Multiobjective Estimation of Distribution Algorithm Based on Joint Modeling of Objectives and Variables
This paper proposes a new multiobjective estimation of distribution algorithm (EDA) based on joint probabilistic modeling of objectives and variables. This EDA uses the multidimensional Bayesian network as its probabilistic model. In this way, it can capture the dependencies between objectives, vari...
Saved in:
| Published in | IEEE transactions on evolutionary computation Vol. 18; no. 4; pp. 519 - 542 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.08.2014
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1089-778X 1941-0026 |
| DOI | 10.1109/TEVC.2013.2281524 |
Cover
| Abstract | This paper proposes a new multiobjective estimation of distribution algorithm (EDA) based on joint probabilistic modeling of objectives and variables. This EDA uses the multidimensional Bayesian network as its probabilistic model. In this way, it can capture the dependencies between objectives, variables and objectives, as well as the dependencies learned between variables in other Bayesian network-based EDAs. This model leads to a problem decomposition that helps the proposed algorithm find better tradeoff solutions to the multiobjective problem. In addition to Pareto set approximation, the algorithm is also able to estimate the structure of the multiobjective problem. To apply the algorithm to many-objective problems, the algorithm includes four different ranking methods proposed in the literature for this purpose. The algorithm is first applied to the set of walking fish group problems, and its optimization performance is compared with a standard multiobjective evolutionary algorithm and another competitive multiobjective EDA. The experimental results show that on several of these problems, and for different objective space dimensions, the proposed algorithm performs significantly better and on some others achieves comparable results when compared with the other two algorithms. The algorithm is then tested on the set of CEC09 problems, where the results show that multiobjective optimization based on joint model estimation is able to obtain considerably better fronts for some of the problems compared with the search based on conventional genetic operators in the state-of-the-art multiobjective evolutionary algorithms. |
|---|---|
| AbstractList | This paper proposes a new multiobjective estimation of distribution algorithm (EDA) based on joint probabilistic modeling of objectives and variables. This EDA uses the multidimensional Bayesian network as its probabilistic model. In this way, it can capture the dependencies between objectives, variables and objectives, as well as the dependencies learned between variables in other Bayesian network-based EDAs. This model leads to a problem decomposition that helps the proposed algorithm find better tradeoff solutions to the multiobjective problem. In addition to Pareto set approximation, the algorithm is also able to estimate the structure of the multiobjective problem. To apply the algorithm to many-objective problems, the algorithm includes four different ranking methods proposed in the literature for this purpose. The algorithm is first applied to the set of walking fish group problems, and its optimization performance is compared with a standard multiobjective evolutionary algorithm and another competitive multiobjective EDA. The experimental results show that on several of these problems, and for different objective space dimensions, the proposed algorithm performs significantly better and on some others achieves comparable results when compared with the other two algorithms. The algorithm is then tested on the set of CEC09 problems, where the results show that multiobjective optimization based on joint model estimation is able to obtain considerably better fronts for some of the problems compared with the search based on conventional genetic operators in the state-of-the-art multiobjective evolutionary algorithms. |
| Author | Karshenas, Hossein Santana, Roberto Bielza, Concha Larranaga, Pedro |
| Author_xml | – sequence: 1 givenname: Hossein surname: Karshenas fullname: Karshenas, Hossein email: hkarshenas@fi.upm.es organization: Tech. Univ. of Madrid, Boadilla del Monte, Spain – sequence: 2 givenname: Roberto surname: Santana fullname: Santana, Roberto email: roberto.santana@ehu.es organization: Dept. of Comput. Sci., Univ. of the Basque Country, San Sebastin-Donostia, Spain – sequence: 3 givenname: Concha surname: Bielza fullname: Bielza, Concha email: mcbielza@fi.upm.es organization: Tech. Univ. of Madrid, Boadilla del Monte, Spain – sequence: 4 givenname: Pedro surname: Larranaga fullname: Larranaga, Pedro email: pedro.larranaga@fi.upm.es organization: Tech. Univ. of Madrid, Boadilla del Monte, Spain |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28741935$$DView record in Pascal Francis |
| BookMark | eNp9kU1vGyEQhlGVSk3S_ICql5WqSr2sw_C1cEwd9yNKlEsS9YZYFlwsvKTAVuq_7zp2c8ihJ2D0PDNo3hN0NKbRIfQO8AIAq_O71cNyQTDQBSESOGGv0DEoBi3GRBzNdyxV23Xyxxt0UsoGY2Ac1DFa30yxhtRvnK3ht2tWpYatmStjk3xzGUrNoZ-e3hdxnXKoP7fNZ1Pc0MylqxTG2tykwcUwrnfG7b9OpTHj0DyYHEwfXXmLXnsTizs7nKfo_svqbvmtvb79-n15cd1aykVtwUvDPOsG2Q8D9uCEtBT3lHPBjGecetqrXnlBvADvLFbCKO45owb32BN6ij7t-z7m9GtypeptKNbFaEaXpqJBdMAFFRJm9MMLdJOmPM6_08A5EMlwR2fq44EyxZrosxltKPoxz2vKfzSRHQNF-czBnrM5lZKdf0YA611EeheR3kWkDxHNTvfCsaE-Lb9mE-J_zfd7MzjnnicJgbGkHf0LvNSghQ |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2017_06_021 crossref_primary_10_1109_ACCESS_2022_3188762 crossref_primary_10_1016_j_ins_2017_02_021 crossref_primary_10_3390_math11132820 crossref_primary_10_1007_s10732_021_09469_x crossref_primary_10_3390_math12182856 crossref_primary_10_1016_j_neucom_2021_01_138 crossref_primary_10_3390_app14135919 crossref_primary_10_1109_TEVC_2014_2332878 crossref_primary_10_1109_TEVC_2016_2591064 crossref_primary_10_1109_TEVC_2015_2395073 crossref_primary_10_1007_s12293_016_0202_5 crossref_primary_10_1109_TEVC_2017_2771451 crossref_primary_10_1007_s10589_014_9717_1 crossref_primary_10_1007_s10898_016_0415_7 crossref_primary_10_12677_AIRR_2016_51001 crossref_primary_10_1002_cpe_6566 crossref_primary_10_1016_j_swevo_2020_100815 crossref_primary_10_1002_widm_1158 crossref_primary_10_3390_app8020271 crossref_primary_10_1016_j_patcog_2017_09_001 crossref_primary_10_1016_j_swevo_2018_04_009 crossref_primary_10_1109_TIM_2018_2792890 crossref_primary_10_1109_TEVC_2016_2567443 crossref_primary_10_1016_j_ins_2017_12_058 crossref_primary_10_3934_math_20231545 crossref_primary_10_1049_iet_gtd_2017_0584 crossref_primary_10_1007_s11721_017_0134_9 crossref_primary_10_1007_s12293_023_00387_y crossref_primary_10_3934_mbe_2023878 crossref_primary_10_1111_coin_12315 crossref_primary_10_1007_s10489_019_01503_7 crossref_primary_10_1016_j_ins_2015_11_040 crossref_primary_10_1109_TCYB_2016_2523000 crossref_primary_10_1016_j_asoc_2017_04_011 crossref_primary_10_1109_TEVC_2023_3250350 crossref_primary_10_1016_j_asoc_2018_08_039 crossref_primary_10_1109_TEVC_2023_3314105 crossref_primary_10_1007_s12293_019_00282_5 crossref_primary_10_1016_j_asoc_2023_110652 crossref_primary_10_1016_j_eswa_2025_126664 crossref_primary_10_1109_TCYB_2020_2985081 crossref_primary_10_1109_TETCI_2023_3313412 crossref_primary_10_1109_TEVC_2018_2865495 crossref_primary_10_1109_TEVC_2018_2794319 crossref_primary_10_1016_j_asoc_2020_106147 crossref_primary_10_1016_j_swevo_2019_04_005 crossref_primary_10_1016_j_jocs_2016_03_004 crossref_primary_10_1016_j_asoc_2017_04_066 crossref_primary_10_1016_j_ins_2019_05_046 crossref_primary_10_1007_s10732_017_9356_7 crossref_primary_10_1016_j_comnet_2021_108405 crossref_primary_10_1016_j_ins_2019_05_091 crossref_primary_10_1016_j_matcom_2023_07_013 crossref_primary_10_1016_j_asoc_2017_09_031 crossref_primary_10_1109_TEVC_2016_2521868 crossref_primary_10_1109_TEVC_2016_2623770 crossref_primary_10_1007_s00500_016_2323_7 crossref_primary_10_1007_s10878_022_00879_6 crossref_primary_10_1109_TEVC_2021_3139304 crossref_primary_10_1109_TEVC_2019_2926107 crossref_primary_10_1016_j_swevo_2022_101165 |
| Cites_doi | 10.1016/j.swevo.2011.02.002 10.1007/978-3-540-88908-3_14 10.1080/01621459.1992.10476265 10.1109/TSMCC.2012.2188285 10.1162/EVCO_a_00009 10.1162/106365600568202 10.1007/BF00994110 10.1109/69.494161 10.1007/978-3-642-19893-9_21 10.1145/1569901.1569963 10.1016/j.cma.2006.07.010 10.1162/evco.2009.17.2.135 10.1007/s10489-008-0140-0 10.1016/j.compchemeng.2011.02.001 10.1007/11903697_67 10.1007/s10732-012-9208-4 10.1109/CEC.2002.1007032 10.1111/j.2517-6161.1996.tb02080.x 10.1007/978-3-642-25566-3_9 10.1007/s10710-005-6164-x 10.1007/s11633-007-0262-6 10.1016/S0888-613X(02)00090-7 10.1109/TEVC.2006.876362 10.1109/CEC.2009.4982949 10.1007/1-84628-137-7 10.1007/978-3-642-19893-9_7 10.1145/1389095.1389225 10.1109/TEVC.2003.810758 10.2202/1544-6115.1175 10.1007/978-3-540-34954-9 10.1016/j.orl.2011.01.002 10.1109/CEC.2010.5585930 10.1109/CEC.2008.4631121 10.1145/1389095.1389236 10.1145/1389095.1389228 10.1109/4235.797969 10.1162/EVCO_a_00066 10.1109/CEC.2012.6256485 10.1016/S0040-1625(99)00079-7 10.1109/CEC.2010.5586269 10.1016/j.asoc.2012.11.049 10.1002/nav.20090 10.1007/3-540-45712-7_29 10.1109/ICMTMA.2010.148 10.1109/CIS.2007.136 10.1109/TEVC.2007.892759 10.1007/978-3-540-75256-1_45 10.18637/jss.v035.i07 10.1007/BF01720705 10.1145/1276958.1277079 10.1109/CEC.2010.5586465 10.1016/B978-1-55860-203-8.50010-3 10.1145/1068009.1068122 10.1007/978-3-540-24652-7_15 10.1007/3-540-36970-8_20 10.1145/1276958.1277067 10.1007/s00170-002-1445-5 10.1109/CEC.2005.1554688 10.1109/CEC.2005.1554970 10.1016/B978-1-55860-332-5.50035-3 10.1007/3-540-32494-1 10.1109/TEVC.2007.894202 10.1016/j.ijar.2011.01.007 10.1109/TEVC.2005.861417 10.1007/b10910 10.1109/TEVC.2012.2185847 10.1214/aos/1176344136 10.1007/978-3-642-14156-0_13 10.1109/4235.996017 10.1007/BF00994016 10.1109/TEVC.2009.2033671 10.1109/CEC.2006.1688513 10.1007/978-3-540-34954-9_10 10.1109/CEC.2003.1299791 10.1109/CEC.2004.1331086 10.1088/0031-9155/53/11/002 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1109/TEVC.2013.2281524 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 1941-0026 |
| EndPage | 542 |
| ExternalDocumentID | 3393377251 28741935 10_1109_TEVC_2013_2281524 6600837 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Consolider Ingenio grantid: 2010-CSD2007-00018; TIN2010-20900-C04-04; TIN2010-14931 – fundername: Saiotek and Research Groups 2007–2012 (IT-242-07) Programs (Basque Government) – fundername: Cajal Blue Brain projects (Spanish Ministry of Science and Innovation) |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION AAYOK IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c356t-1f8a4f47d8bdd0f1e68c30b35564af453f3b9b9f62f61fec096a95f543a0b0f23 |
| IEDL.DBID | RIE |
| ISSN | 1089-778X |
| IngestDate | Mon Sep 29 04:17:13 EDT 2025 Mon Jun 30 07:20:56 EDT 2025 Wed Apr 02 07:25:24 EDT 2025 Wed Oct 01 02:39:35 EDT 2025 Thu Apr 24 23:11:21 EDT 2025 Tue Aug 26 16:49:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | multiobjective optimization joint objective-variable modeling many-objective problem Estimation of distribution algorithm objectives relationship Probabilistic approach Pareto optimum Dependability Hierarchical classification Evolutionary algorithm Competitiveness Multiobjective programming Approximation algorithm Modeling Standards Optimization Experimental result Genetic algorithm Probabilistic net Bayes network Graph method |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c356t-1f8a4f47d8bdd0f1e68c30b35564af453f3b9b9f62f61fec096a95f543a0b0f23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1551284073 |
| PQPubID | 85418 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_1551284073 crossref_primary_10_1109_TEVC_2013_2281524 crossref_citationtrail_10_1109_TEVC_2013_2281524 ieee_primary_6600837 proquest_miscellaneous_1671563681 pascalfrancis_primary_28741935 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-08-01 |
| PublicationDateYYYYMMDD | 2014-08-01 |
| PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2014 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref59 ref58 henrion (ref78) 1986; 2 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref42 ref41 ref44 hastie (ref75) 2009 ref49 ref8 ref9 ref4 ref40 tibshirani (ref74) 1996; 58 ref34 ref37 ref31 ref30 ref33 ref32 ref39 ref38 larrañaga (ref7) 2001 ref24 pearl (ref29) 1985 ref23 ref26 ref25 ref20 ref22 ref21 ref28 pelikan (ref71) 2005; 170 deb (ref84) 1995; 9 pelikan (ref56) 1999 soh (ref43) 2006 martí (ref14) 2010 ref13 ref12 ref15 ref97 ref96 ref10 ref17 ref16 ref19 ref18 garza-fabre (ref65) 2009; lncs 5845 ref93 ref92 ref95 ref94 schwarz (ref35) 2001; 11 ref91 martí (ref47) 2012 ref89 ref86 ref88 miquélez (ref27) 2004; 14 zitzler (ref87) 2008; lncs 5252 deb (ref3) 2001 ref82 ref81 ref80 goldberg (ref6) 2002 ref77 ref76 ref2 ref70 ref73 coello (ref5) 2007 ref72 khan (ref36) 2002 ref68 ref67 ref69 ref64 ref63 ref66 schmidt (ref83) 2007; 2 thierens (ref11) 2001 koller (ref79) 2009 ref60 sbalzarini (ref1) 2000; 1 deb (ref85) 1996; 26 ref62 ref61 zhang (ref90) 2009 |
| References_xml | – ident: ref89 doi: 10.1016/j.swevo.2011.02.002 – volume: lncs 5252 start-page: 373 year: 2008 ident: ref87 article-title: Quality assessment of Pareto set approximations publication-title: Proc Multiobjective Optimiz doi: 10.1007/978-3-540-88908-3_14 – volume: 11 start-page: 423 year: 2001 ident: ref35 article-title: Multiobjective Bayesian optimization algorithm for combinatorial problems: Theory and practice publication-title: Neural Netw World – ident: ref30 doi: 10.1080/01621459.1992.10476265 – year: 2009 ident: ref75 publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction – ident: ref55 doi: 10.1109/TSMCC.2012.2188285 – ident: ref59 doi: 10.1162/EVCO_a_00009 – ident: ref2 doi: 10.1162/106365600568202 – ident: ref68 doi: 10.1007/BF00994110 – ident: ref70 doi: 10.1109/69.494161 – start-page: 329 year: 1985 ident: ref29 article-title: Bayesian networks: A model of self-activated memory for evidential reasoning publication-title: Proc 7th Annu Conf Cogn Sci Soc – ident: ref24 doi: 10.1007/978-3-642-19893-9_21 – year: 2007 ident: ref5 publication-title: Evolutionary Algorithms for Solving Multi-Objective Problems – ident: ref95 doi: 10.1145/1569901.1569963 – ident: ref17 doi: 10.1016/j.cma.2006.07.010 – year: 2001 ident: ref3 publication-title: Multi-Objective Optimization Using Evolutionary Algorithms – start-page: 663 year: 2001 ident: ref11 article-title: Multi-objective mixture-based iterated density estimation evolutionary algorithms publication-title: Proc GECCO – ident: ref22 doi: 10.1162/evco.2009.17.2.135 – ident: ref44 doi: 10.1007/s10489-008-0140-0 – ident: ref23 doi: 10.1016/j.compchemeng.2011.02.001 – start-page: 684 year: 2002 ident: ref36 article-title: Multiple-objective Bayesian optimization algorithm publication-title: Proc GECCO – ident: ref28 doi: 10.1007/11903697_67 – ident: ref10 doi: 10.1007/s10732-012-9208-4 – ident: ref15 doi: 10.1109/CEC.2002.1007032 – volume: 58 start-page: 267 year: 1996 ident: ref74 article-title: Regression shrinkage and selection via the Lasso publication-title: J Roy Stat Soc Ser B (Methodological) doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 1 start-page: 63 year: 2000 ident: ref1 article-title: Multiobjective optimization using evolutionary algorithms publication-title: Proc Summer Prog Stud Turbulence Numer Simulation Databases-VIII – ident: ref20 doi: 10.1007/978-3-642-25566-3_9 – ident: ref92 doi: 10.1007/s10710-005-6164-x – ident: ref80 doi: 10.1007/s11633-007-0262-6 – ident: ref37 doi: 10.1016/S0888-613X(02)00090-7 – ident: ref96 doi: 10.1109/TEVC.2006.876362 – ident: ref91 doi: 10.1109/CEC.2009.4982949 – volume: 14 start-page: 335 year: 2004 ident: ref27 article-title: Evolutionary computation based on Bayesian classifiers publication-title: Int J Appl Math Comput Sci – ident: ref4 doi: 10.1007/1-84628-137-7 – ident: ref97 doi: 10.1007/978-3-642-19893-9_7 – year: 2001 ident: ref7 publication-title: Estimation of Distribution Algorithms A New Tool for Evolutionary Computation – ident: ref16 doi: 10.1145/1389095.1389225 – ident: ref86 doi: 10.1109/TEVC.2003.810758 – volume: lncs 5845 start-page: 633 year: 2009 ident: ref65 article-title: Ranking methods for many-objective optimization publication-title: Proceedings of MICAI – ident: ref76 doi: 10.2202/1544-6115.1175 – ident: ref9 doi: 10.1007/978-3-540-34954-9 – ident: ref46 doi: 10.1016/j.orl.2011.01.002 – ident: ref67 doi: 10.1109/CEC.2010.5585930 – ident: ref62 doi: 10.1109/CEC.2008.4631121 – ident: ref93 doi: 10.1145/1389095.1389236 – ident: ref18 doi: 10.1145/1389095.1389228 – ident: ref33 doi: 10.1109/4235.797969 – year: 2012 ident: ref47 article-title: Multi-objective optimization with an adaptive resonance theory-based estimation of distribution algorithm publication-title: Ann Math Artif Intell – ident: ref53 doi: 10.1162/EVCO_a_00066 – volume: 26 start-page: 30 year: 1996 ident: ref85 article-title: A combined genetic adaptive search (GeneAS) for engineering design publication-title: J Inform Comput Sci – ident: ref54 doi: 10.1109/CEC.2012.6256485 – ident: ref32 doi: 10.1016/S0040-1625(99)00079-7 – ident: ref63 doi: 10.1109/CEC.2010.5586269 – ident: ref77 doi: 10.1016/j.asoc.2012.11.049 – ident: ref34 doi: 10.1002/nav.20090 – ident: ref48 doi: 10.1007/3-540-45712-7_29 – ident: ref52 doi: 10.1109/ICMTMA.2010.148 – year: 2009 ident: ref90 article-title: Multiobjective optimization test instances for the CEC 2009 special session and competition – ident: ref49 doi: 10.1109/CIS.2007.136 – ident: ref64 doi: 10.1109/TEVC.2007.892759 – ident: ref25 doi: 10.1007/978-3-540-75256-1_45 – ident: ref82 doi: 10.18637/jss.v035.i07 – ident: ref88 doi: 10.1007/BF01720705 – ident: ref58 doi: 10.1145/1276958.1277079 – ident: ref45 doi: 10.1109/CEC.2010.5586465 – ident: ref72 doi: 10.1016/B978-1-55860-203-8.50010-3 – ident: ref41 doi: 10.1145/1068009.1068122 – ident: ref51 doi: 10.1007/978-3-540-24652-7_15 – ident: ref39 doi: 10.1007/3-540-36970-8_20 – ident: ref38 doi: 10.1145/1276958.1277067 – ident: ref94 doi: 10.1007/s00170-002-1445-5 – ident: ref61 doi: 10.1109/CEC.2005.1554688 – volume: 2 start-page: 1278 year: 2007 ident: ref83 article-title: Learning graphical model structure using L1-regularization paths publication-title: Proc AAAI – ident: ref42 doi: 10.1109/CEC.2005.1554970 – ident: ref31 doi: 10.1016/B978-1-55860-332-5.50035-3 – volume: 9 start-page: 115 year: 1995 ident: ref84 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst – year: 2002 ident: ref6 publication-title: The Design of Innovation Lessons from and for Competent Genetic Algorithms – ident: ref8 doi: 10.1007/3-540-32494-1 – ident: ref13 doi: 10.1109/TEVC.2007.894202 – ident: ref26 doi: 10.1016/j.ijar.2011.01.007 – year: 2009 ident: ref79 publication-title: Probabilistic Graphical Models Principles and Techniques – volume: 2 start-page: 149 year: 1986 ident: ref78 article-title: Propagating uncertainty in Bayesian networks by probabilistic logic sampling publication-title: Proc UAI – ident: ref81 doi: 10.1109/TEVC.2005.861417 – volume: 170 year: 2005 ident: ref71 publication-title: Hierarchical Bayesian Optimization Algorithm Toward a New Generation of Evolutionary Algorithms doi: 10.1007/b10910 – ident: ref21 doi: 10.1109/TEVC.2012.2185847 – ident: ref73 doi: 10.1214/aos/1176344136 – year: 2010 ident: ref14 article-title: On current model-building methods for multi-objective estimation of distribution algorithms: Shortcommings and directions for improvement – ident: ref66 doi: 10.1007/978-3-642-14156-0_13 – ident: ref57 doi: 10.1109/4235.996017 – ident: ref69 doi: 10.1007/BF00994016 – ident: ref60 doi: 10.1109/TEVC.2009.2033671 – start-page: 1702 year: 2006 ident: ref43 article-title: moPGA: Towards a new generation of multiobjective genetic algorithms publication-title: Proc IEEE Congr Evol Comput doi: 10.1109/CEC.2006.1688513 – ident: ref12 doi: 10.1007/978-3-540-34954-9_10 – ident: ref50 doi: 10.1109/CEC.2003.1299791 – ident: ref40 doi: 10.1109/CEC.2004.1331086 – start-page: 525 year: 1999 ident: ref56 article-title: BOA: The Bayesian optimization algorithm publication-title: Proc GECCO – ident: ref19 doi: 10.1088/0031-9155/53/11/002 |
| SSID | ssj0014519 |
| Score | 2.440543 |
| Snippet | This paper proposes a new multiobjective estimation of distribution algorithm (EDA) based on joint probabilistic modeling of objectives and variables. This EDA... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 519 |
| SubjectTerms | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Approximation algorithms Bayes methods Bayesian analysis Computer science; control theory; systems Decision theory. Utility theory Estimation Estimation of distribution algorithm Evolutionary algorithms Exact sciences and technology Information retrieval. Graph Joint objective-variable modeling Joints Many-objective problem Mathematical models Multi-objective optimization Networks Objectives Objectives relationship Operational research and scientific management Operational research. Management science Optimization Pareto optimum Probabilistic logic Probabilistic methods Probability theory Search problems Theoretical computing |
| Title | Multiobjective Estimation of Distribution Algorithm Based on Joint Modeling of Objectives and Variables |
| URI | https://ieeexplore.ieee.org/document/6600837 https://www.proquest.com/docview/1551284073 https://www.proquest.com/docview/1671563681 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9VAEJ8AJz2IgsYKkiXxZOyj3d1u2yPiI4REvQB5t2Y_EcTW8Pou_PXOdreNKCHcmna33XZmdmY6Hz-AD9zQstbSoHwLm3Lu7CBSKfoildQFNcoOCbLfxMk5P10UizX4NNXCWGuH5DM784dDLN90euV_lR0I4S2Gch3Wy0qEWq0pYuDbpIRk-hotxmoRI5h5Vh-czS-OfBIXm1Faob7i93TQAKriUyLlEr-KC3AW_-3Mg7o53oSv40JDlsnP2apXM333Tw_Hp77JS3gR7U5yGBjlFazZdgs2R0wHEkV8C57_1aBwGy6H-txOXYdtkcxxQwi1jqRz5ItvuhvxssjhzWV3e9X_-EU-o2I0BE-ddldtTzzamq959zO-j3daEtkacoGOui_dWr6G8-P52dFJGqEZUs0K0ae5qyR3vDSVMiZzuRWVZplC40Vw6XjBHFO1qp2gTuTOanSUZF24gjOZqcxR9gY22q61b4GUjjuqCqmNYFzRWgmqKNr9GbOcUW0TyEZiNTr2LffwGTfN4L9kdePp23j6NpG-CXycpvwOTTseG7zt6TMNjKRJYO8eR0zXPUAAWr1FArsjizRR7peNN0BR4eO-mcD-dBkl1odhZGu7FY4RJTrNTFT5u4cfvQPPcIE8pBnuwkZ_u7Lv0fTp1d7A838Akl4AmQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LU9RAEO5CPCgHUZAiijhWebLMkswryRFxqRUBLwu1t9Q8EcXEYrMXf709eZWoZXlLJTPJJN093Z1-fACvuaVZYZRF-ZYu5ty7VqRi9EVyZQS12rUJsudydsFPFmKxBm_HWhjnXJt85ibhsI3l29qswq-yAymDxZDdg_uCcy66aq0xZhAapXTp9AXajPmij2GmSXEwn14ehTQuNqE0R43F72ihFlYlJEWqJX4X3wFa_LE3twrneBPOhqV2eSZfJ6tGT8yP37o4_u-7PIZHveVJDjtWeQJrrtqCzQHVgfRCvgUbv7Qo3IartkK31l-6jZFMcUvoqh1J7cn70Ha3R8wihzdX9e118_kbeYeq0RI8dVJfVw0JeGuh6j3M-DTcaUlUZckluuqheGv5FC6Op_OjWdyDM8SGCdnEqc8V9zyzubY28amTuWGJRvNFcuW5YJ7pQhdeUi9T7wy6SqoQXnCmEp14ynZgvaortwsk89xTLZSxknFNCy2ppmj5J8xxRo2LIBmIVZq-c3kA0LgpWw8mKcpA3zLQt-zpG8Gbccr3rm3HvwZvB_qMA3vSRLB_hyPG6wEiAO1eEcHewCJlL_nLMpigqPJx54zg1XgZZTYEYlTl6hWOkRm6zUzm6bO_P_olPJjNz07L0w_nH5_DQ1ws75IO92C9uV25F2gINXq_5f-fH40D5g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiobjective+Estimation+of+Distribution+Algorithm+Based+on+Joint+Modeling+of+Objectives+and+Variables&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Karshenas%2C+Hossein&rft.au=Santana%2C+Roberto&rft.au=Bielza%2C+Concha&rft.au=Larranaga%2C+Pedro&rft.date=2014-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=18&rft.issue=4&rft.spage=519&rft_id=info:doi/10.1109%2FTEVC.2013.2281524&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3393377251 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |