Analyzing and Increasing the Reliability of Convolutional Neural Networks on GPUs
Graphics processing units (GPUs) are playing a critical role in convolutional neural networks (CNNs) for image detection. As GPU-enabled CNNs move into safety-critical environments, reliability is becoming a growing concern. In this paper, we evaluate and propose strategies to improve the reliabilit...
Saved in:
Published in | IEEE transactions on reliability Vol. 68; no. 2; pp. 663 - 677 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9529 1558-1721 |
DOI | 10.1109/TR.2018.2878387 |
Cover
Abstract | Graphics processing units (GPUs) are playing a critical role in convolutional neural networks (CNNs) for image detection. As GPU-enabled CNNs move into safety-critical environments, reliability is becoming a growing concern. In this paper, we evaluate and propose strategies to improve the reliability of object detection algorithms, as run on three NVIDIA GPU architectures. We consider three algorithms: 1) you only look once; 2) a faster region-based CNN (Faster R-CNN); and 3) a residual network, exposing live hardware to neutron beams. We complement our beam experiments with fault injection to better characterize fault propagation in CNNs. We show that a single fault occurring in a GPU tends to propagate to multiple active threads, significantly reducing the reliability of a CNN. Moreover, relying on error correcting codes dramatically reduces the number of silent data corruptions (SDCs), but does not reduce the number of critical errors (i.e., errors that could potentially impact safety-critical applications). Based on observations on how faults propagate on GPU architectures, we propose effective strategies to improve CNN reliability. We also consider the benefits of using an algorithm-based fault-tolerance technique for matrix multiplication, which can correct more than 87% of the critical SDCs in a CNN, while redesigning maxpool layers of the CNN to detect up to 98% of critical SDCs. |
---|---|
AbstractList | Graphics processing units (GPUs) are playing a critical role in convolutional neural networks (CNNs) for image detection. As GPU-enabled CNNs move into safety-critical environments, reliability is becoming a growing concern. In this paper, we evaluate and propose strategies to improve the reliability of object detection algorithms, as run on three NVIDIA GPU architectures. We consider three algorithms: 1) you only look once; 2) a faster region-based CNN (Faster R-CNN); and 3) a residual network, exposing live hardware to neutron beams. We complement our beam experiments with fault injection to better characterize fault propagation in CNNs. We show that a single fault occurring in a GPU tends to propagate to multiple active threads, significantly reducing the reliability of a CNN. Moreover, relying on error correcting codes dramatically reduces the number of silent data corruptions (SDCs), but does not reduce the number of critical errors (i.e., errors that could potentially impact safety-critical applications). Based on observations on how faults propagate on GPU architectures, we propose effective strategies to improve CNN reliability. We also consider the benefits of using an algorithm-based fault-tolerance technique for matrix multiplication, which can correct more than 87% of the critical SDCs in a CNN, while redesigning maxpool layers of the CNN to detect up to 98% of critical SDCs. |
Author | Draghetti, Lucas Pimenta, Pedro Foletto Carro, Luigi Kaeli, David Lunardi, Caio Rech, Paolo Santos, Fernando Fernandes dos |
Author_xml | – sequence: 1 givenname: Fernando Fernandes dos orcidid: 0000-0002-3504-9862 surname: Santos fullname: Santos, Fernando Fernandes dos email: ffsantos@inf.ufrgs.br organization: Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil – sequence: 2 givenname: Pedro Foletto surname: Pimenta fullname: Pimenta, Pedro Foletto email: pfpimenta@inf.ufrgs.br organization: Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil – sequence: 3 givenname: Caio orcidid: 0000-0003-2351-2140 surname: Lunardi fullname: Lunardi, Caio email: cblunardi@inf.ufrgs.br organization: Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil – sequence: 4 givenname: Lucas surname: Draghetti fullname: Draghetti, Lucas email: lucas.kleindraghetti@inf.ufrgs.br organization: Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil – sequence: 5 givenname: Luigi orcidid: 0000-0002-7402-4780 surname: Carro fullname: Carro, Luigi email: carro@inf.ufrgs.br organization: Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil – sequence: 6 givenname: David orcidid: 0000-0002-5692-0151 surname: Kaeli fullname: Kaeli, David email: kaeli@ece.neu.edu organization: Dana Research Center, Department of Electrical and Computer Engineering, Northeastern University Boston, MA, USA – sequence: 7 givenname: Paolo orcidid: 0000-0002-0821-1879 surname: Rech fullname: Rech, Paolo email: prech@inf.ufrgs.br organization: Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil |
BookMark | eNp9kDtPwzAUhS1UJNrCzMASiTlt_ErssaqgVKp4VO1sOY4DLsEutgsqv56EVgwMTFdH93z3cQagZ53VAFzCbARhxser5QhlkI0QKxhmxQnoQ0pZCgsEe6Cfta2UU8TPwCCETSsJ4awPniZWNvsvY58TaatkbpXXMnQyvuhkqRsjS9OYuE9cnUyd_XDNLhrXQsm93vmfEj-dfw2Js8nscR3OwWktm6AvjnUI1rc3q-lduniYzaeTRaowpTFVWiOOVMaqTJK6rgtKEK-5rnNc0SLHJK8kVZUq87IqkMw1ZZwoCMuKEERzhofg-jB36937TocoNm7n28OCQAhThnhewNY1PriUdyF4XYutN2_S7wXMRJebWC1Fl5s45tYS9A-hTJTdz9FL0_zDXR04o7X-3cIozgnk-Bt1OHwy |
CODEN | IERQAD |
CitedBy_id | crossref_primary_10_1016_j_cosrev_2024_100682 crossref_primary_10_1109_MDAT_2023_3241116 crossref_primary_10_1109_TNS_2022_3141341 crossref_primary_10_1145_3546182 crossref_primary_10_1109_TNS_2024_3377596 crossref_primary_10_1109_TC_2023_3248282 crossref_primary_10_1109_TDMR_2022_3159089 crossref_primary_10_1145_3638242 crossref_primary_10_1109_TNS_2021_3050707 crossref_primary_10_1364_JOCN_517551 crossref_primary_10_1016_j_microrel_2020_113856 crossref_primary_10_1109_TNS_2021_3098845 crossref_primary_10_1145_3409594 crossref_primary_10_1109_TNS_2022_3224538 crossref_primary_10_1145_3638249 crossref_primary_10_1109_TDMR_2022_3166260 crossref_primary_10_1109_TNS_2024_3387087 crossref_primary_10_1109_ACCESS_2021_3076716 crossref_primary_10_1016_j_sysarc_2024_103242 crossref_primary_10_1109_TCAD_2023_3332293 crossref_primary_10_1145_3715327 crossref_primary_10_1109_TNS_2019_2957477 crossref_primary_10_37394_23203_2020_15_70 crossref_primary_10_1016_j_microrel_2024_115397 crossref_primary_10_1007_s11227_020_03324_9 crossref_primary_10_1109_TR_2019_2915800 crossref_primary_10_1109_ACCESS_2020_2968129 crossref_primary_10_1109_TR_2022_3190639 crossref_primary_10_3390_electronics13163243 crossref_primary_10_1145_3549526 crossref_primary_10_1109_TVLSI_2024_3396555 crossref_primary_10_1007_s11227_024_05925_0 crossref_primary_10_1109_TCAD_2020_3012209 crossref_primary_10_1109_TC_2022_3184274 crossref_primary_10_1007_s11227_024_06119_4 crossref_primary_10_1016_j_wear_2021_203696 crossref_primary_10_1109_TNS_2019_2920747 crossref_primary_10_1109_TNS_2022_3155820 crossref_primary_10_1109_TNS_2024_3387490 crossref_primary_10_1088_1742_6596_1933_1_012045 crossref_primary_10_1145_3477007 crossref_primary_10_1016_j_microrel_2021_114331 crossref_primary_10_1016_j_microrel_2020_113660 crossref_primary_10_1109_TCAD_2022_3223843 crossref_primary_10_1587_transfun_2022VLP0004 crossref_primary_10_1109_TNS_2021_3086686 crossref_primary_10_1016_j_microrel_2022_114729 crossref_primary_10_1109_TNS_2021_3128722 crossref_primary_10_1109_TNS_2022_3142092 crossref_primary_10_1109_TNS_2023_3262448 crossref_primary_10_1145_3633332 crossref_primary_10_26634_jse_15_2_18164 crossref_primary_10_1016_j_jpdc_2024_104879 crossref_primary_10_1016_j_sysarc_2023_103024 crossref_primary_10_1109_TCAD_2023_3235803 crossref_primary_10_1109_TCAD_2023_3335144 crossref_primary_10_1109_ACCESS_2021_3129149 crossref_primary_10_1109_MDAT_2019_2952336 crossref_primary_10_1142_S0218126624502542 crossref_primary_10_1016_j_microrel_2023_115010 crossref_primary_10_3390_electronics13224461 crossref_primary_10_1016_j_micpro_2024_105023 crossref_primary_10_1109_TR_2023_3335958 crossref_primary_10_1109_TR_2024_3355408 crossref_primary_10_21205_deufmd_2024267606 crossref_primary_10_1109_ACCESS_2023_3300376 crossref_primary_10_1016_j_microrel_2020_113969 crossref_primary_10_1016_j_sysarc_2021_102057 crossref_primary_10_1109_TNS_2024_3349956 crossref_primary_10_1145_3687483 crossref_primary_10_1016_j_suscom_2024_101049 crossref_primary_10_1007_s00521_020_04969_6 crossref_primary_10_1109_TCSI_2021_3097981 crossref_primary_10_1109_TNS_2023_3291418 crossref_primary_10_1109_TR_2021_3105697 crossref_primary_10_1109_TNS_2020_2977583 crossref_primary_10_1109_TC_2021_3058872 crossref_primary_10_1109_TETC_2022_3152668 crossref_primary_10_1109_TVLSI_2023_3238907 crossref_primary_10_1155_2022_1846863 crossref_primary_10_1109_TDSC_2021_3063083 crossref_primary_10_1109_TNS_2022_3195068 crossref_primary_10_1109_TNS_2022_3176485 crossref_primary_10_1109_TC_2021_3128501 |
Cites_doi | 10.1109/MDT.2004.8 10.1162/0899766053723096 10.1109/TNS.2014.2301768 10.1109/IJCNN.1990.137651 10.1007/978-3-319-46493-0_38 10.1109/72.363479 10.1109/TDMR.2005.853449 10.1109/DSN.2014.48 10.5244/C.29.32 10.1109/ISPASS.2014.6844486 10.1109/TNS.2013.2252625 10.1109/EDCC.2006.9 10.1109/HPCA.2017.41 10.1145/2647868.2654889 10.1109/TC.2015.2444855 10.1109/ICASSP.2015.7178146 10.1007/978-3-642-15825-4_10 10.1109/HPCA.2015.7056044 10.1109/SiPS.2014.6986082 10.1109/SC.2016.20 10.1145/3126908.3126964 10.1109/TC.2016.2574353 10.1109/CVPR.2009.5206631 10.1109/ISPASS.2017.7975296 10.1109/TEST.2013.6651908 10.1109/HOTOS.2001.990072 10.1145/2834892.2834897 10.1109/ISCA.2005.21 10.1109/72.238315 10.1109/12.660173 10.1109/5.726791 10.1109/TDMR.2016.2535663 10.1006/jpdc.2000.1663 10.1109/81.390269 10.1109/23.659037 10.1007/s11263-009-0275-4 10.1109/CVPR.2016.91 10.1109/FTCSH.1995.532603 10.1109/DATE.2009.5090716 10.1109/TC.2016.2550455 10.1109/ISCA.2014.6853227 10.1016/j.patrec.2005.10.010 10.1109/MICRO.2014.15 10.1109/MICRO.2003.1253181 10.1109/IISWC.2011.6114182 10.1109/TC.1984.1676475 10.1109/TNS.2011.2171993 10.1007/s10836-014-5456-6 10.1145/3079856.3080246 10.1109/VTEST.1999.766651 10.1109/TNS.2015.2450997 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TR.2018.2878387 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-1721 |
EndPage | 677 |
ExternalDocumentID | 10_1109_TR_2018_2878387 8536419 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ OCL P2P RIA RIE RNS TN5 VH1 VJK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c355t-cee292c08d0a4fff75429f9ef63d576346da5cdcb6bd72a6e5894c11bd4425683 |
IEDL.DBID | RIE |
ISSN | 0018-9529 |
IngestDate | Sun Jun 29 12:36:59 EDT 2025 Tue Jul 01 00:49:08 EDT 2025 Thu Apr 24 23:04:47 EDT 2025 Wed Aug 27 05:56:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c355t-cee292c08d0a4fff75429f9ef63d576346da5cdcb6bd72a6e5894c11bd4425683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7402-4780 0000-0002-3504-9862 0000-0002-5692-0151 0000-0003-2351-2140 0000-0002-0821-1879 |
PQID | 2235829671 |
PQPubID | 85456 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_TR_2018_2878387 ieee_primary_8536419 crossref_citationtrail_10_1109_TR_2018_2878387 proquest_journals_2235829671 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-June 2019-6-00 20190601 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-June |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on reliability |
PublicationTitleAbbrev | TR |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref54 ref10 ref17 ref16 ref18 ren (ref44) 2015 cire?an (ref38) 2012 ref51 collobert (ref46) 0 ref45 debardeleben (ref25) 2013 ref48 ref47 ref42 ref43 ref49 ref8 ref7 ref9 ref3 ref6 ref40 ref35 ref34 ref36 kulakov (ref19) 2015; abs 1509 9199 (ref33) 2006 ref31 ref30 ciregan (ref37) 2012 ref32 ref2 ref1 (ref11) 2018 ref24 ref67 ref23 ref26 ref20 kim (ref50) 2007 ref63 ref66 ref22 ref65 ref21 wang (ref60) 2014 bojarski (ref4) 2016; abs 1604 7316 sridharan (ref64) 2009 ref28 ref27 ribeiro (ref39) 2016; abs 1607 4441 ref29 chetlur (ref41) 2014; abs 1410 759 ref62 ref61 dongarra (ref5) 2015 |
References_xml | – ident: ref28 doi: 10.1109/MDT.2004.8 – ident: ref57 doi: 10.1162/0899766053723096 – ident: ref53 doi: 10.1109/TNS.2014.2301768 – start-page: 680 year: 2013 ident: ref25 article-title: GPU Behavior on a large HPC Cluster publication-title: Proc 6th Workshop Resiliency High Perform Comput (Resilience) Clusters Clouds Grids Conjunction 19th Int Eur Conf Parallel Distrib Comput (Euro-Par 2013) – ident: ref18 doi: 10.1109/IJCNN.1990.137651 – start-page: 34 year: 2007 ident: ref50 article-title: A low power and highly reliable 400Mbps mobile DDR SDRAM with on-chip distributed ECC publication-title: Proc IEEE Asian Solid-State Circuits Conf – ident: ref45 doi: 10.1007/978-3-319-46493-0_38 – ident: ref17 doi: 10.1109/72.363479 – year: 2015 ident: ref5 – ident: ref8 doi: 10.1109/TDMR.2005.853449 – start-page: 91 year: 2015 ident: ref44 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref31 doi: 10.1109/DSN.2014.48 – ident: ref40 doi: 10.5244/C.29.32 – ident: ref23 doi: 10.1109/ISPASS.2014.6844486 – ident: ref30 doi: 10.1109/TNS.2013.2252625 – ident: ref58 doi: 10.1109/EDCC.2006.9 – start-page: 17 year: 2014 ident: ref60 publication-title: Tracking Interacting Objects Optimally Using Integer Programming – volume: abs 1509 9199 year: 2015 ident: ref19 article-title: Fault tolerance in distributed neural computing publication-title: CoRR – ident: ref21 doi: 10.1109/HPCA.2017.41 – start-page: 2843 year: 2012 ident: ref38 article-title: Deep neural networks segment neuronal membranes in electron microscopy images publication-title: Proc 25th Int Conf Neural Inf Process Syst – ident: ref3 doi: 10.1145/2647868.2654889 – ident: ref26 doi: 10.1109/TC.2015.2444855 – volume: abs 1607 4441 year: 2016 ident: ref39 article-title: A real-time pedestrian detector using deep learning for human-aware navigation publication-title: CoRR – ident: ref62 doi: 10.1109/ICASSP.2015.7178146 – ident: ref32 doi: 10.1109/TNS.2014.2301768 – year: 2018 ident: ref11 article-title: Log database for IEEE transaction on reliability publication-title: Github – ident: ref67 doi: 10.1007/978-3-642-15825-4_10 – ident: ref55 doi: 10.1109/HPCA.2015.7056044 – ident: ref61 doi: 10.1109/SiPS.2014.6986082 – ident: ref27 doi: 10.1109/SC.2016.20 – ident: ref16 doi: 10.1145/3126908.3126964 – ident: ref42 doi: 10.1109/TC.2016.2574353 – year: 2006 ident: ref33 article-title: Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices – start-page: 3642 year: 2012 ident: ref37 article-title: Multi-column deep neural networks for image classification publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – year: 0 ident: ref46 publication-title: BigLearn NIPS Workshop – volume: abs 1604 7316 year: 2016 ident: ref4 article-title: End to end learning for self-driving cars publication-title: CoRR – ident: ref49 doi: 10.1109/CVPR.2009.5206631 – ident: ref13 doi: 10.1109/ISPASS.2017.7975296 – ident: ref20 doi: 10.1109/TEST.2013.6651908 – ident: ref59 doi: 10.1109/HOTOS.2001.990072 – start-page: 1 year: 2009 ident: ref64 article-title: The effect of input data on program vulnerability publication-title: Workshop on Silicon Errors in Logic-System Effects – volume: abs 1410 759 year: 2014 ident: ref41 article-title: cuDNN: Efficient primitives for deep learning publication-title: CoRR – ident: ref1 doi: 10.1145/2834892.2834897 – ident: ref52 doi: 10.1109/ISCA.2005.21 – ident: ref56 doi: 10.1109/72.238315 – ident: ref10 doi: 10.1109/12.660173 – ident: ref15 doi: 10.1109/5.726791 – ident: ref54 doi: 10.1109/TDMR.2016.2535663 – ident: ref14 doi: 10.1006/jpdc.2000.1663 – ident: ref9 doi: 10.1109/81.390269 – ident: ref34 doi: 10.1109/23.659037 – ident: ref48 doi: 10.1007/s11263-009-0275-4 – ident: ref2 doi: 10.1109/CVPR.2016.91 – ident: ref6 doi: 10.1109/FTCSH.1995.532603 – ident: ref66 doi: 10.1109/DATE.2009.5090716 – ident: ref51 doi: 10.1109/TC.2016.2550455 – ident: ref29 doi: 10.1109/ISCA.2014.6853227 – ident: ref47 doi: 10.1016/j.patrec.2005.10.010 – ident: ref22 doi: 10.1109/MICRO.2014.15 – ident: ref65 doi: 10.1109/MICRO.2003.1253181 – ident: ref24 doi: 10.1109/IISWC.2011.6114182 – ident: ref12 doi: 10.1109/TC.1984.1676475 – ident: ref35 doi: 10.1109/TNS.2011.2171993 – ident: ref63 doi: 10.1007/s10836-014-5456-6 – ident: ref43 doi: 10.1145/3079856.3080246 – ident: ref7 doi: 10.1109/VTEST.1999.766651 – ident: ref36 doi: 10.1109/TNS.2015.2450997 |
SSID | ssj0014498 |
Score | 2.591217 |
Snippet | Graphics processing units (GPUs) are playing a critical role in convolutional neural networks (CNNs) for image detection. As GPU-enabled CNNs move into... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 663 |
SubjectTerms | Algorithm-based fault tolerance (ABFT) Algorithms Artificial neural networks convolutional neural networks (CNNs) embedded systems Error correcting codes Error correction Error correction codes Fault tolerance Fault tolerant systems Graphics processing units Hardware Image detection Multiplication Network reliability Neural networks Neutron beams Object recognition reliability Reliability analysis Safety critical soft errors |
Title | Analyzing and Increasing the Reliability of Convolutional Neural Networks on GPUs |
URI | https://ieeexplore.ieee.org/document/8536419 https://www.proquest.com/docview/2235829671 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_qSQ9-i9MpOXjwYLs0TdPmKKIOYaKywW4lzcdFacVtgvvrfUmzIX6Ap6aQhJC8vPeS_N7vIXQmDVM0te7WJs8jlhALepAUkayIAJWcCekpNgb3vD9id-NsvIIulrEwxhgPPjOxK_q3fN2ombsq64Fp4cxxfK6CmLWxWssXA8ZE0LqwgTMqAo1PQkRv-OQgXEUMh4Middi5LxbIp1T5oYe9cbnZQoPFsFpMyXM8m1axmn9jbPzvuLfRZvAy8WUrFjtoxdS7aOML9-AeevR0JHMoY1lrDHrCwdPdL7iE2CGVWwbvD9xYfNXU70FGoVtH6OE_HkE-wU2Nbx9Gk300urkeXvWjkF8hUuBlTCOwj1RQRQpNJLPWumS4wgpjearhGJIyrmWmtKp4pXMquckKwVSSVJrBTudFeoDW6qY2hwgn1JhMSkmEVUwzKWzFC0uhdU6JIKSD4sWclyqQj7scGC-lP4QQUQ6fSrdIZVikDjpfNnhteTf-rrrnpnxZLcx2B3UXi1qGfTkpqY8MFjxPjn5vdYzWoW_RgsG6aG36NjMn4HZMq1Mvb5_r8dQ_ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB5VywH2wKug7dIFHzhwIFnHcZz4iKotBbYrWLXS3iLHjwsoWdF2JfrrGTtuVfGQ9hRHshPLM54Z25-_AXirLNcsd37XpiwTnlGHdpBWiWqoRJNcSBUoNuZXYrbkn2-KmwG839-FsdYG8JlNfTGc5ZtOb_xW2Tm6FsE9x-cD9Pu86G9r7c8MOJfR7uIULpiMRD4ZleeLaw_iqlJcHlS5R88d-KCQVOUvSxzcy_QJzHcd61El39PNukn19g_Oxvv2_Ck8jnEm-dArxjMY2PY5HB-wDw7hWyAk2WKZqNYQtBQeoO5fMSgkHqvcc3j_Ip0jk669i1qKn_WUHuERMOQr0rXk49fl6gUspxeLySyJGRYSjXHGOkEPySTTtDJUceecT4crnbRO5AYXIjkXRhXa6EY0pmRK2KKSXGdZYzjOdVHlL-Go7Vp7AiRj1hZKKSqd5oYr6RpROYatS0YlpSNId2Ne60g_7rNg_KjDMoTKenFdeyHVUUgjeLdvcNszb_y_6tAP-b5aHO0RjHdCrePMXNUs3A2WosxO_93qDTycLeaX9eWnqy-v4BH-R_bQsDEcrX9u7BkGIevmddC93zIC14w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+and+Increasing+the+Reliability+of+Convolutional+Neural+Networks+on+GPUs&rft.jtitle=IEEE+transactions+on+reliability&rft.au=Santos%2C+Fernando+Fernandes+dos&rft.au=Pimenta%2C+Pedro+Foletto&rft.au=Lunardi%2C+Caio&rft.au=Draghetti%2C+Lucas&rft.date=2019-06-01&rft.pub=IEEE&rft.issn=0018-9529&rft.volume=68&rft.issue=2&rft.spage=663&rft.epage=677&rft_id=info:doi/10.1109%2FTR.2018.2878387&rft.externalDocID=8536419 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9529&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9529&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9529&client=summon |