Multiclass Classification of Spatially Filtered Motor Imagery EEG Signals Using Convolutional Neural Network for BCI Based Applications

Purpose Brain–Computer Interface (BCI) system offers a new means of communication for those with paralysis or severe neuromuscular disorders. BCI systems based on Motor Imagery (MI) Electroencephalography (EEG) signals enable the user to convert their thoughts into actions without any voluntary musc...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical and biological engineering Vol. 40; no. 5; pp. 663 - 672
Main Authors Shajil, Nijisha, Mohan, Sasikala, Srinivasan, Poonguzhali, Arivudaiyanambi, Janani, Arasappan Murrugesan, Arunnagiri
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1609-0985
2199-4757
DOI10.1007/s40846-020-00538-3

Cover

Abstract Purpose Brain–Computer Interface (BCI) system offers a new means of communication for those with paralysis or severe neuromuscular disorders. BCI systems based on Motor Imagery (MI) Electroencephalography (EEG) signals enable the user to convert their thoughts into actions without any voluntary muscle movement. Recently, Convolutional neural network (CNN) is used for the classification of MI signals. However, to produce good MI classification, it is necessary to effectively represent the signal as an input image to the CNN and train the deep learning classifier using large training data. Methods In this work, EEG signals are acquired over 16 channels and are filtered using a bandpass filter with the frequency range of 1 to 100 Hz. The processed signal is spatially filtered using Common Spatial Pattern (CSP) filter. The spectrograms of the spatially filtered signals are given as input to CNN. A single convolutional layer CNN is designed to classify left hand, right hand, both hands, and feet MI EEG signals. The size of the training data is increased by augmenting the spectrograms of the EEG signals. Results The CNN classifier was evaluated using MI signals acquired from twelve healthy subjects. Results show that the proposed method achieved an average classification accuracy of 95.18 ± 2.51% for two-class (left hand and right hand) and 87.37 ± 1.68% for four-class (Left hand, Right hand, Both hands, and Feet) MI. Conclusion Thus, the method manifests that this 2D representation of 1D EEG signal along with image augmentation shows a high potential for classification of MI EEG signals using the designed CNN model.
AbstractList PurposeBrain–Computer Interface (BCI) system offers a new means of communication for those with paralysis or severe neuromuscular disorders. BCI systems based on Motor Imagery (MI) Electroencephalography (EEG) signals enable the user to convert their thoughts into actions without any voluntary muscle movement. Recently, Convolutional neural network (CNN) is used for the classification of MI signals. However, to produce good MI classification, it is necessary to effectively represent the signal as an input image to the CNN and train the deep learning classifier using large training data.MethodsIn this work, EEG signals are acquired over 16 channels and are filtered using a bandpass filter with the frequency range of 1 to 100 Hz. The processed signal is spatially filtered using Common Spatial Pattern (CSP) filter. The spectrograms of the spatially filtered signals are given as input to CNN. A single convolutional layer CNN is designed to classify left hand, right hand, both hands, and feet MI EEG signals. The size of the training data is increased by augmenting the spectrograms of the EEG signals.ResultsThe CNN classifier was evaluated using MI signals acquired from twelve healthy subjects. Results show that the proposed method achieved an average classification accuracy of 95.18 ± 2.51% for two-class (left hand and right hand) and 87.37 ± 1.68% for four-class (Left hand, Right hand, Both hands, and Feet) MI.ConclusionThus, the method manifests that this 2D representation of 1D EEG signal along with image augmentation shows a high potential for classification of MI EEG signals using the designed CNN model.
Purpose Brain–Computer Interface (BCI) system offers a new means of communication for those with paralysis or severe neuromuscular disorders. BCI systems based on Motor Imagery (MI) Electroencephalography (EEG) signals enable the user to convert their thoughts into actions without any voluntary muscle movement. Recently, Convolutional neural network (CNN) is used for the classification of MI signals. However, to produce good MI classification, it is necessary to effectively represent the signal as an input image to the CNN and train the deep learning classifier using large training data. Methods In this work, EEG signals are acquired over 16 channels and are filtered using a bandpass filter with the frequency range of 1 to 100 Hz. The processed signal is spatially filtered using Common Spatial Pattern (CSP) filter. The spectrograms of the spatially filtered signals are given as input to CNN. A single convolutional layer CNN is designed to classify left hand, right hand, both hands, and feet MI EEG signals. The size of the training data is increased by augmenting the spectrograms of the EEG signals. Results The CNN classifier was evaluated using MI signals acquired from twelve healthy subjects. Results show that the proposed method achieved an average classification accuracy of 95.18 ± 2.51% for two-class (left hand and right hand) and 87.37 ± 1.68% for four-class (Left hand, Right hand, Both hands, and Feet) MI. Conclusion Thus, the method manifests that this 2D representation of 1D EEG signal along with image augmentation shows a high potential for classification of MI EEG signals using the designed CNN model.
Author Shajil, Nijisha
Arivudaiyanambi, Janani
Srinivasan, Poonguzhali
Mohan, Sasikala
Arasappan Murrugesan, Arunnagiri
Author_xml – sequence: 1
  givenname: Nijisha
  surname: Shajil
  fullname: Shajil, Nijisha
  organization: Centre for Medical Electronics, Department of Electronics and Communication Engineering, College of Engineering Guindy (CEG), Anna University
– sequence: 2
  givenname: Sasikala
  orcidid: 0000-0002-6371-0697
  surname: Mohan
  fullname: Mohan, Sasikala
  email: sasikala@annauniv.edu
  organization: Centre for Medical Electronics, Department of Electronics and Communication Engineering, College of Engineering Guindy (CEG), Anna University
– sequence: 3
  givenname: Poonguzhali
  surname: Srinivasan
  fullname: Srinivasan, Poonguzhali
  organization: Centre for Medical Electronics, Department of Electronics and Communication Engineering, College of Engineering Guindy (CEG), Anna University
– sequence: 4
  givenname: Janani
  surname: Arivudaiyanambi
  fullname: Arivudaiyanambi, Janani
  organization: Centre for Medical Electronics, Department of Electronics and Communication Engineering, College of Engineering Guindy (CEG), Anna University
– sequence: 5
  givenname: Arunnagiri
  surname: Arasappan Murrugesan
  fullname: Arasappan Murrugesan, Arunnagiri
  organization: Centre for Medical Electronics, Department of Electronics and Communication Engineering, College of Engineering Guindy (CEG), Anna University
BookMark eNp9kMtOxCAYhYnRxPHyAq5IXFehlEKXTjPqJF4W6ppQSieMWCpQzTyBry1zSUxcDAt-Qs53_pNzAg5712sALjC6wgix61AgXpQZylGGECU8IwdgkuOqygpG2SGY4BJVGao4PQbnISxROqQqS8wn4OdxtNEoK0OA9fo2nVEyGtdD18GXIT2ltSt4a2zUXrfw0UXn4fxDLrRfwdnsDr6YRS9tgG_B9AtYu_7L2XHtIC180qPfjPjt_DvsEjqt53AqQ7K6GQa7WxbOwFGXTPT5bp6Ct9vZa32fPTzfzeubh0wRWsaM5E1FEe24UkVXYa0VzlEj2_TZ0pa1UpcN0bRhCnOmmoLnsmO0UEoqJjGl5BRcbn0H7z5HHaJYutGv84u8oKmWIucsqfhWpbwLwetOKBM3QaOXxgqMxLp5sW1epObFpnlBEpr_QwdvPqRf7YfIFgpJ3Kdm_1LtoX4BhKCaDA
CitedBy_id crossref_primary_10_15377_2409_5761_2022_09_3
crossref_primary_10_3390_s23084164
crossref_primary_10_1016_j_bspc_2022_104114
crossref_primary_10_1007_s00521_021_06352_5
crossref_primary_10_1016_j_bspc_2024_106905
crossref_primary_10_26599_BSA_2023_9050011
crossref_primary_10_1088_2057_1976_ad3647
crossref_primary_10_3390_app12031695
crossref_primary_10_1088_1741_2552_abf68b
crossref_primary_10_1016_j_neunet_2022_09_016
crossref_primary_10_1109_ACCESS_2023_3262025
crossref_primary_10_1109_TNSRE_2024_3522168
crossref_primary_10_1007_s42835_023_01549_1
crossref_primary_10_1080_27706710_2023_2285052
crossref_primary_10_1109_TNSRE_2022_3198021
crossref_primary_10_1088_1742_6596_2078_1_012044
crossref_primary_10_54097_hset_v36i_5710
crossref_primary_10_1109_TNSRE_2022_3172974
crossref_primary_10_1007_s11571_024_10127_8
crossref_primary_10_1002_ima_22821
crossref_primary_10_1109_JTEHM_2024_3454077
crossref_primary_10_3390_s23052798
crossref_primary_10_1007_s40846_021_00646_8
crossref_primary_10_1088_1741_2552_ad788e
crossref_primary_10_1186_s40708_022_00170_8
crossref_primary_10_3389_fnins_2022_988535
crossref_primary_10_3390_mti7100095
crossref_primary_10_1016_j_ijhcs_2023_103009
Cites_doi 10.3390/e20010007
10.1038/s41598-017-15966-6
10.22496/atct20170122133
10.1016/j.ijleo.2016.10.117
10.1093/acprof:oso/9780195388855.001.0001
10.1088/1741-2560/14/1/016003
10.1109/JSEN.2019.2899645
10.26599/TST.2018.9010111
10.1016/j.ijpsycho.2015.02.018
10.1109/MSP.2008.4408441
10.1007/s13244-018-0639-9
10.1016/j.neucom.2016.12.038
10.1109/TBME.2008.921154
10.1109/TBME.2010.2082540
10.1109/TNNLS.2018.2789927
10.1016/S0013-4694(97)00080-1
10.1117/1.NPh.5.1.011008
10.5755/j01.itc.46.2.17528
10.1109/SMC.2017.8122608
10.1109/EBBT.2019.8741832
10.1109/ICIP.2016.7533048
10.1109/SPMB.2017.8257015
10.1109/EMBC.2015.7318929
10.1109/ICCI-CC.2018.8482042
10.1145/3065386
10.1109/ICSPCC.2017.8242581
10.1109/ICOIN.2018.8343254
ContentType Journal Article
Copyright Taiwanese Society of Biomedical Engineering 2020
Taiwanese Society of Biomedical Engineering 2020.
Copyright_xml – notice: Taiwanese Society of Biomedical Engineering 2020
– notice: Taiwanese Society of Biomedical Engineering 2020.
DBID AAYXX
CITATION
K9.
DOI 10.1007/s40846-020-00538-3
DatabaseName CrossRef
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2199-4757
EndPage 672
ExternalDocumentID 10_1007_s40846_020_00538_3
GrantInformation_xml – fundername: Life Science Research Board (LSRB), Defence Research and Development Organization (DRDO)
  grantid: LSRB-291/LS&BD/2017
– fundername: Department of Science and Technology (DST), India
  grantid: IF180459
GroupedDBID ---
-EM
0R~
188
203
2UF
4.4
406
53G
8RM
9RA
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFQWF
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AILAN
AINHJ
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
ATFKH
AUKKA
AVWKF
AVXWI
AXYYD
BAWUL
BGNMA
CEFSP
CNMHZ
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
HG6
HRMNR
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
P2P
PT4
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUXDW
UG4
UOJIU
UTJUX
UZ5
UZXMN
VFIZW
Z7X
Z83
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
K9.
ID FETCH-LOGICAL-c356t-32b9505f8cc4f91eec120bad950d5d7dae6b3e5b7c187cb482af754ccac7a1553
IEDL.DBID AGYKE
ISSN 1609-0985
IngestDate Thu Sep 18 00:00:49 EDT 2025
Wed Oct 01 04:44:49 EDT 2025
Thu Apr 24 22:51:23 EDT 2025
Fri Feb 21 02:27:17 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords Brain-computer interface
EEG data
Motor imagery
Common spatial pattern
Convolutional neural network
Spectrogram
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-32b9505f8cc4f91eec120bad950d5d7dae6b3e5b7c187cb482af754ccac7a1553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6371-0697
PQID 2450394287
PQPubID 2044285
PageCount 10
ParticipantIDs proquest_journals_2450394287
crossref_citationtrail_10_1007_s40846_020_00538_3
crossref_primary_10_1007_s40846_020_00538_3
springer_journals_10_1007_s40846_020_00538_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of medical and biological engineering
PublicationTitleAbbrev J. Med. Biol. Eng
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Sakhavi, Guan, Yan (CR26) 2018; 29
Pfurtscheller, Neuper, Flotzinger, Pregenzer (CR29) 1997; 103
Lu, Eng, Guan, Plataniotis, Venetsanopoulos (CR6) 2010; 57
Moffett, O’Malley, Man, Hong, Martin (CR19) 2017; 7
CR13
Zhang, Sun, Wu, Tan, Ma (CR2) 2019; 24
CR12
CR11
CR10
Tabar, Halici (CR16) 2016; 14
Rahman, Joadder (CR3) 2017; 2
Repovs (CR15) 2010; 15
Chaudhary, Taran, Bajaj, Sengur (CR28) 2019; 19
Wolpaw, Wolpaw, Wolpaw, Wolpaw (CR1) 2012
Martín-Clemente, Olias, Thiyam, Cichocki, Cruces (CR27) 2018; 20
Uktveris, Jusas (CR17) 2017; 46
CR4
CR8
Grosse-Wentrup, Buss (CR18) 2008; 55
CR9
Tang, Li, Sun (CR7) 2017; 130
CR24
CR23
CR22
CR21
Liu, Wang, Liu, Zeng, Liu, Alsaadi (CR25) 2017; 234
Başar, Düzgün (CR14) 2016; 103
Blankertz, Tomioka, Lemm, Kawanabe, Muller (CR5) 2007; 25
Trakoolwilaiwan, Behboodi, Lee, Kim, Choi (CR30) 2017; 5
Yamashita, Nishio, Do, Togashi (CR20) 2018; 9
JR Wolpaw (538_CR1) 2012
R Yamashita (538_CR20) 2018; 9
YR Tabar (538_CR16) 2016; 14
G Pfurtscheller (538_CR29) 1997; 103
R Martín-Clemente (538_CR27) 2018; 20
538_CR23
538_CR22
538_CR24
538_CR21
H Lu (538_CR6) 2010; 57
SX Moffett (538_CR19) 2017; 7
M Grosse-Wentrup (538_CR18) 2008; 55
B Blankertz (538_CR5) 2007; 25
MKM Rahman (538_CR3) 2017; 2
W Liu (538_CR25) 2017; 234
538_CR12
538_CR11
S Chaudhary (538_CR28) 2019; 19
538_CR4
538_CR13
T Trakoolwilaiwan (538_CR30) 2017; 5
538_CR8
538_CR10
538_CR9
Z Tang (538_CR7) 2017; 130
G Repovs (538_CR15) 2010; 15
T Uktveris (538_CR17) 2017; 46
E Başar (538_CR14) 2016; 103
S Sakhavi (538_CR26) 2018; 29
W Zhang (538_CR2) 2019; 24
References_xml – ident: CR22
– volume: 20
  start-page: 1
  issue: 7
  year: 2018
  end-page: 29
  ident: CR27
  article-title: Information theoretic approaches for motor-imagery BCI systems: Review and experimental comparison
  publication-title: Entropy
  doi: 10.3390/e20010007
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  end-page: 5
  ident: CR19
  article-title: Dynamics of high frequency brain activity
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-15966-6
– ident: CR4
– volume: 2
  start-page: 1
  issue: 2
  year: 2017
  end-page: 15
  ident: CR3
  article-title: A review on the components of EEG-based motor imagery classification with quantitative comparison
  publication-title: Appl Theory Comput Technol
  doi: 10.22496/atct20170122133
– volume: 130
  start-page: 11
  year: 2017
  end-page: 18
  ident: CR7
  article-title: Single-trial EEG classification of motor imagery using deep convolutional neural networks
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.10.117
– ident: CR12
– start-page: 1
  year: 2012
  end-page: 14
  ident: CR1
  article-title: Brain-computer interfaces: something new under the sun
  publication-title: Brain-computer interfaces: Principles and practice
  doi: 10.1093/acprof:oso/9780195388855.001.0001
– ident: CR10
– volume: 15
  start-page: 18
  issue: 1
  year: 2010
  end-page: 25
  ident: CR15
  article-title: Dealing with noise in EEG recording and data analysis
  publication-title: Informatica Medica Slovenica
– volume: 14
  start-page: 016003
  issue: 1
  year: 2016
  ident: CR16
  article-title: A novel deep learning approach for classification of EEG motor imagery signals
  publication-title: Journal of neural engineering
  doi: 10.1088/1741-2560/14/1/016003
– ident: CR8
– volume: 19
  start-page: 4494
  issue: 12
  year: 2019
  end-page: 4500
  ident: CR28
  article-title: Convolutional neural network based approach towards motor imagery tasks EEG signals classification
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2019.2899645
– volume: 24
  start-page: 360
  issue: 3
  year: 2019
  end-page: 370
  ident: CR2
  article-title: Asynchronous brain-computer interface shared control of robotic grasping
  publication-title: Tsinghua Science and Technology
  doi: 10.26599/TST.2018.9010111
– volume: 103
  start-page: 185
  year: 2016
  end-page: 198
  ident: CR14
  article-title: The CLAIR model: Extension of Brodmann areas based on brain oscillations and connectivity
  publication-title: International Journal of Psychophysiology
  doi: 10.1016/j.ijpsycho.2015.02.018
– ident: CR23
– ident: CR21
– volume: 25
  start-page: 41
  issue: 1
  year: 2007
  end-page: 56
  ident: CR5
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2008.4408441
– volume: 9
  start-page: 611
  issue: 4
  year: 2018
  end-page: 629
  ident: CR20
  article-title: Convolutional neural networks: an overview and application in radiology
  publication-title: Insights into Imaging
  doi: 10.1007/s13244-018-0639-9
– volume: 234
  start-page: 11
  year: 2017
  end-page: 26
  ident: CR25
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– volume: 55
  start-page: 1991
  issue: 8
  year: 2008
  end-page: 2000
  ident: CR18
  article-title: Multiclass common spatial patterns and information theoretic feature extraction
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2008.921154
– ident: CR13
– ident: CR11
– volume: 57
  start-page: 2936
  issue: 12
  year: 2010
  end-page: 2946
  ident: CR6
  article-title: Regularized common spatial pattern with aggregation for EEG classification in small-sample setting
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2010.2082540
– ident: CR9
– volume: 29
  start-page: 5619
  issue: 11
  year: 2018
  end-page: 5629
  ident: CR26
  article-title: Learning temporal information for brain-computer interface using convolutional neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2789927
– volume: 103
  start-page: 642
  issue: 6
  year: 1997
  end-page: 651
  ident: CR29
  article-title: EEG-based discrimination between imagination of right and left hand movement
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/S0013-4694(97)00080-1
– volume: 5
  start-page: 011008
  issue: 1
  year: 2017
  ident: CR30
  article-title: Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain–computer interface: Three-class classification of rest, right-, and left-hand motor execution
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.5.1.011008
– volume: 46
  start-page: 260
  issue: 2
  year: 2017
  end-page: 273
  ident: CR17
  article-title: Application of convolutional neural networks to four-class motor imagery classification problem
  publication-title: Information Technology and Control
  doi: 10.5755/j01.itc.46.2.17528
– ident: CR24
– volume: 24
  start-page: 360
  issue: 3
  year: 2019
  ident: 538_CR2
  publication-title: Tsinghua Science and Technology
  doi: 10.26599/TST.2018.9010111
– ident: 538_CR4
  doi: 10.1109/SMC.2017.8122608
– volume: 103
  start-page: 185
  year: 2016
  ident: 538_CR14
  publication-title: International Journal of Psychophysiology
  doi: 10.1016/j.ijpsycho.2015.02.018
– volume: 15
  start-page: 18
  issue: 1
  year: 2010
  ident: 538_CR15
  publication-title: Informatica Medica Slovenica
– ident: 538_CR13
  doi: 10.1109/EBBT.2019.8741832
– volume: 14
  start-page: 016003
  issue: 1
  year: 2016
  ident: 538_CR16
  publication-title: Journal of neural engineering
  doi: 10.1088/1741-2560/14/1/016003
– ident: 538_CR23
– volume: 5
  start-page: 011008
  issue: 1
  year: 2017
  ident: 538_CR30
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.5.1.011008
– volume: 57
  start-page: 2936
  issue: 12
  year: 2010
  ident: 538_CR6
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2010.2082540
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 538_CR19
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-15966-6
– volume: 2
  start-page: 1
  issue: 2
  year: 2017
  ident: 538_CR3
  publication-title: Appl Theory Comput Technol
  doi: 10.22496/atct20170122133
– ident: 538_CR21
  doi: 10.1109/ICIP.2016.7533048
– ident: 538_CR11
  doi: 10.1109/SPMB.2017.8257015
– ident: 538_CR12
  doi: 10.1109/EMBC.2015.7318929
– volume: 234
  start-page: 11
  year: 2017
  ident: 538_CR25
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– ident: 538_CR9
  doi: 10.1109/ICCI-CC.2018.8482042
– volume: 55
  start-page: 1991
  issue: 8
  year: 2008
  ident: 538_CR18
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2008.921154
– ident: 538_CR22
  doi: 10.1145/3065386
– ident: 538_CR8
  doi: 10.1109/ICSPCC.2017.8242581
– ident: 538_CR24
– volume: 19
  start-page: 4494
  issue: 12
  year: 2019
  ident: 538_CR28
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2019.2899645
– ident: 538_CR10
  doi: 10.1109/ICOIN.2018.8343254
– volume: 130
  start-page: 11
  year: 2017
  ident: 538_CR7
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.10.117
– volume: 9
  start-page: 611
  issue: 4
  year: 2018
  ident: 538_CR20
  publication-title: Insights into Imaging
  doi: 10.1007/s13244-018-0639-9
– start-page: 1
  volume-title: Brain-computer interfaces: Principles and practice
  year: 2012
  ident: 538_CR1
  doi: 10.1093/acprof:oso/9780195388855.001.0001
– volume: 29
  start-page: 5619
  issue: 11
  year: 2018
  ident: 538_CR26
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2789927
– volume: 103
  start-page: 642
  issue: 6
  year: 1997
  ident: 538_CR29
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/S0013-4694(97)00080-1
– volume: 46
  start-page: 260
  issue: 2
  year: 2017
  ident: 538_CR17
  publication-title: Information Technology and Control
  doi: 10.5755/j01.itc.46.2.17528
– volume: 25
  start-page: 41
  issue: 1
  year: 2007
  ident: 538_CR5
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2008.4408441
– volume: 20
  start-page: 1
  issue: 7
  year: 2018
  ident: 538_CR27
  publication-title: Entropy
  doi: 10.3390/e20010007
SSID ssj0000396618
Score 2.356798
Snippet Purpose Brain–Computer Interface (BCI) system offers a new means of communication for those with paralysis or severe neuromuscular disorders. BCI systems based...
PurposeBrain–Computer Interface (BCI) system offers a new means of communication for those with paralysis or severe neuromuscular disorders. BCI systems based...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 663
SubjectTerms Artificial neural networks
Bandpass filters
Biomedical Engineering and Bioengineering
Cell Biology
Classification
Classifiers
EEG
Electroencephalography
Engineering
Feet
Frequency ranges
Human-computer interface
Image classification
Imaging
Machine learning
Mental task performance
Muscles
Neural networks
Neuromuscular diseases
Original Article
Paralysis
Radiology
Signal classification
Signal processing
Skeletal muscle
Spectrograms
Training
Title Multiclass Classification of Spatially Filtered Motor Imagery EEG Signals Using Convolutional Neural Network for BCI Based Applications
URI https://link.springer.com/article/10.1007/s40846-020-00538-3
https://www.proquest.com/docview/2450394287
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2199-4757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000396618
  issn: 1609-0985
  databaseCode: AFBBN
  dateStart: 20150201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2199-4757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000396618
  issn: 1609-0985
  databaseCode: AGYKE
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BucCBHVEoyAduEJR4iZNjqVo2wQUqwSmyHQchoEVQkOAH-G3GbtICAqSeIiXOZr_EbzwzbwB2kphxm0oRGCotGigsDtIiEgE3SuVoEkXaJ9KencdHXX5yJa7KpLDnKtq9ckn6P_Uo2Y2HOFcGztxxyEkCNg0zwhkoNZhpHl6fjtdWQoYk3i_tRbFb-08TUebL_H6h73PSmGj-8I36KaezAN3qYYeRJnf7LwO9b95_6DhO-jaLMF9yUNIcgmYJpmxvGea-KBOuwIdPzDWOWhNfN9NFFPlBJP2CuDrGiNv7N9K5dd52m5OzPhrv5PjBSWK8kXb7kFzc3jhtZuKDEkir33stUY63dpIgfuNj0AkSZ3LQOiYHOKXmpPnFp74K3U77snUUlDUbAsNEPAgY1SmSqiIxhhdpZK2JaKhVjjtzkctc2VgzK7Q0USKN5glVhRQccWSkcjWM1qDW6_fsOhDqXLSMiVQpzbWUGkGkOVXUhjmypLAOUTVqmSkFzV1djftsJMXsOznDTs58J2esDrujcx6Hch7_tm5UYMjKT_s5o1wgvpylWYe9amzHh_--2sZkzTdhljp4-MDBBtQGTy92CwnQQG-XeP8EzFr6hw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6x7WGXA499iC6P9YEbG5T4ESfHUrW0C-2FVuqeIttxVghoV0tZCf4Af5uxm7SAAIlTpMR52V_ibzwz3wDsJzHjNpUiMFRaNFBYHKRFJAJulMrRJIq0T6TtD-LuiP8ai3GZFHZdRbtXLkn_p14ku_EQ58rAmTsOOUnAPkCdR0nCa1BvHv8-Wa6thAxJvF_ai2K39p8mosyXeflCT-ekJdF85hv1U05nHUbVw84jTS4Ob2b60Nw903F879tswFrJQUlzDppNWLGTz7D6SJnwC9z7xFzjqDXxdTNdRJEfRDItiKtjjLi9vCWdc-dttznpT9F4J70rJ4lxS9rtY3J2_sdpMxMflEBa08n_EuV4aycJ4jc-Bp0gcSZHrR45wik1J81HPvWvMOq0h61uUNZsCAwT8SxgVKdIqorEGF6kkbUmoqFWOe7MRS5zZWPNrNDSRIk0midUFVJwxJGRytUw-ga1yXRit4BQ56JlTKRKaa6l1AgizamiNsyRJYUNiKpRy0wpaO7qalxmCylm38kZdnLmOzljDThYnPN3LufxZuudCgxZ-WlfZ5QLxJezNBvwsxrb5eHXr_b9fc1_wMfusH-anfYGJ9vwiTqo-CDCHajN_t3YXSRDM71XYv8BwI_9eA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VVEJwgLaACA2wh96KW3sfXvuYhqRNX0KCSuVk7cuoojgVuEjhD_RvM7uxk1CVSoiTpfV6be9-q5nZmfkGYCtLGXe5FJGh0qGBwtIoLxMRcaOURZMo0SGR9uQ0PTjjh-fifCmLP0S7ty7JWU6DZ2mq6t0rW-7OE994jHIz8qaPR1EWsQewim2J6MBqf__z0eKcJWao0IdjviT1foA8E03uzN0D_SmfFkrnLT9pED-jp6DaD59FnXzdua71jvl1i9Pxf_5sDZ40uinpz8C0Diuu2oDHS4yFz-AmJOwar3KTUE_TRxqFxSWTkvj6xojnyykZXXgvvLPkZIJGPRl_81QZUzIc7pOPF188ZzMJwQpkMKl-NujHV3uqkHAJsekEFWqyNxiTPRS1lvSXfO3P4Ww0_DQ4iJpaDpFhIq0jRnWOylaZGcPLPHHOJDTWymKjFVZa5VLNnNDSJJk0mmdUlVJwxJeRytc2egGdalK5l0Cod90yJnKlNNdSagSX5lRRF1vUnuIuJO0KFqYhOvf1Ni6LOUVzmOQCJ7kIk1ywLmzPn7ma0Xzc27vXAqNotvyPgnKBWPMWaBfeteu8uP330V79W_e38PDD-1FxPD492oRH1CMlxBb2oFN_v3avUUeq9ZtmG_wG-0wGYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiclass+Classification+of+Spatially+Filtered+Motor+Imagery+EEG+Signals+Using+Convolutional+Neural+Network+for+BCI+Based+Applications&rft.jtitle=Journal+of+medical+and+biological+engineering&rft.au=Shajil%2C+Nijisha&rft.au=Mohan%2C+Sasikala&rft.au=Srinivasan%2C+Poonguzhali&rft.au=Arivudaiyanambi%2C+Janani&rft.date=2020-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1609-0985&rft.eissn=2199-4757&rft.volume=40&rft.issue=5&rft.spage=663&rft.epage=672&rft_id=info:doi/10.1007%2Fs40846-020-00538-3&rft.externalDocID=10_1007_s40846_020_00538_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1609-0985&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1609-0985&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1609-0985&client=summon