Cu–Ag and Ni–Ag meshes based on cracked template as efficient transparent electromagnetic shielding coating with excellent mechanical performance
Nowadays, the technical advances call for efficient electromagnetic interference (EMI) shielding of transparent devices which may be subject to data theft. We developed Cu–Ag and Ni–Ag meshes on flexible PET substrate for highly efficiency transparent EMI shielding coating. Cu–Ag and Ni–Ag meshes ob...
Saved in:
Published in | Journal of materials science Vol. 56; no. 26; pp. 14741 - 14762 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0022-2461 1573-4803 |
DOI | 10.1007/s10853-021-06206-4 |
Cover
Abstract | Nowadays, the technical advances call for efficient electromagnetic interference (EMI) shielding of transparent devices which may be subject to data theft. We developed Cu–Ag and Ni–Ag meshes on flexible PET substrate for highly efficiency transparent EMI shielding coating. Cu–Ag and Ni–Ag meshes obtained with galvanic deposition of copper and nickel on thin Ag seed mesh which was made by cracked template method. Coefficients
S
11
,
S
21
and shielding efficiency (
SE
) were measured for Cu–Ag and Ni–Ag meshes in X-band (8–12 GHz) and K-band (18–26.5 GHz). 90 s copper deposition increase
SE
from 23.2 to 43.7 dB at 8 GHz with a transparency of 82.2% and a sheet resistance of 0.25 Ω/sq. The achieved maximum
SE
was 47.6 dB for Cu–Ag mesh with 67.8% transparency and 41.1 dB for Ni–Ag mesh with 77.8% transparency. Cu–Ag and Ni–Ag meshes have high bending and long-term stability. Minimum bend radius is lower than 100 µm. This effect allows to produce different forms of transparent shielding objects, for example, origami method. Our coatings are the leading among all literary solutions in three-dimensional coordinates: of sheet resistance–optical transmittance–cost of produced.
Graphical abstract |
---|---|
AbstractList | Nowadays, the technical advances call for efficient electromagnetic interference (EMI) shielding of transparent devices which may be subject to data theft. We developed Cu-Ag and Ni-Ag meshes on flexible PET substrate for highly efficiency transparent EMI shielding coating. Cu-Ag and Ni-Ag meshes obtained with galvanic deposition of copper and nickel on thin Ag seed mesh which was made by cracked template method. Coefficients S.sub.11, S.sub.21 and shielding efficiency (SE) were measured for Cu-Ag and Ni-Ag meshes in X-band (8-12 GHz) and K-band (18-26.5 GHz). 90 s copper deposition increase SE from 23.2 to 43.7 dB at 8 GHz with a transparency of 82.2% and a sheet resistance of 0.25 â¦/sq. The achieved maximum SE was 47.6 dB for Cu-Ag mesh with 67.8% transparency and 41.1 dB for Ni-Ag mesh with 77.8% transparency. Cu-Ag and Ni-Ag meshes have high bending and long-term stability. Minimum bend radius is lower than 100 [micro]m. This effect allows to produce different forms of transparent shielding objects, for example, origami method. Our coatings are the leading among all literary solutions in three-dimensional coordinates: of sheet resistance-optical transmittance-cost of produced. Nowadays, the technical advances call for efficient electromagnetic interference (EMI) shielding of transparent devices which may be subject to data theft. We developed Cu–Ag and Ni–Ag meshes on flexible PET substrate for highly efficiency transparent EMI shielding coating. Cu–Ag and Ni–Ag meshes obtained with galvanic deposition of copper and nickel on thin Ag seed mesh which was made by cracked template method. Coefficients S₁₁, S₂₁ and shielding efficiency (SE) were measured for Cu–Ag and Ni–Ag meshes in X-band (8–12 GHz) and K-band (18–26.5 GHz). 90 s copper deposition increase SE from 23.2 to 43.7 dB at 8 GHz with a transparency of 82.2% and a sheet resistance of 0.25 Ω/sq. The achieved maximum SE was 47.6 dB for Cu–Ag mesh with 67.8% transparency and 41.1 dB for Ni–Ag mesh with 77.8% transparency. Cu–Ag and Ni–Ag meshes have high bending and long-term stability. Minimum bend radius is lower than 100 µm. This effect allows to produce different forms of transparent shielding objects, for example, origami method. Our coatings are the leading among all literary solutions in three-dimensional coordinates: of sheet resistance–optical transmittance–cost of produced. Nowadays, the technical advances call for efficient electromagnetic interference (EMI) shielding of transparent devices which may be subject to data theft. We developed Cu-Ag and Ni-Ag meshes on flexible PET substrate for highly efficiency transparent EMI shielding coating. Cu-Ag and Ni-Ag meshes obtained with galvanic deposition of copper and nickel on thin Ag seed mesh which was made by cracked template method. Coefficients S.sub.11, S.sub.21 and shielding efficiency (SE) were measured for Cu-Ag and Ni-Ag meshes in X-band (8-12 GHz) and K-band (18-26.5 GHz). 90 s copper deposition increase SE from 23.2 to 43.7 dB at 8 GHz with a transparency of 82.2% and a sheet resistance of 0.25 â¦/sq. The achieved maximum SE was 47.6 dB for Cu-Ag mesh with 67.8% transparency and 41.1 dB for Ni-Ag mesh with 77.8% transparency. Cu-Ag and Ni-Ag meshes have high bending and long-term stability. Minimum bend radius is lower than 100 [micro]m. This effect allows to produce different forms of transparent shielding objects, for example, origami method. Our coatings are the leading among all literary solutions in three-dimensional coordinates: of sheet resistance-optical transmittance-cost of produced. Graphical abstract Nowadays, the technical advances call for efficient electromagnetic interference (EMI) shielding of transparent devices which may be subject to data theft. We developed Cu–Ag and Ni–Ag meshes on flexible PET substrate for highly efficiency transparent EMI shielding coating. Cu–Ag and Ni–Ag meshes obtained with galvanic deposition of copper and nickel on thin Ag seed mesh which was made by cracked template method. Coefficients S11, S21 and shielding efficiency (SE) were measured for Cu–Ag and Ni–Ag meshes in X-band (8–12 GHz) and K-band (18–26.5 GHz). 90 s copper deposition increase SE from 23.2 to 43.7 dB at 8 GHz with a transparency of 82.2% and a sheet resistance of 0.25 Ω/sq. The achieved maximum SE was 47.6 dB for Cu–Ag mesh with 67.8% transparency and 41.1 dB for Ni–Ag mesh with 77.8% transparency. Cu–Ag and Ni–Ag meshes have high bending and long-term stability. Minimum bend radius is lower than 100 µm. This effect allows to produce different forms of transparent shielding objects, for example, origami method. Our coatings are the leading among all literary solutions in three-dimensional coordinates: of sheet resistance–optical transmittance–cost of produced. Nowadays, the technical advances call for efficient electromagnetic interference (EMI) shielding of transparent devices which may be subject to data theft. We developed Cu–Ag and Ni–Ag meshes on flexible PET substrate for highly efficiency transparent EMI shielding coating. Cu–Ag and Ni–Ag meshes obtained with galvanic deposition of copper and nickel on thin Ag seed mesh which was made by cracked template method. Coefficients S 11 , S 21 and shielding efficiency ( SE ) were measured for Cu–Ag and Ni–Ag meshes in X-band (8–12 GHz) and K-band (18–26.5 GHz). 90 s copper deposition increase SE from 23.2 to 43.7 dB at 8 GHz with a transparency of 82.2% and a sheet resistance of 0.25 Ω/sq. The achieved maximum SE was 47.6 dB for Cu–Ag mesh with 67.8% transparency and 41.1 dB for Ni–Ag mesh with 77.8% transparency. Cu–Ag and Ni–Ag meshes have high bending and long-term stability. Minimum bend radius is lower than 100 µm. This effect allows to produce different forms of transparent shielding objects, for example, origami method. Our coatings are the leading among all literary solutions in three-dimensional coordinates: of sheet resistance–optical transmittance–cost of produced. Graphical abstract |
Audience | Academic |
Author | Nemtsev, I. V. Podshivalov, I. V. Karacharov, A. A. Khartov, S. V. Voronin, A. S. Fadeev, Y. V. Govorun, I. V. Simunin, M. M. Karpova, D. V. Smolyarova, T. E. Tambasov, I. A. Lukyanenko, A. V. |
Author_xml | – sequence: 1 givenname: A. S. orcidid: 0000-0001-6908-9945 surname: Voronin fullname: Voronin, A. S. email: a.voronin1988@mail.ru organization: Federal Research Center «Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences» (FRC KSC SB RAS), Siberian Federal University – sequence: 2 givenname: Y. V. surname: Fadeev fullname: Fadeev, Y. V. organization: Federal Research Center «Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences» (FRC KSC SB RAS) – sequence: 3 givenname: I. V. surname: Govorun fullname: Govorun, I. V. organization: Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, Reshetnev Siberian State University of Science and Technology (Reshetnev University) – sequence: 4 givenname: I. V. surname: Podshivalov fullname: Podshivalov, I. V. organization: Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences – sequence: 5 givenname: M. M. surname: Simunin fullname: Simunin, M. M. organization: Federal Research Center «Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences» (FRC KSC SB RAS), Siberian Federal University, Reshetnev Siberian State University of Science and Technology (Reshetnev University) – sequence: 6 givenname: I. A. surname: Tambasov fullname: Tambasov, I. A. organization: Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences – sequence: 7 givenname: D. V. surname: Karpova fullname: Karpova, D. V. organization: Federal Research Center «Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences» (FRC KSC SB RAS) – sequence: 8 givenname: T. E. surname: Smolyarova fullname: Smolyarova, T. E. organization: Siberian Federal University, Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences – sequence: 9 givenname: A. V. surname: Lukyanenko fullname: Lukyanenko, A. V. organization: Siberian Federal University, Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences – sequence: 10 givenname: A. A. surname: Karacharov fullname: Karacharov, A. A. organization: Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences – sequence: 11 givenname: I. V. surname: Nemtsev fullname: Nemtsev, I. V. organization: Federal Research Center «Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences» (FRC KSC SB RAS), Siberian Federal University, Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences – sequence: 12 givenname: S. V. surname: Khartov fullname: Khartov, S. V. organization: Federal Research Center «Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences» (FRC KSC SB RAS) |
BookMark | eNp9ks1q3DAQgE1JoZu0L9CToJf24GT0Y618XJb-BEIK_TkLrTz2KrVlV5Jpeus7lL5gn6RyXSjJIQikQXyfmBnNaXHiR49F8ZzCOQXYXkQKquIlMFqCZCBL8ajY0GrLS6GAnxQbAMZKJiR9UpzGeAMA1ZbRTfFrP__-8XPXEeMbcu3WeMB4xEgOJmJDRk9sMPZLDhMOU28SEhMJtq2zDn0iKRgfJxOWGHu0KYyD6TwmZ0k8Ouwb5ztiR5OW85tLR4K3Fvt-EQa0R-OdNT2ZMLRjGIy3-LR43Jo-4rN_51nx-c3rT_t35dX7t5f73VVpeVWlvNeyAYmirqixHKQRUB-UogpBgZWHrbQAbd2aw5YeWquqWigmhKUNt0oIfla8XN-dwvh1xpj04OKSmvE4zlEzySVXjNWQ0Rf30JtxDj5np1klqqWhtcrU-Up1pkftfDvm7ti8GhyczX_Wuny_k1JWjFLBs_DqjpCZhLepM3OM-vLjh7usWlkbxhgDttq6lLualWBcrynoZRj0Ogw6D4P-Owx6KZTdU6fgBhO-PyzxVYoZ9h2G_yU_YP0BO3DK_g |
CitedBy_id | crossref_primary_10_1016_j_isci_2024_111543 crossref_primary_10_3390_coatings15020189 crossref_primary_10_1002_admt_202401013 crossref_primary_10_1016_j_surfin_2023_102793 crossref_primary_10_1103_PhysRevE_108_044143 crossref_primary_10_1088_1361_6439_acb65e crossref_primary_10_3390_ma15041449 crossref_primary_10_1051_itmconf_20245902013 crossref_primary_10_1039_D2QM00223J crossref_primary_10_3390_ma18051067 crossref_primary_10_1002_admt_202302057 crossref_primary_10_1021_acsami_3c02088 crossref_primary_10_1002_admt_202201532 crossref_primary_10_1364_OE_511501 crossref_primary_10_1039_D3NR01130E crossref_primary_10_1007_s12666_024_03546_y crossref_primary_10_1016_j_ceramint_2022_01_351 crossref_primary_10_3390_app13084846 crossref_primary_10_1364_OE_438979 crossref_primary_10_7498_aps_74_20241305 crossref_primary_10_1680_jsuin_23_00067 crossref_primary_10_1016_j_compstruct_2025_119124 crossref_primary_10_1002_smsc_202100077 crossref_primary_10_1364_OE_468843 crossref_primary_10_1016_j_rineng_2024_103888 crossref_primary_10_1364_OME_478830 crossref_primary_10_1007_s11664_024_10916_1 crossref_primary_10_48084_etasr_5252 crossref_primary_10_1021_acsami_3c16405 crossref_primary_10_1007_s10854_024_14121_y crossref_primary_10_1007_s40820_024_01525_y crossref_primary_10_1021_acsami_3c14788 crossref_primary_10_3390_nano12030387 crossref_primary_10_1007_s10854_022_09155_z crossref_primary_10_1088_1361_6463_ad13c6 crossref_primary_10_1007_s12034_024_03145_z |
Cites_doi | 10.1039/C9NA00108E 10.1021/acs.nanolett.5b01531 10.1002/adfm.201202646 10.1021/acs.nanolett.5b04134 10.1021/acs.nanolett.6b05205 10.1007/s10853-019-03507-7 10.1002/adma.201303514 10.1021/nl5003075 10.1364/OE.26.027545 10.1021/acsami.7b14626 10.1002/anie.201408621 10.1016/j.compositesb.2019.107406 10.1038/ncomms13771 10.1126/sciadv.aap9264 10.1007/s12274-013-0391-x 10.1021/acs.accounts.5b00506 10.1016/j.surfcoat.2006.01.004 10.1021/acsami.8b00492 10.1364/OE.24.022989 10.1038/nnano.2013.84 10.1016/j.apsusc.2015.12.182 10.7567/JJAP.53.05HB11 10.1364/OE.22.026891 10.1021/la300961m 10.1039/c4nr00869c 10.1021/acsami.8b06691 10.1016/j.tsf.2015.04.001 10.1016/j.carbon.2016.12.092 10.1002/adma.200700134 10.1038/ncomms4121 10.1002/smll.201600309 10.1016/j.jallcom.2015.09.279 10.1039/C7RA06524H 10.1039/c3tc32167c 10.1016/j.solmat.2016.04.056 10.1016/j.surfcoat.2010.08.055 10.1021/acsami.7b02443 10.1021/la300720y 10.1134/S1063785019040187 10.1039/C3CC48561G 10.1016/j.cap.2018.10.016 10.1002/admt.201600095 10.1016/j.matdes.2015.09.142 10.1039/C4NR03771E 10.1002/app.29812 10.1016/j.surfcoat.2015.11.007 10.1002/adma.201200359 10.1002/adma.201302950 10.1021/nl051375r 10.1063/1.2734897 10.1016/j.carbon.2014.09.054 10.1038/nnano.2010.132 10.1021/am503154z 10.1016/j.carbon.2018.01.016 10.1039/C8TC04423F 10.1039/C5TA03348A 10.1021/nl102725k 10.1088/2053-1591/1/2/026301 10.1021/acsomega.7b02033 10.1002/adem.202001310 10.1039/C6NR02619B 10.1016/j.mattod.2014.08.018 10.2528/PIER13050312 10.1364/OME.8.003485 10.1039/C8NR08399A 10.1002/adma.201102284 10.1088/0957-4484/23/45/455704 10.1038/srep25601 10.1002/smll.201400911 10.1016/j.synthmet.2010.06.027 10.1039/C4TC02733G 10.1063/1.3701582 10.1021/nl101680s 10.1016/j.surfcoat.2018.03.085 10.1088/0957-4484/22/7/075201 10.1039/C5RA21988D 10.1021/nn1008808 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 COPYRIGHT 2021 Springer The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: COPYRIGHT 2021 Springer – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION ISR 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 |
DOI | 10.1007/s10853-021-06206-4 |
DatabaseName | CrossRef Gale In Context: Science ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) Engineering Collection AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-4803 |
EndPage | 14762 |
ExternalDocumentID | A666521143 10_1007_s10853_021_06206_4 |
GrantInformation_xml | – fundername: Российский Фонд Фундаментальных Исследований (РФФИ) grantid: «mol_a» No18-38-00852 funderid: http://dx.doi.org/10.13039/501100002261 |
GroupedDBID | -4Y -58 -5G -BR -EM -XW -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 29K 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDEX ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D-I D1I DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IFM IGS IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P9N PDBOC PF- PKN PT4 PT5 PTHSS QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T9H TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z91 Z92 ZE2 ZMTXR ZY4 ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c355t-c396d06e4951ac306a409b8818e080c6b76c00f9fab71bfc85948244c1d3c8443 |
IEDL.DBID | U2A |
ISSN | 0022-2461 |
IngestDate | Thu Sep 04 23:01:19 EDT 2025 Sun Jul 13 04:44:07 EDT 2025 Tue Jun 10 20:19:04 EDT 2025 Fri Jun 27 04:10:56 EDT 2025 Tue Jul 01 01:40:09 EDT 2025 Thu Apr 24 22:51:12 EDT 2025 Fri Feb 21 02:48:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c355t-c396d06e4951ac306a409b8818e080c6b76c00f9fab71bfc85948244c1d3c8443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6908-9945 |
PQID | 2545000598 |
PQPubID | 2043599 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2636382290 proquest_journals_2545000598 gale_infotracacademiconefile_A666521143 gale_incontextgauss_ISR_A666521143 crossref_citationtrail_10_1007_s10853_021_06206_4 crossref_primary_10_1007_s10853_021_06206_4 springer_journals_10_1007_s10853_021_06206_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210900 2021-09-00 20210901 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210900 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials science |
PublicationTitleAbbrev | J Mater Sci |
PublicationYear | 2021 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Gupta, Rao, Srivastava, Kumar, Kiruthika, Kulkarni (CR33) 2014; 6 Kim, Kim, Kim (CR79) 2016; 89 Song, You, Lim, Park, Jung, Kim, Kim, Kim, Kim, Park, Kang, Heo, Jin, Park, Kang (CR15) 2013; 23 Hecht, Heintz, Lee, Hu, Moore, Cucksey, Risser (CR47) 2011; 22 Xia, Fang, Li, Zhang, Yao, Chen, Ding, Ouyang (CR13) 2017; 9 Tsapenko, Goldt, Shulga, Popov, Maslakov, Anisimov, Sorokin, Nasibulin (CR49) 2018; 130 An, Gwak, Kim, Kim, Jang, Kim, Park (CR64) 2016; 16 Zhou, Azumi, Shimada (CR67) 2019; 11 Lee, Kim, Kim, Baik, Park, Lee, Nam, Park, Lee, Yi, Cho (CR51) 2014; 6 Han, Pei, Huang, Zhang, Rong, Lin, Guo, Sun, Guo, Carnahan, Giersig, Wang, Gao, Ren, Kempa (CR31) 2014; 26 Choi, Kang, Lee, Park (CR8) 2015; 583 Ahn, Choe, Park, Kim, Son, Lee, Park, Ko (CR62) 2015; 3 Voronin, Simunin, Fadeev, Ivanchenko, Karpova, Tambasov, Khartov (CR41) 2019; 45 Bonninghoff, Chu, Chang, Mehretie, Lai (CR55) 2018; 349 Seo, Noh, Na, Kim (CR71) 2016; 155 Zhu, Zhu, Hoekstra, Li, Xiu, Xue, Zeng, Wang (CR37) 2012; 100 Zhang, Xia, Gai (CR11) 2018; 3 Peng, Li, Han, Rong, Lu, Wang, Zeng, Zhou, Liu, Kempa, Gao (CR59) 2016; 1 Jia, Yan, Liu, Ma, Wu, Li (CR2) 2018; 10 Ye, Rathmell, Stewart, Ha, Wilson, Chen, Wiley (CR52) 2014; 50 Wang, Ruan (CR5) 2016; 656 Jiang, Hou, Chen, Wang, Sun, Tang, Jin, Guo, Zhang, Du, Tai, Tan, Kauppinen, Liu, Cheng (CR68) 2018; 4 Guo, Ren (CR1) 2015; 18 Deignan, Goldthorpe (CR18) 2017; 7 Araki, Jiu, Nogi, Koga, Nagao, Sugahara, Suganuma (CR14) 2014; 7 Kiruthika, Rao, Kumar, Gupta, Kulkarni (CR42) 2014; 1 Shen, Chen, Zhang, Liu (CR80) 2018; 26 Liu, Tan (CR76) 2013; 140 Ok, Kwak, Huard, Youn, Guo (CR24) 2013; 25 Gao, Wang, Ding, Lee, Leu (CR38) 2014; 14 Rao, Kulkarni (CR58) 2014; 6 CR43 Wu, Kong, Ruan, Hsu, Wang, Yu, Carney, Hu, Fan, Cui (CR56) 2013; 8 CR40 Hong, Kim, Kim, Kim, Park, Kim, Cho (CR10) 2012; 23 Qi, Li, Zhu, Yang, Zhao, Song (CR25) 2016; 6 Hu, Gao, Dong, Li, Shan, Yang, Li (CR4) 2012; 28 Kim, Lee, Lee, Lee, Choi, Jung, Jung, Choi (CR27) 2014; 10 Kiruthika, Gupta, Rao, Chakraborty, Padmavathy, Kulkarni (CR32) 2014; 2 Deng, Hsu, Chen, Chandrashekar, Liao, Ayitimuda, Wu, Guo, Lin, Zhou, Aisijiang, Xie, Cui, Liu, Peng (CR19) 2015; 15 Guo, Sun, Liu, Suo, Ren (CR36) 2014; 5 Wang, Lu, Tan (CR30) 2016; 24 Kaskela, Nasibulin, Timmermans, Aitchison, Papadimitratos, Tian, Zhu, Jiang, Brown, Zakhidov, Kauppinen (CR48) 2010; 10 Lu, Ma, Tan, Wang, Ding (CR78) 2016; 8 Miao, Liu, McEleney, Wang (CR22) 2019; 54 Kim, Park, Lee (CR45) 2006; 201 Tran, Lu, Lin (CR60) 2015; 283 Ye, Stewart, Chen, Li, Rathmell, Wiley (CR20) 2016; 49 Choi, Lee, Kim (CR21) 2019; 177 Yang, Gupta (CR73) 2005; 5 Geetha, Kumar, Rao, Vijayan, Trivedi (CR72) 2009; 112 Lim, Lee, Pandey, Yoo, Sang, Ju, Hwang, Choi (CR23) 2014; 22 Xu, Anlage, Hu, Gruner (CR9) 2007; 90 Maniyara, Mkhitaryan, Chen, Ghosh, Pruneri (CR77) 2016; 7 CR17 Kang, Guo (CR26) 2007; 19 Bai, Liao, Huang, Song, Liu, Fang, Xu, Cui, Wu (CR6) 2017; 17 Qiu, Luo, Liang, Ning, Wang, Li, Zhi (CR70) 2015; 81 CR54 Kim, Lee, Kim, Lee (CR12) 2010; 160 Lee, Jin, Ovhal, Kumar, Kang (CR44) 2019; 7 Lee, Lee, Lee, Yeo, Hong, Nam, Lee, Lee, Ko (CR63) 2012; 24 Wang, Bai, Zhou, Ni, Lin (CR29) 2018; 8 Bae, Kim, Lee, Xu, Park, Zheng, Balakrishnan, Lei, Kim, Song, Kim, Kim, Ozyilmaz, Ahn, Hong, Iijima (CR50) 2010; 5 Jung, Lee, Ha, Cho, Kim, Kwon, Won, Hong, Ko (CR3) 2017; 9 Shukla (CR74) 2019; 1 Song, Kulinich, Li, Liu, Zeng (CR46) 2015; 54 Zhang, Khan, Cai, Liang, Liu, Deng, Huang, Li, Li (CR65) 2018; 10 CR28 Voronin, Ivanchenko, Simunin, Shiverskiy, Aleksandrovsky, Nemtsev, Fadeev, Karpova, Khartov (CR34) 2016; 364 Han, Lin, Liu, Fu, Ma, Jin, Tan (CR39) 2016; 6 Wu, Hu, Rowell, Kong, Cha, McDonough, Zhu, Yang, McGehee, Cui (CR7) 2010; 10 Kim, Joh, Hong, Oh (CR57) 2019; 19 Rathmell, Wiley (CR16) 2011; 23 Park, Kim, Lee, Kim, Lee (CR61) 2010; 205 Tokuno, Nogi, Jiu, Sugahara, Suganuma (CR35) 2012; 28 Gunes, Shin, Biswas, Han, Kim, Chae, Choi, Lee (CR69) 2010; 4 Kim, Kim, Jeong, Choi, Lee, Choi (CR53) 2015; 3 Khan, Lee, Jang, Xiong, Zhang, Tang, Guo, Li (CR66) 2016; 12 Han, Liu, Han, Lin, Jin (CR75) 2017; 115 M Song (6206_CR15) 2013; 23 KW Seo (6206_CR71) 2016; 155 JG Ok (6206_CR24) 2013; 25 H Wu (6206_CR7) 2010; 10 YM Liu (6206_CR76) 2013; 140 JW Lim (6206_CR23) 2014; 22 MJ Hu (6206_CR4) 2012; 28 JF Zhu (6206_CR37) 2012; 100 H Wu (6206_CR56) 2013; 8 Y Zhou (6206_CR67) 2019; 11 HB Lee (6206_CR44) 2019; 7 XP Bai (6206_CR6) 2017; 17 SR Ye (6206_CR52) 2014; 50 S Bae (6206_CR50) 2010; 5 MH Kim (6206_CR57) 2019; 19 G Deignan (6206_CR18) 2017; 7 R Gupta (6206_CR33) 2014; 6 SJ Lee (6206_CR51) 2014; 6 Y Han (6206_CR75) 2017; 115 A Khan (6206_CR66) 2016; 12 JH Choi (6206_CR21) 2019; 177 LF Qi (6206_CR25) 2016; 6 HJ Kim (6206_CR27) 2014; 10 T Araki (6206_CR14) 2014; 7 SR Ye (6206_CR20) 2016; 49 YJ Xia (6206_CR13) 2017; 9 B Deng (6206_CR19) 2015; 15 YL Yang (6206_CR73) 2005; 5 S Kiruthika (6206_CR32) 2014; 2 6206_CR40 BR Kim (6206_CR12) 2010; 160 6206_CR43 DH Kim (6206_CR45) 2006; 201 DH Kim (6206_CR79) 2016; 89 J Jung (6206_CR3) 2017; 9 AS Voronin (6206_CR41) 2019; 45 T Tokuno (6206_CR35) 2012; 28 S Ahn (6206_CR62) 2015; 3 L Miao (6206_CR22) 2019; 54 S Geetha (6206_CR72) 2009; 112 DS Hecht (6206_CR47) 2011; 22 6206_CR17 F Gunes (6206_CR69) 2010; 4 YJ Choi (6206_CR8) 2015; 583 Y Han (6206_CR39) 2016; 6 ZG Lu (6206_CR78) 2016; 8 B Han (6206_CR31) 2014; 26 A Kaskela (6206_CR48) 2010; 10 S Shen (6206_CR80) 2018; 26 WQ Wang (6206_CR29) 2018; 8 H Xu (6206_CR9) 2007; 90 V Shukla (6206_CR74) 2019; 1 6206_CR54 P Lee (6206_CR63) 2012; 24 RA Maniyara (6206_CR77) 2016; 7 CF Guo (6206_CR1) 2015; 18 BW An (6206_CR64) 2016; 16 MG Kang (6206_CR26) 2007; 19 S Jiang (6206_CR68) 2018; 4 HY Wang (6206_CR30) 2016; 24 6206_CR28 CF Guo (6206_CR36) 2014; 5 DP Tran (6206_CR60) 2015; 283 AP Tsapenko (6206_CR49) 2018; 130 TC Gao (6206_CR38) 2014; 14 RL Wang (6206_CR5) 2016; 656 LC Jia (6206_CR2) 2018; 10 N Bonninghoff (6206_CR55) 2018; 349 HJ Kim (6206_CR53) 2015; 3 Q Peng (6206_CR59) 2016; 1 JZ Song (6206_CR46) 2015; 54 HL Zhang (6206_CR11) 2018; 3 AS Voronin (6206_CR34) 2016; 364 JW Park (6206_CR61) 2010; 205 KDM Rao (6206_CR58) 2014; 6 TF Qiu (6206_CR70) 2015; 81 S Kiruthika (6206_CR42) 2014; 1 AR Rathmell (6206_CR16) 2011; 23 SK Hong (6206_CR10) 2012; 23 CP Zhang (6206_CR65) 2018; 10 |
References_xml | – volume: 4 start-page: 4595 year: 2010 end-page: 4600 ident: CR69 article-title: Layer-by-layer doping of few-layer graphene film publication-title: ACS Nano – volume: 18 start-page: 143 year: 2015 end-page: 154 ident: CR1 article-title: Flexible transparent conductors based on metal nanowire networks publication-title: Mater Today – volume: 26 start-page: 27545 year: 2018 end-page: 27554 ident: CR80 article-title: High-performance composite Ag-Ni mesh based flexible transparent conductive film as multifunctional devices publication-title: Opt Express – volume: 155 start-page: 51 year: 2016 end-page: 59 ident: CR71 article-title: Random mesh-like Ag networks prepared via self-assembled Ag nanoparticles for ITO-free flexible organic solar cells publication-title: Solar Energy Mater Solar Cells – volume: 160 start-page: 1838 year: 2010 end-page: 1842 ident: CR12 article-title: Intrinsic electromagnetic radiation shielding/absorbing characteristics of polyaniline-coated transparent thin films publication-title: Synth Met – volume: 364 start-page: 931 year: 2016 end-page: 937 ident: CR34 article-title: High performance hybrid rGO/Ag quasi-periodic mesh transparent electrodes for flexible electrochromic devices publication-title: Appl Surf Sci – volume: 5 start-page: 3121 year: 2014 ident: CR36 article-title: Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography publication-title: Nat Commun – volume: 17 start-page: 1883 year: 2017 end-page: 1891 ident: CR6 article-title: Continuous draw spinning of extra-long silver submicron fibers with micrometer patterning capability publication-title: Nano Lett – volume: 201 start-page: 927 year: 2006 end-page: 931 ident: CR45 article-title: Preparation of high quality ITO films on a plastic substrate using RF magnetron sputtering publication-title: Surf Coat Tech – volume: 1 start-page: 1600095 year: 2016 ident: CR59 article-title: Colossal figure of merit in transparent-conducting metallic ribbon networks publication-title: Adv Mater Technol – volume: 5 start-page: 574 year: 2010 end-page: 578 ident: CR50 article-title: Roll-to-roll production of 30-inch graphene films for transparent electrodes publication-title: Nat Nanotechnol – volume: 177 start-page: 107406 year: 2019 ident: CR21 article-title: Ultra-bendable and durable Graphene-Urethane composite/silver nanowire film for flexible transparent electrodes and electromagnetic-interference shielding publication-title: Composite Part B Eng – volume: 54 start-page: 10355 year: 2019 end-page: 10370 ident: CR22 article-title: Epoxy-embedded silver nanowire meshes for transparent flexible electrodes publication-title: J Mater Sci – volume: 6 start-page: 13531 year: 2016 end-page: 13536 ident: CR25 article-title: Realization of a flexible and mechanically robust Ag mesh transparent electrode and its application in a PDLC device publication-title: RSC Adv – volume: 140 start-page: 353 year: 2013 end-page: 368 ident: CR76 article-title: Frequency dependent model of sheet resistance and effect analysis on shielding effectiveness of transparent conductive mesh coatings publication-title: Prog Electromagn Res – ident: CR54 – volume: 15 start-page: 4206 year: 2015 end-page: 4213 ident: CR19 article-title: Roll-to-Roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes publication-title: Nano Lett – volume: 1 start-page: 1640 year: 2019 end-page: 1671 ident: CR74 article-title: Review of electromagnetic interference shielding materials fabricated by iron ingredients publication-title: Nanoscale Adv – volume: 45 start-page: 366 year: 2019 end-page: 369 ident: CR41 article-title: Technological basis of the formation of micromesh transparent electrodes by means of a self-organized template and the study of their properties publication-title: Tech Phys Lett – volume: 19 start-page: 8 year: 2019 end-page: 13 ident: CR57 article-title: Coupled Ag nanocrystal-based transparent mesh electrodes for transparent and flexible electro-magnetic interference shielding films publication-title: Curr Appl Phys – volume: 130 start-page: 448 year: 2018 end-page: 457 ident: CR49 article-title: Highly conductive and transparent films of HAuCl -doped single-walled carbon nanotubes for flexible applications publication-title: Carbon – volume: 7 start-page: 35590 year: 2017 end-page: 35597 ident: CR18 article-title: The dependence of silver nanowire stability on network composition and processing parameters publication-title: RSC Adv – volume: 8 start-page: 3485 year: 2018 end-page: 3493 ident: CR29 article-title: Petal-shaped metallic mesh with high electromagnetic shielding efficiency and smoothed uniform diffraction publication-title: Opt Mater Express – volume: 23 start-page: 455704 year: 2012 ident: CR10 article-title: Electromagnetic interference shielding effectiveness of monolayer graphene publication-title: Nanotechnology – volume: 115 start-page: 34 year: 2017 end-page: 42 ident: CR75 article-title: High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding publication-title: Carbon – volume: 10 start-page: 4242 year: 2010 end-page: 4248 ident: CR7 article-title: Electrospun metal nanofiber webs as high-performance transparent electrode publication-title: Nano Lett – volume: 9 start-page: 19001 year: 2017 end-page: 19010 ident: CR13 article-title: Solution-processed highly superparamagnetic and conductive PEDOT:PSS/Fe O nanocomposite films with high transparency and high mechanical flexibility publication-title: ACS Appl Mater Interfaces – volume: 7 start-page: 1087 year: 2019 end-page: 1110 ident: CR44 article-title: Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review publication-title: J Mater Chem C – volume: 50 start-page: 2562 year: 2014 end-page: 2564 ident: CR52 article-title: A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films publication-title: Chem Commun – volume: 10 start-page: 21009 year: 2018 end-page: 21017 ident: CR65 article-title: Stretchable transparent electrodes with solution-processed regular metal mesh for an electroluminescent light-emitting film publication-title: ACS Appl Mater Interfaces – volume: 9 start-page: 44609 year: 2017 end-page: 44616 ident: CR3 article-title: Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications publication-title: ACS Appl Mater Interfaces – volume: 583 start-page: 226 year: 2015 end-page: 232 ident: CR8 article-title: Electromagnetic interference shielding behaviors of Zn-based conducting oxide films prepared by atomic layer deposition publication-title: Thin Solid Films – volume: 19 start-page: 1391 year: 2007 end-page: 1396 ident: CR26 article-title: Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes publication-title: Adv Mater – volume: 7 start-page: 236 year: 2014 end-page: 245 ident: CR14 article-title: Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method publication-title: Nano Res – volume: 205 start-page: 915 year: 2010 end-page: 921 ident: CR61 article-title: The effect of film microstructures on cracking of transparent conductive oxide (TCO) coatings on polymer substrates publication-title: Surf Coat Tech – volume: 24 start-page: 22989 year: 2016 end-page: 23000 ident: CR30 article-title: Generation of uniform diffraction pattern and high EMI shielding performance by metallic mesh composed of ring and rotated sub-ring arrays publication-title: Opt Express – volume: 1 start-page: 026301 year: 2014 ident: CR42 article-title: Metal wire network based transparent conducting electrodes fabricated using interconnected crackled layer as template publication-title: Mater Res Express – volume: 2 start-page: 2089 year: 2014 end-page: 2094 ident: CR32 article-title: Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network publication-title: J Mater Chem C – volume: 4 start-page: 9264 year: 2018 ident: CR68 article-title: Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes publication-title: Sci Adv – volume: 656 start-page: 936 year: 2016 end-page: 943 ident: CR5 article-title: Synthesis of copper nanowires and its application to flexible transparent electrode publication-title: J Alloy Compd – ident: CR43 – volume: 23 start-page: 4177 year: 2013 end-page: 4184 ident: CR15 article-title: Highly efficient and bendable organic solar cells with solution-processed silver nanowire electrodes publication-title: Adv Funct Mater – volume: 23 start-page: 4798 year: 2011 end-page: 4803 ident: CR16 article-title: The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates publication-title: Adv Mater – volume: 11 start-page: 3804 year: 2019 end-page: 3813 ident: CR67 article-title: A highly durable, stretchable, transparent and conductive carbon nanotube–polymeric acid hybrid film publication-title: Nanoscale – volume: 22 start-page: 075201 year: 2011 ident: CR47 article-title: High conductivity transparent carbon nanotube films deposited from superacid publication-title: Nanotechnology – volume: 3 start-page: 16621 year: 2015 end-page: 16626 ident: CR53 article-title: A cupronickel-based micromesh film for use as a high-performance and low-voltage transparent heater publication-title: J Mater Chem A – volume: 6 start-page: 25601 year: 2016 ident: CR39 article-title: Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding publication-title: Sci Rep – volume: 6 start-page: 13688 year: 2014 end-page: 13696 ident: CR33 article-title: Spray coating of crack templates for the fabrication of transparent conductors and heaters on flat and curved surfaces publication-title: ACS Appl Mater Interfaces – volume: 112 start-page: 2073 year: 2009 end-page: 2086 ident: CR72 article-title: EMI shielding: methods and materials-a review publication-title: J Appl Polym Sci – volume: 6 start-page: 5645 year: 2014 end-page: 5651 ident: CR58 article-title: A highly crystalline single Au wire network as a high temperature transparent heater publication-title: Nanoscale – volume: 10 start-page: 3767 year: 2014 end-page: 3774 ident: CR27 article-title: High-durable AgNi nanomesh film for a transparent conducting electrode publication-title: Small – volume: 6 start-page: 11828 year: 2014 end-page: 11834 ident: CR51 article-title: A roll-to-roll welding process for planarized silver nanowire electrodes publication-title: Nanoscale – volume: 26 start-page: 873 year: 2014 end-page: 877 ident: CR31 article-title: Uniform self-forming metallic network as a high-performance transparent conductive electrode publication-title: Adv Mater – volume: 8 start-page: 16684 year: 2016 end-page: 16693 ident: CR78 article-title: Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance publication-title: Nanoscale – ident: CR40 – volume: 25 start-page: 6554 year: 2013 end-page: 6561 ident: CR24 article-title: Photo-roll lithography (PRL) for continuous and scalable patterning with application in flexible electronics publication-title: Adv Mater – volume: 14 start-page: 2105 year: 2014 end-page: 2110 ident: CR38 article-title: Uniform and ordered copper nanomeshes by microsphere lithography for transparent electrodes publication-title: Nano Lett – volume: 10 start-page: 4349 year: 2010 end-page: 4355 ident: CR48 article-title: Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique publication-title: Nano Lett – volume: 8 start-page: 421 year: 2013 end-page: 425 ident: CR56 article-title: A transparent electrode based on a metal nanotrough network publication-title: Nat Nanotechnol – volume: 81 start-page: 232 year: 2015 end-page: 238 ident: CR70 article-title: Hydrogen reduced graphene oxide/metal grid hybrid film: towards high performance transparent conductive electrode for flexible electrochromic devices publication-title: Carbon – volume: 90 start-page: 183119 year: 2007 ident: CR9 article-title: Microwave shielding of transparent and conducting single-walled carbon nanotube films publication-title: Appl Phys Lett – volume: 10 start-page: 11941 year: 2018 end-page: 11949 ident: CR2 article-title: Highly efficient and reliable transparent electromagnetic interference shielding, film publication-title: ACS Appl Mater Interfaces – volume: 28 start-page: 9298 year: 2012 end-page: 9302 ident: CR35 article-title: Transparent electrodes fabricated via the self-assembly of silver nanowires using a bubble template publication-title: Langmuir – volume: 89 start-page: 703 year: 2016 end-page: 707 ident: CR79 article-title: Transparent and flexible film for shielding electromagnetic interference publication-title: Mater Design – volume: 100 start-page: 143109 year: 2012 ident: CR37 article-title: Metallic nanomesh electrodes with controllable optical properties for organic solar cells publication-title: Appl Phys Lett – volume: 3 start-page: 2765 year: 2018 end-page: 2772 ident: CR11 article-title: Ultrathin active layer for transparent electromagnetic shielding window publication-title: ACS Omega – volume: 12 start-page: 3021 year: 2016 end-page: 3030 ident: CR66 article-title: High-Performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process publication-title: Small – ident: CR17 – volume: 49 start-page: 442 year: 2016 end-page: 451 ident: CR20 article-title: How copper nanowires grow and how to control their properties publication-title: Accounts Chem Res – volume: 349 start-page: 224 year: 2018 end-page: 232 ident: CR55 article-title: Preparation and characterization of micron-scale molybdenum metal mesh electrodes publication-title: Surf Coat Tech – volume: 5 start-page: 2131 year: 2005 end-page: 2134 ident: CR73 article-title: Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding publication-title: Nano Lett – volume: 22 start-page: 26891 year: 2014 end-page: 26899 ident: CR23 article-title: Effect of geometric lattice design on optical/electrical properties of transparent silver grid for organic solar cells publication-title: Opt Express – volume: 24 start-page: 3326 year: 2012 end-page: 3332 ident: CR63 article-title: Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network publication-title: Adv Mater – volume: 3 start-page: 2319 year: 2015 end-page: 2325 ident: CR62 article-title: Directed self-assembly of rhombic carbon nanotube nanomesh films for transparent and stretchable electrodes publication-title: J Mater Chem C – volume: 28 start-page: 7101 year: 2012 end-page: 7106 ident: CR4 article-title: Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding publication-title: Langmuir – volume: 283 start-page: 298 year: 2015 end-page: 310 ident: CR60 article-title: Effects of cyclic deformation on conductive characteristics of indium tin oxide thin film on polyethylene terephthalate substrate publication-title: Surf & Coat Tech – ident: CR28 – volume: 54 start-page: 462 year: 2015 end-page: 466 ident: CR46 article-title: A general one-pot strategy for the synthesis of high-performance transparent-conducting-oxide nanocrystal inks for all-solution-processed devices publication-title: Angew Chem Int Edit – volume: 16 start-page: 471 year: 2016 end-page: 478 ident: CR64 article-title: Stretchable, Transparent electrodes as wearable heaters using nanotrough networks of metallic glasses with superior mechanical properties and thermal stability publication-title: Nano Lett – volume: 7 start-page: 13771 year: 2016 ident: CR77 article-title: An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq−1) publication-title: Nat Commun – volume: 1 start-page: 1640 year: 2019 ident: 6206_CR74 publication-title: Nanoscale Adv doi: 10.1039/C9NA00108E – volume: 15 start-page: 4206 year: 2015 ident: 6206_CR19 publication-title: Nano Lett doi: 10.1021/acs.nanolett.5b01531 – volume: 23 start-page: 4177 year: 2013 ident: 6206_CR15 publication-title: Adv Funct Mater doi: 10.1002/adfm.201202646 – volume: 16 start-page: 471 year: 2016 ident: 6206_CR64 publication-title: Nano Lett doi: 10.1021/acs.nanolett.5b04134 – volume: 17 start-page: 1883 year: 2017 ident: 6206_CR6 publication-title: Nano Lett doi: 10.1021/acs.nanolett.6b05205 – volume: 54 start-page: 10355 year: 2019 ident: 6206_CR22 publication-title: J Mater Sci doi: 10.1007/s10853-019-03507-7 – volume: 25 start-page: 6554 year: 2013 ident: 6206_CR24 publication-title: Adv Mater doi: 10.1002/adma.201303514 – volume: 14 start-page: 2105 year: 2014 ident: 6206_CR38 publication-title: Nano Lett doi: 10.1021/nl5003075 – volume: 26 start-page: 27545 year: 2018 ident: 6206_CR80 publication-title: Opt Express doi: 10.1364/OE.26.027545 – volume: 9 start-page: 44609 year: 2017 ident: 6206_CR3 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b14626 – ident: 6206_CR28 – volume: 54 start-page: 462 year: 2015 ident: 6206_CR46 publication-title: Angew Chem Int Edit doi: 10.1002/anie.201408621 – volume: 177 start-page: 107406 year: 2019 ident: 6206_CR21 publication-title: Composite Part B Eng doi: 10.1016/j.compositesb.2019.107406 – ident: 6206_CR43 – volume: 7 start-page: 13771 year: 2016 ident: 6206_CR77 publication-title: Nat Commun doi: 10.1038/ncomms13771 – volume: 4 start-page: 9264 year: 2018 ident: 6206_CR68 publication-title: Sci Adv doi: 10.1126/sciadv.aap9264 – volume: 7 start-page: 236 year: 2014 ident: 6206_CR14 publication-title: Nano Res doi: 10.1007/s12274-013-0391-x – volume: 49 start-page: 442 year: 2016 ident: 6206_CR20 publication-title: Accounts Chem Res doi: 10.1021/acs.accounts.5b00506 – volume: 201 start-page: 927 year: 2006 ident: 6206_CR45 publication-title: Surf Coat Tech doi: 10.1016/j.surfcoat.2006.01.004 – volume: 10 start-page: 11941 year: 2018 ident: 6206_CR2 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b00492 – volume: 24 start-page: 22989 year: 2016 ident: 6206_CR30 publication-title: Opt Express doi: 10.1364/OE.24.022989 – volume: 8 start-page: 421 year: 2013 ident: 6206_CR56 publication-title: Nat Nanotechnol doi: 10.1038/nnano.2013.84 – volume: 364 start-page: 931 year: 2016 ident: 6206_CR34 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2015.12.182 – ident: 6206_CR54 doi: 10.7567/JJAP.53.05HB11 – volume: 22 start-page: 26891 year: 2014 ident: 6206_CR23 publication-title: Opt Express doi: 10.1364/OE.22.026891 – volume: 28 start-page: 9298 year: 2012 ident: 6206_CR35 publication-title: Langmuir doi: 10.1021/la300961m – volume: 6 start-page: 5645 year: 2014 ident: 6206_CR58 publication-title: Nanoscale doi: 10.1039/c4nr00869c – volume: 10 start-page: 21009 year: 2018 ident: 6206_CR65 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b06691 – volume: 583 start-page: 226 year: 2015 ident: 6206_CR8 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2015.04.001 – volume: 115 start-page: 34 year: 2017 ident: 6206_CR75 publication-title: Carbon doi: 10.1016/j.carbon.2016.12.092 – volume: 19 start-page: 1391 year: 2007 ident: 6206_CR26 publication-title: Adv Mater doi: 10.1002/adma.200700134 – volume: 5 start-page: 3121 year: 2014 ident: 6206_CR36 publication-title: Nat Commun doi: 10.1038/ncomms4121 – volume: 12 start-page: 3021 year: 2016 ident: 6206_CR66 publication-title: Small doi: 10.1002/smll.201600309 – volume: 656 start-page: 936 year: 2016 ident: 6206_CR5 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2015.09.279 – volume: 7 start-page: 35590 year: 2017 ident: 6206_CR18 publication-title: RSC Adv doi: 10.1039/C7RA06524H – volume: 2 start-page: 2089 year: 2014 ident: 6206_CR32 publication-title: J Mater Chem C doi: 10.1039/c3tc32167c – volume: 155 start-page: 51 year: 2016 ident: 6206_CR71 publication-title: Solar Energy Mater Solar Cells doi: 10.1016/j.solmat.2016.04.056 – volume: 205 start-page: 915 year: 2010 ident: 6206_CR61 publication-title: Surf Coat Tech doi: 10.1016/j.surfcoat.2010.08.055 – volume: 9 start-page: 19001 year: 2017 ident: 6206_CR13 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b02443 – volume: 28 start-page: 7101 year: 2012 ident: 6206_CR4 publication-title: Langmuir doi: 10.1021/la300720y – volume: 45 start-page: 366 year: 2019 ident: 6206_CR41 publication-title: Tech Phys Lett doi: 10.1134/S1063785019040187 – volume: 50 start-page: 2562 year: 2014 ident: 6206_CR52 publication-title: Chem Commun doi: 10.1039/C3CC48561G – volume: 19 start-page: 8 year: 2019 ident: 6206_CR57 publication-title: Curr Appl Phys doi: 10.1016/j.cap.2018.10.016 – volume: 1 start-page: 1600095 year: 2016 ident: 6206_CR59 publication-title: Adv Mater Technol doi: 10.1002/admt.201600095 – volume: 89 start-page: 703 year: 2016 ident: 6206_CR79 publication-title: Mater Design doi: 10.1016/j.matdes.2015.09.142 – volume: 6 start-page: 11828 year: 2014 ident: 6206_CR51 publication-title: Nanoscale doi: 10.1039/C4NR03771E – volume: 112 start-page: 2073 year: 2009 ident: 6206_CR72 publication-title: J Appl Polym Sci doi: 10.1002/app.29812 – volume: 283 start-page: 298 year: 2015 ident: 6206_CR60 publication-title: Surf & Coat Tech doi: 10.1016/j.surfcoat.2015.11.007 – volume: 24 start-page: 3326 year: 2012 ident: 6206_CR63 publication-title: Adv Mater doi: 10.1002/adma.201200359 – volume: 26 start-page: 873 year: 2014 ident: 6206_CR31 publication-title: Adv Mater doi: 10.1002/adma.201302950 – volume: 5 start-page: 2131 year: 2005 ident: 6206_CR73 publication-title: Nano Lett doi: 10.1021/nl051375r – volume: 90 start-page: 183119 year: 2007 ident: 6206_CR9 publication-title: Appl Phys Lett doi: 10.1063/1.2734897 – volume: 81 start-page: 232 year: 2015 ident: 6206_CR70 publication-title: Carbon doi: 10.1016/j.carbon.2014.09.054 – volume: 5 start-page: 574 year: 2010 ident: 6206_CR50 publication-title: Nat Nanotechnol doi: 10.1038/nnano.2010.132 – volume: 6 start-page: 13688 year: 2014 ident: 6206_CR33 publication-title: ACS Appl Mater Interfaces doi: 10.1021/am503154z – volume: 130 start-page: 448 year: 2018 ident: 6206_CR49 publication-title: Carbon doi: 10.1016/j.carbon.2018.01.016 – volume: 7 start-page: 1087 year: 2019 ident: 6206_CR44 publication-title: J Mater Chem C doi: 10.1039/C8TC04423F – volume: 3 start-page: 16621 year: 2015 ident: 6206_CR53 publication-title: J Mater Chem A doi: 10.1039/C5TA03348A – volume: 10 start-page: 4242 year: 2010 ident: 6206_CR7 publication-title: Nano Lett doi: 10.1021/nl102725k – volume: 1 start-page: 026301 year: 2014 ident: 6206_CR42 publication-title: Mater Res Express doi: 10.1088/2053-1591/1/2/026301 – volume: 3 start-page: 2765 year: 2018 ident: 6206_CR11 publication-title: ACS Omega doi: 10.1021/acsomega.7b02033 – ident: 6206_CR17 doi: 10.1002/adem.202001310 – volume: 8 start-page: 16684 year: 2016 ident: 6206_CR78 publication-title: Nanoscale doi: 10.1039/C6NR02619B – volume: 18 start-page: 143 year: 2015 ident: 6206_CR1 publication-title: Mater Today doi: 10.1016/j.mattod.2014.08.018 – volume: 140 start-page: 353 year: 2013 ident: 6206_CR76 publication-title: Prog Electromagn Res doi: 10.2528/PIER13050312 – volume: 8 start-page: 3485 year: 2018 ident: 6206_CR29 publication-title: Opt Mater Express doi: 10.1364/OME.8.003485 – ident: 6206_CR40 – volume: 11 start-page: 3804 year: 2019 ident: 6206_CR67 publication-title: Nanoscale doi: 10.1039/C8NR08399A – volume: 23 start-page: 4798 year: 2011 ident: 6206_CR16 publication-title: Adv Mater doi: 10.1002/adma.201102284 – volume: 23 start-page: 455704 year: 2012 ident: 6206_CR10 publication-title: Nanotechnology doi: 10.1088/0957-4484/23/45/455704 – volume: 6 start-page: 25601 year: 2016 ident: 6206_CR39 publication-title: Sci Rep doi: 10.1038/srep25601 – volume: 10 start-page: 3767 year: 2014 ident: 6206_CR27 publication-title: Small doi: 10.1002/smll.201400911 – volume: 160 start-page: 1838 year: 2010 ident: 6206_CR12 publication-title: Synth Met doi: 10.1016/j.synthmet.2010.06.027 – volume: 3 start-page: 2319 year: 2015 ident: 6206_CR62 publication-title: J Mater Chem C doi: 10.1039/C4TC02733G – volume: 100 start-page: 143109 year: 2012 ident: 6206_CR37 publication-title: Appl Phys Lett doi: 10.1063/1.3701582 – volume: 10 start-page: 4349 year: 2010 ident: 6206_CR48 publication-title: Nano Lett doi: 10.1021/nl101680s – volume: 349 start-page: 224 year: 2018 ident: 6206_CR55 publication-title: Surf Coat Tech doi: 10.1016/j.surfcoat.2018.03.085 – volume: 22 start-page: 075201 year: 2011 ident: 6206_CR47 publication-title: Nanotechnology doi: 10.1088/0957-4484/22/7/075201 – volume: 6 start-page: 13531 year: 2016 ident: 6206_CR25 publication-title: RSC Adv doi: 10.1039/C5RA21988D – volume: 4 start-page: 4595 year: 2010 ident: 6206_CR69 publication-title: ACS Nano doi: 10.1021/nn1008808 |
SSID | ssj0005721 |
Score | 2.517688 |
Snippet | Nowadays, the technical advances call for efficient electromagnetic interference (EMI) shielding of transparent devices which may be subject to data theft. We... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 14741 |
SubjectTerms | Bend radius Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Coatings Copper Crystallography and Scattering Methods Deformation Deposition Efficiency Electrical resistivity electromagnetic interference Electromagnetic shielding Electromagnetism Graphene Materials Science Mechanical properties Metals & Corrosion Nickel Polymer Sciences Radiation Science Silver Solid Mechanics Substrates Sulfur Superhigh frequencies Theft Thin films |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVKe4EDggIiUJCLkDhAROJ4HedUrSqWFokegEq9Wf7KtlI3WZqsxJH_gPiD_JLOeJ2GgtpLFClOrGRszxtn3htCXheiMtIInsqaVSn4Y5YaJ-o002UBgCOTdeBxfz4SB8f808nkJG64dTGtclgTw0LtWot75O8hkJkENRG5t_yeYtUo_LsaS2jcIVs5A1-LTPHZxzHFo2T5oBaOummRNBOpc-CoUkxQyASDqJpfc0z_Ls___ScN7mf2gNyPuJFO14Z-SDZ8s03u_aUm-Ij83l_9-flrOqe6cfTobH2-8N2p7yg6K0fbhtoLDfPWUZSkOgecSXVHfZCRAO9D-yB1jvywnsYCOQs9b5DoSLtTTHaDnqhtNSZLU9zDpf5H2PuHGxYeWcRodLoc6QiPyfHsw7f9gzRWXUgtYI8ejpVwmfAQOeXaQkShIQQ0Ehy7B3RphSmFzbK6qrUpc1NbiYIvABJs7gorOS-ekM2mbfxTQrVgruSurMq84pPCa89NJauJ9CJjmuUJyYdPrmyUJMfKGOdqFFNGMykwkwpmUjwhb6_uWa4FOW5t_QotqVDposFUmrledZ06_PpFTSFwA-wCeDEhb2KjuoXurY7MBHgJFMe61nJnGBEqzvVOjSMzIbtXl2GW4ufXjW9X0EYUsNChtn5C3g0jaXzEzS_w7PYen5O7LIxhTHrbIZv9xcq_AJTUm5dhKlwCHgUN3Q priority: 102 providerName: ProQuest |
Title | Cu–Ag and Ni–Ag meshes based on cracked template as efficient transparent electromagnetic shielding coating with excellent mechanical performance |
URI | https://link.springer.com/article/10.1007/s10853-021-06206-4 https://www.proquest.com/docview/2545000598 https://www.proquest.com/docview/2636382290 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R9gIHVF4iUFYGIXGASHk6zjFb7baAWKHCSuVkOY6zrdRNqiYrcex_QPxBfgkzXqfb8pK4JJEyiZWM7fkmme8zwMuY56UoeeKLOsp9jMeRX1a89gOVxQg4AlFbHveHGT-cJ--O02NHCuuGavfhl6Sdqa-R3TC0-FRSEPAI8-BkC3ZS0pPCXjyPik1hRxaFg0Y4qaU5qsyf73EjHP06Kf_2d9QGneku3HVokRVr996DW6a5D3euaQg-gO_7qx-X34oFU03FZqfr46XpTkzHKERVrG2YvlA4WitGQlRniC6Z6pix4hEYc1hvBc6JFdYztyzOUi0aojey7oRK3LAlpltFJdKMvtwy89V-8ccLloa4w-Rqdr4hITyE-XTyef_Qd2st-BoRR4_bnFcBN5gvhUpjHqEw8SsFhnODmFLzMuM6COq8VmUWlrUWJPOC0ECHVaxFksSPYLtpG_MYmOJRlSVVlmdhnqSxUSYpc5GnwvAgUlHoQTi8cqmdEDmth3EmNxLK5CaJbpLWTTLx4PXVNedrGY5_Wr8gT0rSt2iogGahVl0n3346kgWma4hYECV68MoZ1S02r5XjI-BDkCTWDcu9oUdIN8I7iYl1atVthAfPr07j2KTXrxrTrtCGxzi9kaK-B2-GnrS5xd8f4Mn_mT-F25Ht01T6tgfb_cXKPEOs1Jcj2BLTgxHsFNPxeEb7gy_vJ7gfT2Yfj0Z24PwEeNAQXA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7QE4IH5FoIBBIA4Qkb91kkOFltJql7YrVFqpN9exnS1SN1marIAb74B4nT5Mn4SZrNNQEL31soq0TqxkxvNjz_cNwPOQp1mS8chN8iB10R8HbqZ57noyDjHg8JK8wXFvj_lwL_qw399fgpMWC0Nlla1NbAy1LhXtkb_BRKbfsIkkb2dfXOoaRaerbQsNaVsr6NWGYswCOzbN96-YwlWro_co7xdBsLG-uzZ0bZcBV6GvrfE35drjBjMFXyqMoCWmPFmCjsxgNKV4FnPleXmayyz2s1wlRHCCTlH5OlRJFIX43CuwHNEGSg-W362PP-50RSZx4Ld85cTcZmE7FryHrtKlEgmPB5jXR-dc498O4p-T2sYBbtyEGzZyZYOFqt2CJVPchut_8BnegV9r89MfPwcTJgvNxp8X11NTHZqKkbvUrCyYOpZoOTQjUqwjjHSZrJhpiCzQ_7G6IVsnhFrNbIueqZwUBLVk1SGV2-FMTJWSyrUZ7SIz8605fcAbpoZwzKR2bNYBIu7C3qVI5B70irIw94FJHug40nEa-2nUD400UZYmaT8x3Atk4Dvgt59cKEuKTr05jkRH50xiEigm0YhJRA68OrtntqAEuXD0M5KkIK6Ngop5JnJeVWL0aUcMMHXE6AkjVgde2kF5idMrabER-BJEz3Vu5EqrEcJam0p0a8OBp2d_o52gzy8LU85xDA_R1BK7vwOvW03qHvH_F3hw8YxP4Opwd3tLbI3Gmw_hWtDoM5XgrUCvPp6bRxiz1dljuzAYHFz2WvwNRg1QBg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEB1BKiF4oFyFocCCkHgAt75s1vZjVBpaChECKpWn1e56nSIaO6ptCfHEP1T9wX4JM740ablIiJfIUsaX3YxnzmTnnAV4FopEx1pwN86CxMV8HLg6FZnrqShEwOHFWcPjfjcR23v8zf5wf4nF33S790uSLaeBVJryamOeZhtLxDdMMy61F3giwJqYX4YVTntIDGBl9Prz7taizSMK_F4xnLTTOuLM769yLjldDNG_rJU2KWi8Cqp_-Lbz5Ot6Xel18_2CruP_jO4GXO_wKRu1DnUTLtn8FlxbUi28DSeb9emP49GUqTxlky_t8cyWB7ZklBRTVuTMHCmMDykj6atDxLNMlcw2chX4HKxqJNWJh1axbiOemZrmRKhk5QE11eGdmCkUNWUz-q-Y2W_NGgOeMLPEVibnYvMF7eEO7I23Pm1uu93uDq5BjFPhZyJST1is0HxlsHJRWGrqGAGERRRrhI6E8bwsyZSOfJ2ZmIRlEIwYPw1NzHl4FwZ5kdt7wJQI0oinURL5CR-GVlmukzgZxlZ4gQp8B_z-Z5Wmkz6nHTgO5UK0maZc4pTLZsold-DF2TnzVvjjr9ZPyVskKWrk1LIzVXVZyp2PH-QIC0TESIhLHXjeGWUF3t6ojgGBgyARrnOWa73XyS6mlBJL-WGjpxM78OTsa4wGNP0qt0WNNiLEgEoa_g687B1tcYk_D-D-v5k_hivvX43l253J7gO4GjSuSn13azCojmr7EIFapR917-JP2l4zgQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cu-Ag+and+Ni-Ag+meshes+based+on+cracked+template+as+efficient+transparent+electromagnetic+shielding+coating+with+excellent+mechanical+performance&rft.jtitle=Journal+of+materials+science&rft.au=Voronin%2C+A.+S&rft.au=Fadeev%2C+Y.+V&rft.au=Govorun%2C+I.+V&rft.au=Podshivalov%2C+I.+V&rft.date=2021-09-01&rft.pub=Springer&rft.issn=0022-2461&rft.volume=56&rft.issue=26&rft.spage=14741&rft_id=info:doi/10.1007%2Fs10853-021-06206-4&rft.externalDBID=ISR&rft.externalDocID=A666521143 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2461&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2461&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2461&client=summon |