Multiobjective Estimation of Distribution Algorithm Based on Joint Modeling of Objectives and Variables

This paper proposes a new multiobjective estimation of distribution algorithm (EDA) based on joint probabilistic modeling of objectives and variables. This EDA uses the multidimensional Bayesian network as its probabilistic model. In this way, it can capture the dependencies between objectives, vari...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 18; no. 4; pp. 519 - 542
Main Authors Karshenas, Hossein, Santana, Roberto, Bielza, Concha, Larranaga, Pedro
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.08.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1089-778X
1941-0026
DOI10.1109/TEVC.2013.2281524

Cover

Abstract This paper proposes a new multiobjective estimation of distribution algorithm (EDA) based on joint probabilistic modeling of objectives and variables. This EDA uses the multidimensional Bayesian network as its probabilistic model. In this way, it can capture the dependencies between objectives, variables and objectives, as well as the dependencies learned between variables in other Bayesian network-based EDAs. This model leads to a problem decomposition that helps the proposed algorithm find better tradeoff solutions to the multiobjective problem. In addition to Pareto set approximation, the algorithm is also able to estimate the structure of the multiobjective problem. To apply the algorithm to many-objective problems, the algorithm includes four different ranking methods proposed in the literature for this purpose. The algorithm is first applied to the set of walking fish group problems, and its optimization performance is compared with a standard multiobjective evolutionary algorithm and another competitive multiobjective EDA. The experimental results show that on several of these problems, and for different objective space dimensions, the proposed algorithm performs significantly better and on some others achieves comparable results when compared with the other two algorithms. The algorithm is then tested on the set of CEC09 problems, where the results show that multiobjective optimization based on joint model estimation is able to obtain considerably better fronts for some of the problems compared with the search based on conventional genetic operators in the state-of-the-art multiobjective evolutionary algorithms.
AbstractList This paper proposes a new multiobjective estimation of distribution algorithm (EDA) based on joint probabilistic modeling of objectives and variables. This EDA uses the multidimensional Bayesian network as its probabilistic model. In this way, it can capture the dependencies between objectives, variables and objectives, as well as the dependencies learned between variables in other Bayesian network-based EDAs. This model leads to a problem decomposition that helps the proposed algorithm find better tradeoff solutions to the multiobjective problem. In addition to Pareto set approximation, the algorithm is also able to estimate the structure of the multiobjective problem. To apply the algorithm to many-objective problems, the algorithm includes four different ranking methods proposed in the literature for this purpose. The algorithm is first applied to the set of walking fish group problems, and its optimization performance is compared with a standard multiobjective evolutionary algorithm and another competitive multiobjective EDA. The experimental results show that on several of these problems, and for different objective space dimensions, the proposed algorithm performs significantly better and on some others achieves comparable results when compared with the other two algorithms. The algorithm is then tested on the set of CEC09 problems, where the results show that multiobjective optimization based on joint model estimation is able to obtain considerably better fronts for some of the problems compared with the search based on conventional genetic operators in the state-of-the-art multiobjective evolutionary algorithms.
Author Karshenas, Hossein
Santana, Roberto
Bielza, Concha
Larranaga, Pedro
Author_xml – sequence: 1
  givenname: Hossein
  surname: Karshenas
  fullname: Karshenas, Hossein
  email: hkarshenas@fi.upm.es
  organization: Tech. Univ. of Madrid, Boadilla del Monte, Spain
– sequence: 2
  givenname: Roberto
  surname: Santana
  fullname: Santana, Roberto
  email: roberto.santana@ehu.es
  organization: Dept. of Comput. Sci., Univ. of the Basque Country, San Sebastin-Donostia, Spain
– sequence: 3
  givenname: Concha
  surname: Bielza
  fullname: Bielza, Concha
  email: mcbielza@fi.upm.es
  organization: Tech. Univ. of Madrid, Boadilla del Monte, Spain
– sequence: 4
  givenname: Pedro
  surname: Larranaga
  fullname: Larranaga, Pedro
  email: pedro.larranaga@fi.upm.es
  organization: Tech. Univ. of Madrid, Boadilla del Monte, Spain
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28741935$$DView record in Pascal Francis
BookMark eNp9kU1vGyEQhlGVSk3S_ICql5WqSr2sw_C1cEwd9yNKlEsS9YZYFlwsvKTAVuq_7zp2c8ihJ2D0PDNo3hN0NKbRIfQO8AIAq_O71cNyQTDQBSESOGGv0DEoBi3GRBzNdyxV23Xyxxt0UsoGY2Ac1DFa30yxhtRvnK3ht2tWpYatmStjk3xzGUrNoZ-e3hdxnXKoP7fNZ1Pc0MylqxTG2tykwcUwrnfG7b9OpTHj0DyYHEwfXXmLXnsTizs7nKfo_svqbvmtvb79-n15cd1aykVtwUvDPOsG2Q8D9uCEtBT3lHPBjGecetqrXnlBvADvLFbCKO45owb32BN6ij7t-z7m9GtypeptKNbFaEaXpqJBdMAFFRJm9MMLdJOmPM6_08A5EMlwR2fq44EyxZrosxltKPoxz2vKfzSRHQNF-czBnrM5lZKdf0YA611EeheR3kWkDxHNTvfCsaE-Lb9mE-J_zfd7MzjnnicJgbGkHf0LvNSghQ
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_knosys_2017_06_021
crossref_primary_10_1109_ACCESS_2022_3188762
crossref_primary_10_1016_j_ins_2017_02_021
crossref_primary_10_3390_math11132820
crossref_primary_10_1007_s10732_021_09469_x
crossref_primary_10_3390_math12182856
crossref_primary_10_1016_j_neucom_2021_01_138
crossref_primary_10_3390_app14135919
crossref_primary_10_1109_TEVC_2014_2332878
crossref_primary_10_1109_TEVC_2016_2591064
crossref_primary_10_1109_TEVC_2015_2395073
crossref_primary_10_1007_s12293_016_0202_5
crossref_primary_10_1109_TEVC_2017_2771451
crossref_primary_10_1007_s10589_014_9717_1
crossref_primary_10_1007_s10898_016_0415_7
crossref_primary_10_12677_AIRR_2016_51001
crossref_primary_10_1002_cpe_6566
crossref_primary_10_1016_j_swevo_2020_100815
crossref_primary_10_1002_widm_1158
crossref_primary_10_3390_app8020271
crossref_primary_10_1016_j_patcog_2017_09_001
crossref_primary_10_1016_j_swevo_2018_04_009
crossref_primary_10_1109_TIM_2018_2792890
crossref_primary_10_1109_TEVC_2016_2567443
crossref_primary_10_1016_j_ins_2017_12_058
crossref_primary_10_3934_math_20231545
crossref_primary_10_1049_iet_gtd_2017_0584
crossref_primary_10_1007_s11721_017_0134_9
crossref_primary_10_1007_s12293_023_00387_y
crossref_primary_10_3934_mbe_2023878
crossref_primary_10_1111_coin_12315
crossref_primary_10_1007_s10489_019_01503_7
crossref_primary_10_1016_j_ins_2015_11_040
crossref_primary_10_1109_TCYB_2016_2523000
crossref_primary_10_1016_j_asoc_2017_04_011
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_1016_j_asoc_2018_08_039
crossref_primary_10_1109_TEVC_2023_3314105
crossref_primary_10_1007_s12293_019_00282_5
crossref_primary_10_1016_j_asoc_2023_110652
crossref_primary_10_1016_j_eswa_2025_126664
crossref_primary_10_1109_TCYB_2020_2985081
crossref_primary_10_1109_TETCI_2023_3313412
crossref_primary_10_1109_TEVC_2018_2865495
crossref_primary_10_1109_TEVC_2018_2794319
crossref_primary_10_1016_j_asoc_2020_106147
crossref_primary_10_1016_j_swevo_2019_04_005
crossref_primary_10_1016_j_jocs_2016_03_004
crossref_primary_10_1016_j_asoc_2017_04_066
crossref_primary_10_1016_j_ins_2019_05_046
crossref_primary_10_1007_s10732_017_9356_7
crossref_primary_10_1016_j_comnet_2021_108405
crossref_primary_10_1016_j_ins_2019_05_091
crossref_primary_10_1016_j_matcom_2023_07_013
crossref_primary_10_1016_j_asoc_2017_09_031
crossref_primary_10_1109_TEVC_2016_2521868
crossref_primary_10_1109_TEVC_2016_2623770
crossref_primary_10_1007_s00500_016_2323_7
crossref_primary_10_1007_s10878_022_00879_6
crossref_primary_10_1109_TEVC_2021_3139304
crossref_primary_10_1109_TEVC_2019_2926107
crossref_primary_10_1016_j_swevo_2022_101165
Cites_doi 10.1016/j.swevo.2011.02.002
10.1007/978-3-540-88908-3_14
10.1080/01621459.1992.10476265
10.1109/TSMCC.2012.2188285
10.1162/EVCO_a_00009
10.1162/106365600568202
10.1007/BF00994110
10.1109/69.494161
10.1007/978-3-642-19893-9_21
10.1145/1569901.1569963
10.1016/j.cma.2006.07.010
10.1162/evco.2009.17.2.135
10.1007/s10489-008-0140-0
10.1016/j.compchemeng.2011.02.001
10.1007/11903697_67
10.1007/s10732-012-9208-4
10.1109/CEC.2002.1007032
10.1111/j.2517-6161.1996.tb02080.x
10.1007/978-3-642-25566-3_9
10.1007/s10710-005-6164-x
10.1007/s11633-007-0262-6
10.1016/S0888-613X(02)00090-7
10.1109/TEVC.2006.876362
10.1109/CEC.2009.4982949
10.1007/1-84628-137-7
10.1007/978-3-642-19893-9_7
10.1145/1389095.1389225
10.1109/TEVC.2003.810758
10.2202/1544-6115.1175
10.1007/978-3-540-34954-9
10.1016/j.orl.2011.01.002
10.1109/CEC.2010.5585930
10.1109/CEC.2008.4631121
10.1145/1389095.1389236
10.1145/1389095.1389228
10.1109/4235.797969
10.1162/EVCO_a_00066
10.1109/CEC.2012.6256485
10.1016/S0040-1625(99)00079-7
10.1109/CEC.2010.5586269
10.1016/j.asoc.2012.11.049
10.1002/nav.20090
10.1007/3-540-45712-7_29
10.1109/ICMTMA.2010.148
10.1109/CIS.2007.136
10.1109/TEVC.2007.892759
10.1007/978-3-540-75256-1_45
10.18637/jss.v035.i07
10.1007/BF01720705
10.1145/1276958.1277079
10.1109/CEC.2010.5586465
10.1016/B978-1-55860-203-8.50010-3
10.1145/1068009.1068122
10.1007/978-3-540-24652-7_15
10.1007/3-540-36970-8_20
10.1145/1276958.1277067
10.1007/s00170-002-1445-5
10.1109/CEC.2005.1554688
10.1109/CEC.2005.1554970
10.1016/B978-1-55860-332-5.50035-3
10.1007/3-540-32494-1
10.1109/TEVC.2007.894202
10.1016/j.ijar.2011.01.007
10.1109/TEVC.2005.861417
10.1007/b10910
10.1109/TEVC.2012.2185847
10.1214/aos/1176344136
10.1007/978-3-642-14156-0_13
10.1109/4235.996017
10.1007/BF00994016
10.1109/TEVC.2009.2033671
10.1109/CEC.2006.1688513
10.1007/978-3-540-34954-9_10
10.1109/CEC.2003.1299791
10.1109/CEC.2004.1331086
10.1088/0031-9155/53/11/002
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TEVC.2013.2281524
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1941-0026
EndPage 542
ExternalDocumentID 3393377251
28741935
10_1109_TEVC_2013_2281524
6600837
Genre orig-research
GrantInformation_xml – fundername: Consolider Ingenio
  grantid: 2010-CSD2007-00018; TIN2010-20900-C04-04; TIN2010-14931
– fundername: Saiotek and Research Groups 2007–2012 (IT-242-07) Programs (Basque Government)
– fundername: Cajal Blue Brain projects (Spanish Ministry of Science and Innovation)
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
AAYOK
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c356t-1f8a4f47d8bdd0f1e68c30b35564af453f3b9b9f62f61fec096a95f543a0b0f23
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Mon Sep 29 04:17:13 EDT 2025
Mon Jun 30 07:20:56 EDT 2025
Wed Apr 02 07:25:24 EDT 2025
Wed Oct 01 02:39:35 EDT 2025
Thu Apr 24 23:11:21 EDT 2025
Tue Aug 26 16:49:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords multiobjective optimization
joint objective-variable modeling
many-objective problem
Estimation of distribution algorithm
objectives relationship
Probabilistic approach
Pareto optimum
Dependability
Hierarchical classification
Evolutionary algorithm
Competitiveness
Multiobjective programming
Approximation algorithm
Modeling
Standards
Optimization
Experimental result
Genetic algorithm
Probabilistic net
Bayes network
Graph method
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-1f8a4f47d8bdd0f1e68c30b35564af453f3b9b9f62f61fec096a95f543a0b0f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1551284073
PQPubID 85418
PageCount 24
ParticipantIDs proquest_journals_1551284073
crossref_primary_10_1109_TEVC_2013_2281524
crossref_citationtrail_10_1109_TEVC_2013_2281524
ieee_primary_6600837
proquest_miscellaneous_1671563681
pascalfrancis_primary_28741935
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2014
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref59
ref58
henrion (ref78) 1986; 2
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref42
ref41
ref44
hastie (ref75) 2009
ref49
ref8
ref9
ref4
ref40
tibshirani (ref74) 1996; 58
ref34
ref37
ref31
ref30
ref33
ref32
ref39
ref38
larrañaga (ref7) 2001
ref24
pearl (ref29) 1985
ref23
ref26
ref25
ref20
ref22
ref21
ref28
pelikan (ref71) 2005; 170
deb (ref84) 1995; 9
pelikan (ref56) 1999
soh (ref43) 2006
martí (ref14) 2010
ref13
ref12
ref15
ref97
ref96
ref10
ref17
ref16
ref19
ref18
garza-fabre (ref65) 2009; lncs 5845
ref93
ref92
ref95
ref94
schwarz (ref35) 2001; 11
ref91
martí (ref47) 2012
ref89
ref86
ref88
miquélez (ref27) 2004; 14
zitzler (ref87) 2008; lncs 5252
deb (ref3) 2001
ref82
ref81
ref80
goldberg (ref6) 2002
ref77
ref76
ref2
ref70
ref73
coello (ref5) 2007
ref72
khan (ref36) 2002
ref68
ref67
ref69
ref64
ref63
ref66
schmidt (ref83) 2007; 2
thierens (ref11) 2001
koller (ref79) 2009
ref60
sbalzarini (ref1) 2000; 1
deb (ref85) 1996; 26
ref62
ref61
zhang (ref90) 2009
References_xml – ident: ref89
  doi: 10.1016/j.swevo.2011.02.002
– volume: lncs 5252
  start-page: 373
  year: 2008
  ident: ref87
  article-title: Quality assessment of Pareto set approximations
  publication-title: Proc Multiobjective Optimiz
  doi: 10.1007/978-3-540-88908-3_14
– volume: 11
  start-page: 423
  year: 2001
  ident: ref35
  article-title: Multiobjective Bayesian optimization algorithm for combinatorial problems: Theory and practice
  publication-title: Neural Netw World
– ident: ref30
  doi: 10.1080/01621459.1992.10476265
– year: 2009
  ident: ref75
  publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction
– ident: ref55
  doi: 10.1109/TSMCC.2012.2188285
– ident: ref59
  doi: 10.1162/EVCO_a_00009
– ident: ref2
  doi: 10.1162/106365600568202
– ident: ref68
  doi: 10.1007/BF00994110
– ident: ref70
  doi: 10.1109/69.494161
– start-page: 329
  year: 1985
  ident: ref29
  article-title: Bayesian networks: A model of self-activated memory for evidential reasoning
  publication-title: Proc 7th Annu Conf Cogn Sci Soc
– ident: ref24
  doi: 10.1007/978-3-642-19893-9_21
– year: 2007
  ident: ref5
  publication-title: Evolutionary Algorithms for Solving Multi-Objective Problems
– ident: ref95
  doi: 10.1145/1569901.1569963
– ident: ref17
  doi: 10.1016/j.cma.2006.07.010
– year: 2001
  ident: ref3
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– start-page: 663
  year: 2001
  ident: ref11
  article-title: Multi-objective mixture-based iterated density estimation evolutionary algorithms
  publication-title: Proc GECCO
– ident: ref22
  doi: 10.1162/evco.2009.17.2.135
– ident: ref44
  doi: 10.1007/s10489-008-0140-0
– ident: ref23
  doi: 10.1016/j.compchemeng.2011.02.001
– start-page: 684
  year: 2002
  ident: ref36
  article-title: Multiple-objective Bayesian optimization algorithm
  publication-title: Proc GECCO
– ident: ref28
  doi: 10.1007/11903697_67
– ident: ref10
  doi: 10.1007/s10732-012-9208-4
– ident: ref15
  doi: 10.1109/CEC.2002.1007032
– volume: 58
  start-page: 267
  year: 1996
  ident: ref74
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J Roy Stat Soc Ser B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 1
  start-page: 63
  year: 2000
  ident: ref1
  article-title: Multiobjective optimization using evolutionary algorithms
  publication-title: Proc Summer Prog Stud Turbulence Numer Simulation Databases-VIII
– ident: ref20
  doi: 10.1007/978-3-642-25566-3_9
– ident: ref92
  doi: 10.1007/s10710-005-6164-x
– ident: ref80
  doi: 10.1007/s11633-007-0262-6
– ident: ref37
  doi: 10.1016/S0888-613X(02)00090-7
– ident: ref96
  doi: 10.1109/TEVC.2006.876362
– ident: ref91
  doi: 10.1109/CEC.2009.4982949
– volume: 14
  start-page: 335
  year: 2004
  ident: ref27
  article-title: Evolutionary computation based on Bayesian classifiers
  publication-title: Int J Appl Math Comput Sci
– ident: ref4
  doi: 10.1007/1-84628-137-7
– ident: ref97
  doi: 10.1007/978-3-642-19893-9_7
– year: 2001
  ident: ref7
  publication-title: Estimation of Distribution Algorithms A New Tool for Evolutionary Computation
– ident: ref16
  doi: 10.1145/1389095.1389225
– ident: ref86
  doi: 10.1109/TEVC.2003.810758
– volume: lncs 5845
  start-page: 633
  year: 2009
  ident: ref65
  article-title: Ranking methods for many-objective optimization
  publication-title: Proceedings of MICAI
– ident: ref76
  doi: 10.2202/1544-6115.1175
– ident: ref9
  doi: 10.1007/978-3-540-34954-9
– ident: ref46
  doi: 10.1016/j.orl.2011.01.002
– ident: ref67
  doi: 10.1109/CEC.2010.5585930
– ident: ref62
  doi: 10.1109/CEC.2008.4631121
– ident: ref93
  doi: 10.1145/1389095.1389236
– ident: ref18
  doi: 10.1145/1389095.1389228
– ident: ref33
  doi: 10.1109/4235.797969
– year: 2012
  ident: ref47
  article-title: Multi-objective optimization with an adaptive resonance theory-based estimation of distribution algorithm
  publication-title: Ann Math Artif Intell
– ident: ref53
  doi: 10.1162/EVCO_a_00066
– volume: 26
  start-page: 30
  year: 1996
  ident: ref85
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: J Inform Comput Sci
– ident: ref54
  doi: 10.1109/CEC.2012.6256485
– ident: ref32
  doi: 10.1016/S0040-1625(99)00079-7
– ident: ref63
  doi: 10.1109/CEC.2010.5586269
– ident: ref77
  doi: 10.1016/j.asoc.2012.11.049
– ident: ref34
  doi: 10.1002/nav.20090
– ident: ref48
  doi: 10.1007/3-540-45712-7_29
– ident: ref52
  doi: 10.1109/ICMTMA.2010.148
– year: 2009
  ident: ref90
  article-title: Multiobjective optimization test instances for the CEC 2009 special session and competition
– ident: ref49
  doi: 10.1109/CIS.2007.136
– ident: ref64
  doi: 10.1109/TEVC.2007.892759
– ident: ref25
  doi: 10.1007/978-3-540-75256-1_45
– ident: ref82
  doi: 10.18637/jss.v035.i07
– ident: ref88
  doi: 10.1007/BF01720705
– ident: ref58
  doi: 10.1145/1276958.1277079
– ident: ref45
  doi: 10.1109/CEC.2010.5586465
– ident: ref72
  doi: 10.1016/B978-1-55860-203-8.50010-3
– ident: ref41
  doi: 10.1145/1068009.1068122
– ident: ref51
  doi: 10.1007/978-3-540-24652-7_15
– ident: ref39
  doi: 10.1007/3-540-36970-8_20
– ident: ref38
  doi: 10.1145/1276958.1277067
– ident: ref94
  doi: 10.1007/s00170-002-1445-5
– ident: ref61
  doi: 10.1109/CEC.2005.1554688
– volume: 2
  start-page: 1278
  year: 2007
  ident: ref83
  article-title: Learning graphical model structure using L1-regularization paths
  publication-title: Proc AAAI
– ident: ref42
  doi: 10.1109/CEC.2005.1554970
– ident: ref31
  doi: 10.1016/B978-1-55860-332-5.50035-3
– volume: 9
  start-page: 115
  year: 1995
  ident: ref84
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– year: 2002
  ident: ref6
  publication-title: The Design of Innovation Lessons from and for Competent Genetic Algorithms
– ident: ref8
  doi: 10.1007/3-540-32494-1
– ident: ref13
  doi: 10.1109/TEVC.2007.894202
– ident: ref26
  doi: 10.1016/j.ijar.2011.01.007
– year: 2009
  ident: ref79
  publication-title: Probabilistic Graphical Models Principles and Techniques
– volume: 2
  start-page: 149
  year: 1986
  ident: ref78
  article-title: Propagating uncertainty in Bayesian networks by probabilistic logic sampling
  publication-title: Proc UAI
– ident: ref81
  doi: 10.1109/TEVC.2005.861417
– volume: 170
  year: 2005
  ident: ref71
  publication-title: Hierarchical Bayesian Optimization Algorithm Toward a New Generation of Evolutionary Algorithms
  doi: 10.1007/b10910
– ident: ref21
  doi: 10.1109/TEVC.2012.2185847
– ident: ref73
  doi: 10.1214/aos/1176344136
– year: 2010
  ident: ref14
  article-title: On current model-building methods for multi-objective estimation of distribution algorithms: Shortcommings and directions for improvement
– ident: ref66
  doi: 10.1007/978-3-642-14156-0_13
– ident: ref57
  doi: 10.1109/4235.996017
– ident: ref69
  doi: 10.1007/BF00994016
– ident: ref60
  doi: 10.1109/TEVC.2009.2033671
– start-page: 1702
  year: 2006
  ident: ref43
  article-title: moPGA: Towards a new generation of multiobjective genetic algorithms
  publication-title: Proc IEEE Congr Evol Comput
  doi: 10.1109/CEC.2006.1688513
– ident: ref12
  doi: 10.1007/978-3-540-34954-9_10
– ident: ref50
  doi: 10.1109/CEC.2003.1299791
– ident: ref40
  doi: 10.1109/CEC.2004.1331086
– start-page: 525
  year: 1999
  ident: ref56
  article-title: BOA: The Bayesian optimization algorithm
  publication-title: Proc GECCO
– ident: ref19
  doi: 10.1088/0031-9155/53/11/002
SSID ssj0014519
Score 2.440543
Snippet This paper proposes a new multiobjective estimation of distribution algorithm (EDA) based on joint probabilistic modeling of objectives and variables. This EDA...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 519
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Approximation algorithms
Bayes methods
Bayesian analysis
Computer science; control theory; systems
Decision theory. Utility theory
Estimation
Estimation of distribution algorithm
Evolutionary algorithms
Exact sciences and technology
Information retrieval. Graph
Joint objective-variable modeling
Joints
Many-objective problem
Mathematical models
Multi-objective optimization
Networks
Objectives
Objectives relationship
Operational research and scientific management
Operational research. Management science
Optimization
Pareto optimum
Probabilistic logic
Probabilistic methods
Probability theory
Search problems
Theoretical computing
Title Multiobjective Estimation of Distribution Algorithm Based on Joint Modeling of Objectives and Variables
URI https://ieeexplore.ieee.org/document/6600837
https://www.proquest.com/docview/1551284073
https://www.proquest.com/docview/1671563681
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9VAEJ8AJz2IgsYKkiXxZOyj3d1u2yPiI4REvQB5t2Y_EcTW8Pou_PXOdreNKCHcmna33XZmdmY6Hz-AD9zQstbSoHwLm3Lu7CBSKfoildQFNcoOCbLfxMk5P10UizX4NNXCWGuH5DM784dDLN90euV_lR0I4S2Gch3Wy0qEWq0pYuDbpIRk-hotxmoRI5h5Vh-czS-OfBIXm1Faob7i93TQAKriUyLlEr-KC3AW_-3Mg7o53oSv40JDlsnP2apXM333Tw_Hp77JS3gR7U5yGBjlFazZdgs2R0wHEkV8C57_1aBwGy6H-txOXYdtkcxxQwi1jqRz5ItvuhvxssjhzWV3e9X_-EU-o2I0BE-ddldtTzzamq959zO-j3daEtkacoGOui_dWr6G8-P52dFJGqEZUs0K0ae5qyR3vDSVMiZzuRWVZplC40Vw6XjBHFO1qp2gTuTOanSUZF24gjOZqcxR9gY22q61b4GUjjuqCqmNYFzRWgmqKNr9GbOcUW0TyEZiNTr2LffwGTfN4L9kdePp23j6NpG-CXycpvwOTTseG7zt6TMNjKRJYO8eR0zXPUAAWr1FArsjizRR7peNN0BR4eO-mcD-dBkl1odhZGu7FY4RJTrNTFT5u4cfvQPPcIE8pBnuwkZ_u7Lv0fTp1d7A838Akl4AmQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LU9RAEO5CPCgHUZAiijhWebLMkswryRFxqRUBLwu1t9Q8EcXEYrMXf709eZWoZXlLJTPJJN093Z1-fACvuaVZYZRF-ZYu5ty7VqRi9EVyZQS12rUJsudydsFPFmKxBm_HWhjnXJt85ibhsI3l29qswq-yAymDxZDdg_uCcy66aq0xZhAapXTp9AXajPmij2GmSXEwn14ehTQuNqE0R43F72ihFlYlJEWqJX4X3wFa_LE3twrneBPOhqV2eSZfJ6tGT8yP37o4_u-7PIZHveVJDjtWeQJrrtqCzQHVgfRCvgUbv7Qo3IartkK31l-6jZFMcUvoqh1J7cn70Ha3R8wihzdX9e118_kbeYeq0RI8dVJfVw0JeGuh6j3M-DTcaUlUZckluuqheGv5FC6Op_OjWdyDM8SGCdnEqc8V9zyzubY28amTuWGJRvNFcuW5YJ7pQhdeUi9T7wy6SqoQXnCmEp14ynZgvaortwsk89xTLZSxknFNCy2ppmj5J8xxRo2LIBmIVZq-c3kA0LgpWw8mKcpA3zLQt-zpG8Gbccr3rm3HvwZvB_qMA3vSRLB_hyPG6wEiAO1eEcHewCJlL_nLMpigqPJx54zg1XgZZTYEYlTl6hWOkRm6zUzm6bO_P_olPJjNz07L0w_nH5_DQ1ws75IO92C9uV25F2gINXq_5f-fH40D5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiobjective+Estimation+of+Distribution+Algorithm+Based+on+Joint+Modeling+of+Objectives+and+Variables&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Karshenas%2C+Hossein&rft.au=Santana%2C+Roberto&rft.au=Bielza%2C+Concha&rft.au=Larranaga%2C+Pedro&rft.date=2014-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=18&rft.issue=4&rft.spage=519&rft_id=info:doi/10.1109%2FTEVC.2013.2281524&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3393377251
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon