Application of empirical wavelet transform, particle swarm optimization, gravitational search algorithm and long short term memory neural network to copper price forecasting
Copper is one of the main non-ferrous metals which are closely associated with important industries, such as equipment manufacturing, electrical wiring, and construction; and thus, copper price is becoming an important impact factor on the performance of related economies. This paper aims to develop...
        Saved in:
      
    
          | Published in | Portuguese economic journal Vol. 24; no. 1; pp. 151 - 169 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer
    
        01.01.2025
     Springer Berlin Heidelberg Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1617-982X 1617-9838  | 
| DOI | 10.1007/s10258-024-00252-x | 
Cover
| Abstract | Copper is one of the main non-ferrous metals which are closely associated with important industries, such as equipment manufacturing, electrical wiring, and construction; and thus, copper price is becoming an important impact factor on the performance of related economies. This paper aims to develop a hybrid method for forecasting the copper price by combining empirical wavelet transform (EWT), particle swarm optimization (PSO), gravitational search algorithm (GSA) and long short term memory neural network (LSTM), which is denoted as EWT-PSO-GSA-LSTM in this study. The forecasting performance of the proposed hybrid method was verified by time series data of the copper closing price in the London Metal Exchange (LME). The results of this study have shown that the proposed EWT-PSO-GSA-LSTM method outperformed other forecasting methods in terms of several performance criteria, such as the root mean square error (RMSE), the mean absolute error (MAE), the mean absolute percentage error (MAPE), and the Diebold–Mariano (DM) test. For the daily copper price time series, the EWT-PSO-GSA-LSTM method had the smallest RMSE, MAE and MAPE values (0.007, 0.013 and 1.358, respectively) compared to LSTM, EWT-LSTM, PSO-LSTM and EWT-PSO-LSTM methods. Furthermore, all the DM values of our proposed method were below -2.61 and the p values were smaller than 1%, indicating that the proposed method performed the best in forecasting the copper price at the 99% confidence level. Given the present results, it can be concluded that it is possible to improve the copper price forecasting method by combining the EWT, PSO, GSA and LSTM models. | 
    
|---|---|
| AbstractList | Copper is one of the main non-ferrous metals which are closely associated with important industries, such as equipment manufacturing, electrical wiring, and construction; and thus, copper price is becoming an important impact factor on the performance of related economies. This paper aims to develop a hybrid method for forecasting the copper price by combining empirical wavelet transform (EWT), particle swarm optimization (PSO), gravitational search algorithm (GSA) and long short term memory neural network (LSTM), which is denoted as EWT-PSO-GSA-LSTM in this study. The forecasting performance of the proposed hybrid method was verified by time series data of the copper closing price in the London Metal Exchange (LME). The results of this study have shown that the proposed EWT-PSO-GSA-LSTM method outperformed other forecasting methods in terms of several performance criteria, such as the root mean square error (RMSE), the mean absolute error (MAE), the mean absolute percentage error (MAPE), and the Diebold–Mariano (DM) test. For the daily copper price time series, the EWT-PSO-GSA-LSTM method had the smallest RMSE, MAE and MAPE values (0.007, 0.013 and 1.358, respectively) compared to LSTM, EWT-LSTM, PSO-LSTM and EWT-PSO-LSTM methods. Furthermore, all the DM values of our proposed method were below -2.61 and the p values were smaller than 1%, indicating that the proposed method performed the best in forecasting the copper price at the 99% confidence level. Given the present results, it can be concluded that it is possible to improve the copper price forecasting method by combining the EWT, PSO, GSA and LSTM models. Copper is one of the main non-ferrous metals which are closely associated with important industries, such as equipment manufacturing, electrical wiring, and construction; and thus, copper price is becoming an important impact factor on the performance of related economies. This paper aims to develop a hybrid method for forecasting the copper price by combining empirical wavelet transform (EWT), particle swarm optimization (PSO), gravitational search algorithm (GSA) and long short term memory neural network (LSTM), which is denoted as EWT-PSO-GSA-LSTM in this study. The forecasting performance of the proposed hybrid method was verified by time series data of the copper closing price in the London Metal Exchange (LME). The results of this study have shown that the proposed EWT-PSO-GSA-LSTM method outperformed other forecasting methods in terms of several performance criteria, such as the root mean square error (RMSE), the mean absolute error (MAE), the mean absolute percentage error (MAPE), and the Diebold–Mariano (DM) test. For the daily copper price time series, the EWT-PSO-GSA-LSTM method had the smallest RMSE, MAE and MAPE values (0.007, 0.013 and 1.358, respectively) compared to LSTM, EWT-LSTM, PSO-LSTM and EWT-PSO-LSTM methods. Furthermore, all the DM values of our proposed method were below -2.61 and the p values were smaller than 1%, indicating that the proposed method performed the best in forecasting the copper price at the 99% confidence level. Given the present results, it can be concluded that it is possible to improve the copper price forecasting method by combining the EWT, PSO, GSA and LSTM models.  | 
    
| Author | Kim, Yong Hyong | 
    
| Author_xml | – sequence: 1 fullname: Kim, Yong Hyong  | 
    
| BookMark | eNp9kc1u3CAUhVGVSk3SvkBXSN3GLRiDPcso6p8UqZssukMYXzykNtALM5P0nfqOJTNRu-uKe6XzHQ6cC3IWYgBC3nL2njPWf8ictXJoWNs1rE5t8_CCnHPF-2YziOHs79x-f0Uucr6vor7r-3Py-zqlxVtTfAw0Ogpr8lj3hR7MHhYotKAJ2UVcr2gyWLxdgOaDwZXGVPzqfx3ZKzqj2ftyXCqdwaDdUrPMEX3ZrtSEiS4xzDRvI1ZXqAYrrBEfaYAdViRAOUT8QUukNqYESFNNArTeDdbk4sP8mrx0Zsnw5vm8JHefPt7dfGluv33-enN921ghVWnEUP9AjWI0BtTQqmmYjO073rlJOTdKyQRwzsF1apwGKR3AKBS0spedtJ24JO9Otgnjzx3kou_jDuuzshZVxAWTTFVVe1JZjDkjOF3zrgYfNWf6qRV9akXXVvSxFf1QIXGCchWHGfCf9X-p50BojUkaYe9zMU9Ix5iWerNpuRJ_AE6VozY | 
    
| Cites_doi | 10.3390/app10196648 10.1007/s11053-019-09473-w 10.1016/j.asoc.2018.10.007 10.1016/j.ins.2009.03.004 10.1016/j.techfore.2020.120126 10.1016/j.enconman.2017.11.053 10.1016/j.econmod.2015.12.014 10.1109/TPWRS.2010.2049385 10.3390/en11071882 10.3846/16111699.2012.683808 10.1162/neco.1997.9.8.1735 10.1109/CIBDA50819.2020.00075 10.1016/j.asoc.2019.105550 10.1016/j.jeconom.2010.03.013 10.1007/s12652-020-02353-9 10.1016/j.resourpol.2015.03.004 10.1016/j.intele.2017.02.001 10.1007/s00521-015-2032-7 10.1155/2019/1934796 10.1051/matecconf/201823201024 10.1016/S0378-4754(01)00409-8 10.1016/j.eswa.2015.04.058 10.1109/TSP.2013.2265222 10.1016/j.scs.2019.101471 10.1371/journal.pone.0227222 10.1016/j.eneco.2015.02.018 10.1007/s00181-015-1060-6 10.1016/j.physa.2020.124907 10.1016/j.cmpb.2019.105016 10.1016/j.neucom.2005.12.138 10.3390/w9060406 10.3390/en12091680 10.1109/ICNN.1995.488968 10.1016/j.scs.2019.101657 10.1016/j.resourpol.2017.10.015 10.1016/j.trc.2015.03.014 10.1155/2014/201402 10.1016/j.ijepes.2014.07.031 10.1007/s00521-019-04212-x  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) under exclusive licence to ISEG – Instituto Superior de Economia e Gestão 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s) under exclusive licence to ISEG – Instituto Superior de Economia e Gestão 2024.  | 
    
| Copyright_xml | – notice: The Author(s) under exclusive licence to ISEG – Instituto Superior de Economia e Gestão 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s) under exclusive licence to ISEG – Instituto Superior de Economia e Gestão 2024.  | 
    
| DBID | RCLKO AAYXX CITATION 8BJ FQK JBE  | 
    
| DOI | 10.1007/s10258-024-00252-x | 
    
| DatabaseName | RCAAP open access repository CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences  | 
    
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS)  | 
    
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Economics | 
    
| DissertationSchool | Repositório da Universidade de Lisboa | 
    
| EISSN | 1617-9838 | 
    
| EndPage | 169 | 
    
| ExternalDocumentID | 10_1007_s10258_024_00252_x 10400_5_99216  | 
    
| GroupedDBID | -Y2 .86 .VR 06D 0R~ 0VY 123 1N0 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 7WY 8AO 8FL 8TC 8V8 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHQT ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHQJS AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYQZM AZFZN B-. BA0 BAPOH BDATZ BENPR BEZIV BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBA EBLON EBO EBR EBS EBU EIOEI EJD EMK EOH EPL ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6~ KDC KOV LAS LLZTM M0C M4Y MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9G OAM P2P P9M PF0 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 Q2X QOS R89 R9I RCLKO ROL RPX RSV S16 S1Z S27 S3B SAP SBE SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TH9 TSG TSK TSV TUC U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~8M ~A9 -57 -5G -BR -EM -~C 3V. ADINQ GQ6 GROUPED_ABI_INFORM_COMPLETE Z81 AAYXX AXJJW CITATION PUEGO 8BJ FQK JBE  | 
    
| ID | FETCH-LOGICAL-c356t-380256b3baae6826d8dac7414fd6ffb5503e111ef46bd855feeb36e257545c43 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1617-982X | 
    
| IngestDate | Thu Oct 16 08:24:01 EDT 2025 Wed Oct 01 00:57:47 EDT 2025 Fri Feb 21 02:38:18 EST 2025 Fri Aug 01 16:28:51 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | C53 Gravitational search algorithm Empirical wavelet transform C22 Copper price forecasting C45 L61 Long-short term memory neural network Particle swarm optimization C61  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c356t-380256b3baae6826d8dac7414fd6ffb5503e111ef46bd855feeb36e257545c43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | http://hdl.handle.net/10400.5/99216 | 
    
| PQID | 3257130506 | 
    
| PQPubID | 43682 | 
    
| PageCount | 19 | 
    
| ParticipantIDs | proquest_journals_3257130506 crossref_primary_10_1007_s10258_024_00252_x springer_journals_10_1007_s10258_024_00252_x rcaap_revistas_10400_5_99216  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-01-01 | 
    
| PublicationDateYYYYMMDD | 2025-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationTitle | Portuguese economic journal | 
    
| PublicationTitleAbbrev | Port Econ J | 
    
| PublicationYear | 2025 | 
    
| Publisher | Springer Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | S Duman (252_CR6) 2015; 64 Y Hu (252_CR13) 2020; 557 W Kristjanpoller (252_CR16) 2015; 42 Q Wu (252_CR37) 2019; 50 X Yuan (252_CR40) 2019; 82 JPS Catalao (252_CR4) 2011; 26 V Gundu (252_CR10) 2021; 12 MM Mostafa (252_CR26) 2016; 54 252_CR41 P Yu (252_CR39) 2020; 32 H Liu (252_CR20) 2019; 47 252_CR35 C Watkins (252_CR36) 2002; 59 J Manickavasagam (252_CR24) 2020; 158 252_CR15 X Ma (252_CR22) 2015; 54 E Hajizadeh (252_CR11) 2019; 31 X Cai (252_CR3) 2007; 70 H Liu (252_CR19) 2018; 156 H Dehghani (252_CR5) 2018; 55 FS Lasheras (252_CR17) 2015; 45 A Yazdani-Chamzini (252_CR38) 2012; 13 J Gilles (252_CR9) 2013; 61 J Qiu (252_CR29) 2020; 15 S Mirjalili (252_CR25) 2012; 218 I Figuerola-Ferretti (252_CR7) 2010; 158 B Shao (252_CR33) 2019; 2019 G Astudillo (252_CR2) 2020; 10 Z Alameer (252_CR1) 2019; 28 T Peng (252_CR28) 2017; 9 M Rubaszek (252_CR31) 2020; 65 M-L Huang (252_CR14) 2019; 180 M Su (252_CR34) 2019; 12 S Hochreiter (252_CR12) 1997; 9 MR Mahdiani (252_CR23) 2016; 10 L Lv (252_CR21) 2018; 232 A Shabri (252_CR32) 2014; 2014 D Garcia (252_CR8) 2018; 74 T Li (252_CR18) 2018; 11 A Oglend (252_CR27) 2016; 51 E Rashedi (252_CR30) 2009; 179  | 
    
| References_xml | – volume: 10 start-page: 6648 year: 2020 ident: 252_CR2 publication-title: Appl Sci doi: 10.3390/app10196648 – volume: 28 start-page: 1385 year: 2019 ident: 252_CR1 publication-title: Nat Resour Res doi: 10.1007/s11053-019-09473-w – volume: 74 start-page: 466 year: 2018 ident: 252_CR8 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.10.007 – volume: 179 start-page: 2232 year: 2009 ident: 252_CR30 publication-title: Inform Sciences doi: 10.1016/j.ins.2009.03.004 – volume: 158 year: 2020 ident: 252_CR24 publication-title: Technol Forecast Soc Change doi: 10.1016/j.techfore.2020.120126 – volume: 156 start-page: 498 year: 2018 ident: 252_CR19 publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.11.053 – volume: 218 start-page: 11125 year: 2012 ident: 252_CR25 publication-title: Appl Math Comput – volume: 54 start-page: 40 year: 2016 ident: 252_CR26 publication-title: Econ Model doi: 10.1016/j.econmod.2015.12.014 – volume: 26 start-page: 137 issue: 1 year: 2011 ident: 252_CR4 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2010.2049385 – volume: 11 start-page: 1882 year: 2018 ident: 252_CR18 publication-title: Energies doi: 10.3390/en11071882 – volume: 13 start-page: 994 issue: 5 year: 2012 ident: 252_CR38 publication-title: J Bus Econ Manag doi: 10.3846/16111699.2012.683808 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 252_CR12 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – ident: 252_CR35 doi: 10.1109/CIBDA50819.2020.00075 – volume: 82 year: 2019 ident: 252_CR40 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105550 – volume: 158 start-page: 95 year: 2010 ident: 252_CR7 publication-title: J Econometrics doi: 10.1016/j.jeconom.2010.03.013 – volume: 12 start-page: 2375 issue: 2 year: 2021 ident: 252_CR10 publication-title: J Amb Intel Hum Comp doi: 10.1007/s12652-020-02353-9 – volume: 45 start-page: 37 year: 2015 ident: 252_CR17 publication-title: Resour Policy doi: 10.1016/j.resourpol.2015.03.004 – volume: 10 start-page: 71 year: 2016 ident: 252_CR23 publication-title: Intell Econ doi: 10.1016/j.intele.2017.02.001 – volume: 31 start-page: 2063 issue: 7 year: 2019 ident: 252_CR11 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2032-7 – volume: 2019 start-page: 1934796 year: 2019 ident: 252_CR33 publication-title: Math Probl Eng doi: 10.1155/2019/1934796 – volume: 232 start-page: 01024 year: 2018 ident: 252_CR21 publication-title: MATEC Web of Conferences doi: 10.1051/matecconf/201823201024 – volume: 59 start-page: 207 year: 2002 ident: 252_CR36 publication-title: Math Comput Simulat doi: 10.1016/S0378-4754(01)00409-8 – volume: 42 start-page: 7245 issue: 20 year: 2015 ident: 252_CR16 publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2015.04.058 – volume: 61 start-page: 3999 issue: 16 year: 2013 ident: 252_CR9 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2013.2265222 – volume: 47 year: 2019 ident: 252_CR20 publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2019.101471 – volume: 15 issue: 1 year: 2020 ident: 252_CR29 publication-title: PLoS ONE doi: 10.1371/journal.pone.0227222 – ident: 252_CR41 doi: 10.1016/j.eneco.2015.02.018 – volume: 51 start-page: 1465 year: 2016 ident: 252_CR27 publication-title: Empir Econ doi: 10.1007/s00181-015-1060-6 – volume: 557 year: 2020 ident: 252_CR13 publication-title: Physica a: Stat Mechanics Appl doi: 10.1016/j.physa.2020.124907 – volume: 180 year: 2019 ident: 252_CR14 publication-title: Comput Meth Prog Bio doi: 10.1016/j.cmpb.2019.105016 – volume: 70 start-page: 2342 year: 2007 ident: 252_CR3 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.138 – volume: 65 year: 2020 ident: 252_CR31 publication-title: A Forecasting Perspective Resour Pol – volume: 9 start-page: 406 year: 2017 ident: 252_CR28 publication-title: Water doi: 10.3390/w9060406 – volume: 12 start-page: 1680 year: 2019 ident: 252_CR34 publication-title: Energies doi: 10.3390/en12091680 – ident: 252_CR15 doi: 10.1109/ICNN.1995.488968 – volume: 50 year: 2019 ident: 252_CR37 publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2019.101657 – volume: 55 start-page: 55 year: 2018 ident: 252_CR5 publication-title: Resour Pol doi: 10.1016/j.resourpol.2017.10.015 – volume: 54 start-page: 187 year: 2015 ident: 252_CR22 publication-title: Transp Res C doi: 10.1016/j.trc.2015.03.014 – volume: 2014 year: 2014 ident: 252_CR32 publication-title: Math Probl Eng doi: 10.1155/2014/201402 – volume: 64 start-page: 121 year: 2015 ident: 252_CR6 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.07.031 – volume: 32 start-page: 1609 issue: 6 year: 2020 ident: 252_CR39 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04212-x  | 
    
| SSID | ssj0027477 ssib004843841  | 
    
| Score | 2.3108733 | 
    
| Snippet | Copper is one of the main non-ferrous metals which are closely associated with important industries, such as equipment manufacturing, electrical wiring, and... | 
    
| SourceID | proquest crossref springer rcaap  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 151 | 
    
| SubjectTerms | Algorithms Construction industry Copper Econometrics Economic Policy Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Empirical wavelet transform Forecasting Gravitational search algorithm Keywords Copper price forecasting Mean square errors Metals Microeconomics Neural networks Optimization Original Article Particle swarm optimization Prices Random variables Short term memory Statistical methods Time series Values Velocity Wavelet transforms  | 
    
| Title | Application of empirical wavelet transform, particle swarm optimization, gravitational search algorithm and long short term memory neural network to copper price forecasting | 
    
| URI | http://hdl.handle.net/10400.5/99216 https://link.springer.com/article/10.1007/s10258-024-00252-x https://www.proquest.com/docview/3257130506  | 
    
| Volume | 24 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1617-9838 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0027477 issn: 1617-982X databaseCode: AFBBN dateStart: 20020301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1617-9838 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0027477 issn: 1617-982X databaseCode: AGYKE dateStart: 20020101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1617-9838 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027477 issn: 1617-982X databaseCode: U2A dateStart: 20020301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQ9wAXVF5i6VLNgRtriSS21zmu0C4VCE6ttJwsx3baSpuHkqDCj-p_7Ew2URYBB86O7cM3nvkm82LsHZpkF6V5zH0QigtlM55lieeRSnOKy1kZUb3z12_q4kp83sndUBTWjtnuY0iy19RHxW6x1BxtCidDHXNkjjNJ7bxQiq_i9SSFWiRaRMduVz9iBW01T3W8G0pn_n7m7-Zp4pyzxllb_xEu7a3Q9pQ9HegjrA94P2OPQvmcPR6ri9sX7H49RaShyiEU9W3fBQTuLM2Y6KAbqeoS6kFuoL2zTQEVqo9iqMtcAg0mGhp44-7DiwC7v66a2-6mAFt62FflNbQ3yOA5aXgoKG33F1CPTNxSHjLMoavAVXUdGqipgxHg3cHZlvKtX7LL7eby4wUfRjJwl0jV8UQTR8qSzNqg0DPx2luHpETkXuV5hu5OElB7hlyozGsp84DOugqoF5CpOZG8YidlVYbXDLy0JCTCraIg0pXVOlXkPK2s88HF6Zy9H4Ew9aHxhplaLBNsBmEzPWzm55wtRqzM8Ahbk-C1aKLlB4XLPX6GUqeRdbd4DiovI02K8oPLyxHWafe_L3vzf5-fsScxDQ3u_9ss2EnX_Ahvkcl02TmbrT99_7I57wX4AcBI7sc | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELaq3QO99F2VQts59NY1ahLbmxxXCLqUx2mRtifLdhxAkIeSIGj_U_8j48RRoI8DZ8e2rBnP9008D0I-IySbIMlCmlomKBNKU62jlAYiydy7nOKBy3c-PhHLU_Z9zdc-KawZot2HJ8nOUt9Ldgt5TBFTqAPqkCJznDJ0UMIJmS6-_TjcG_UwZlHMgvuOV9dkBdGaJnG49skz_171IUCNrHNaG6Wqvx5MOxzaf05OhxP04SeXO9et3jG__iju-NgjviDPPDGFRa9JL8kTW7wiG0PecvOa_F6Mb91QZmDz6qKrLwI3ynWvaKEdSPAMKq-R0NyoOocSDVPuMz5n4Foe-dLgOLu_a6Cuzsr6oj3PQRUpXJXFGTTn6BtQhx2Qu4Dgn-Cqb-KUoo9dh7YEU1aVraFytZEA97ZGNS6S-w1Z7e-tdpfUN3ugJuKipVHs2JeOtFJWoM-TxqkySHdYloos0-hIRRbtss2Y0GnMeWatjoRFi4Mc0LDoLZkUZWHfEUi5curHzDywLJmrOE6Ec8vmyqTWhMkm-TIIWFZ9SQ85Fm92EpAoAdlJQN5uku1BB6S_3o2McFsEf_5V4HCnF9IFZSOfb3AdNIuSyyQJAxyeDZIeZ_9_s_eP-_wT2Viujo_k0cHJ4RZ5GrrWxN3foW0yaetr-wH5Uqs_-utxB6izDV0 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQKwEXxFO0lHYO3FirJLG9yXEFrFoeFYdW2pvl-NFWah5Kggo_iv_ITB7KVsCBs2P7MOOZbzIz3zD2Bl2yjbIQc-eF4kKZnOd54nikskB5OSMj6nf-eqZOLsSnjdxsdfH31e5TSnLoaSCWprI7rl043mp8i2XK0b9wctoxRxS5K4goATX6Il7NGpmKJBXRdgjWj1tBv82zNN6MbTR_P_Ouq5rx525jjan_SJ32Hmn9mD0aoSSsBtk_Yfd8-ZQ9mDqN22fs12rOTkMVwBf1dc8IAreG5k100E2wdQH1qEPQ3pqmgApNSTH2aC6AhhSNZN64e3gdYG4uq-a6uyrAlA5uqvIS2itE85ysPRRUwvsTiC8Tt5RDtTl0Fdiqrn0DNbEZAd7trWmp9vo5O19_PH9_wsfxDNwmUnU8SQkv5UlujFcYpbjUGYsARQSnQsgx9Ek8WlIfhMpdKmXwGLgrjzYCUZsVyQu2U1alf8nASUMKI-wy8iJbmjTNFAVSS2Odt3G2x95OgtD1QMKhZ7plEptGselebPrHHjuYZKXHB9nqBK9Fdy3fKVzu5aepjBoReIvnoCHTUmdZHOHyYhLrvPvfl-3_3-dH7P63D2v95fTs8yv2MKZZwv3vnAO20zXf_WsEOF1-2OvwbzrN9Fs | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+empirical+wavelet+transform%2C+particle+swarm+optimization%2C+gravitational+search+algorithm+and+long+short-term+memory+neural+network+to+copper+price+forecasting&rft.jtitle=Portuguese+economic+journal&rft.au=Kim%2C+Yong-Hyong&rft.au=Ham%2C+Song-Jun&rft.au=Ri%2C+Chong-Sim&rft.au=Kim%2C+Won-Hyok&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1617-982X&rft.eissn=1617-9838&rft.volume=24&rft.issue=1&rft.spage=151&rft.epage=169&rft_id=info:doi/10.1007%2Fs10258-024-00252-x&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-982X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-982X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-982X&client=summon |