefficient in metal forming publication-title: Int J Mach Tool Manu doi: 10.1016/j.ijmachtools.2011.12.005 – volume: 42 start-page: 1087 issue: 12 year: 2006 end-page: 1096 ident: CR6 article-title: Inverse heat conduction analysis of quenching process using finite-element and optimization method publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2006.04.002 – volume: 213 start-page: 2350 issue: 12 year: 2013 end-page: 2360 ident: CR41 article-title: Numerical and experimental study of post-heat treatment gas quenching and its impact on microstructure and creep in CMSX-10 superalloy publication-title: J Mater Process Tech doi: 10.1016/j.jmatprotec.2013.06.025 – volume: 52 start-page: 2169 issue: 9 year: 2009 end-page: 2188 ident: CR14 article-title: Review of utilization of genetic algorithms in heat transfer problems publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2008.11.015 – volume: 39 start-page: 40 issue: 1 year: 2013 end-page: 45 ident: CR19 article-title: A comparative artificial intelligence approach to inverse heat transfer; modeling of an irradiative dryer publication-title: Int Commun Heat Mass doi: 10.1016/j.icheatmasstransfer.2011.09.015 – ident: CR36 – volume: 91 start-page: 401 year: 2015 end-page: 415 ident: CR3 article-title: Research on the effect of boundary pressure on the boundary heat transfer coefficients between hot stamping die and boron steel publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2015.07.102 – volume: 93 start-page: 468 year: 2016 end-page: 475 ident: CR47 article-title: 2D axisymmetric transient inverse heat conduction analysis of air jet impinging on stainless steel plate with finite thickness publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2015.10.021 – volume: 247 start-page: 158 year: 2017 end-page: 170 ident: CR9 article-title: Determination of the interfacial heat transfer coefficient for a hot Aluminium stamping process publication-title: J Mater Process Tech doi: 10.1016/j.jmatprotec.2017.04.005 – ident: CR28 – volume: 68 start-page: 1):1 year: 2014 end-page: 1)13 ident: CR18 article-title: Simultaneous estimation of temperature-dependent volumetric heat capacity and thermal conductivity functions via neural networks publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2013.09.010 – volume: 38 start-page: 561 year: 2007 end-page: 570 ident: CR1 article-title: Technologic parameter optimization of gas quenching process using response surface method publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2006.04.004 – volume: 15 start-page: 35 year: 2009 end-page: 40 ident: CR11 article-title: Inverse heat transfer using Levenberg-Marquardt and particle swarm optimization methods for heat source estimation publication-title: Appl Mech and Materials doi: 10.4028/www.scientific.net/AMM.15.35 – volume: 151 start-page: 673 issue: 4 year: 2012 end-page: 680 ident: CR31 article-title: A new hybrid firefly algorithm for complex and nonlinear problem publication-title: Technology and Society Magazine IEEE – volume: 22 start-page: 473 issue: 4 year: 2012 end-page: 490 ident: CR10 article-title: An inverse problem in estimation of interfacial heat transfer coefficient during two–dimensional solidification of Al 5%Wt–Si based on PSO publication-title: Int J Numer Method H doi: 10.1108/09615531211215765 – volume: 36 start-page: 28 year: 2017 end-page: 36 ident: CR38 article-title: Experimental measurement of air jet impinging heat transfer coefficient based on 2D transient inverse heat conduction method publication-title: Energy for metallurgical industry – volume: 32 start-page: 18 year: 1998 end-page: 22 ident: CR2 article-title: Inverse heat conduction analysis of synthetical surface heat transfer coefficient during quenching process publication-title: J Shanghai Jiaotong Univ – volume: 55 start-page: 2062 issue: 7–8 year: 2012 end-page: 2068 ident: CR13 article-title: Particle swarm optimization-based algorithms for solving inverse heat conduction problems of estimating surface heat flux publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2011.12.007 – volume: 213 start-page: 1475 issue: 9 year: 2013 ident: 2608_CR4 publication-title: J Mater Process Tech doi: 10.1016/j.jmatprotec.2013.03.010 – volume: 15 start-page: 35 year: 2009 ident: 2608_CR11 publication-title: Appl Mech and Materials doi: 10.4028/www.scientific.net/AMM.15.35 – volume: 111 start-page: 989 year: 2017 ident: 2608_CR24 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.09.154 – volume: 54 start-page: 3151 year: 2018 ident: 2608_CR34 publication-title: Heat Mass Transf doi: 10.1007/s00231-018-2365-8 – volume: 27 start-page: 4355 issue: 8 year: 2018 ident: 2608_CR46 publication-title: J Mater Eng Perform doi: 10.1007/s11665-018-3492-6 – volume: 38 start-page: 561 year: 2007 ident: 2608_CR1 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2006.04.004 – volume: 41 start-page: 6047 issue: 13 year: 2014 ident: 2608_CR29 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.03.053 – volume: 32 start-page: 18 year: 1998 ident: 2608_CR2 publication-title: J Shanghai Jiaotong Univ – volume: 247 start-page: 158 year: 2017 ident: 2608_CR9 publication-title: J Mater Process Tech doi: 10.1016/j.jmatprotec.2017.04.005 – volume: 52 start-page: 2169 issue: 9 year: 2009 ident: 2608_CR14 publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2008.11.015 – volume: 112 start-page: 1062 year: 2017 ident: 2608_CR7 publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2017.05.009 – volume: 38 start-page: 1948 issue: 7–8 year: 2014 ident: 2608_CR16 publication-title: Appl Math Model doi: 10.1016/j.apm.2013.10.019 – volume: 91 start-page: 401 year: 2015 ident: 2608_CR3 publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2015.07.102 – volume: 68 start-page: 158 issue: 2 year: 2015 ident: 2608_CR12 publication-title: Numer Heat Tr B Fund doi: 10.1080/10407790.2015.1012446 – volume: 93 start-page: 468 year: 2016 ident: 2608_CR47 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2015.10.021 – volume: 151 start-page: 673 issue: 4 year: 2012 ident: 2608_CR31 publication-title: Technology and Society Magazine IEEE – volume: 40 start-page: 7220 issue: 18 year: 2013 ident: 2608_CR26 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.06.070 – volume: 71 start-page: 253 issue: 3 year: 2017 ident: 2608_CR33 publication-title: Numer Heat Tr B-Fund doi: 10.1080/10407790.2016.1277915 – volume: 39 start-page: 367 year: 2015 ident: 2608_CR32 publication-title: Iran J Sci Technol A – ident: 2608_CR25 doi: 10.1142/S0219876213410028 – ident: 2608_CR30 – volume: 202 start-page: 188 issue: 1 year: 2008 ident: 2608_CR40 publication-title: J Mater Process Tech doi: 10.1016/j.jmatprotec.2007.08.059 – volume: 28 start-page: 1925 issue: 14 year: 2008 ident: 2608_CR42 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2007.12.007 – volume: 212 start-page: 1825 issue: 9 year: 2012 ident: 2608_CR5 publication-title: J Mater Process Tech doi: 10.1016/j.jmatprotec.2012.04.008 – volume: 42 start-page: 1087 issue: 12 year: 2006 ident: 2608_CR6 publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2006.04.002 – ident: 2608_CR28 – volume: 213 start-page: 2350 issue: 12 year: 2013 ident: 2608_CR41 publication-title: J Mater Process Tech doi: 10.1016/j.jmatprotec.2013.06.025 – volume: 29 start-page: 453 issue: 4 year: 2004 ident: 2608_CR43 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2003.11.003 – volume: 66-68 start-page: 673 year: 2011 ident: 2608_CR44 publication-title: Appl Mech Mater doi: 10.4028/www.scientific.net/AMM.66-68.673 – volume: 56 start-page: 102 year: 2012 ident: 2608_CR20 publication-title: Int J Mach Tool Manu doi: 10.1016/j.ijmachtools.2011.12.005 – ident: 2608_CR35 doi: 10.1109/ICNN.1995.488968 – volume: 22 start-page: 473 issue: 4 year: 2012 ident: 2608_CR10 publication-title: Int J Numer Method H doi: 10.1108/09615531211215765 – volume: 68 start-page: 1):1 year: 2014 ident: 2608_CR18 publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2013.09.010 – volume: 29 start-page: 365 issue: 3 year: 1995 ident: 2608_CR22 publication-title: Numer Heat Tr B-Fund doi: 10.1080/10407799608914987 – ident: 2608_CR36 – volume: 52 start-page: 805 year: 2016 ident: 2608_CR37 publication-title: Heat Mass Transf doi: 10.1007/s00231-015-1602-7 – volume: 263 start-page: 214 issue: C year: 2015 ident: 2608_CR27 publication-title: Appl Math Comput – volume: 2 start-page: 1123 issue: 6 year: 1999 ident: 2608_CR21 publication-title: Int J Heat Mass Tran doi: 10.1016/S0017-9310(98)00280-4 – volume: 67 start-page: 501 issue: 11 year: 1996 ident: 2608_CR39 publication-title: Steel Research doi: 10.1002/srin.199605527 – volume: 39 start-page: 705 issue: 5 year: 2012 ident: 2608_CR8 publication-title: Int Commun Heat Mass doi: 10.1016/j.icheatmasstransfer.2012.04.001 – volume: 155-156 start-page: 1881 year: 2004 ident: 2608_CR45 publication-title: J Mater Process Tech doi: 10.1016/j.jmatprotec.2004.04.279 – volume: 114 start-page: 36 year: 2017 ident: 2608_CR23 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.11.173 – volume: 5 start-page: 1708 issue: 8 year: 2008 ident: 2608_CR17 publication-title: J Comput Theor Nanos doi: 10.1166/jctn.2008.858 – volume: 36 start-page: 28 year: 2017 ident: 2608_CR38 publication-title: Energy for metallurgical industry – volume: 55 start-page: 2062 issue: 7–8 year: 2012 ident: 2608_CR13 publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2011.12.007 – volume: 51 start-page: 3745 issue: 15 year: 2008 ident: 2608_CR15 publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2008.01.002 – volume: 39 start-page: 40 issue: 1 year: 2013 ident: 2608_CR19 publication-title: Int Commun Heat Mass doi: 10.1016/j.icheatmasstransfer.2011.09.015  | 
    
| SSID | ssj0026423 | 
    
| Score | 2.2567317 | 
    
| Snippet | The interfacial heat transfer coefficient (IHTC) is one of the most important thermal-physical parameters in heat conduction problem. To solve the IHTC in gas... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 2545 | 
    
| SubjectTerms | Algorithms Austenitic stainless steels Computer simulation Conduction heating Conductive heat transfer Engineering Engineering Thermodynamics Experiments Finite element analysis Finite element method Gas cooling Global optimization Heat Heat and Mass Transfer Heat transfer coefficients Heuristic methods Induction heating Industrial Chemistry/Chemical Engineering Nonlinear programming Normal distribution Original Physical properties Temperature dependence Thermodynamics  | 
    
| Title | Estimated temperature-dependent interfacial heat transfer coefficient during gas cooling based on firefly algorithm and finite element method | 
    
| URI | https://link.springer.com/article/10.1007/s00231-019-02608-y https://www.proquest.com/docview/2274698917  | 
    
| Volume | 55 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-1181 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026423 issn: 0947-7411 databaseCode: AFBBN dateStart: 19680301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-1181 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026423 issn: 0947-7411 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-1181 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0026423 issn: 0947-7411 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB61RJXKAdG0VcMj2gM3WCl-bGwfE5SAQOXUSHCy9hkqBbtKzCE_gv_MzNpOKKKVOFlar33wzO584535PoATnVninRvyNLAppwJGriKV8ExicEkCkQ48ldLPm-HlLL66FbdNU9iqrXZvjyT9Tr1pdqPwQqlvxokHK-Xrj9ARROeFXjwLR5s0CxF1LSAfJxzjZdC0yrz9jr_D0RZjvjoW9dFmug97DUxko9quX-CDLbqw-4I8sAuffPGmXn2FpwmuU0Se1jBimmpoknmrb1sx4oRYOkl_xxltvqzycNUumS6t55CgWXXHIpvLFQ6Tls-cUYwzrCyYw53RLdZMLubl8nd1_8BkYXCUECuzdQk6q9Wov8FsOvl1fskbmQWuIzGseCwTkQyMQqhiLSZMoQltJhEKKIQqkZIDp5URkupLhHGZHqZOBpgHJaEMpdNR9B12irKwP4CJ2Jkg0wg59CB2QikdKlzgJpNauMTIHgTt1851w0FOUhiLfMOe7C2Uo4Vyb6F83YPTzTN_agaO_84-ao2YN6txlYfojiSUGSQ9OGsNu73977cdvG_6IXwOvW9RCdoR7FTLR3uMmKVSfeiMpuPxDV0v7q4nfe-yz-mv6QI | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7RIFQ4tDzVtLTsgRssih8b20dUhYbyOBEJTtY-AyI4KDGH9D_wnzuztkOLAInrer2yd2dnvtmd-QZgV2eWeOe6PA1syimAkatIJTyTaFySQKQdT6V0dt7tD-Lfl-KyTgqbNtHuzZWk19TzZDcyL-T6Zpx4sFI--wCLMTooYQsWD39dnfTmjhZi6qqEfJxwtJhBnSzz8ij_G6QnlPnsYtTbm6PPMGi-tAozuT14KNWB_vOMxPG9v7IKn2oAyg4riVmDBVusw8o_tITrsOTDQvV0Ax57qAEQ01rDiMOqJmDmTeXckhHbxMRJOndnpNZZ6YGwnTA9tp6dgnpVuZBsKKfYTFWChoysp2HjgjnUuW40Y3I0HE9uyus7JguDrYSFma2C21lV53oTBke9i599Xhdw4DoS3ZLHMhFJxygEQdaiKxaa0GYSQYZCEBQp2XFaGSEpckUYl-lu6mSAHlYSylA6HUVb0CrGhf0CTMTOBJlGMKM7sRNK6VCh6jCZ1MIlRrYhaFYx1zW7ORXZGOVzXmY_6TlOeu4nPZ-1YW_-zn3F7fFm7-1GOPJ6n0_zEAWdSnAGSRv2m7V-evz6aF_f130HPvYvzk7z0-Pzk2-wHHrRoUC3bWiVkwf7HZFRqX7UG-EvMEYGHg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6xIFbLAfEU5bU-cAOL5uEmOSKgAhYQBypxi_wsSCWt2uyhP2L_8844SXkIkLgmjg-eseebeOb7AA50Zol3rsPTwKacChi5ilTCM4nBJQlE2vZUSje3nYtefPUgHl518ftq9-ZKsuppIJamojweGXc8a3yjUENpcMaJEyvl0x-wEBNRAnp0LzyZpVyIrisx-TjhGDuDum3m4znehqYXvPnuitRHnu4KLNeQkZ1UNl6FOVuswdIrIsE1WPSFnHqyDv_Occ8iCrWGEetUTZnMG63bkhE_xNhJ-lPO6CBmpYeudsz00Ho-CRpVdS-yvpzgY9L16TOKd4YNC-bwlHSDKZOD_nD8VD4-M1kYfEroldmqHJ1VytQb0Oue359e8FpygetIdEoey0QkbaMQtliLyVNoQptJXFeFsCVSsu20MkJSrYkwLtOd1MkAc6IklKF0Ooo2Yb4YFnYLmIidCTKN8EO3YyeU0qHCzW4yqYVLjGxB0Kx2rms-cpLFGOQzJmVvoRwtlHsL5dMWHM6-GVVsHF-O3m2MmNc7c5KH6JokmhkkLThqDPvy-vPZtr83_Df8vDvr5teXt3924Ffo3Ywq03Zhvhz_tXsIZUq17731P5mt7Ro | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimated+temperature-dependent+interfacial+heat+transfer+coefficient+during+gas+cooling+based+on+firefly+algorithm+and+finite+element+method&rft.jtitle=Heat+and+mass+transfer&rft.au=Wang%2C+Xiaowei&rft.au=Li%2C+Huiping&rft.au=He%2C+Lianfang&rft.au=Li%2C+Zhichao&rft.date=2019-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0947-7411&rft.eissn=1432-1181&rft.volume=55&rft.issue=9&rft.spage=2545&rft.epage=2558&rft_id=info:doi/10.1007%2Fs00231-019-02608-y&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-7411&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-7411&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-7411&client=summon |