A Fully Integrated Architecture for Fast and Accurate Programming of Floating Gates Over Six Decades of Current

This paper presents an on-chip system with digital serial peripheral interface (SPI) interface that enables accurate programming of floating gate arrays at a high speed. The main component allowing this speedup is a floating point current measuring analog-to-digital convertor (ADC). The ADC comprise...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on very large scale integration (VLSI) systems Vol. 19; no. 6; pp. 953 - 962
Main Authors Basu, Arindam, Hasler, Paul E
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.06.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-8210
1557-9999
DOI10.1109/TVLSI.2010.2042626

Cover

More Information
Summary:This paper presents an on-chip system with digital serial peripheral interface (SPI) interface that enables accurate programming of floating gate arrays at a high speed. The main component allowing this speedup is a floating point current measuring analog-to-digital convertor (ADC). The ADC comprises a wide range logarithmic transimpedance amplifier (TIA) followed by a linear ramp ADC. The TIA operates over seven decades of current going down to sub-pA levels. It incorporates an adaptive biasing scheme to save power. The topology provides a relatively temperature independent measurement of the floating-gate voltage. The TIA-ADC combination operates over six decades at a thermal noise limited accuracy of 9.5 bits when average conversion time is around 500 μs. The system features level-shifters and selection circuitry at the periphery of the floating gate array, current-steering digital-to-analog converters (DACs) to set gate and drain voltages, and SPI for a microprocessor or field-programmable gate array (FPGA). Algorithms using either pulse-width modulation or drain voltage modulation can be implemented on this platform. We present data for this system from 0.5 μm AMI and 0.35 μ m TSMC processes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2010.2042626