A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion
In this paper, a stochastic model is presented to simulate the flow of gases, which are not in thermodynamic equilibrium, like in rarefied or micro situations. For the interaction of a particle with others, statistical moments of the local ensemble have to be evaluated, but unlike in molecular dynam...
Saved in:
| Published in | Journal of computational physics Vol. 229; no. 4; pp. 1077 - 1098 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Kidlington
Elsevier Inc
20.02.2010
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9991 1090-2716 |
| DOI | 10.1016/j.jcp.2009.10.008 |
Cover
| Abstract | In this paper, a stochastic model is presented to simulate the flow of gases, which are not in thermodynamic equilibrium, like in rarefied or micro situations. For the interaction of a particle with others, statistical moments of the local ensemble have to be evaluated, but unlike in molecular dynamics simulations or DSMC, no collisions between computational particles are considered. In addition, a novel integration technique allows for time steps independent of the stochastic time scale.
The stochastic model represents a Fokker–Planck equation in the kinetic description, which can be viewed as an approximation to the Boltzmann equation. This allows for a rigorous investigation of the relation between the new model and classical fluid and kinetic equations. The fluid dynamic equations of Navier–Stokes and Fourier are fully recovered for small relaxation times, while for larger values the new model extents into the kinetic regime.
Numerical studies demonstrate that the stochastic model is consistent with Navier–Stokes in that limit, but also that the results become significantly different, if the conditions for equilibrium are invalid. The application to the Knudsen paradox demonstrates the correctness and relevance of this development, and comparisons with existing kinetic equations and standard solution algorithms reveal its advantages. Moreover, results of a test case with geometrically complex boundaries are presented. |
|---|---|
| AbstractList | In this paper, a stochastic model is presented to simulate the flow of gases, which are not in thermodynamic equilibrium, like in rarefied or micro situations. For the interaction of a particle with others, statistical moments of the local ensemble have to be evaluated, but unlike in molecular dynamics simulations or DSMC, no collisions between computational particles are considered. In addition, a novel integration technique allows for time steps independent of the stochastic time scale. The stochastic model represents a Fokker-Planck equation in the kinetic description, which can be viewed as an approximation to the Boltzmann equation. This allows for a rigorous investigation of the relation between the new model and classical fluid and kinetic equations. The fluid dynamic equations of Navier-Stokes and Fourier are fully recovered for small relaxation times, while for larger values the new model extents into the kinetic regime. Numerical studies demonstrate that the stochastic model is consistent with Navier-Stokes in that limit, but also that the results become significantly different, if the conditions for equilibrium are invalid. The application to the Knudsen paradox demonstrates the correctness and relevance of this development, and comparisons with existing kinetic equations and standard solution algorithms reveal its advantages. Moreover, results of a test case with geometrically complex boundaries are presented. In this paper, a stochastic model is presented to simulate the flow of gases, which are not in thermodynamic equilibrium, like in rarefied or micro situations. For the interaction of a particle with others, statistical moments of the local ensemble have to be evaluated, but unlike in molecular dynamics simulations or DSMC, no collisions between computational particles are considered. In addition, a novel integration technique allows for time steps independent of the stochastic time scale. The stochastic model represents a Fokker–Planck equation in the kinetic description, which can be viewed as an approximation to the Boltzmann equation. This allows for a rigorous investigation of the relation between the new model and classical fluid and kinetic equations. The fluid dynamic equations of Navier–Stokes and Fourier are fully recovered for small relaxation times, while for larger values the new model extents into the kinetic regime. Numerical studies demonstrate that the stochastic model is consistent with Navier–Stokes in that limit, but also that the results become significantly different, if the conditions for equilibrium are invalid. The application to the Knudsen paradox demonstrates the correctness and relevance of this development, and comparisons with existing kinetic equations and standard solution algorithms reveal its advantages. Moreover, results of a test case with geometrically complex boundaries are presented. |
| Author | Torrilhon, Manuel Heinz, Stefan Jenny, Patrick |
| Author_xml | – sequence: 1 givenname: Patrick surname: Jenny fullname: Jenny, Patrick email: jenny@ifd.mavt.ethz.ch organization: Institute of Fluid Dynamics, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland – sequence: 2 givenname: Manuel surname: Torrilhon fullname: Torrilhon, Manuel organization: Seminar for Applied Mathematics, ETH Zurich, Rämistrasse 101, CH-8092 Zurich, Switzerland – sequence: 3 givenname: Stefan surname: Heinz fullname: Heinz, Stefan organization: Department of Mathematics, University of Wyoming, 1000 East University Avenue, Laramie, WY 82071, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22587169$$DView record in Pascal Francis https://www.osti.gov/biblio/21333928$$D View this record in Osti.gov |
| BookMark | eNp9kE1vVCEUhompidPqD3BHYlzekY_7RVw1jVWTJm50TeDcg8OEexmBMem_Fzq6cdEVcHifkzfPNbna4oaEvOVszxkfPxz3RzjtBWOqvveMzS_IjjPFOjHx8YrsGBO8U0rxV-Q65yOriaGfdwRvaY7hXHzcqAk_Y_LlsFIXEy0HpC6c_UKXx82sHij-OpsWzNSajAttCM0lwsHkUv_XuGB4YtcYEM7BtFsjXpOXzoSMb_6eN-TH_afvd1-6h2-fv97dPnQgh6F0AEsvQdkepxEFWuMGNjNjZqssE2paxKhGcLK3YuzRDhOT1o2SKTsPDgzKG_LusjfWQjqDLwgHiNuGULTgUkol5pp6f0mdTAYTXDIb-KxPya8mPWohhrlKUzU3XXKQYs4Jna4LnwyUZHzQnOnmXh91da-b-zaqZivJ_yP_LX-O-XhhsAr67TG1_rgBLj61-kv0z9B_APx2n7g |
| CODEN | JCTPAH |
| CitedBy_id | crossref_primary_10_1186_s42774_021_00069_8 crossref_primary_10_1063_1_5004409 crossref_primary_10_1016_j_physrep_2022_10_004 crossref_primary_10_1017_jfm_2024_342 crossref_primary_10_1016_j_cpc_2022_108607 crossref_primary_10_1063_5_0247494 crossref_primary_10_1016_j_jcp_2016_10_018 crossref_primary_10_1016_j_jcp_2015_01_041 crossref_primary_10_1016_j_cam_2012_07_014 crossref_primary_10_1016_j_vacuum_2018_10_028 crossref_primary_10_1063_1_5097645 crossref_primary_10_1063_1_5097884 crossref_primary_10_1016_j_jcp_2019_108972 crossref_primary_10_1186_s42774_024_00188_y crossref_primary_10_2514_1_J057935 crossref_primary_10_1016_j_jcp_2019_108977 crossref_primary_10_1017_jfm_2011_374 crossref_primary_10_1017_jfm_2022_350 crossref_primary_10_1016_j_euromechflu_2021_02_006 crossref_primary_10_3390_fluids9110255 crossref_primary_10_1186_s42774_023_00138_0 crossref_primary_10_1080_00036811_2018_1434154 crossref_primary_10_1016_j_jcp_2021_110542 crossref_primary_10_1063_5_0106154 crossref_primary_10_1016_j_jcp_2024_112940 crossref_primary_10_1016_j_vacuum_2020_109736 crossref_primary_10_2139_ssrn_4148310 crossref_primary_10_1016_j_jcp_2024_113353 crossref_primary_10_1063_5_0030548 crossref_primary_10_1103_PhysRevE_86_036318 crossref_primary_10_1016_j_compfluid_2018_08_028 crossref_primary_10_1007_s10955_015_1404_9 crossref_primary_10_1007_s10955_017_1837_4 crossref_primary_10_1103_PhysRevE_96_043104 crossref_primary_10_1063_5_0090362 crossref_primary_10_1016_j_cpc_2024_109323 crossref_primary_10_1016_j_jcp_2022_111640 crossref_primary_10_1016_j_jcp_2024_113066 crossref_primary_10_1016_j_jcp_2019_02_040 crossref_primary_10_1016_j_jcp_2020_109638 crossref_primary_10_1063_1_5097902 crossref_primary_10_1063_5_0100633 crossref_primary_10_2514_1_J059029 crossref_primary_10_1016_j_jcp_2024_113458 crossref_primary_10_4208_cicp_OA_2016_0134 crossref_primary_10_1088_1742_6596_1168_3_032037 crossref_primary_10_1016_j_cpc_2016_11_003 crossref_primary_10_1186_s42774_020_00045_8 crossref_primary_10_1016_j_vacuum_2019_109065 crossref_primary_10_1016_j_jcp_2013_03_012 crossref_primary_10_1103_PhysRevE_85_041202 crossref_primary_10_2139_ssrn_4108990 crossref_primary_10_1063_1_5116206 crossref_primary_10_1016_j_jcp_2012_05_025 crossref_primary_10_1016_j_jcp_2024_112915 crossref_primary_10_1186_s42774_019_0014_7 crossref_primary_10_1017_jfm_2021_461 crossref_primary_10_1103_PhysRevE_102_013304 crossref_primary_10_1063_5_0055632 crossref_primary_10_1007_s10483_018_2258_9 crossref_primary_10_1016_j_physa_2014_12_022 crossref_primary_10_1063_1_4811399 crossref_primary_10_1016_j_compfluid_2024_106456 crossref_primary_10_1016_j_jcp_2013_12_046 crossref_primary_10_1016_j_advengsoft_2022_103291 crossref_primary_10_1016_j_compfluid_2018_04_034 crossref_primary_10_1016_j_jcp_2020_109858 crossref_primary_10_1016_j_cpc_2022_108303 crossref_primary_10_1016_j_ijheatmasstransfer_2016_07_002 crossref_primary_10_1103_PhysRevE_87_013014 crossref_primary_10_1016_j_jcp_2023_112128 crossref_primary_10_1103_PhysRevE_94_063307 crossref_primary_10_1016_j_jcp_2023_112400 crossref_primary_10_1016_j_jcp_2018_02_049 crossref_primary_10_1016_j_jcp_2023_112402 crossref_primary_10_1063_1_5141909 crossref_primary_10_1016_j_ijengsci_2013_03_009 crossref_primary_10_1103_PhysRevE_91_033303 crossref_primary_10_1063_5_0247155 crossref_primary_10_1017_jfm_2011_188 crossref_primary_10_1063_5_0143195 crossref_primary_10_1134_S2070048214030041 crossref_primary_10_1007_s10409_022_22123_x crossref_primary_10_1016_j_jcp_2020_110034 crossref_primary_10_1016_j_physa_2015_07_003 crossref_primary_10_1016_j_jcp_2015_04_008 crossref_primary_10_1016_j_jcp_2016_08_008 crossref_primary_10_1016_j_physa_2022_127386 crossref_primary_10_1016_j_compfluid_2018_03_059 crossref_primary_10_1016_j_physa_2014_06_012 crossref_primary_10_1063_5_0017289 crossref_primary_10_1063_5_0258301 crossref_primary_10_1016_j_jcp_2023_112308 crossref_primary_10_1063_5_0244428 crossref_primary_10_1063_1_5098085 crossref_primary_10_1016_j_jcp_2018_11_005 crossref_primary_10_1016_j_jcp_2022_111677 |
| Cites_doi | 10.1002/andp.19093330106 10.1016/S0082-0784(98)80509-2 10.1063/1.857478 10.1063/1.1698741 10.1063/1.1706037 10.1063/1.1740193 10.1016/j.jcp.2006.05.002 10.1007/s00162-006-0036-8 10.1016/0378-4371(90)90195-X 10.1103/PhysRevE.70.036308 10.1103/PhysRev.94.511 10.1006/jcph.2001.6704 10.1016/0010-2180(90)90066-Z 10.1063/1.1597472 10.1063/1.1724117 10.1006/jcph.2000.6548 10.1063/1.1747099 10.1063/1.869382 10.1016/j.jcp.2007.06.014 10.2514/2.237 10.1006/jcph.2000.6646 10.2514/1.42111 10.1016/j.jcp.2007.10.006 |
| ContentType | Journal Article |
| Copyright | 2009 Elsevier Inc. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2009 Elsevier Inc. – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW OTOTI |
| DOI | 10.1016/j.jcp.2009.10.008 |
| DatabaseName | CrossRef Pascal-Francis OSTI.GOV |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Physics |
| EISSN | 1090-2716 |
| EndPage | 1098 |
| ExternalDocumentID | 21333928 22587169 10_1016_j_jcp_2009_10_008 S0021999109005531 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6OB 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADIYS ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SHN SPC SPCBC SPD SPG SSQ SSV SSZ T5K T9H TN5 UPT UQL WUQ XFK YQT ZMT ZU3 ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH AALMO ABPIF ABPTK ABQIS EFJIC OTOTI |
| ID | FETCH-LOGICAL-c355t-ccd43c9b4e76e2ebaf5080aa8b9b0297d2696cf34b264eb5703bf6309b85fcae3 |
| IEDL.DBID | AIKHN |
| ISSN | 0021-9991 |
| IngestDate | Fri May 19 00:38:28 EDT 2023 Mon Jul 21 09:14:11 EDT 2025 Wed Oct 01 05:12:28 EDT 2025 Thu Apr 24 23:12:48 EDT 2025 Fri Feb 23 02:29:12 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Kinetic gas theory Boltzman equation Monte-Carlo method Stochastic differential equations Fokker–Planck equation PDF methods Stochastic model Boltzmann equation Fluid dynamics Statistical moment Digital simulation Molecular dynamics Fokker-Planck equation Thermodynamic equilibrium Relaxation time Calculation methods Monte Carlo methods Algorithms Kinetic equations Differential equations Calculation Kinetic theory Stochastic equation |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c355t-ccd43c9b4e76e2ebaf5080aa8b9b0297d2696cf34b264eb5703bf6309b85fcae3 |
| PageCount | 22 |
| ParticipantIDs | osti_scitechconnect_21333928 pascalfrancis_primary_22587169 crossref_citationtrail_10_1016_j_jcp_2009_10_008 crossref_primary_10_1016_j_jcp_2009_10_008 elsevier_sciencedirect_doi_10_1016_j_jcp_2009_10_008 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2010-02-20 |
| PublicationDateYYYYMMDD | 2010-02-20 |
| PublicationDate_xml | – month: 02 year: 2010 text: 2010-02-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington – name: United States |
| PublicationTitle | Journal of computational physics |
| PublicationYear | 2010 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Heinz (bib9) 2003 Nooren, Wouters, J Peeters, Roekaerts, Maas, Schmidt (bib22) 1996; 26 Knudsen (bib16) 1909; 333 Lebowitz, Frisch, Helfand (bib17) 1960; 3 Torrilhon, Struchtrup (bib30) 2008; 227 J.-P. Minier, J. Pozorski, Analysis of a PDF model in a mixing layer case, in: Tenth Symposium on Turbulent Shear Flows, 1995, 26.25–26.30. Struchtrup, Torrilhon (bib28) 2003; 15 Zwanzig, Kirkwood, Stripp, Oppenheim (bib33) 1953; 21 Bird (bib5) 1994 Beck, Roepstorff (bib3) 1990; 165 Meyer, Jenny (bib19) 2007; 226 Ohwada, Sone, Aoki (bib23) 1989; 1 Succi (bib29) 2001 Pope (bib24) 2000 Jenny, Muradoglu, Liu, Pope, Caughey (bib12) 2001; 169 Abbate, Kleijn, Thijsse (bib1) 2009; 47 Kirkwood (bib14) 1946; 14 Rembold, Jenny (bib25) 2006 Heinz (bib10) 2004; 70 Mieussens (bib20) 2000; 162 Bhatnagar, Gross, Krook (bib4) 1954; 94 Zwanzig, Kirkwood, Oppenheim, Alder (bib32) 1954; 22 Delarue, Pope (bib7) 1997; 9 Cercignani (bib6) 1988 Wolf-Gladrow (bib31) 2000 Kirkwood, Buff, Green (bib15) 1949; 17 W. Dong, From stochastic processes to the hydrodynamic equations, University of California Report No. UCRL-3353, 1956. Struchtrup (bib27) 2005 Masri, Pope (bib18) 1990; 81 Heinz (bib11) 2007; 21 Anand, Hsu, Pope (bib2) 1997; 35 Jenny, Pope, Muradoglu, Caughey (bib13) 2001; 166 Saxena, Pope (bib26) 1998; 27 Struchtrup (10.1016/j.jcp.2009.10.008_bib28) 2003; 15 Zwanzig (10.1016/j.jcp.2009.10.008_bib33) 1953; 21 Lebowitz (10.1016/j.jcp.2009.10.008_bib17) 1960; 3 10.1016/j.jcp.2009.10.008_bib8 Pope (10.1016/j.jcp.2009.10.008_bib24) 2000 Saxena (10.1016/j.jcp.2009.10.008_bib26) 1998; 27 Torrilhon (10.1016/j.jcp.2009.10.008_bib30) 2008; 227 Heinz (10.1016/j.jcp.2009.10.008_bib11) 2007; 21 Masri (10.1016/j.jcp.2009.10.008_bib18) 1990; 81 Succi (10.1016/j.jcp.2009.10.008_bib29) 2001 Abbate (10.1016/j.jcp.2009.10.008_bib1) 2009; 47 Cercignani (10.1016/j.jcp.2009.10.008_bib6) 1988 Rembold (10.1016/j.jcp.2009.10.008_bib25) 2006 Knudsen (10.1016/j.jcp.2009.10.008_bib16) 1909; 333 Bhatnagar (10.1016/j.jcp.2009.10.008_bib4) 1954; 94 Heinz (10.1016/j.jcp.2009.10.008_bib9) 2003 Jenny (10.1016/j.jcp.2009.10.008_bib12) 2001; 169 Kirkwood (10.1016/j.jcp.2009.10.008_bib15) 1949; 17 Jenny (10.1016/j.jcp.2009.10.008_bib13) 2001; 166 Nooren (10.1016/j.jcp.2009.10.008_bib22) 1996; 26 Beck (10.1016/j.jcp.2009.10.008_bib3) 1990; 165 10.1016/j.jcp.2009.10.008_bib21 Zwanzig (10.1016/j.jcp.2009.10.008_bib32) 1954; 22 Struchtrup (10.1016/j.jcp.2009.10.008_bib27) 2005 Bird (10.1016/j.jcp.2009.10.008_bib5) 1994 Ohwada (10.1016/j.jcp.2009.10.008_bib23) 1989; 1 Anand (10.1016/j.jcp.2009.10.008_bib2) 1997; 35 Wolf-Gladrow (10.1016/j.jcp.2009.10.008_bib31) 2000 Heinz (10.1016/j.jcp.2009.10.008_bib10) 2004; 70 Kirkwood (10.1016/j.jcp.2009.10.008_bib14) 1946; 14 Delarue (10.1016/j.jcp.2009.10.008_bib7) 1997; 9 Meyer (10.1016/j.jcp.2009.10.008_bib19) 2007; 226 Mieussens (10.1016/j.jcp.2009.10.008_bib20) 2000; 162 |
| References_xml | – volume: 94 start-page: 511 year: 1954 end-page: 525 ident: bib4 article-title: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems publication-title: Phys. Rev. – volume: 70 start-page: 036308 year: 2004 ident: bib10 article-title: Molecular to fluid dynamics: the consequences of stochastic molecular motion publication-title: Phys. Rev. E – year: 2003 ident: bib9 article-title: Statistical Mechanics of Turbulent Flows – volume: 1 start-page: 2042 year: 1989 end-page: 2049 ident: bib23 article-title: Numerical analysis of the poiseuille and thermal transpiration flows between two parallel plates on the basis of the boltzmann equation for hard spheres molecules publication-title: Phys. Fluids A – volume: 81 start-page: 13 year: 1990 end-page: 29 ident: bib18 article-title: PDF calculations of piloted turbulent non-premixed flames of methane publication-title: Combust. Flame – volume: 162 start-page: 429 year: 2000 ident: bib20 article-title: Discrete-velocity models and numerical schemes for the Boltzmann–BGK equation in plane and axisymmetric geometries publication-title: J. Comput. Phys. – volume: 27 start-page: 1081 year: 1998 end-page: 1086 ident: bib26 article-title: PDF calculations of major and minor species in a turbulent piloted jet flame publication-title: Proc. Combust. Inst. – volume: 22 start-page: 783 year: 1954 end-page: 790 ident: bib32 article-title: The statistical mechanical theory of transport processes. 7. The coefficients of thermal conductivity of monatomic liquids publication-title: J. Chem. Phys. – year: 2005 ident: bib27 article-title: Macroscopic Transport Equations for Rarefied Gas Flows – volume: 9 start-page: 2704 year: 1997 end-page: 2715 ident: bib7 article-title: Application of PDF methods to compressible turbulent flows publication-title: Phys. Fluids – volume: 15 start-page: 2668 year: 2003 end-page: 2680 ident: bib28 article-title: Regularization of Grad’s 13-moment-equations: derivation and linear analysis publication-title: Phys. Fluids – volume: 227 start-page: 1982 year: 2008 end-page: 2011 ident: bib30 article-title: Boundary conditions for regularized 13-moment-equations for micro-channel-flows publication-title: J. Comput. Phys. – volume: 166 start-page: 218 year: 2001 end-page: 252 ident: bib13 article-title: A hybrid algorithm for the joint pdf equation of turbulent reactive flows publication-title: J. Comput. Phys. – volume: 3 start-page: 325 year: 1960 end-page: 338 ident: bib17 article-title: Nonequilibrium distribution functions in a fluid publication-title: Phys. Fluids – volume: 14 start-page: 180 year: 1946 end-page: 201 ident: bib14 article-title: The statistical mechanical theory of transport processes. 1. General theory publication-title: J. Chem. Phys. – volume: 47 year: 2009 ident: bib1 article-title: Hybrid continuum/molecular simulations of transient gas flows with rarefaction publication-title: AIAA J. – year: 2000 ident: bib24 article-title: Turbulent Flows – volume: 21 start-page: 99 year: 2007 end-page: 118 ident: bib11 article-title: Unified turbulence models for LES and RANS, FDF and PDF simulations publication-title: Theor. Comp. Fluid Dyn. – volume: 165 start-page: 270 year: 1990 end-page: 278 ident: bib3 article-title: From stochastic processes to the hydrodynamic equations publication-title: Physica A – reference: W. Dong, From stochastic processes to the hydrodynamic equations, University of California Report No. UCRL-3353, 1956. – volume: 35 start-page: 1143 year: 1997 end-page: 1150 ident: bib2 article-title: Calculations of swirl combustors using joint velocity-scalar probability density function method publication-title: AIAA J. – reference: J.-P. Minier, J. Pozorski, Analysis of a PDF model in a mixing layer case, in: Tenth Symposium on Turbulent Shear Flows, 1995, 26.25–26.30. – volume: 169 start-page: 1 year: 2001 end-page: 23 ident: bib12 article-title: Pdf simulations of a bluff-body stabilized flow publication-title: J. Comput. Phys. – volume: 26 start-page: 272 year: 1996 ident: bib22 article-title: Monte Carlo PDF simulation of a turbulent natural-gas diffusion flame publication-title: Proc. Combust. Inst. – year: 1994 ident: bib5 article-title: Molecular Gas Dynamics and the Direct Simulation of Gas Flows – volume: 17 start-page: 988 year: 1949 end-page: 994 ident: bib15 article-title: The statistical mechanical theory of transport processes. 3. The coefficients of shear and bulk viscosity of liquids publication-title: J. Chem. Phys. – volume: 21 start-page: 2050 year: 1953 end-page: 2055 ident: bib33 article-title: The statistical mechanical theory of transport processes. 6. A calculation of the coefficients of shear and bulk viscosity of liquids publication-title: J. Chem. Phys. – year: 2001 ident: bib29 article-title: The Lattice Boltzmann Equation – year: 2000 ident: bib31 article-title: Lattice Gas Cellular Automata and Lattice Boltzmann Models – year: 1988 ident: bib6 article-title: The Boltzmann Equation and its Application – volume: 226 year: 2007 ident: bib19 article-title: Consistent inflow and outflow boundary conditions for transported probability density function methods publication-title: J. Comput. Phys. – year: 2006 ident: bib25 article-title: A multiblock joint pdf finite-volume hybrid algorithm for the computation of turbulent flows in complex geometries publication-title: J. Comput. Phys. – volume: 333 start-page: 75 year: 1909 end-page: 130 ident: bib16 article-title: Die gesetze der molekularstrmung und der inneren reibungsstrmung der gase durch rhren publication-title: Ann. Phys. – volume: 333 start-page: 75 year: 1909 ident: 10.1016/j.jcp.2009.10.008_bib16 article-title: Die gesetze der molekularstrmung und der inneren reibungsstrmung der gase durch rhren publication-title: Ann. Phys. doi: 10.1002/andp.19093330106 – year: 1994 ident: 10.1016/j.jcp.2009.10.008_bib5 – volume: 27 start-page: 1081 year: 1998 ident: 10.1016/j.jcp.2009.10.008_bib26 article-title: PDF calculations of major and minor species in a turbulent piloted jet flame publication-title: Proc. Combust. Inst. doi: 10.1016/S0082-0784(98)80509-2 – volume: 1 start-page: 2042 year: 1989 ident: 10.1016/j.jcp.2009.10.008_bib23 article-title: Numerical analysis of the poiseuille and thermal transpiration flows between two parallel plates on the basis of the boltzmann equation for hard spheres molecules publication-title: Phys. Fluids A doi: 10.1063/1.857478 – year: 1988 ident: 10.1016/j.jcp.2009.10.008_bib6 – year: 2003 ident: 10.1016/j.jcp.2009.10.008_bib9 – volume: 21 start-page: 2050 issue: 11 year: 1953 ident: 10.1016/j.jcp.2009.10.008_bib33 article-title: The statistical mechanical theory of transport processes. 6. A calculation of the coefficients of shear and bulk viscosity of liquids publication-title: J. Chem. Phys. doi: 10.1063/1.1698741 – volume: 3 start-page: 325 issue: 3 year: 1960 ident: 10.1016/j.jcp.2009.10.008_bib17 article-title: Nonequilibrium distribution functions in a fluid publication-title: Phys. Fluids doi: 10.1063/1.1706037 – volume: 22 start-page: 783 issue: 5 year: 1954 ident: 10.1016/j.jcp.2009.10.008_bib32 article-title: The statistical mechanical theory of transport processes. 7. The coefficients of thermal conductivity of monatomic liquids publication-title: J. Chem. Phys. doi: 10.1063/1.1740193 – year: 2006 ident: 10.1016/j.jcp.2009.10.008_bib25 article-title: A multiblock joint pdf finite-volume hybrid algorithm for the computation of turbulent flows in complex geometries publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.05.002 – volume: 21 start-page: 99 issue: 2 year: 2007 ident: 10.1016/j.jcp.2009.10.008_bib11 article-title: Unified turbulence models for LES and RANS, FDF and PDF simulations publication-title: Theor. Comp. Fluid Dyn. doi: 10.1007/s00162-006-0036-8 – volume: 165 start-page: 270 issue: 2 year: 1990 ident: 10.1016/j.jcp.2009.10.008_bib3 article-title: From stochastic processes to the hydrodynamic equations publication-title: Physica A doi: 10.1016/0378-4371(90)90195-X – volume: 26 start-page: 272 year: 1996 ident: 10.1016/j.jcp.2009.10.008_bib22 article-title: Monte Carlo PDF simulation of a turbulent natural-gas diffusion flame publication-title: Proc. Combust. Inst. – year: 2005 ident: 10.1016/j.jcp.2009.10.008_bib27 – year: 2001 ident: 10.1016/j.jcp.2009.10.008_bib29 – volume: 70 start-page: 036308 issue: 3 year: 2004 ident: 10.1016/j.jcp.2009.10.008_bib10 article-title: Molecular to fluid dynamics: the consequences of stochastic molecular motion publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.70.036308 – volume: 94 start-page: 511 year: 1954 ident: 10.1016/j.jcp.2009.10.008_bib4 article-title: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems publication-title: Phys. Rev. doi: 10.1103/PhysRev.94.511 – volume: 169 start-page: 1 issue: 1 year: 2001 ident: 10.1016/j.jcp.2009.10.008_bib12 article-title: Pdf simulations of a bluff-body stabilized flow publication-title: J. Comput. Phys. doi: 10.1006/jcph.2001.6704 – volume: 81 start-page: 13 issue: 1 year: 1990 ident: 10.1016/j.jcp.2009.10.008_bib18 article-title: PDF calculations of piloted turbulent non-premixed flames of methane publication-title: Combust. Flame doi: 10.1016/0010-2180(90)90066-Z – volume: 15 start-page: 2668 year: 2003 ident: 10.1016/j.jcp.2009.10.008_bib28 article-title: Regularization of Grad’s 13-moment-equations: derivation and linear analysis publication-title: Phys. Fluids doi: 10.1063/1.1597472 – ident: 10.1016/j.jcp.2009.10.008_bib8 – ident: 10.1016/j.jcp.2009.10.008_bib21 – volume: 14 start-page: 180 issue: 3 year: 1946 ident: 10.1016/j.jcp.2009.10.008_bib14 article-title: The statistical mechanical theory of transport processes. 1. General theory publication-title: J. Chem. Phys. doi: 10.1063/1.1724117 – volume: 162 start-page: 429 year: 2000 ident: 10.1016/j.jcp.2009.10.008_bib20 article-title: Discrete-velocity models and numerical schemes for the Boltzmann–BGK equation in plane and axisymmetric geometries publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6548 – volume: 17 start-page: 988 issue: 10 year: 1949 ident: 10.1016/j.jcp.2009.10.008_bib15 article-title: The statistical mechanical theory of transport processes. 3. The coefficients of shear and bulk viscosity of liquids publication-title: J. Chem. Phys. doi: 10.1063/1.1747099 – volume: 9 start-page: 2704 issue: 9 year: 1997 ident: 10.1016/j.jcp.2009.10.008_bib7 article-title: Application of PDF methods to compressible turbulent flows publication-title: Phys. Fluids doi: 10.1063/1.869382 – volume: 226 issue: 2 year: 2007 ident: 10.1016/j.jcp.2009.10.008_bib19 article-title: Consistent inflow and outflow boundary conditions for transported probability density function methods publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.06.014 – volume: 35 start-page: 1143 issue: 7 year: 1997 ident: 10.1016/j.jcp.2009.10.008_bib2 article-title: Calculations of swirl combustors using joint velocity-scalar probability density function method publication-title: AIAA J. doi: 10.2514/2.237 – volume: 166 start-page: 218 issue: 2 year: 2001 ident: 10.1016/j.jcp.2009.10.008_bib13 article-title: A hybrid algorithm for the joint pdf equation of turbulent reactive flows publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6646 – year: 2000 ident: 10.1016/j.jcp.2009.10.008_bib24 – volume: 47 issue: 7 year: 2009 ident: 10.1016/j.jcp.2009.10.008_bib1 article-title: Hybrid continuum/molecular simulations of transient gas flows with rarefaction publication-title: AIAA J. doi: 10.2514/1.42111 – year: 2000 ident: 10.1016/j.jcp.2009.10.008_bib31 – volume: 227 start-page: 1982 year: 2008 ident: 10.1016/j.jcp.2009.10.008_bib30 article-title: Boundary conditions for regularized 13-moment-equations for micro-channel-flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.10.006 |
| SSID | ssj0008548 |
| Score | 2.3552806 |
| Snippet | In this paper, a stochastic model is presented to simulate the flow of gases, which are not in thermodynamic equilibrium, like in rarefied or micro situations.... |
| SourceID | osti pascalfrancis crossref elsevier |
| SourceType | Open Access Repository Index Database Enrichment Source Publisher |
| StartPage | 1077 |
| SubjectTerms | ALGORITHMS APPROXIMATIONS Boltzman equation BOLTZMANN EQUATION CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Computational techniques Exact sciences and technology FOKKER-PLANCK EQUATION Kinetic gas theory Mathematical methods in physics MATHEMATICAL SOLUTIONS MOLECULAR DYNAMICS METHOD MONTE CARLO METHOD NAVIER-STOKES EQUATIONS NUMERICAL ANALYSIS PDF methods Physics SIMULATION Stochastic differential equations STOCHASTIC PROCESSES |
| Title | A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion |
| URI | https://dx.doi.org/10.1016/j.jcp.2009.10.008 https://www.osti.gov/biblio/21333928 |
| Volume | 229 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier E-journals (Freedom Collection) customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AKRWK dateStart: 19660801 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYgLCy8EY9SeWBCCk2T2MRjVYEKSJ1AYov8CqTqC5qu_HbuYqeiAx1YnVxine27z_Ln-wi51gmDCKCj0MTKhqmAJSVZwUMdMRVDwo0SU1f7HPLBa_r0xt62SL-5C4O0Sh_7XUyvo7Vv6XhvduZliXd8Y7xDj8zCiDG8S70D-SfLArLTe3weDFcBOWOpC8jIRgCD5nCzpnmNtK9aWXO8sr_SUzCDFYfESbkA3xVO9OJXJno4IHseQtKe6-Uh2bLTI7Lv4ST1i3VxTGyPNhOLyvH77KusPiYUQCoF0EeL8bI01DhBemo_XcnvBcW0ZiiaUMCF-kNiIWdaC-bUtpNGT5c6AaAT8vpw_9IfhF5VIYRxYVWotUkTLVRq77iNrZIFYLRIykwJhUpWJuaC6yJJFWAlq7BClyp4EgmVsUJLm5ySYDqb2jNCs1gw04VvcKZSI6QQDE8mGRcm0ozrcxI1zsy1LzmOyhfjvOGWjXLwP0phCmwC_5-Tm5XJ3NXb2PRy2oxQvjZpcsgHm8xaOJpogoVyNTKKwCaG7TqgRXjcXhvlVT8g9OH2Ulz877eXZNdRD2IITS0SVF9LewWIplJtsn373W37efsDSRj1DQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGWDhjXjjgQkpNDi2iUeEQOU5tVK3yK_QVqUFWlZ-O3exA3SgA2viS6yzffdZ_nwfISc2ExABbJo4ZnzCFSwpLUqZ2FQYBgk3zVxV7fNJtjr8riu6C-SqvguDtMoY-0NMr6J1fNKM3my-9vt4x5fhHXpkFqZC4F3qRS7YBe7Azj5_eB654CEcIxcBmtdHmxXJa2BjzcqK4ZX_lZwaY1hvSJvUE_BcGSQvfuWhmzWyEgEkvQx9XCcLfrRBViOYpHGpTjaJv6T1tKJ6-Dx-7097LxQgKgXIR8vhR99RF-ToqX8LBb8nFJOao2hCARXansYyzrSSy6lsX2o1XRrkf7ZI5-a6fdVKoqZCAqMipom1jmdWGe4vpGfe6BIQWqp1bpRBHSvHpJK2zLgBpOQN1ucypcxSZXJRWu2zbdIYjUd-h9CcKeHO4RtSGO6UVkrguaSQyqVWSLtL0tqZhY0Fx1H3YljUzLJBAf5HIUyFj8D_u-T02-Q1VNuY15jXI1TMTJkCssE8swMcTTTBMrkW-URgw2CzDlgRXh_NjPJ3PyDw4eZS7f3vt8dkqdV-fCgebp_u98lyICEwCFIHpDF9__CHgG2m5qiau19TjvXV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+solution+algorithm+for+the+fluid+dynamic+equations+based+on+a+stochastic+model+for+molecular+motion&rft.jtitle=Journal+of+computational+physics&rft.au=Jenny%2C+Patrick&rft.au=Torrilhon%2C+Manuel&rft.au=Heinz%2C+Stefan&rft.date=2010-02-20&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=229&rft.issue=4&rft_id=info:doi/10.1016%2Fj.jcp.2009.10.008&rft.externalDocID=21333928 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |