Multiclass Classification of Spatially Filtered Motor Imagery EEG Signals Using Convolutional Neural Network for BCI Based Applications
Purpose Brain–Computer Interface (BCI) system offers a new means of communication for those with paralysis or severe neuromuscular disorders. BCI systems based on Motor Imagery (MI) Electroencephalography (EEG) signals enable the user to convert their thoughts into actions without any voluntary musc...
Saved in:
Published in | Journal of medical and biological engineering Vol. 40; no. 5; pp. 663 - 672 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1609-0985 2199-4757 |
DOI | 10.1007/s40846-020-00538-3 |
Cover
Abstract | Purpose
Brain–Computer Interface (BCI) system offers a new means of communication for those with paralysis or severe neuromuscular disorders. BCI systems based on Motor Imagery (MI) Electroencephalography (EEG) signals enable the user to convert their thoughts into actions without any voluntary muscle movement. Recently, Convolutional neural network (CNN) is used for the classification of MI signals. However, to produce good MI classification, it is necessary to effectively represent the signal as an input image to the CNN and train the deep learning classifier using large training data.
Methods
In this work, EEG signals are acquired over 16 channels and are filtered using a bandpass filter with the frequency range of 1 to 100 Hz. The processed signal is spatially filtered using Common Spatial Pattern (CSP) filter. The spectrograms of the spatially filtered signals are given as input to CNN. A single convolutional layer CNN is designed to classify left hand, right hand, both hands, and feet MI EEG signals. The size of the training data is increased by augmenting the spectrograms of the EEG signals.
Results
The CNN classifier was evaluated using MI signals acquired from twelve healthy subjects. Results show that the proposed method achieved an average classification accuracy of 95.18 ± 2.51% for two-class (left hand and right hand) and 87.37 ± 1.68% for four-class (Left hand, Right hand, Both hands, and Feet) MI.
Conclusion
Thus, the method manifests that this 2D representation of 1D EEG signal along with image augmentation shows a high potential for classification of MI EEG signals using the designed CNN model. |
---|---|
AbstractList | PurposeBrain–Computer Interface (BCI) system offers a new means of communication for those with paralysis or severe neuromuscular disorders. BCI systems based on Motor Imagery (MI) Electroencephalography (EEG) signals enable the user to convert their thoughts into actions without any voluntary muscle movement. Recently, Convolutional neural network (CNN) is used for the classification of MI signals. However, to produce good MI classification, it is necessary to effectively represent the signal as an input image to the CNN and train the deep learning classifier using large training data.MethodsIn this work, EEG signals are acquired over 16 channels and are filtered using a bandpass filter with the frequency range of 1 to 100 Hz. The processed signal is spatially filtered using Common Spatial Pattern (CSP) filter. The spectrograms of the spatially filtered signals are given as input to CNN. A single convolutional layer CNN is designed to classify left hand, right hand, both hands, and feet MI EEG signals. The size of the training data is increased by augmenting the spectrograms of the EEG signals.ResultsThe CNN classifier was evaluated using MI signals acquired from twelve healthy subjects. Results show that the proposed method achieved an average classification accuracy of 95.18 ± 2.51% for two-class (left hand and right hand) and 87.37 ± 1.68% for four-class (Left hand, Right hand, Both hands, and Feet) MI.ConclusionThus, the method manifests that this 2D representation of 1D EEG signal along with image augmentation shows a high potential for classification of MI EEG signals using the designed CNN model. Purpose Brain–Computer Interface (BCI) system offers a new means of communication for those with paralysis or severe neuromuscular disorders. BCI systems based on Motor Imagery (MI) Electroencephalography (EEG) signals enable the user to convert their thoughts into actions without any voluntary muscle movement. Recently, Convolutional neural network (CNN) is used for the classification of MI signals. However, to produce good MI classification, it is necessary to effectively represent the signal as an input image to the CNN and train the deep learning classifier using large training data. Methods In this work, EEG signals are acquired over 16 channels and are filtered using a bandpass filter with the frequency range of 1 to 100 Hz. The processed signal is spatially filtered using Common Spatial Pattern (CSP) filter. The spectrograms of the spatially filtered signals are given as input to CNN. A single convolutional layer CNN is designed to classify left hand, right hand, both hands, and feet MI EEG signals. The size of the training data is increased by augmenting the spectrograms of the EEG signals. Results The CNN classifier was evaluated using MI signals acquired from twelve healthy subjects. Results show that the proposed method achieved an average classification accuracy of 95.18 ± 2.51% for two-class (left hand and right hand) and 87.37 ± 1.68% for four-class (Left hand, Right hand, Both hands, and Feet) MI. Conclusion Thus, the method manifests that this 2D representation of 1D EEG signal along with image augmentation shows a high potential for classification of MI EEG signals using the designed CNN model. |
Author | Shajil, Nijisha Arivudaiyanambi, Janani Srinivasan, Poonguzhali Mohan, Sasikala Arasappan Murrugesan, Arunnagiri |
Author_xml | – sequence: 1 givenname: Nijisha surname: Shajil fullname: Shajil, Nijisha organization: Centre for Medical Electronics, Department of Electronics and Communication Engineering, College of Engineering Guindy (CEG), Anna University – sequence: 2 givenname: Sasikala orcidid: 0000-0002-6371-0697 surname: Mohan fullname: Mohan, Sasikala email: sasikala@annauniv.edu organization: Centre for Medical Electronics, Department of Electronics and Communication Engineering, College of Engineering Guindy (CEG), Anna University – sequence: 3 givenname: Poonguzhali surname: Srinivasan fullname: Srinivasan, Poonguzhali organization: Centre for Medical Electronics, Department of Electronics and Communication Engineering, College of Engineering Guindy (CEG), Anna University – sequence: 4 givenname: Janani surname: Arivudaiyanambi fullname: Arivudaiyanambi, Janani organization: Centre for Medical Electronics, Department of Electronics and Communication Engineering, College of Engineering Guindy (CEG), Anna University – sequence: 5 givenname: Arunnagiri surname: Arasappan Murrugesan fullname: Arasappan Murrugesan, Arunnagiri organization: Centre for Medical Electronics, Department of Electronics and Communication Engineering, College of Engineering Guindy (CEG), Anna University |
BookMark | eNp9kMtOxCAYhYnRxPHyAq5IXFehlEKXTjPqJF4W6ppQSieMWCpQzTyBry1zSUxcDAt-Qs53_pNzAg5712sALjC6wgix61AgXpQZylGGECU8IwdgkuOqygpG2SGY4BJVGao4PQbnISxROqQqS8wn4OdxtNEoK0OA9fo2nVEyGtdD18GXIT2ltSt4a2zUXrfw0UXn4fxDLrRfwdnsDr6YRS9tgG_B9AtYu_7L2XHtIC180qPfjPjt_DvsEjqt53AqQ7K6GQa7WxbOwFGXTPT5bp6Ct9vZa32fPTzfzeubh0wRWsaM5E1FEe24UkVXYa0VzlEj2_TZ0pa1UpcN0bRhCnOmmoLnsmO0UEoqJjGl5BRcbn0H7z5HHaJYutGv84u8oKmWIucsqfhWpbwLwetOKBM3QaOXxgqMxLp5sW1epObFpnlBEpr_QwdvPqRf7YfIFgpJ3Kdm_1LtoX4BhKCaDA |
CitedBy_id | crossref_primary_10_15377_2409_5761_2022_09_3 crossref_primary_10_3390_s23084164 crossref_primary_10_1016_j_bspc_2022_104114 crossref_primary_10_1007_s00521_021_06352_5 crossref_primary_10_1016_j_bspc_2024_106905 crossref_primary_10_26599_BSA_2023_9050011 crossref_primary_10_1088_2057_1976_ad3647 crossref_primary_10_3390_app12031695 crossref_primary_10_1088_1741_2552_abf68b crossref_primary_10_1016_j_neunet_2022_09_016 crossref_primary_10_1109_ACCESS_2023_3262025 crossref_primary_10_1109_TNSRE_2024_3522168 crossref_primary_10_1007_s42835_023_01549_1 crossref_primary_10_1080_27706710_2023_2285052 crossref_primary_10_1109_TNSRE_2022_3198021 crossref_primary_10_1088_1742_6596_2078_1_012044 crossref_primary_10_54097_hset_v36i_5710 crossref_primary_10_1109_TNSRE_2022_3172974 crossref_primary_10_1007_s11571_024_10127_8 crossref_primary_10_1002_ima_22821 crossref_primary_10_1109_JTEHM_2024_3454077 crossref_primary_10_3390_s23052798 crossref_primary_10_1007_s40846_021_00646_8 crossref_primary_10_1088_1741_2552_ad788e crossref_primary_10_1186_s40708_022_00170_8 crossref_primary_10_3389_fnins_2022_988535 crossref_primary_10_3390_mti7100095 crossref_primary_10_1016_j_ijhcs_2023_103009 |
Cites_doi | 10.3390/e20010007 10.1038/s41598-017-15966-6 10.22496/atct20170122133 10.1016/j.ijleo.2016.10.117 10.1093/acprof:oso/9780195388855.001.0001 10.1088/1741-2560/14/1/016003 10.1109/JSEN.2019.2899645 10.26599/TST.2018.9010111 10.1016/j.ijpsycho.2015.02.018 10.1109/MSP.2008.4408441 10.1007/s13244-018-0639-9 10.1016/j.neucom.2016.12.038 10.1109/TBME.2008.921154 10.1109/TBME.2010.2082540 10.1109/TNNLS.2018.2789927 10.1016/S0013-4694(97)00080-1 10.1117/1.NPh.5.1.011008 10.5755/j01.itc.46.2.17528 10.1109/SMC.2017.8122608 10.1109/EBBT.2019.8741832 10.1109/ICIP.2016.7533048 10.1109/SPMB.2017.8257015 10.1109/EMBC.2015.7318929 10.1109/ICCI-CC.2018.8482042 10.1145/3065386 10.1109/ICSPCC.2017.8242581 10.1109/ICOIN.2018.8343254 |
ContentType | Journal Article |
Copyright | Taiwanese Society of Biomedical Engineering 2020 Taiwanese Society of Biomedical Engineering 2020. |
Copyright_xml | – notice: Taiwanese Society of Biomedical Engineering 2020 – notice: Taiwanese Society of Biomedical Engineering 2020. |
DBID | AAYXX CITATION K9. |
DOI | 10.1007/s40846-020-00538-3 |
DatabaseName | CrossRef ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2199-4757 |
EndPage | 672 |
ExternalDocumentID | 10_1007_s40846_020_00538_3 |
GrantInformation_xml | – fundername: Life Science Research Board (LSRB), Defence Research and Development Organization (DRDO) grantid: LSRB-291/LS&BD/2017 – fundername: Department of Science and Technology (DST), India grantid: IF180459 |
GroupedDBID | --- -EM 0R~ 188 203 2UF 4.4 406 53G 8RM 9RA AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFQWF AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AILAN AINHJ AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG ATFKH AUKKA AVWKF AVXWI AXYYD BAWUL BGNMA CEFSP CNMHZ CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD HG6 HRMNR IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J P2P PT4 RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUXDW UG4 UOJIU UTJUX UZ5 UZXMN VFIZW Z7X Z83 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION K9. |
ID | FETCH-LOGICAL-c356t-32b9505f8cc4f91eec120bad950d5d7dae6b3e5b7c187cb482af754ccac7a1553 |
IEDL.DBID | AGYKE |
ISSN | 1609-0985 |
IngestDate | Thu Sep 18 00:00:49 EDT 2025 Wed Oct 01 04:44:49 EDT 2025 Thu Apr 24 22:51:23 EDT 2025 Fri Feb 21 02:27:17 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Keywords | Brain-computer interface EEG data Motor imagery Common spatial pattern Convolutional neural network Spectrogram |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-32b9505f8cc4f91eec120bad950d5d7dae6b3e5b7c187cb482af754ccac7a1553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6371-0697 |
PQID | 2450394287 |
PQPubID | 2044285 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2450394287 crossref_citationtrail_10_1007_s40846_020_00538_3 crossref_primary_10_1007_s40846_020_00538_3 springer_journals_10_1007_s40846_020_00538_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Journal of medical and biological engineering |
PublicationTitleAbbrev | J. Med. Biol. Eng |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Sakhavi, Guan, Yan (CR26) 2018; 29 Pfurtscheller, Neuper, Flotzinger, Pregenzer (CR29) 1997; 103 Lu, Eng, Guan, Plataniotis, Venetsanopoulos (CR6) 2010; 57 Moffett, O’Malley, Man, Hong, Martin (CR19) 2017; 7 CR13 Zhang, Sun, Wu, Tan, Ma (CR2) 2019; 24 CR12 CR11 CR10 Tabar, Halici (CR16) 2016; 14 Rahman, Joadder (CR3) 2017; 2 Repovs (CR15) 2010; 15 Chaudhary, Taran, Bajaj, Sengur (CR28) 2019; 19 Wolpaw, Wolpaw, Wolpaw, Wolpaw (CR1) 2012 Martín-Clemente, Olias, Thiyam, Cichocki, Cruces (CR27) 2018; 20 Uktveris, Jusas (CR17) 2017; 46 CR4 CR8 Grosse-Wentrup, Buss (CR18) 2008; 55 CR9 Tang, Li, Sun (CR7) 2017; 130 CR24 CR23 CR22 CR21 Liu, Wang, Liu, Zeng, Liu, Alsaadi (CR25) 2017; 234 Başar, Düzgün (CR14) 2016; 103 Blankertz, Tomioka, Lemm, Kawanabe, Muller (CR5) 2007; 25 Trakoolwilaiwan, Behboodi, Lee, Kim, Choi (CR30) 2017; 5 Yamashita, Nishio, Do, Togashi (CR20) 2018; 9 JR Wolpaw (538_CR1) 2012 R Yamashita (538_CR20) 2018; 9 YR Tabar (538_CR16) 2016; 14 G Pfurtscheller (538_CR29) 1997; 103 R Martín-Clemente (538_CR27) 2018; 20 538_CR23 538_CR22 538_CR24 538_CR21 H Lu (538_CR6) 2010; 57 SX Moffett (538_CR19) 2017; 7 M Grosse-Wentrup (538_CR18) 2008; 55 B Blankertz (538_CR5) 2007; 25 MKM Rahman (538_CR3) 2017; 2 W Liu (538_CR25) 2017; 234 538_CR12 538_CR11 S Chaudhary (538_CR28) 2019; 19 538_CR4 538_CR13 T Trakoolwilaiwan (538_CR30) 2017; 5 538_CR8 538_CR10 538_CR9 Z Tang (538_CR7) 2017; 130 G Repovs (538_CR15) 2010; 15 T Uktveris (538_CR17) 2017; 46 E Başar (538_CR14) 2016; 103 S Sakhavi (538_CR26) 2018; 29 W Zhang (538_CR2) 2019; 24 |
References_xml | – ident: CR22 – volume: 20 start-page: 1 issue: 7 year: 2018 end-page: 29 ident: CR27 article-title: Information theoretic approaches for motor-imagery BCI systems: Review and experimental comparison publication-title: Entropy doi: 10.3390/e20010007 – volume: 7 start-page: 1 issue: 1 year: 2017 end-page: 5 ident: CR19 article-title: Dynamics of high frequency brain activity publication-title: Scientific Reports doi: 10.1038/s41598-017-15966-6 – ident: CR4 – volume: 2 start-page: 1 issue: 2 year: 2017 end-page: 15 ident: CR3 article-title: A review on the components of EEG-based motor imagery classification with quantitative comparison publication-title: Appl Theory Comput Technol doi: 10.22496/atct20170122133 – volume: 130 start-page: 11 year: 2017 end-page: 18 ident: CR7 article-title: Single-trial EEG classification of motor imagery using deep convolutional neural networks publication-title: Optik doi: 10.1016/j.ijleo.2016.10.117 – ident: CR12 – start-page: 1 year: 2012 end-page: 14 ident: CR1 article-title: Brain-computer interfaces: something new under the sun publication-title: Brain-computer interfaces: Principles and practice doi: 10.1093/acprof:oso/9780195388855.001.0001 – ident: CR10 – volume: 15 start-page: 18 issue: 1 year: 2010 end-page: 25 ident: CR15 article-title: Dealing with noise in EEG recording and data analysis publication-title: Informatica Medica Slovenica – volume: 14 start-page: 016003 issue: 1 year: 2016 ident: CR16 article-title: A novel deep learning approach for classification of EEG motor imagery signals publication-title: Journal of neural engineering doi: 10.1088/1741-2560/14/1/016003 – ident: CR8 – volume: 19 start-page: 4494 issue: 12 year: 2019 end-page: 4500 ident: CR28 article-title: Convolutional neural network based approach towards motor imagery tasks EEG signals classification publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2019.2899645 – volume: 24 start-page: 360 issue: 3 year: 2019 end-page: 370 ident: CR2 article-title: Asynchronous brain-computer interface shared control of robotic grasping publication-title: Tsinghua Science and Technology doi: 10.26599/TST.2018.9010111 – volume: 103 start-page: 185 year: 2016 end-page: 198 ident: CR14 article-title: The CLAIR model: Extension of Brodmann areas based on brain oscillations and connectivity publication-title: International Journal of Psychophysiology doi: 10.1016/j.ijpsycho.2015.02.018 – ident: CR23 – ident: CR21 – volume: 25 start-page: 41 issue: 1 year: 2007 end-page: 56 ident: CR5 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2008.4408441 – volume: 9 start-page: 611 issue: 4 year: 2018 end-page: 629 ident: CR20 article-title: Convolutional neural networks: an overview and application in radiology publication-title: Insights into Imaging doi: 10.1007/s13244-018-0639-9 – volume: 234 start-page: 11 year: 2017 end-page: 26 ident: CR25 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.038 – volume: 55 start-page: 1991 issue: 8 year: 2008 end-page: 2000 ident: CR18 article-title: Multiclass common spatial patterns and information theoretic feature extraction publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2008.921154 – ident: CR13 – ident: CR11 – volume: 57 start-page: 2936 issue: 12 year: 2010 end-page: 2946 ident: CR6 article-title: Regularized common spatial pattern with aggregation for EEG classification in small-sample setting publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2010.2082540 – ident: CR9 – volume: 29 start-page: 5619 issue: 11 year: 2018 end-page: 5629 ident: CR26 article-title: Learning temporal information for brain-computer interface using convolutional neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2018.2789927 – volume: 103 start-page: 642 issue: 6 year: 1997 end-page: 651 ident: CR29 article-title: EEG-based discrimination between imagination of right and left hand movement publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/S0013-4694(97)00080-1 – volume: 5 start-page: 011008 issue: 1 year: 2017 ident: CR30 article-title: Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain–computer interface: Three-class classification of rest, right-, and left-hand motor execution publication-title: Neurophotonics doi: 10.1117/1.NPh.5.1.011008 – volume: 46 start-page: 260 issue: 2 year: 2017 end-page: 273 ident: CR17 article-title: Application of convolutional neural networks to four-class motor imagery classification problem publication-title: Information Technology and Control doi: 10.5755/j01.itc.46.2.17528 – ident: CR24 – volume: 24 start-page: 360 issue: 3 year: 2019 ident: 538_CR2 publication-title: Tsinghua Science and Technology doi: 10.26599/TST.2018.9010111 – ident: 538_CR4 doi: 10.1109/SMC.2017.8122608 – volume: 103 start-page: 185 year: 2016 ident: 538_CR14 publication-title: International Journal of Psychophysiology doi: 10.1016/j.ijpsycho.2015.02.018 – volume: 15 start-page: 18 issue: 1 year: 2010 ident: 538_CR15 publication-title: Informatica Medica Slovenica – ident: 538_CR13 doi: 10.1109/EBBT.2019.8741832 – volume: 14 start-page: 016003 issue: 1 year: 2016 ident: 538_CR16 publication-title: Journal of neural engineering doi: 10.1088/1741-2560/14/1/016003 – ident: 538_CR23 – volume: 5 start-page: 011008 issue: 1 year: 2017 ident: 538_CR30 publication-title: Neurophotonics doi: 10.1117/1.NPh.5.1.011008 – volume: 57 start-page: 2936 issue: 12 year: 2010 ident: 538_CR6 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2010.2082540 – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 538_CR19 publication-title: Scientific Reports doi: 10.1038/s41598-017-15966-6 – volume: 2 start-page: 1 issue: 2 year: 2017 ident: 538_CR3 publication-title: Appl Theory Comput Technol doi: 10.22496/atct20170122133 – ident: 538_CR21 doi: 10.1109/ICIP.2016.7533048 – ident: 538_CR11 doi: 10.1109/SPMB.2017.8257015 – ident: 538_CR12 doi: 10.1109/EMBC.2015.7318929 – volume: 234 start-page: 11 year: 2017 ident: 538_CR25 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.038 – ident: 538_CR9 doi: 10.1109/ICCI-CC.2018.8482042 – volume: 55 start-page: 1991 issue: 8 year: 2008 ident: 538_CR18 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2008.921154 – ident: 538_CR22 doi: 10.1145/3065386 – ident: 538_CR8 doi: 10.1109/ICSPCC.2017.8242581 – ident: 538_CR24 – volume: 19 start-page: 4494 issue: 12 year: 2019 ident: 538_CR28 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2019.2899645 – ident: 538_CR10 doi: 10.1109/ICOIN.2018.8343254 – volume: 130 start-page: 11 year: 2017 ident: 538_CR7 publication-title: Optik doi: 10.1016/j.ijleo.2016.10.117 – volume: 9 start-page: 611 issue: 4 year: 2018 ident: 538_CR20 publication-title: Insights into Imaging doi: 10.1007/s13244-018-0639-9 – start-page: 1 volume-title: Brain-computer interfaces: Principles and practice year: 2012 ident: 538_CR1 doi: 10.1093/acprof:oso/9780195388855.001.0001 – volume: 29 start-page: 5619 issue: 11 year: 2018 ident: 538_CR26 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2018.2789927 – volume: 103 start-page: 642 issue: 6 year: 1997 ident: 538_CR29 publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/S0013-4694(97)00080-1 – volume: 46 start-page: 260 issue: 2 year: 2017 ident: 538_CR17 publication-title: Information Technology and Control doi: 10.5755/j01.itc.46.2.17528 – volume: 25 start-page: 41 issue: 1 year: 2007 ident: 538_CR5 publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2008.4408441 – volume: 20 start-page: 1 issue: 7 year: 2018 ident: 538_CR27 publication-title: Entropy doi: 10.3390/e20010007 |
SSID | ssj0000396618 |
Score | 2.356798 |
Snippet | Purpose
Brain–Computer Interface (BCI) system offers a new means of communication for those with paralysis or severe neuromuscular disorders. BCI systems based... PurposeBrain–Computer Interface (BCI) system offers a new means of communication for those with paralysis or severe neuromuscular disorders. BCI systems based... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 663 |
SubjectTerms | Artificial neural networks Bandpass filters Biomedical Engineering and Bioengineering Cell Biology Classification Classifiers EEG Electroencephalography Engineering Feet Frequency ranges Human-computer interface Image classification Imaging Machine learning Mental task performance Muscles Neural networks Neuromuscular diseases Original Article Paralysis Radiology Signal classification Signal processing Skeletal muscle Spectrograms Training |
Title | Multiclass Classification of Spatially Filtered Motor Imagery EEG Signals Using Convolutional Neural Network for BCI Based Applications |
URI | https://link.springer.com/article/10.1007/s40846-020-00538-3 https://www.proquest.com/docview/2450394287 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2199-4757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000396618 issn: 1609-0985 databaseCode: AFBBN dateStart: 20150201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2199-4757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000396618 issn: 1609-0985 databaseCode: AGYKE dateStart: 20150101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BucCBHVEoyAduEJR4iZNjqVo2wQUqwSmyHQchoEVQkOAH-G3GbtICAqSeIiXOZr_EbzwzbwB2kphxm0oRGCotGigsDtIiEgE3SuVoEkXaJ9KencdHXX5yJa7KpLDnKtq9ckn6P_Uo2Y2HOFcGztxxyEkCNg0zwhkoNZhpHl6fjtdWQoYk3i_tRbFb-08TUebL_H6h73PSmGj-8I36KaezAN3qYYeRJnf7LwO9b95_6DhO-jaLMF9yUNIcgmYJpmxvGea-KBOuwIdPzDWOWhNfN9NFFPlBJP2CuDrGiNv7N9K5dd52m5OzPhrv5PjBSWK8kXb7kFzc3jhtZuKDEkir33stUY63dpIgfuNj0AkSZ3LQOiYHOKXmpPnFp74K3U77snUUlDUbAsNEPAgY1SmSqiIxhhdpZK2JaKhVjjtzkctc2VgzK7Q0USKN5glVhRQccWSkcjWM1qDW6_fsOhDqXLSMiVQpzbWUGkGkOVXUhjmypLAOUTVqmSkFzV1djftsJMXsOznDTs58J2esDrujcx6Hch7_tm5UYMjKT_s5o1wgvpylWYe9amzHh_--2sZkzTdhljp4-MDBBtQGTy92CwnQQG-XeP8EzFr6hw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6x7WGXA499iC6P9YEbG5T4ESfHUrW0C-2FVuqeIttxVghoV0tZCf4Af5uxm7SAAIlTpMR52V_ibzwz3wDsJzHjNpUiMFRaNFBYHKRFJAJulMrRJIq0T6TtD-LuiP8ai3GZFHZdRbtXLkn_p14ku_EQ58rAmTsOOUnAPkCdR0nCa1BvHv8-Wa6thAxJvF_ai2K39p8mosyXeflCT-ekJdF85hv1U05nHUbVw84jTS4Ob2b60Nw903F879tswFrJQUlzDppNWLGTz7D6SJnwC9z7xFzjqDXxdTNdRJEfRDItiKtjjLi9vCWdc-dttznpT9F4J70rJ4lxS9rtY3J2_sdpMxMflEBa08n_EuV4aycJ4jc-Bp0gcSZHrR45wik1J81HPvWvMOq0h61uUNZsCAwT8SxgVKdIqorEGF6kkbUmoqFWOe7MRS5zZWPNrNDSRIk0midUFVJwxJGRytUw-ga1yXRit4BQ56JlTKRKaa6l1AgizamiNsyRJYUNiKpRy0wpaO7qalxmCylm38kZdnLmOzljDThYnPN3LufxZuudCgxZ-WlfZ5QLxJezNBvwsxrb5eHXr_b9fc1_wMfusH-anfYGJ9vwiTqo-CDCHajN_t3YXSRDM71XYv8BwI_9eA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VVEJwgLaACA2wh96KW3sfXvuYhqRNX0KCSuVk7cuoojgVuEjhD_RvM7uxk1CVSoiTpfV6be9-q5nZmfkGYCtLGXe5FJGh0qGBwtIoLxMRcaOURZMo0SGR9uQ0PTjjh-fifCmLP0S7ty7JWU6DZ2mq6t0rW-7OE994jHIz8qaPR1EWsQewim2J6MBqf__z0eKcJWao0IdjviT1foA8E03uzN0D_SmfFkrnLT9pED-jp6DaD59FnXzdua71jvl1i9Pxf_5sDZ40uinpz8C0Diuu2oDHS4yFz-AmJOwar3KTUE_TRxqFxSWTkvj6xojnyykZXXgvvLPkZIJGPRl_81QZUzIc7pOPF188ZzMJwQpkMKl-NujHV3uqkHAJsekEFWqyNxiTPRS1lvSXfO3P4Ww0_DQ4iJpaDpFhIq0jRnWOylaZGcPLPHHOJDTWymKjFVZa5VLNnNDSJJk0mmdUlVJwxJeRytc2egGdalK5l0Cod90yJnKlNNdSagSX5lRRF1vUnuIuJO0KFqYhOvf1Ni6LOUVzmOQCJ7kIk1ywLmzPn7ma0Xzc27vXAqNotvyPgnKBWPMWaBfeteu8uP330V79W_e38PDD-1FxPD492oRH1CMlxBb2oFN_v3avUUeq9ZtmG_wG-0wGYg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiclass+Classification+of+Spatially+Filtered+Motor+Imagery+EEG+Signals+Using+Convolutional+Neural+Network+for+BCI+Based+Applications&rft.jtitle=Journal+of+medical+and+biological+engineering&rft.au=Shajil%2C+Nijisha&rft.au=Mohan%2C+Sasikala&rft.au=Srinivasan%2C+Poonguzhali&rft.au=Arivudaiyanambi%2C+Janani&rft.date=2020-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1609-0985&rft.eissn=2199-4757&rft.volume=40&rft.issue=5&rft.spage=663&rft.epage=672&rft_id=info:doi/10.1007%2Fs40846-020-00538-3&rft.externalDocID=10_1007_s40846_020_00538_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1609-0985&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1609-0985&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1609-0985&client=summon |