Analyzing and Increasing the Reliability of Convolutional Neural Networks on GPUs

Graphics processing units (GPUs) are playing a critical role in convolutional neural networks (CNNs) for image detection. As GPU-enabled CNNs move into safety-critical environments, reliability is becoming a growing concern. In this paper, we evaluate and propose strategies to improve the reliabilit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on reliability Vol. 68; no. 2; pp. 663 - 677
Main Authors Santos, Fernando Fernandes dos, Pimenta, Pedro Foletto, Lunardi, Caio, Draghetti, Lucas, Carro, Luigi, Kaeli, David, Rech, Paolo
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9529
1558-1721
DOI10.1109/TR.2018.2878387

Cover

Abstract Graphics processing units (GPUs) are playing a critical role in convolutional neural networks (CNNs) for image detection. As GPU-enabled CNNs move into safety-critical environments, reliability is becoming a growing concern. In this paper, we evaluate and propose strategies to improve the reliability of object detection algorithms, as run on three NVIDIA GPU architectures. We consider three algorithms: 1) you only look once; 2) a faster region-based CNN (Faster R-CNN); and 3) a residual network, exposing live hardware to neutron beams. We complement our beam experiments with fault injection to better characterize fault propagation in CNNs. We show that a single fault occurring in a GPU tends to propagate to multiple active threads, significantly reducing the reliability of a CNN. Moreover, relying on error correcting codes dramatically reduces the number of silent data corruptions (SDCs), but does not reduce the number of critical errors (i.e., errors that could potentially impact safety-critical applications). Based on observations on how faults propagate on GPU architectures, we propose effective strategies to improve CNN reliability. We also consider the benefits of using an algorithm-based fault-tolerance technique for matrix multiplication, which can correct more than 87% of the critical SDCs in a CNN, while redesigning maxpool layers of the CNN to detect up to 98% of critical SDCs.
AbstractList Graphics processing units (GPUs) are playing a critical role in convolutional neural networks (CNNs) for image detection. As GPU-enabled CNNs move into safety-critical environments, reliability is becoming a growing concern. In this paper, we evaluate and propose strategies to improve the reliability of object detection algorithms, as run on three NVIDIA GPU architectures. We consider three algorithms: 1) you only look once; 2) a faster region-based CNN (Faster R-CNN); and 3) a residual network, exposing live hardware to neutron beams. We complement our beam experiments with fault injection to better characterize fault propagation in CNNs. We show that a single fault occurring in a GPU tends to propagate to multiple active threads, significantly reducing the reliability of a CNN. Moreover, relying on error correcting codes dramatically reduces the number of silent data corruptions (SDCs), but does not reduce the number of critical errors (i.e., errors that could potentially impact safety-critical applications). Based on observations on how faults propagate on GPU architectures, we propose effective strategies to improve CNN reliability. We also consider the benefits of using an algorithm-based fault-tolerance technique for matrix multiplication, which can correct more than 87% of the critical SDCs in a CNN, while redesigning maxpool layers of the CNN to detect up to 98% of critical SDCs.
Author Draghetti, Lucas
Pimenta, Pedro Foletto
Carro, Luigi
Kaeli, David
Lunardi, Caio
Rech, Paolo
Santos, Fernando Fernandes dos
Author_xml – sequence: 1
  givenname: Fernando Fernandes dos
  orcidid: 0000-0002-3504-9862
  surname: Santos
  fullname: Santos, Fernando Fernandes dos
  email: ffsantos@inf.ufrgs.br
  organization: Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
– sequence: 2
  givenname: Pedro Foletto
  surname: Pimenta
  fullname: Pimenta, Pedro Foletto
  email: pfpimenta@inf.ufrgs.br
  organization: Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
– sequence: 3
  givenname: Caio
  orcidid: 0000-0003-2351-2140
  surname: Lunardi
  fullname: Lunardi, Caio
  email: cblunardi@inf.ufrgs.br
  organization: Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
– sequence: 4
  givenname: Lucas
  surname: Draghetti
  fullname: Draghetti, Lucas
  email: lucas.kleindraghetti@inf.ufrgs.br
  organization: Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
– sequence: 5
  givenname: Luigi
  orcidid: 0000-0002-7402-4780
  surname: Carro
  fullname: Carro, Luigi
  email: carro@inf.ufrgs.br
  organization: Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
– sequence: 6
  givenname: David
  orcidid: 0000-0002-5692-0151
  surname: Kaeli
  fullname: Kaeli, David
  email: kaeli@ece.neu.edu
  organization: Dana Research Center, Department of Electrical and Computer Engineering, Northeastern University Boston, MA, USA
– sequence: 7
  givenname: Paolo
  orcidid: 0000-0002-0821-1879
  surname: Rech
  fullname: Rech, Paolo
  email: prech@inf.ufrgs.br
  organization: Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
BookMark eNp9kDtPwzAUhS1UJNrCzMASiTlt_ErssaqgVKp4VO1sOY4DLsEutgsqv56EVgwMTFdH93z3cQagZ53VAFzCbARhxser5QhlkI0QKxhmxQnoQ0pZCgsEe6Cfta2UU8TPwCCETSsJ4awPniZWNvsvY58TaatkbpXXMnQyvuhkqRsjS9OYuE9cnUyd_XDNLhrXQsm93vmfEj-dfw2Js8nscR3OwWktm6AvjnUI1rc3q-lduniYzaeTRaowpTFVWiOOVMaqTJK6rgtKEK-5rnNc0SLHJK8kVZUq87IqkMw1ZZwoCMuKEERzhofg-jB36937TocoNm7n28OCQAhThnhewNY1PriUdyF4XYutN2_S7wXMRJebWC1Fl5s45tYS9A-hTJTdz9FL0_zDXR04o7X-3cIozgnk-Bt1OHwy
CODEN IERQAD
CitedBy_id crossref_primary_10_1016_j_cosrev_2024_100682
crossref_primary_10_1109_MDAT_2023_3241116
crossref_primary_10_1109_TNS_2022_3141341
crossref_primary_10_1145_3546182
crossref_primary_10_1109_TNS_2024_3377596
crossref_primary_10_1109_TC_2023_3248282
crossref_primary_10_1109_TDMR_2022_3159089
crossref_primary_10_1145_3638242
crossref_primary_10_1109_TNS_2021_3050707
crossref_primary_10_1364_JOCN_517551
crossref_primary_10_1016_j_microrel_2020_113856
crossref_primary_10_1109_TNS_2021_3098845
crossref_primary_10_1145_3409594
crossref_primary_10_1109_TNS_2022_3224538
crossref_primary_10_1145_3638249
crossref_primary_10_1109_TDMR_2022_3166260
crossref_primary_10_1109_TNS_2024_3387087
crossref_primary_10_1109_ACCESS_2021_3076716
crossref_primary_10_1016_j_sysarc_2024_103242
crossref_primary_10_1109_TCAD_2023_3332293
crossref_primary_10_1145_3715327
crossref_primary_10_1109_TNS_2019_2957477
crossref_primary_10_37394_23203_2020_15_70
crossref_primary_10_1016_j_microrel_2024_115397
crossref_primary_10_1007_s11227_020_03324_9
crossref_primary_10_1109_TR_2019_2915800
crossref_primary_10_1109_ACCESS_2020_2968129
crossref_primary_10_1109_TR_2022_3190639
crossref_primary_10_3390_electronics13163243
crossref_primary_10_1145_3549526
crossref_primary_10_1109_TVLSI_2024_3396555
crossref_primary_10_1007_s11227_024_05925_0
crossref_primary_10_1109_TCAD_2020_3012209
crossref_primary_10_1109_TC_2022_3184274
crossref_primary_10_1007_s11227_024_06119_4
crossref_primary_10_1016_j_wear_2021_203696
crossref_primary_10_1109_TNS_2019_2920747
crossref_primary_10_1109_TNS_2022_3155820
crossref_primary_10_1109_TNS_2024_3387490
crossref_primary_10_1088_1742_6596_1933_1_012045
crossref_primary_10_1145_3477007
crossref_primary_10_1016_j_microrel_2021_114331
crossref_primary_10_1016_j_microrel_2020_113660
crossref_primary_10_1109_TCAD_2022_3223843
crossref_primary_10_1587_transfun_2022VLP0004
crossref_primary_10_1109_TNS_2021_3086686
crossref_primary_10_1016_j_microrel_2022_114729
crossref_primary_10_1109_TNS_2021_3128722
crossref_primary_10_1109_TNS_2022_3142092
crossref_primary_10_1109_TNS_2023_3262448
crossref_primary_10_1145_3633332
crossref_primary_10_26634_jse_15_2_18164
crossref_primary_10_1016_j_jpdc_2024_104879
crossref_primary_10_1016_j_sysarc_2023_103024
crossref_primary_10_1109_TCAD_2023_3235803
crossref_primary_10_1109_TCAD_2023_3335144
crossref_primary_10_1109_ACCESS_2021_3129149
crossref_primary_10_1109_MDAT_2019_2952336
crossref_primary_10_1142_S0218126624502542
crossref_primary_10_1016_j_microrel_2023_115010
crossref_primary_10_3390_electronics13224461
crossref_primary_10_1016_j_micpro_2024_105023
crossref_primary_10_1109_TR_2023_3335958
crossref_primary_10_1109_TR_2024_3355408
crossref_primary_10_21205_deufmd_2024267606
crossref_primary_10_1109_ACCESS_2023_3300376
crossref_primary_10_1016_j_microrel_2020_113969
crossref_primary_10_1016_j_sysarc_2021_102057
crossref_primary_10_1109_TNS_2024_3349956
crossref_primary_10_1145_3687483
crossref_primary_10_1016_j_suscom_2024_101049
crossref_primary_10_1007_s00521_020_04969_6
crossref_primary_10_1109_TCSI_2021_3097981
crossref_primary_10_1109_TNS_2023_3291418
crossref_primary_10_1109_TR_2021_3105697
crossref_primary_10_1109_TNS_2020_2977583
crossref_primary_10_1109_TC_2021_3058872
crossref_primary_10_1109_TETC_2022_3152668
crossref_primary_10_1109_TVLSI_2023_3238907
crossref_primary_10_1155_2022_1846863
crossref_primary_10_1109_TDSC_2021_3063083
crossref_primary_10_1109_TNS_2022_3195068
crossref_primary_10_1109_TNS_2022_3176485
crossref_primary_10_1109_TC_2021_3128501
Cites_doi 10.1109/MDT.2004.8
10.1162/0899766053723096
10.1109/TNS.2014.2301768
10.1109/IJCNN.1990.137651
10.1007/978-3-319-46493-0_38
10.1109/72.363479
10.1109/TDMR.2005.853449
10.1109/DSN.2014.48
10.5244/C.29.32
10.1109/ISPASS.2014.6844486
10.1109/TNS.2013.2252625
10.1109/EDCC.2006.9
10.1109/HPCA.2017.41
10.1145/2647868.2654889
10.1109/TC.2015.2444855
10.1109/ICASSP.2015.7178146
10.1007/978-3-642-15825-4_10
10.1109/HPCA.2015.7056044
10.1109/SiPS.2014.6986082
10.1109/SC.2016.20
10.1145/3126908.3126964
10.1109/TC.2016.2574353
10.1109/CVPR.2009.5206631
10.1109/ISPASS.2017.7975296
10.1109/TEST.2013.6651908
10.1109/HOTOS.2001.990072
10.1145/2834892.2834897
10.1109/ISCA.2005.21
10.1109/72.238315
10.1109/12.660173
10.1109/5.726791
10.1109/TDMR.2016.2535663
10.1006/jpdc.2000.1663
10.1109/81.390269
10.1109/23.659037
10.1007/s11263-009-0275-4
10.1109/CVPR.2016.91
10.1109/FTCSH.1995.532603
10.1109/DATE.2009.5090716
10.1109/TC.2016.2550455
10.1109/ISCA.2014.6853227
10.1016/j.patrec.2005.10.010
10.1109/MICRO.2014.15
10.1109/MICRO.2003.1253181
10.1109/IISWC.2011.6114182
10.1109/TC.1984.1676475
10.1109/TNS.2011.2171993
10.1007/s10836-014-5456-6
10.1145/3079856.3080246
10.1109/VTEST.1999.766651
10.1109/TNS.2015.2450997
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TR.2018.2878387
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-1721
EndPage 677
ExternalDocumentID 10_1109_TR_2018_2878387
8536419
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
OCL
P2P
RIA
RIE
RNS
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c355t-cee292c08d0a4fff75429f9ef63d576346da5cdcb6bd72a6e5894c11bd4425683
IEDL.DBID RIE
ISSN 0018-9529
IngestDate Sun Jun 29 12:36:59 EDT 2025
Tue Jul 01 00:49:08 EDT 2025
Thu Apr 24 23:04:47 EDT 2025
Wed Aug 27 05:56:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-cee292c08d0a4fff75429f9ef63d576346da5cdcb6bd72a6e5894c11bd4425683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7402-4780
0000-0002-3504-9862
0000-0002-5692-0151
0000-0003-2351-2140
0000-0002-0821-1879
PQID 2235829671
PQPubID 85456
PageCount 15
ParticipantIDs crossref_primary_10_1109_TR_2018_2878387
ieee_primary_8536419
crossref_citationtrail_10_1109_TR_2018_2878387
proquest_journals_2235829671
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-June
2019-6-00
20190601
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-June
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on reliability
PublicationTitleAbbrev TR
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref54
ref10
ref17
ref16
ref18
ren (ref44) 2015
cire?an (ref38) 2012
ref51
collobert (ref46) 0
ref45
debardeleben (ref25) 2013
ref48
ref47
ref42
ref43
ref49
ref8
ref7
ref9
ref3
ref6
ref40
ref35
ref34
ref36
kulakov (ref19) 2015; abs 1509 9199
(ref33) 2006
ref31
ref30
ciregan (ref37) 2012
ref32
ref2
ref1
(ref11) 2018
ref24
ref67
ref23
ref26
ref20
kim (ref50) 2007
ref63
ref66
ref22
ref65
ref21
wang (ref60) 2014
bojarski (ref4) 2016; abs 1604 7316
sridharan (ref64) 2009
ref28
ref27
ribeiro (ref39) 2016; abs 1607 4441
ref29
chetlur (ref41) 2014; abs 1410 759
ref62
ref61
dongarra (ref5) 2015
References_xml – ident: ref28
  doi: 10.1109/MDT.2004.8
– ident: ref57
  doi: 10.1162/0899766053723096
– ident: ref53
  doi: 10.1109/TNS.2014.2301768
– start-page: 680
  year: 2013
  ident: ref25
  article-title: GPU Behavior on a large HPC Cluster
  publication-title: Proc 6th Workshop Resiliency High Perform Comput (Resilience) Clusters Clouds Grids Conjunction 19th Int Eur Conf Parallel Distrib Comput (Euro-Par 2013)
– ident: ref18
  doi: 10.1109/IJCNN.1990.137651
– start-page: 34
  year: 2007
  ident: ref50
  article-title: A low power and highly reliable 400Mbps mobile DDR SDRAM with on-chip distributed ECC
  publication-title: Proc IEEE Asian Solid-State Circuits Conf
– ident: ref45
  doi: 10.1007/978-3-319-46493-0_38
– ident: ref17
  doi: 10.1109/72.363479
– year: 2015
  ident: ref5
– ident: ref8
  doi: 10.1109/TDMR.2005.853449
– start-page: 91
  year: 2015
  ident: ref44
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref31
  doi: 10.1109/DSN.2014.48
– ident: ref40
  doi: 10.5244/C.29.32
– ident: ref23
  doi: 10.1109/ISPASS.2014.6844486
– ident: ref30
  doi: 10.1109/TNS.2013.2252625
– ident: ref58
  doi: 10.1109/EDCC.2006.9
– start-page: 17
  year: 2014
  ident: ref60
  publication-title: Tracking Interacting Objects Optimally Using Integer Programming
– volume: abs 1509 9199
  year: 2015
  ident: ref19
  article-title: Fault tolerance in distributed neural computing
  publication-title: CoRR
– ident: ref21
  doi: 10.1109/HPCA.2017.41
– start-page: 2843
  year: 2012
  ident: ref38
  article-title: Deep neural networks segment neuronal membranes in electron microscopy images
  publication-title: Proc 25th Int Conf Neural Inf Process Syst
– ident: ref3
  doi: 10.1145/2647868.2654889
– ident: ref26
  doi: 10.1109/TC.2015.2444855
– volume: abs 1607 4441
  year: 2016
  ident: ref39
  article-title: A real-time pedestrian detector using deep learning for human-aware navigation
  publication-title: CoRR
– ident: ref62
  doi: 10.1109/ICASSP.2015.7178146
– ident: ref32
  doi: 10.1109/TNS.2014.2301768
– year: 2018
  ident: ref11
  article-title: Log database for IEEE transaction on reliability
  publication-title: Github
– ident: ref67
  doi: 10.1007/978-3-642-15825-4_10
– ident: ref55
  doi: 10.1109/HPCA.2015.7056044
– ident: ref61
  doi: 10.1109/SiPS.2014.6986082
– ident: ref27
  doi: 10.1109/SC.2016.20
– ident: ref16
  doi: 10.1145/3126908.3126964
– ident: ref42
  doi: 10.1109/TC.2016.2574353
– year: 2006
  ident: ref33
  article-title: Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices
– start-page: 3642
  year: 2012
  ident: ref37
  article-title: Multi-column deep neural networks for image classification
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– year: 0
  ident: ref46
  publication-title: BigLearn NIPS Workshop
– volume: abs 1604 7316
  year: 2016
  ident: ref4
  article-title: End to end learning for self-driving cars
  publication-title: CoRR
– ident: ref49
  doi: 10.1109/CVPR.2009.5206631
– ident: ref13
  doi: 10.1109/ISPASS.2017.7975296
– ident: ref20
  doi: 10.1109/TEST.2013.6651908
– ident: ref59
  doi: 10.1109/HOTOS.2001.990072
– start-page: 1
  year: 2009
  ident: ref64
  article-title: The effect of input data on program vulnerability
  publication-title: Workshop on Silicon Errors in Logic-System Effects
– volume: abs 1410 759
  year: 2014
  ident: ref41
  article-title: cuDNN: Efficient primitives for deep learning
  publication-title: CoRR
– ident: ref1
  doi: 10.1145/2834892.2834897
– ident: ref52
  doi: 10.1109/ISCA.2005.21
– ident: ref56
  doi: 10.1109/72.238315
– ident: ref10
  doi: 10.1109/12.660173
– ident: ref15
  doi: 10.1109/5.726791
– ident: ref54
  doi: 10.1109/TDMR.2016.2535663
– ident: ref14
  doi: 10.1006/jpdc.2000.1663
– ident: ref9
  doi: 10.1109/81.390269
– ident: ref34
  doi: 10.1109/23.659037
– ident: ref48
  doi: 10.1007/s11263-009-0275-4
– ident: ref2
  doi: 10.1109/CVPR.2016.91
– ident: ref6
  doi: 10.1109/FTCSH.1995.532603
– ident: ref66
  doi: 10.1109/DATE.2009.5090716
– ident: ref51
  doi: 10.1109/TC.2016.2550455
– ident: ref29
  doi: 10.1109/ISCA.2014.6853227
– ident: ref47
  doi: 10.1016/j.patrec.2005.10.010
– ident: ref22
  doi: 10.1109/MICRO.2014.15
– ident: ref65
  doi: 10.1109/MICRO.2003.1253181
– ident: ref24
  doi: 10.1109/IISWC.2011.6114182
– ident: ref12
  doi: 10.1109/TC.1984.1676475
– ident: ref35
  doi: 10.1109/TNS.2011.2171993
– ident: ref63
  doi: 10.1007/s10836-014-5456-6
– ident: ref43
  doi: 10.1145/3079856.3080246
– ident: ref7
  doi: 10.1109/VTEST.1999.766651
– ident: ref36
  doi: 10.1109/TNS.2015.2450997
SSID ssj0014498
Score 2.591217
Snippet Graphics processing units (GPUs) are playing a critical role in convolutional neural networks (CNNs) for image detection. As GPU-enabled CNNs move into...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 663
SubjectTerms Algorithm-based fault tolerance (ABFT)
Algorithms
Artificial neural networks
convolutional neural networks (CNNs)
embedded systems
Error correcting codes
Error correction
Error correction codes
Fault tolerance
Fault tolerant systems
Graphics processing units
Hardware
Image detection
Multiplication
Network reliability
Neural networks
Neutron beams
Object recognition
reliability
Reliability analysis
Safety critical
soft errors
Title Analyzing and Increasing the Reliability of Convolutional Neural Networks on GPUs
URI https://ieeexplore.ieee.org/document/8536419
https://www.proquest.com/docview/2235829671
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_qSQ9-i9MpOXjwYLs0TdPmKKIOYaKywW4lzcdFacVtgvvrfUmzIX6Ap6aQhJC8vPeS_N7vIXQmDVM0te7WJs8jlhALepAUkayIAJWcCekpNgb3vD9id-NsvIIulrEwxhgPPjOxK_q3fN2ombsq64Fp4cxxfK6CmLWxWssXA8ZE0LqwgTMqAo1PQkRv-OQgXEUMh4Middi5LxbIp1T5oYe9cbnZQoPFsFpMyXM8m1axmn9jbPzvuLfRZvAy8WUrFjtoxdS7aOML9-AeevR0JHMoY1lrDHrCwdPdL7iE2CGVWwbvD9xYfNXU70FGoVtH6OE_HkE-wU2Nbx9Gk300urkeXvWjkF8hUuBlTCOwj1RQRQpNJLPWumS4wgpjearhGJIyrmWmtKp4pXMquckKwVSSVJrBTudFeoDW6qY2hwgn1JhMSkmEVUwzKWzFC0uhdU6JIKSD4sWclyqQj7scGC-lP4QQUQ6fSrdIZVikDjpfNnhteTf-rrrnpnxZLcx2B3UXi1qGfTkpqY8MFjxPjn5vdYzWoW_RgsG6aG36NjMn4HZMq1Mvb5_r8dQ_
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB5VywH2wKug7dIFHzhwIFnHcZz4iKotBbYrWLXS3iLHjwsoWdF2JfrrGTtuVfGQ9hRHshPLM54Z25-_AXirLNcsd37XpiwTnlGHdpBWiWqoRJNcSBUoNuZXYrbkn2-KmwG839-FsdYG8JlNfTGc5ZtOb_xW2Tm6FsE9x-cD9Pu86G9r7c8MOJfR7uIULpiMRD4ZleeLaw_iqlJcHlS5R88d-KCQVOUvSxzcy_QJzHcd61El39PNukn19g_Oxvv2_Ck8jnEm-dArxjMY2PY5HB-wDw7hWyAk2WKZqNYQtBQeoO5fMSgkHqvcc3j_Ip0jk669i1qKn_WUHuERMOQr0rXk49fl6gUspxeLySyJGRYSjXHGOkEPySTTtDJUceecT4crnbRO5AYXIjkXRhXa6EY0pmRK2KKSXGdZYzjOdVHlL-Go7Vp7AiRj1hZKKSqd5oYr6RpROYatS0YlpSNId2Ne60g_7rNg_KjDMoTKenFdeyHVUUgjeLdvcNszb_y_6tAP-b5aHO0RjHdCrePMXNUs3A2WosxO_93qDTycLeaX9eWnqy-v4BH-R_bQsDEcrX9u7BkGIevmddC93zIC14w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+and+Increasing+the+Reliability+of+Convolutional+Neural+Networks+on+GPUs&rft.jtitle=IEEE+transactions+on+reliability&rft.au=Santos%2C+Fernando+Fernandes+dos&rft.au=Pimenta%2C+Pedro+Foletto&rft.au=Lunardi%2C+Caio&rft.au=Draghetti%2C+Lucas&rft.date=2019-06-01&rft.pub=IEEE&rft.issn=0018-9529&rft.volume=68&rft.issue=2&rft.spage=663&rft.epage=677&rft_id=info:doi/10.1109%2FTR.2018.2878387&rft.externalDocID=8536419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9529&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9529&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9529&client=summon