A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion

In this paper, a stochastic model is presented to simulate the flow of gases, which are not in thermodynamic equilibrium, like in rarefied or micro situations. For the interaction of a particle with others, statistical moments of the local ensemble have to be evaluated, but unlike in molecular dynam...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 229; no. 4; pp. 1077 - 1098
Main Authors Jenny, Patrick, Torrilhon, Manuel, Heinz, Stefan
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Inc 20.02.2010
Elsevier
Subjects
Online AccessGet full text
ISSN0021-9991
1090-2716
DOI10.1016/j.jcp.2009.10.008

Cover

Abstract In this paper, a stochastic model is presented to simulate the flow of gases, which are not in thermodynamic equilibrium, like in rarefied or micro situations. For the interaction of a particle with others, statistical moments of the local ensemble have to be evaluated, but unlike in molecular dynamics simulations or DSMC, no collisions between computational particles are considered. In addition, a novel integration technique allows for time steps independent of the stochastic time scale. The stochastic model represents a Fokker–Planck equation in the kinetic description, which can be viewed as an approximation to the Boltzmann equation. This allows for a rigorous investigation of the relation between the new model and classical fluid and kinetic equations. The fluid dynamic equations of Navier–Stokes and Fourier are fully recovered for small relaxation times, while for larger values the new model extents into the kinetic regime. Numerical studies demonstrate that the stochastic model is consistent with Navier–Stokes in that limit, but also that the results become significantly different, if the conditions for equilibrium are invalid. The application to the Knudsen paradox demonstrates the correctness and relevance of this development, and comparisons with existing kinetic equations and standard solution algorithms reveal its advantages. Moreover, results of a test case with geometrically complex boundaries are presented.
AbstractList In this paper, a stochastic model is presented to simulate the flow of gases, which are not in thermodynamic equilibrium, like in rarefied or micro situations. For the interaction of a particle with others, statistical moments of the local ensemble have to be evaluated, but unlike in molecular dynamics simulations or DSMC, no collisions between computational particles are considered. In addition, a novel integration technique allows for time steps independent of the stochastic time scale. The stochastic model represents a Fokker-Planck equation in the kinetic description, which can be viewed as an approximation to the Boltzmann equation. This allows for a rigorous investigation of the relation between the new model and classical fluid and kinetic equations. The fluid dynamic equations of Navier-Stokes and Fourier are fully recovered for small relaxation times, while for larger values the new model extents into the kinetic regime. Numerical studies demonstrate that the stochastic model is consistent with Navier-Stokes in that limit, but also that the results become significantly different, if the conditions for equilibrium are invalid. The application to the Knudsen paradox demonstrates the correctness and relevance of this development, and comparisons with existing kinetic equations and standard solution algorithms reveal its advantages. Moreover, results of a test case with geometrically complex boundaries are presented.
In this paper, a stochastic model is presented to simulate the flow of gases, which are not in thermodynamic equilibrium, like in rarefied or micro situations. For the interaction of a particle with others, statistical moments of the local ensemble have to be evaluated, but unlike in molecular dynamics simulations or DSMC, no collisions between computational particles are considered. In addition, a novel integration technique allows for time steps independent of the stochastic time scale. The stochastic model represents a Fokker–Planck equation in the kinetic description, which can be viewed as an approximation to the Boltzmann equation. This allows for a rigorous investigation of the relation between the new model and classical fluid and kinetic equations. The fluid dynamic equations of Navier–Stokes and Fourier are fully recovered for small relaxation times, while for larger values the new model extents into the kinetic regime. Numerical studies demonstrate that the stochastic model is consistent with Navier–Stokes in that limit, but also that the results become significantly different, if the conditions for equilibrium are invalid. The application to the Knudsen paradox demonstrates the correctness and relevance of this development, and comparisons with existing kinetic equations and standard solution algorithms reveal its advantages. Moreover, results of a test case with geometrically complex boundaries are presented.
Author Torrilhon, Manuel
Heinz, Stefan
Jenny, Patrick
Author_xml – sequence: 1
  givenname: Patrick
  surname: Jenny
  fullname: Jenny, Patrick
  email: jenny@ifd.mavt.ethz.ch
  organization: Institute of Fluid Dynamics, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
– sequence: 2
  givenname: Manuel
  surname: Torrilhon
  fullname: Torrilhon, Manuel
  organization: Seminar for Applied Mathematics, ETH Zurich, Rämistrasse 101, CH-8092 Zurich, Switzerland
– sequence: 3
  givenname: Stefan
  surname: Heinz
  fullname: Heinz, Stefan
  organization: Department of Mathematics, University of Wyoming, 1000 East University Avenue, Laramie, WY 82071, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22587169$$DView record in Pascal Francis
https://www.osti.gov/biblio/21333928$$D View this record in Osti.gov
BookMark eNp9kE1vVCEUhompidPqD3BHYlzekY_7RVw1jVWTJm50TeDcg8OEexmBMem_Fzq6cdEVcHifkzfPNbna4oaEvOVszxkfPxz3RzjtBWOqvveMzS_IjjPFOjHx8YrsGBO8U0rxV-Q65yOriaGfdwRvaY7hXHzcqAk_Y_LlsFIXEy0HpC6c_UKXx82sHij-OpsWzNSajAttCM0lwsHkUv_XuGB4YtcYEM7BtFsjXpOXzoSMb_6eN-TH_afvd1-6h2-fv97dPnQgh6F0AEsvQdkepxEFWuMGNjNjZqssE2paxKhGcLK3YuzRDhOT1o2SKTsPDgzKG_LusjfWQjqDLwgHiNuGULTgUkol5pp6f0mdTAYTXDIb-KxPya8mPWohhrlKUzU3XXKQYs4Jna4LnwyUZHzQnOnmXh91da-b-zaqZivJ_yP_LX-O-XhhsAr67TG1_rgBLj61-kv0z9B_APx2n7g
CODEN JCTPAH
CitedBy_id crossref_primary_10_1186_s42774_021_00069_8
crossref_primary_10_1063_1_5004409
crossref_primary_10_1016_j_physrep_2022_10_004
crossref_primary_10_1017_jfm_2024_342
crossref_primary_10_1016_j_cpc_2022_108607
crossref_primary_10_1063_5_0247494
crossref_primary_10_1016_j_jcp_2016_10_018
crossref_primary_10_1016_j_jcp_2015_01_041
crossref_primary_10_1016_j_cam_2012_07_014
crossref_primary_10_1016_j_vacuum_2018_10_028
crossref_primary_10_1063_1_5097645
crossref_primary_10_1063_1_5097884
crossref_primary_10_1016_j_jcp_2019_108972
crossref_primary_10_1186_s42774_024_00188_y
crossref_primary_10_2514_1_J057935
crossref_primary_10_1016_j_jcp_2019_108977
crossref_primary_10_1017_jfm_2011_374
crossref_primary_10_1017_jfm_2022_350
crossref_primary_10_1016_j_euromechflu_2021_02_006
crossref_primary_10_3390_fluids9110255
crossref_primary_10_1186_s42774_023_00138_0
crossref_primary_10_1080_00036811_2018_1434154
crossref_primary_10_1016_j_jcp_2021_110542
crossref_primary_10_1063_5_0106154
crossref_primary_10_1016_j_jcp_2024_112940
crossref_primary_10_1016_j_vacuum_2020_109736
crossref_primary_10_2139_ssrn_4148310
crossref_primary_10_1016_j_jcp_2024_113353
crossref_primary_10_1063_5_0030548
crossref_primary_10_1103_PhysRevE_86_036318
crossref_primary_10_1016_j_compfluid_2018_08_028
crossref_primary_10_1007_s10955_015_1404_9
crossref_primary_10_1007_s10955_017_1837_4
crossref_primary_10_1103_PhysRevE_96_043104
crossref_primary_10_1063_5_0090362
crossref_primary_10_1016_j_cpc_2024_109323
crossref_primary_10_1016_j_jcp_2022_111640
crossref_primary_10_1016_j_jcp_2024_113066
crossref_primary_10_1016_j_jcp_2019_02_040
crossref_primary_10_1016_j_jcp_2020_109638
crossref_primary_10_1063_1_5097902
crossref_primary_10_1063_5_0100633
crossref_primary_10_2514_1_J059029
crossref_primary_10_1016_j_jcp_2024_113458
crossref_primary_10_4208_cicp_OA_2016_0134
crossref_primary_10_1088_1742_6596_1168_3_032037
crossref_primary_10_1016_j_cpc_2016_11_003
crossref_primary_10_1186_s42774_020_00045_8
crossref_primary_10_1016_j_vacuum_2019_109065
crossref_primary_10_1016_j_jcp_2013_03_012
crossref_primary_10_1103_PhysRevE_85_041202
crossref_primary_10_2139_ssrn_4108990
crossref_primary_10_1063_1_5116206
crossref_primary_10_1016_j_jcp_2012_05_025
crossref_primary_10_1016_j_jcp_2024_112915
crossref_primary_10_1186_s42774_019_0014_7
crossref_primary_10_1017_jfm_2021_461
crossref_primary_10_1103_PhysRevE_102_013304
crossref_primary_10_1063_5_0055632
crossref_primary_10_1007_s10483_018_2258_9
crossref_primary_10_1016_j_physa_2014_12_022
crossref_primary_10_1063_1_4811399
crossref_primary_10_1016_j_compfluid_2024_106456
crossref_primary_10_1016_j_jcp_2013_12_046
crossref_primary_10_1016_j_advengsoft_2022_103291
crossref_primary_10_1016_j_compfluid_2018_04_034
crossref_primary_10_1016_j_jcp_2020_109858
crossref_primary_10_1016_j_cpc_2022_108303
crossref_primary_10_1016_j_ijheatmasstransfer_2016_07_002
crossref_primary_10_1103_PhysRevE_87_013014
crossref_primary_10_1016_j_jcp_2023_112128
crossref_primary_10_1103_PhysRevE_94_063307
crossref_primary_10_1016_j_jcp_2023_112400
crossref_primary_10_1016_j_jcp_2018_02_049
crossref_primary_10_1016_j_jcp_2023_112402
crossref_primary_10_1063_1_5141909
crossref_primary_10_1016_j_ijengsci_2013_03_009
crossref_primary_10_1103_PhysRevE_91_033303
crossref_primary_10_1063_5_0247155
crossref_primary_10_1017_jfm_2011_188
crossref_primary_10_1063_5_0143195
crossref_primary_10_1134_S2070048214030041
crossref_primary_10_1007_s10409_022_22123_x
crossref_primary_10_1016_j_jcp_2020_110034
crossref_primary_10_1016_j_physa_2015_07_003
crossref_primary_10_1016_j_jcp_2015_04_008
crossref_primary_10_1016_j_jcp_2016_08_008
crossref_primary_10_1016_j_physa_2022_127386
crossref_primary_10_1016_j_compfluid_2018_03_059
crossref_primary_10_1016_j_physa_2014_06_012
crossref_primary_10_1063_5_0017289
crossref_primary_10_1063_5_0258301
crossref_primary_10_1016_j_jcp_2023_112308
crossref_primary_10_1063_5_0244428
crossref_primary_10_1063_1_5098085
crossref_primary_10_1016_j_jcp_2018_11_005
crossref_primary_10_1016_j_jcp_2022_111677
Cites_doi 10.1002/andp.19093330106
10.1016/S0082-0784(98)80509-2
10.1063/1.857478
10.1063/1.1698741
10.1063/1.1706037
10.1063/1.1740193
10.1016/j.jcp.2006.05.002
10.1007/s00162-006-0036-8
10.1016/0378-4371(90)90195-X
10.1103/PhysRevE.70.036308
10.1103/PhysRev.94.511
10.1006/jcph.2001.6704
10.1016/0010-2180(90)90066-Z
10.1063/1.1597472
10.1063/1.1724117
10.1006/jcph.2000.6548
10.1063/1.1747099
10.1063/1.869382
10.1016/j.jcp.2007.06.014
10.2514/2.237
10.1006/jcph.2000.6646
10.2514/1.42111
10.1016/j.jcp.2007.10.006
ContentType Journal Article
Copyright 2009 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
OTOTI
DOI 10.1016/j.jcp.2009.10.008
DatabaseName CrossRef
Pascal-Francis
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1090-2716
EndPage 1098
ExternalDocumentID 21333928
22587169
10_1016_j_jcp_2009_10_008
S0021999109005531
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6OB
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSQ
SSV
SSZ
T5K
T9H
TN5
UPT
UQL
WUQ
XFK
YQT
ZMT
ZU3
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
AALMO
ABPIF
ABPTK
ABQIS
EFJIC
OTOTI
ID FETCH-LOGICAL-c355t-ccd43c9b4e76e2ebaf5080aa8b9b0297d2696cf34b264eb5703bf6309b85fcae3
IEDL.DBID AIKHN
ISSN 0021-9991
IngestDate Fri May 19 00:38:28 EDT 2023
Mon Jul 21 09:14:11 EDT 2025
Wed Oct 01 05:12:28 EDT 2025
Thu Apr 24 23:12:48 EDT 2025
Fri Feb 23 02:29:12 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Kinetic gas theory
Boltzman equation
Monte-Carlo method
Stochastic differential equations
Fokker–Planck equation
PDF methods
Stochastic model
Boltzmann equation
Fluid dynamics
Statistical moment
Digital simulation
Molecular dynamics
Fokker-Planck equation
Thermodynamic equilibrium
Relaxation time
Calculation methods
Monte Carlo methods
Algorithms
Kinetic equations
Differential equations
Calculation
Kinetic theory
Stochastic equation
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-ccd43c9b4e76e2ebaf5080aa8b9b0297d2696cf34b264eb5703bf6309b85fcae3
PageCount 22
ParticipantIDs osti_scitechconnect_21333928
pascalfrancis_primary_22587169
crossref_citationtrail_10_1016_j_jcp_2009_10_008
crossref_primary_10_1016_j_jcp_2009_10_008
elsevier_sciencedirect_doi_10_1016_j_jcp_2009_10_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-02-20
PublicationDateYYYYMMDD 2010-02-20
PublicationDate_xml – month: 02
  year: 2010
  text: 2010-02-20
  day: 20
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: United States
PublicationTitle Journal of computational physics
PublicationYear 2010
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Heinz (bib9) 2003
Nooren, Wouters, J Peeters, Roekaerts, Maas, Schmidt (bib22) 1996; 26
Knudsen (bib16) 1909; 333
Lebowitz, Frisch, Helfand (bib17) 1960; 3
Torrilhon, Struchtrup (bib30) 2008; 227
J.-P. Minier, J. Pozorski, Analysis of a PDF model in a mixing layer case, in: Tenth Symposium on Turbulent Shear Flows, 1995, 26.25–26.30.
Struchtrup, Torrilhon (bib28) 2003; 15
Zwanzig, Kirkwood, Stripp, Oppenheim (bib33) 1953; 21
Bird (bib5) 1994
Beck, Roepstorff (bib3) 1990; 165
Meyer, Jenny (bib19) 2007; 226
Ohwada, Sone, Aoki (bib23) 1989; 1
Succi (bib29) 2001
Pope (bib24) 2000
Jenny, Muradoglu, Liu, Pope, Caughey (bib12) 2001; 169
Abbate, Kleijn, Thijsse (bib1) 2009; 47
Kirkwood (bib14) 1946; 14
Rembold, Jenny (bib25) 2006
Heinz (bib10) 2004; 70
Mieussens (bib20) 2000; 162
Bhatnagar, Gross, Krook (bib4) 1954; 94
Zwanzig, Kirkwood, Oppenheim, Alder (bib32) 1954; 22
Delarue, Pope (bib7) 1997; 9
Cercignani (bib6) 1988
Wolf-Gladrow (bib31) 2000
Kirkwood, Buff, Green (bib15) 1949; 17
W. Dong, From stochastic processes to the hydrodynamic equations, University of California Report No. UCRL-3353, 1956.
Struchtrup (bib27) 2005
Masri, Pope (bib18) 1990; 81
Heinz (bib11) 2007; 21
Anand, Hsu, Pope (bib2) 1997; 35
Jenny, Pope, Muradoglu, Caughey (bib13) 2001; 166
Saxena, Pope (bib26) 1998; 27
Struchtrup (10.1016/j.jcp.2009.10.008_bib28) 2003; 15
Zwanzig (10.1016/j.jcp.2009.10.008_bib33) 1953; 21
Lebowitz (10.1016/j.jcp.2009.10.008_bib17) 1960; 3
10.1016/j.jcp.2009.10.008_bib8
Pope (10.1016/j.jcp.2009.10.008_bib24) 2000
Saxena (10.1016/j.jcp.2009.10.008_bib26) 1998; 27
Torrilhon (10.1016/j.jcp.2009.10.008_bib30) 2008; 227
Heinz (10.1016/j.jcp.2009.10.008_bib11) 2007; 21
Masri (10.1016/j.jcp.2009.10.008_bib18) 1990; 81
Succi (10.1016/j.jcp.2009.10.008_bib29) 2001
Abbate (10.1016/j.jcp.2009.10.008_bib1) 2009; 47
Cercignani (10.1016/j.jcp.2009.10.008_bib6) 1988
Rembold (10.1016/j.jcp.2009.10.008_bib25) 2006
Knudsen (10.1016/j.jcp.2009.10.008_bib16) 1909; 333
Bhatnagar (10.1016/j.jcp.2009.10.008_bib4) 1954; 94
Heinz (10.1016/j.jcp.2009.10.008_bib9) 2003
Jenny (10.1016/j.jcp.2009.10.008_bib12) 2001; 169
Kirkwood (10.1016/j.jcp.2009.10.008_bib15) 1949; 17
Jenny (10.1016/j.jcp.2009.10.008_bib13) 2001; 166
Nooren (10.1016/j.jcp.2009.10.008_bib22) 1996; 26
Beck (10.1016/j.jcp.2009.10.008_bib3) 1990; 165
10.1016/j.jcp.2009.10.008_bib21
Zwanzig (10.1016/j.jcp.2009.10.008_bib32) 1954; 22
Struchtrup (10.1016/j.jcp.2009.10.008_bib27) 2005
Bird (10.1016/j.jcp.2009.10.008_bib5) 1994
Ohwada (10.1016/j.jcp.2009.10.008_bib23) 1989; 1
Anand (10.1016/j.jcp.2009.10.008_bib2) 1997; 35
Wolf-Gladrow (10.1016/j.jcp.2009.10.008_bib31) 2000
Heinz (10.1016/j.jcp.2009.10.008_bib10) 2004; 70
Kirkwood (10.1016/j.jcp.2009.10.008_bib14) 1946; 14
Delarue (10.1016/j.jcp.2009.10.008_bib7) 1997; 9
Meyer (10.1016/j.jcp.2009.10.008_bib19) 2007; 226
Mieussens (10.1016/j.jcp.2009.10.008_bib20) 2000; 162
References_xml – volume: 94
  start-page: 511
  year: 1954
  end-page: 525
  ident: bib4
  article-title: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
  publication-title: Phys. Rev.
– volume: 70
  start-page: 036308
  year: 2004
  ident: bib10
  article-title: Molecular to fluid dynamics: the consequences of stochastic molecular motion
  publication-title: Phys. Rev. E
– year: 2003
  ident: bib9
  article-title: Statistical Mechanics of Turbulent Flows
– volume: 1
  start-page: 2042
  year: 1989
  end-page: 2049
  ident: bib23
  article-title: Numerical analysis of the poiseuille and thermal transpiration flows between two parallel plates on the basis of the boltzmann equation for hard spheres molecules
  publication-title: Phys. Fluids A
– volume: 81
  start-page: 13
  year: 1990
  end-page: 29
  ident: bib18
  article-title: PDF calculations of piloted turbulent non-premixed flames of methane
  publication-title: Combust. Flame
– volume: 162
  start-page: 429
  year: 2000
  ident: bib20
  article-title: Discrete-velocity models and numerical schemes for the Boltzmann–BGK equation in plane and axisymmetric geometries
  publication-title: J. Comput. Phys.
– volume: 27
  start-page: 1081
  year: 1998
  end-page: 1086
  ident: bib26
  article-title: PDF calculations of major and minor species in a turbulent piloted jet flame
  publication-title: Proc. Combust. Inst.
– volume: 22
  start-page: 783
  year: 1954
  end-page: 790
  ident: bib32
  article-title: The statistical mechanical theory of transport processes. 7. The coefficients of thermal conductivity of monatomic liquids
  publication-title: J. Chem. Phys.
– year: 2005
  ident: bib27
  article-title: Macroscopic Transport Equations for Rarefied Gas Flows
– volume: 9
  start-page: 2704
  year: 1997
  end-page: 2715
  ident: bib7
  article-title: Application of PDF methods to compressible turbulent flows
  publication-title: Phys. Fluids
– volume: 15
  start-page: 2668
  year: 2003
  end-page: 2680
  ident: bib28
  article-title: Regularization of Grad’s 13-moment-equations: derivation and linear analysis
  publication-title: Phys. Fluids
– volume: 227
  start-page: 1982
  year: 2008
  end-page: 2011
  ident: bib30
  article-title: Boundary conditions for regularized 13-moment-equations for micro-channel-flows
  publication-title: J. Comput. Phys.
– volume: 166
  start-page: 218
  year: 2001
  end-page: 252
  ident: bib13
  article-title: A hybrid algorithm for the joint pdf equation of turbulent reactive flows
  publication-title: J. Comput. Phys.
– volume: 3
  start-page: 325
  year: 1960
  end-page: 338
  ident: bib17
  article-title: Nonequilibrium distribution functions in a fluid
  publication-title: Phys. Fluids
– volume: 14
  start-page: 180
  year: 1946
  end-page: 201
  ident: bib14
  article-title: The statistical mechanical theory of transport processes. 1. General theory
  publication-title: J. Chem. Phys.
– volume: 47
  year: 2009
  ident: bib1
  article-title: Hybrid continuum/molecular simulations of transient gas flows with rarefaction
  publication-title: AIAA J.
– year: 2000
  ident: bib24
  article-title: Turbulent Flows
– volume: 21
  start-page: 99
  year: 2007
  end-page: 118
  ident: bib11
  article-title: Unified turbulence models for LES and RANS, FDF and PDF simulations
  publication-title: Theor. Comp. Fluid Dyn.
– volume: 165
  start-page: 270
  year: 1990
  end-page: 278
  ident: bib3
  article-title: From stochastic processes to the hydrodynamic equations
  publication-title: Physica A
– reference: W. Dong, From stochastic processes to the hydrodynamic equations, University of California Report No. UCRL-3353, 1956.
– volume: 35
  start-page: 1143
  year: 1997
  end-page: 1150
  ident: bib2
  article-title: Calculations of swirl combustors using joint velocity-scalar probability density function method
  publication-title: AIAA J.
– reference: J.-P. Minier, J. Pozorski, Analysis of a PDF model in a mixing layer case, in: Tenth Symposium on Turbulent Shear Flows, 1995, 26.25–26.30.
– volume: 169
  start-page: 1
  year: 2001
  end-page: 23
  ident: bib12
  article-title: Pdf simulations of a bluff-body stabilized flow
  publication-title: J. Comput. Phys.
– volume: 26
  start-page: 272
  year: 1996
  ident: bib22
  article-title: Monte Carlo PDF simulation of a turbulent natural-gas diffusion flame
  publication-title: Proc. Combust. Inst.
– year: 1994
  ident: bib5
  article-title: Molecular Gas Dynamics and the Direct Simulation of Gas Flows
– volume: 17
  start-page: 988
  year: 1949
  end-page: 994
  ident: bib15
  article-title: The statistical mechanical theory of transport processes. 3. The coefficients of shear and bulk viscosity of liquids
  publication-title: J. Chem. Phys.
– volume: 21
  start-page: 2050
  year: 1953
  end-page: 2055
  ident: bib33
  article-title: The statistical mechanical theory of transport processes. 6. A calculation of the coefficients of shear and bulk viscosity of liquids
  publication-title: J. Chem. Phys.
– year: 2001
  ident: bib29
  article-title: The Lattice Boltzmann Equation
– year: 2000
  ident: bib31
  article-title: Lattice Gas Cellular Automata and Lattice Boltzmann Models
– year: 1988
  ident: bib6
  article-title: The Boltzmann Equation and its Application
– volume: 226
  year: 2007
  ident: bib19
  article-title: Consistent inflow and outflow boundary conditions for transported probability density function methods
  publication-title: J. Comput. Phys.
– year: 2006
  ident: bib25
  article-title: A multiblock joint pdf finite-volume hybrid algorithm for the computation of turbulent flows in complex geometries
  publication-title: J. Comput. Phys.
– volume: 333
  start-page: 75
  year: 1909
  end-page: 130
  ident: bib16
  article-title: Die gesetze der molekularstrmung und der inneren reibungsstrmung der gase durch rhren
  publication-title: Ann. Phys.
– volume: 333
  start-page: 75
  year: 1909
  ident: 10.1016/j.jcp.2009.10.008_bib16
  article-title: Die gesetze der molekularstrmung und der inneren reibungsstrmung der gase durch rhren
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19093330106
– year: 1994
  ident: 10.1016/j.jcp.2009.10.008_bib5
– volume: 27
  start-page: 1081
  year: 1998
  ident: 10.1016/j.jcp.2009.10.008_bib26
  article-title: PDF calculations of major and minor species in a turbulent piloted jet flame
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/S0082-0784(98)80509-2
– volume: 1
  start-page: 2042
  year: 1989
  ident: 10.1016/j.jcp.2009.10.008_bib23
  article-title: Numerical analysis of the poiseuille and thermal transpiration flows between two parallel plates on the basis of the boltzmann equation for hard spheres molecules
  publication-title: Phys. Fluids A
  doi: 10.1063/1.857478
– year: 1988
  ident: 10.1016/j.jcp.2009.10.008_bib6
– year: 2003
  ident: 10.1016/j.jcp.2009.10.008_bib9
– volume: 21
  start-page: 2050
  issue: 11
  year: 1953
  ident: 10.1016/j.jcp.2009.10.008_bib33
  article-title: The statistical mechanical theory of transport processes. 6. A calculation of the coefficients of shear and bulk viscosity of liquids
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1698741
– volume: 3
  start-page: 325
  issue: 3
  year: 1960
  ident: 10.1016/j.jcp.2009.10.008_bib17
  article-title: Nonequilibrium distribution functions in a fluid
  publication-title: Phys. Fluids
  doi: 10.1063/1.1706037
– volume: 22
  start-page: 783
  issue: 5
  year: 1954
  ident: 10.1016/j.jcp.2009.10.008_bib32
  article-title: The statistical mechanical theory of transport processes. 7. The coefficients of thermal conductivity of monatomic liquids
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1740193
– year: 2006
  ident: 10.1016/j.jcp.2009.10.008_bib25
  article-title: A multiblock joint pdf finite-volume hybrid algorithm for the computation of turbulent flows in complex geometries
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.05.002
– volume: 21
  start-page: 99
  issue: 2
  year: 2007
  ident: 10.1016/j.jcp.2009.10.008_bib11
  article-title: Unified turbulence models for LES and RANS, FDF and PDF simulations
  publication-title: Theor. Comp. Fluid Dyn.
  doi: 10.1007/s00162-006-0036-8
– volume: 165
  start-page: 270
  issue: 2
  year: 1990
  ident: 10.1016/j.jcp.2009.10.008_bib3
  article-title: From stochastic processes to the hydrodynamic equations
  publication-title: Physica A
  doi: 10.1016/0378-4371(90)90195-X
– volume: 26
  start-page: 272
  year: 1996
  ident: 10.1016/j.jcp.2009.10.008_bib22
  article-title: Monte Carlo PDF simulation of a turbulent natural-gas diffusion flame
  publication-title: Proc. Combust. Inst.
– year: 2005
  ident: 10.1016/j.jcp.2009.10.008_bib27
– year: 2001
  ident: 10.1016/j.jcp.2009.10.008_bib29
– volume: 70
  start-page: 036308
  issue: 3
  year: 2004
  ident: 10.1016/j.jcp.2009.10.008_bib10
  article-title: Molecular to fluid dynamics: the consequences of stochastic molecular motion
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.036308
– volume: 94
  start-page: 511
  year: 1954
  ident: 10.1016/j.jcp.2009.10.008_bib4
  article-title: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.94.511
– volume: 169
  start-page: 1
  issue: 1
  year: 2001
  ident: 10.1016/j.jcp.2009.10.008_bib12
  article-title: Pdf simulations of a bluff-body stabilized flow
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6704
– volume: 81
  start-page: 13
  issue: 1
  year: 1990
  ident: 10.1016/j.jcp.2009.10.008_bib18
  article-title: PDF calculations of piloted turbulent non-premixed flames of methane
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(90)90066-Z
– volume: 15
  start-page: 2668
  year: 2003
  ident: 10.1016/j.jcp.2009.10.008_bib28
  article-title: Regularization of Grad’s 13-moment-equations: derivation and linear analysis
  publication-title: Phys. Fluids
  doi: 10.1063/1.1597472
– ident: 10.1016/j.jcp.2009.10.008_bib8
– ident: 10.1016/j.jcp.2009.10.008_bib21
– volume: 14
  start-page: 180
  issue: 3
  year: 1946
  ident: 10.1016/j.jcp.2009.10.008_bib14
  article-title: The statistical mechanical theory of transport processes. 1. General theory
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1724117
– volume: 162
  start-page: 429
  year: 2000
  ident: 10.1016/j.jcp.2009.10.008_bib20
  article-title: Discrete-velocity models and numerical schemes for the Boltzmann–BGK equation in plane and axisymmetric geometries
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6548
– volume: 17
  start-page: 988
  issue: 10
  year: 1949
  ident: 10.1016/j.jcp.2009.10.008_bib15
  article-title: The statistical mechanical theory of transport processes. 3. The coefficients of shear and bulk viscosity of liquids
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1747099
– volume: 9
  start-page: 2704
  issue: 9
  year: 1997
  ident: 10.1016/j.jcp.2009.10.008_bib7
  article-title: Application of PDF methods to compressible turbulent flows
  publication-title: Phys. Fluids
  doi: 10.1063/1.869382
– volume: 226
  issue: 2
  year: 2007
  ident: 10.1016/j.jcp.2009.10.008_bib19
  article-title: Consistent inflow and outflow boundary conditions for transported probability density function methods
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.06.014
– volume: 35
  start-page: 1143
  issue: 7
  year: 1997
  ident: 10.1016/j.jcp.2009.10.008_bib2
  article-title: Calculations of swirl combustors using joint velocity-scalar probability density function method
  publication-title: AIAA J.
  doi: 10.2514/2.237
– volume: 166
  start-page: 218
  issue: 2
  year: 2001
  ident: 10.1016/j.jcp.2009.10.008_bib13
  article-title: A hybrid algorithm for the joint pdf equation of turbulent reactive flows
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6646
– year: 2000
  ident: 10.1016/j.jcp.2009.10.008_bib24
– volume: 47
  issue: 7
  year: 2009
  ident: 10.1016/j.jcp.2009.10.008_bib1
  article-title: Hybrid continuum/molecular simulations of transient gas flows with rarefaction
  publication-title: AIAA J.
  doi: 10.2514/1.42111
– year: 2000
  ident: 10.1016/j.jcp.2009.10.008_bib31
– volume: 227
  start-page: 1982
  year: 2008
  ident: 10.1016/j.jcp.2009.10.008_bib30
  article-title: Boundary conditions for regularized 13-moment-equations for micro-channel-flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.10.006
SSID ssj0008548
Score 2.3552806
Snippet In this paper, a stochastic model is presented to simulate the flow of gases, which are not in thermodynamic equilibrium, like in rarefied or micro situations....
SourceID osti
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 1077
SubjectTerms ALGORITHMS
APPROXIMATIONS
Boltzman equation
BOLTZMANN EQUATION
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computational techniques
Exact sciences and technology
FOKKER-PLANCK EQUATION
Kinetic gas theory
Mathematical methods in physics
MATHEMATICAL SOLUTIONS
MOLECULAR DYNAMICS METHOD
MONTE CARLO METHOD
NAVIER-STOKES EQUATIONS
NUMERICAL ANALYSIS
PDF methods
Physics
SIMULATION
Stochastic differential equations
STOCHASTIC PROCESSES
Title A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion
URI https://dx.doi.org/10.1016/j.jcp.2009.10.008
https://www.osti.gov/biblio/21333928
Volume 229
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier E-journals (Freedom Collection)
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AKRWK
  dateStart: 19660801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYgLCy8EY9SeWBCCk2T2MRjVYEKSJ1AYov8CqTqC5qu_HbuYqeiAx1YnVxine27z_Ln-wi51gmDCKCj0MTKhqmAJSVZwUMdMRVDwo0SU1f7HPLBa_r0xt62SL-5C4O0Sh_7XUyvo7Vv6XhvduZliXd8Y7xDj8zCiDG8S70D-SfLArLTe3weDFcBOWOpC8jIRgCD5nCzpnmNtK9aWXO8sr_SUzCDFYfESbkA3xVO9OJXJno4IHseQtKe6-Uh2bLTI7Lv4ST1i3VxTGyPNhOLyvH77KusPiYUQCoF0EeL8bI01DhBemo_XcnvBcW0ZiiaUMCF-kNiIWdaC-bUtpNGT5c6AaAT8vpw_9IfhF5VIYRxYVWotUkTLVRq77iNrZIFYLRIykwJhUpWJuaC6yJJFWAlq7BClyp4EgmVsUJLm5ySYDqb2jNCs1gw04VvcKZSI6QQDE8mGRcm0ozrcxI1zsy1LzmOyhfjvOGWjXLwP0phCmwC_5-Tm5XJ3NXb2PRy2oxQvjZpcsgHm8xaOJpogoVyNTKKwCaG7TqgRXjcXhvlVT8g9OH2Ulz877eXZNdRD2IITS0SVF9LewWIplJtsn373W37efsDSRj1DQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGWDhjXjjgQkpNDi2iUeEQOU5tVK3yK_QVqUFWlZ-O3exA3SgA2viS6yzffdZ_nwfISc2ExABbJo4ZnzCFSwpLUqZ2FQYBgk3zVxV7fNJtjr8riu6C-SqvguDtMoY-0NMr6J1fNKM3my-9vt4x5fhHXpkFqZC4F3qRS7YBe7Azj5_eB654CEcIxcBmtdHmxXJa2BjzcqK4ZX_lZwaY1hvSJvUE_BcGSQvfuWhmzWyEgEkvQx9XCcLfrRBViOYpHGpTjaJv6T1tKJ6-Dx-7097LxQgKgXIR8vhR99RF-ToqX8LBb8nFJOao2hCARXansYyzrSSy6lsX2o1XRrkf7ZI5-a6fdVKoqZCAqMipom1jmdWGe4vpGfe6BIQWqp1bpRBHSvHpJK2zLgBpOQN1ucypcxSZXJRWu2zbdIYjUd-h9CcKeHO4RtSGO6UVkrguaSQyqVWSLtL0tqZhY0Fx1H3YljUzLJBAf5HIUyFj8D_u-T02-Q1VNuY15jXI1TMTJkCssE8swMcTTTBMrkW-URgw2CzDlgRXh_NjPJ3PyDw4eZS7f3vt8dkqdV-fCgebp_u98lyICEwCFIHpDF9__CHgG2m5qiau19TjvXV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+solution+algorithm+for+the+fluid+dynamic+equations+based+on+a+stochastic+model+for+molecular+motion&rft.jtitle=Journal+of+computational+physics&rft.au=Jenny%2C+Patrick&rft.au=Torrilhon%2C+Manuel&rft.au=Heinz%2C+Stefan&rft.date=2010-02-20&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=229&rft.issue=4&rft_id=info:doi/10.1016%2Fj.jcp.2009.10.008&rft.externalDocID=21333928
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon