Application of empirical wavelet transform, particle swarm optimization, gravitational search algorithm and long short term memory neural network to copper price forecasting

Copper is one of the main non-ferrous metals which are closely associated with important industries, such as equipment manufacturing, electrical wiring, and construction; and thus, copper price is becoming an important impact factor on the performance of related economies. This paper aims to develop...

Full description

Saved in:
Bibliographic Details
Published inPortuguese economic journal Vol. 24; no. 1; pp. 151 - 169
Main Author Kim, Yong Hyong
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer 01.01.2025
Springer Berlin Heidelberg
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1617-982X
1617-9838
DOI10.1007/s10258-024-00252-x

Cover

Abstract Copper is one of the main non-ferrous metals which are closely associated with important industries, such as equipment manufacturing, electrical wiring, and construction; and thus, copper price is becoming an important impact factor on the performance of related economies. This paper aims to develop a hybrid method for forecasting the copper price by combining empirical wavelet transform (EWT), particle swarm optimization (PSO), gravitational search algorithm (GSA) and long short term memory neural network (LSTM), which is denoted as EWT-PSO-GSA-LSTM in this study. The forecasting performance of the proposed hybrid method was verified by time series data of the copper closing price in the London Metal Exchange (LME). The results of this study have shown that the proposed EWT-PSO-GSA-LSTM method outperformed other forecasting methods in terms of several performance criteria, such as the root mean square error (RMSE), the mean absolute error (MAE), the mean absolute percentage error (MAPE), and the Diebold–Mariano (DM) test. For the daily copper price time series, the EWT-PSO-GSA-LSTM method had the smallest RMSE, MAE and MAPE values (0.007, 0.013 and 1.358, respectively) compared to LSTM, EWT-LSTM, PSO-LSTM and EWT-PSO-LSTM methods. Furthermore, all the DM values of our proposed method were below -2.61 and the p values were smaller than 1%, indicating that the proposed method performed the best in forecasting the copper price at the 99% confidence level. Given the present results, it can be concluded that it is possible to improve the copper price forecasting method by combining the EWT, PSO, GSA and LSTM models.
AbstractList Copper is one of the main non-ferrous metals which are closely associated with important industries, such as equipment manufacturing, electrical wiring, and construction; and thus, copper price is becoming an important impact factor on the performance of related economies. This paper aims to develop a hybrid method for forecasting the copper price by combining empirical wavelet transform (EWT), particle swarm optimization (PSO), gravitational search algorithm (GSA) and long short term memory neural network (LSTM), which is denoted as EWT-PSO-GSA-LSTM in this study. The forecasting performance of the proposed hybrid method was verified by time series data of the copper closing price in the London Metal Exchange (LME). The results of this study have shown that the proposed EWT-PSO-GSA-LSTM method outperformed other forecasting methods in terms of several performance criteria, such as the root mean square error (RMSE), the mean absolute error (MAE), the mean absolute percentage error (MAPE), and the Diebold–Mariano (DM) test. For the daily copper price time series, the EWT-PSO-GSA-LSTM method had the smallest RMSE, MAE and MAPE values (0.007, 0.013 and 1.358, respectively) compared to LSTM, EWT-LSTM, PSO-LSTM and EWT-PSO-LSTM methods. Furthermore, all the DM values of our proposed method were below -2.61 and the p values were smaller than 1%, indicating that the proposed method performed the best in forecasting the copper price at the 99% confidence level. Given the present results, it can be concluded that it is possible to improve the copper price forecasting method by combining the EWT, PSO, GSA and LSTM models.
Copper is one of the main non-ferrous metals which are closely associated with important industries, such as equipment manufacturing, electrical wiring, and construction; and thus, copper price is becoming an important impact factor on the performance of related economies. This paper aims to develop a hybrid method for forecasting the copper price by combining empirical wavelet transform (EWT), particle swarm optimization (PSO), gravitational search algorithm (GSA) and long short term memory neural network (LSTM), which is denoted as EWT-PSO-GSA-LSTM in this study. The forecasting performance of the proposed hybrid method was verified by time series data of the copper closing price in the London Metal Exchange (LME). The results of this study have shown that the proposed EWT-PSO-GSA-LSTM method outperformed other forecasting methods in terms of several performance criteria, such as the root mean square error (RMSE), the mean absolute error (MAE), the mean absolute percentage error (MAPE), and the Diebold–Mariano (DM) test. For the daily copper price time series, the EWT-PSO-GSA-LSTM method had the smallest RMSE, MAE and MAPE values (0.007, 0.013 and 1.358, respectively) compared to LSTM, EWT-LSTM, PSO-LSTM and EWT-PSO-LSTM methods. Furthermore, all the DM values of our proposed method were below -2.61 and the p values were smaller than 1%, indicating that the proposed method performed the best in forecasting the copper price at the 99% confidence level. Given the present results, it can be concluded that it is possible to improve the copper price forecasting method by combining the EWT, PSO, GSA and LSTM models.
Author Kim, Yong Hyong
Author_xml – sequence: 1
  fullname: Kim, Yong Hyong
BookMark eNp9kc1u3CAUhVGVSk3SvkBXSN3GLRiDPcso6p8UqZssukMYXzykNtALM5P0nfqOJTNRu-uKe6XzHQ6cC3IWYgBC3nL2njPWf8ictXJoWNs1rE5t8_CCnHPF-2YziOHs79x-f0Uucr6vor7r-3Py-zqlxVtTfAw0Ogpr8lj3hR7MHhYotKAJ2UVcr2gyWLxdgOaDwZXGVPzqfx3ZKzqj2ftyXCqdwaDdUrPMEX3ZrtSEiS4xzDRvI1ZXqAYrrBEfaYAdViRAOUT8QUukNqYESFNNArTeDdbk4sP8mrx0Zsnw5vm8JHefPt7dfGluv33-enN921ghVWnEUP9AjWI0BtTQqmmYjO073rlJOTdKyQRwzsF1apwGKR3AKBS0spedtJ24JO9Otgnjzx3kou_jDuuzshZVxAWTTFVVe1JZjDkjOF3zrgYfNWf6qRV9akXXVvSxFf1QIXGCchWHGfCf9X-p50BojUkaYe9zMU9Ix5iWerNpuRJ_AE6VozY
Cites_doi 10.3390/app10196648
10.1007/s11053-019-09473-w
10.1016/j.asoc.2018.10.007
10.1016/j.ins.2009.03.004
10.1016/j.techfore.2020.120126
10.1016/j.enconman.2017.11.053
10.1016/j.econmod.2015.12.014
10.1109/TPWRS.2010.2049385
10.3390/en11071882
10.3846/16111699.2012.683808
10.1162/neco.1997.9.8.1735
10.1109/CIBDA50819.2020.00075
10.1016/j.asoc.2019.105550
10.1016/j.jeconom.2010.03.013
10.1007/s12652-020-02353-9
10.1016/j.resourpol.2015.03.004
10.1016/j.intele.2017.02.001
10.1007/s00521-015-2032-7
10.1155/2019/1934796
10.1051/matecconf/201823201024
10.1016/S0378-4754(01)00409-8
10.1016/j.eswa.2015.04.058
10.1109/TSP.2013.2265222
10.1016/j.scs.2019.101471
10.1371/journal.pone.0227222
10.1016/j.eneco.2015.02.018
10.1007/s00181-015-1060-6
10.1016/j.physa.2020.124907
10.1016/j.cmpb.2019.105016
10.1016/j.neucom.2005.12.138
10.3390/w9060406
10.3390/en12091680
10.1109/ICNN.1995.488968
10.1016/j.scs.2019.101657
10.1016/j.resourpol.2017.10.015
10.1016/j.trc.2015.03.014
10.1155/2014/201402
10.1016/j.ijepes.2014.07.031
10.1007/s00521-019-04212-x
ContentType Journal Article
Copyright The Author(s) under exclusive licence to ISEG – Instituto Superior de Economia e Gestão 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s) under exclusive licence to ISEG – Instituto Superior de Economia e Gestão 2024.
Copyright_xml – notice: The Author(s) under exclusive licence to ISEG – Instituto Superior de Economia e Gestão 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s) under exclusive licence to ISEG – Instituto Superior de Economia e Gestão 2024.
DBID RCLKO
AAYXX
CITATION
8BJ
FQK
JBE
DOI 10.1007/s10258-024-00252-x
DatabaseName RCAAP open access repository
CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)


DeliveryMethod fulltext_linktorsrc
Discipline Economics
DissertationSchool Repositório da Universidade de Lisboa
EISSN 1617-9838
EndPage 169
ExternalDocumentID 10_1007_s10258_024_00252_x
10400_5_99216
GroupedDBID -Y2
.86
.VR
06D
0R~
0VY
123
1N0
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
7WY
8AO
8FL
8TC
8V8
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHQT
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHQJS
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYQZM
AZFZN
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBA
EBLON
EBO
EBR
EBS
EBU
EIOEI
EJD
EMK
EOH
EPL
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6~
KDC
KOV
LAS
LLZTM
M0C
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9G
OAM
P2P
P9M
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
Q2X
QOS
R89
R9I
RCLKO
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SBE
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TH9
TSG
TSK
TSV
TUC
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~A9
-57
-5G
-BR
-EM
-~C
3V.
ADINQ
GQ6
GROUPED_ABI_INFORM_COMPLETE
Z81
AAYXX
AXJJW
CITATION
PUEGO
8BJ
FQK
JBE
ID FETCH-LOGICAL-c356t-380256b3baae6826d8dac7414fd6ffb5503e111ef46bd855feeb36e257545c43
IEDL.DBID U2A
ISSN 1617-982X
IngestDate Thu Oct 16 08:24:01 EDT 2025
Wed Oct 01 00:57:47 EDT 2025
Fri Feb 21 02:38:18 EST 2025
Fri Aug 01 16:28:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords C53
Gravitational search algorithm
Empirical wavelet transform
C22
Copper price forecasting
C45
L61
Long-short term memory neural network
Particle swarm optimization
C61
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-380256b3baae6826d8dac7414fd6ffb5503e111ef46bd855feeb36e257545c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://hdl.handle.net/10400.5/99216
PQID 3257130506
PQPubID 43682
PageCount 19
ParticipantIDs proquest_journals_3257130506
crossref_primary_10_1007_s10258_024_00252_x
springer_journals_10_1007_s10258_024_00252_x
rcaap_revistas_10400_5_99216
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Portuguese economic journal
PublicationTitleAbbrev Port Econ J
PublicationYear 2025
Publisher Springer
Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer
– name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References S Duman (252_CR6) 2015; 64
Y Hu (252_CR13) 2020; 557
W Kristjanpoller (252_CR16) 2015; 42
Q Wu (252_CR37) 2019; 50
X Yuan (252_CR40) 2019; 82
JPS Catalao (252_CR4) 2011; 26
V Gundu (252_CR10) 2021; 12
MM Mostafa (252_CR26) 2016; 54
252_CR41
P Yu (252_CR39) 2020; 32
H Liu (252_CR20) 2019; 47
252_CR35
C Watkins (252_CR36) 2002; 59
J Manickavasagam (252_CR24) 2020; 158
252_CR15
X Ma (252_CR22) 2015; 54
E Hajizadeh (252_CR11) 2019; 31
X Cai (252_CR3) 2007; 70
H Liu (252_CR19) 2018; 156
H Dehghani (252_CR5) 2018; 55
FS Lasheras (252_CR17) 2015; 45
A Yazdani-Chamzini (252_CR38) 2012; 13
J Gilles (252_CR9) 2013; 61
J Qiu (252_CR29) 2020; 15
S Mirjalili (252_CR25) 2012; 218
I Figuerola-Ferretti (252_CR7) 2010; 158
B Shao (252_CR33) 2019; 2019
G Astudillo (252_CR2) 2020; 10
Z Alameer (252_CR1) 2019; 28
T Peng (252_CR28) 2017; 9
M Rubaszek (252_CR31) 2020; 65
M-L Huang (252_CR14) 2019; 180
M Su (252_CR34) 2019; 12
S Hochreiter (252_CR12) 1997; 9
MR Mahdiani (252_CR23) 2016; 10
L Lv (252_CR21) 2018; 232
A Shabri (252_CR32) 2014; 2014
D Garcia (252_CR8) 2018; 74
T Li (252_CR18) 2018; 11
A Oglend (252_CR27) 2016; 51
E Rashedi (252_CR30) 2009; 179
References_xml – volume: 10
  start-page: 6648
  year: 2020
  ident: 252_CR2
  publication-title: Appl Sci
  doi: 10.3390/app10196648
– volume: 28
  start-page: 1385
  year: 2019
  ident: 252_CR1
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-019-09473-w
– volume: 74
  start-page: 466
  year: 2018
  ident: 252_CR8
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.10.007
– volume: 179
  start-page: 2232
  year: 2009
  ident: 252_CR30
  publication-title: Inform Sciences
  doi: 10.1016/j.ins.2009.03.004
– volume: 158
  year: 2020
  ident: 252_CR24
  publication-title: Technol Forecast Soc Change
  doi: 10.1016/j.techfore.2020.120126
– volume: 156
  start-page: 498
  year: 2018
  ident: 252_CR19
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.11.053
– volume: 218
  start-page: 11125
  year: 2012
  ident: 252_CR25
  publication-title: Appl Math Comput
– volume: 54
  start-page: 40
  year: 2016
  ident: 252_CR26
  publication-title: Econ Model
  doi: 10.1016/j.econmod.2015.12.014
– volume: 26
  start-page: 137
  issue: 1
  year: 2011
  ident: 252_CR4
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2010.2049385
– volume: 11
  start-page: 1882
  year: 2018
  ident: 252_CR18
  publication-title: Energies
  doi: 10.3390/en11071882
– volume: 13
  start-page: 994
  issue: 5
  year: 2012
  ident: 252_CR38
  publication-title: J Bus Econ Manag
  doi: 10.3846/16111699.2012.683808
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 252_CR12
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– ident: 252_CR35
  doi: 10.1109/CIBDA50819.2020.00075
– volume: 82
  year: 2019
  ident: 252_CR40
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105550
– volume: 158
  start-page: 95
  year: 2010
  ident: 252_CR7
  publication-title: J Econometrics
  doi: 10.1016/j.jeconom.2010.03.013
– volume: 12
  start-page: 2375
  issue: 2
  year: 2021
  ident: 252_CR10
  publication-title: J Amb Intel Hum Comp
  doi: 10.1007/s12652-020-02353-9
– volume: 45
  start-page: 37
  year: 2015
  ident: 252_CR17
  publication-title: Resour Policy
  doi: 10.1016/j.resourpol.2015.03.004
– volume: 10
  start-page: 71
  year: 2016
  ident: 252_CR23
  publication-title: Intell Econ
  doi: 10.1016/j.intele.2017.02.001
– volume: 31
  start-page: 2063
  issue: 7
  year: 2019
  ident: 252_CR11
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2032-7
– volume: 2019
  start-page: 1934796
  year: 2019
  ident: 252_CR33
  publication-title: Math Probl Eng
  doi: 10.1155/2019/1934796
– volume: 232
  start-page: 01024
  year: 2018
  ident: 252_CR21
  publication-title: MATEC Web of Conferences
  doi: 10.1051/matecconf/201823201024
– volume: 59
  start-page: 207
  year: 2002
  ident: 252_CR36
  publication-title: Math Comput Simulat
  doi: 10.1016/S0378-4754(01)00409-8
– volume: 42
  start-page: 7245
  issue: 20
  year: 2015
  ident: 252_CR16
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2015.04.058
– volume: 61
  start-page: 3999
  issue: 16
  year: 2013
  ident: 252_CR9
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2013.2265222
– volume: 47
  year: 2019
  ident: 252_CR20
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2019.101471
– volume: 15
  issue: 1
  year: 2020
  ident: 252_CR29
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0227222
– ident: 252_CR41
  doi: 10.1016/j.eneco.2015.02.018
– volume: 51
  start-page: 1465
  year: 2016
  ident: 252_CR27
  publication-title: Empir Econ
  doi: 10.1007/s00181-015-1060-6
– volume: 557
  year: 2020
  ident: 252_CR13
  publication-title: Physica a: Stat Mechanics Appl
  doi: 10.1016/j.physa.2020.124907
– volume: 180
  year: 2019
  ident: 252_CR14
  publication-title: Comput Meth Prog Bio
  doi: 10.1016/j.cmpb.2019.105016
– volume: 70
  start-page: 2342
  year: 2007
  ident: 252_CR3
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.138
– volume: 65
  year: 2020
  ident: 252_CR31
  publication-title: A Forecasting Perspective Resour Pol
– volume: 9
  start-page: 406
  year: 2017
  ident: 252_CR28
  publication-title: Water
  doi: 10.3390/w9060406
– volume: 12
  start-page: 1680
  year: 2019
  ident: 252_CR34
  publication-title: Energies
  doi: 10.3390/en12091680
– ident: 252_CR15
  doi: 10.1109/ICNN.1995.488968
– volume: 50
  year: 2019
  ident: 252_CR37
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2019.101657
– volume: 55
  start-page: 55
  year: 2018
  ident: 252_CR5
  publication-title: Resour Pol
  doi: 10.1016/j.resourpol.2017.10.015
– volume: 54
  start-page: 187
  year: 2015
  ident: 252_CR22
  publication-title: Transp Res C
  doi: 10.1016/j.trc.2015.03.014
– volume: 2014
  year: 2014
  ident: 252_CR32
  publication-title: Math Probl Eng
  doi: 10.1155/2014/201402
– volume: 64
  start-page: 121
  year: 2015
  ident: 252_CR6
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.07.031
– volume: 32
  start-page: 1609
  issue: 6
  year: 2020
  ident: 252_CR39
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04212-x
SSID ssj0027477
ssib004843841
Score 2.3108733
Snippet Copper is one of the main non-ferrous metals which are closely associated with important industries, such as equipment manufacturing, electrical wiring, and...
SourceID proquest
crossref
springer
rcaap
SourceType Aggregation Database
Index Database
Publisher
StartPage 151
SubjectTerms Algorithms
Construction industry
Copper
Econometrics
Economic Policy
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Empirical wavelet transform
Forecasting
Gravitational search algorithm
Keywords Copper price forecasting
Mean square errors
Metals
Microeconomics
Neural networks
Optimization
Original Article
Particle swarm optimization
Prices
Random variables
Short term memory
Statistical methods
Time series
Values
Velocity
Wavelet transforms
Title Application of empirical wavelet transform, particle swarm optimization, gravitational search algorithm and long short term memory neural network to copper price forecasting
URI http://hdl.handle.net/10400.5/99216
https://link.springer.com/article/10.1007/s10258-024-00252-x
https://www.proquest.com/docview/3257130506
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1617-9838
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027477
  issn: 1617-982X
  databaseCode: AFBBN
  dateStart: 20020301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1617-9838
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027477
  issn: 1617-982X
  databaseCode: AGYKE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1617-9838
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027477
  issn: 1617-982X
  databaseCode: U2A
  dateStart: 20020301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQ9wAXVF5i6VLNgRtriSS21zmu0C4VCE6ttJwsx3baSpuHkqDCj-p_7Ew2URYBB86O7cM3nvkm82LsHZpkF6V5zH0QigtlM55lieeRSnOKy1kZUb3z12_q4kp83sndUBTWjtnuY0iy19RHxW6x1BxtCidDHXNkjjNJ7bxQiq_i9SSFWiRaRMduVz9iBW01T3W8G0pn_n7m7-Zp4pyzxllb_xEu7a3Q9pQ9HegjrA94P2OPQvmcPR6ri9sX7H49RaShyiEU9W3fBQTuLM2Y6KAbqeoS6kFuoL2zTQEVqo9iqMtcAg0mGhp44-7DiwC7v66a2-6mAFt62FflNbQ3yOA5aXgoKG33F1CPTNxSHjLMoavAVXUdGqipgxHg3cHZlvKtX7LL7eby4wUfRjJwl0jV8UQTR8qSzNqg0DPx2luHpETkXuV5hu5OElB7hlyozGsp84DOugqoF5CpOZG8YidlVYbXDLy0JCTCraIg0pXVOlXkPK2s88HF6Zy9H4Ew9aHxhplaLBNsBmEzPWzm55wtRqzM8Ahbk-C1aKLlB4XLPX6GUqeRdbd4DiovI02K8oPLyxHWafe_L3vzf5-fsScxDQ3u_9ss2EnX_Ahvkcl02TmbrT99_7I57wX4AcBI7sc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELaq3QO99F2VQts59NY1ahLbmxxXCLqUx2mRtifLdhxAkIeSIGj_U_8j48RRoI8DZ8e2rBnP9008D0I-IySbIMlCmlomKBNKU62jlAYiydy7nOKBy3c-PhHLU_Z9zdc-KawZot2HJ8nOUt9Ldgt5TBFTqAPqkCJznDJ0UMIJmS6-_TjcG_UwZlHMgvuOV9dkBdGaJnG49skz_171IUCNrHNaG6Wqvx5MOxzaf05OhxP04SeXO9et3jG__iju-NgjviDPPDGFRa9JL8kTW7wiG0PecvOa_F6Mb91QZmDz6qKrLwI3ynWvaKEdSPAMKq-R0NyoOocSDVPuMz5n4Foe-dLgOLu_a6Cuzsr6oj3PQRUpXJXFGTTn6BtQhx2Qu4Dgn-Cqb-KUoo9dh7YEU1aVraFytZEA97ZGNS6S-w1Z7e-tdpfUN3ugJuKipVHs2JeOtFJWoM-TxqkySHdYloos0-hIRRbtss2Y0GnMeWatjoRFi4Mc0LDoLZkUZWHfEUi5curHzDywLJmrOE6Ec8vmyqTWhMkm-TIIWFZ9SQ85Fm92EpAoAdlJQN5uku1BB6S_3o2McFsEf_5V4HCnF9IFZSOfb3AdNIuSyyQJAxyeDZIeZ_9_s_eP-_wT2Viujo_k0cHJ4RZ5GrrWxN3foW0yaetr-wH5Uqs_-utxB6izDV0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQKwEXxFO0lHYO3FirJLG9yXEFrFoeFYdW2pvl-NFWah5Kggo_iv_ITB7KVsCBs2P7MOOZbzIz3zD2Bl2yjbIQc-eF4kKZnOd54nikskB5OSMj6nf-eqZOLsSnjdxsdfH31e5TSnLoaSCWprI7rl043mp8i2XK0b9wctoxRxS5K4goATX6Il7NGpmKJBXRdgjWj1tBv82zNN6MbTR_P_Ouq5rx525jjan_SJ32Hmn9mD0aoSSsBtk_Yfd8-ZQ9mDqN22fs12rOTkMVwBf1dc8IAreG5k100E2wdQH1qEPQ3pqmgApNSTH2aC6AhhSNZN64e3gdYG4uq-a6uyrAlA5uqvIS2itE85ysPRRUwvsTiC8Tt5RDtTl0Fdiqrn0DNbEZAd7trWmp9vo5O19_PH9_wsfxDNwmUnU8SQkv5UlujFcYpbjUGYsARQSnQsgx9Ek8WlIfhMpdKmXwGLgrjzYCUZsVyQu2U1alf8nASUMKI-wy8iJbmjTNFAVSS2Odt3G2x95OgtD1QMKhZ7plEptGselebPrHHjuYZKXHB9nqBK9Fdy3fKVzu5aepjBoReIvnoCHTUmdZHOHyYhLrvPvfl-3_3-dH7P63D2v95fTs8yv2MKZZwv3vnAO20zXf_WsEOF1-2OvwbzrN9Fs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+empirical+wavelet+transform%2C+particle+swarm+optimization%2C+gravitational+search+algorithm+and+long+short-term+memory+neural+network+to+copper+price+forecasting&rft.jtitle=Portuguese+economic+journal&rft.au=Kim%2C+Yong-Hyong&rft.au=Ham%2C+Song-Jun&rft.au=Ri%2C+Chong-Sim&rft.au=Kim%2C+Won-Hyok&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1617-982X&rft.eissn=1617-9838&rft.volume=24&rft.issue=1&rft.spage=151&rft.epage=169&rft_id=info:doi/10.1007%2Fs10258-024-00252-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-982X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-982X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-982X&client=summon