Cu–Ag and Ni–Ag meshes based on cracked template as efficient transparent electromagnetic shielding coating with excellent mechanical performance

Nowadays, the technical advances call for efficient electromagnetic interference (EMI) shielding of transparent devices which may be subject to data theft. We developed Cu–Ag and Ni–Ag meshes on flexible PET substrate for highly efficiency transparent EMI shielding coating. Cu–Ag and Ni–Ag meshes ob...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science Vol. 56; no. 26; pp. 14741 - 14762
Main Authors Voronin, A. S., Fadeev, Y. V., Govorun, I. V., Podshivalov, I. V., Simunin, M. M., Tambasov, I. A., Karpova, D. V., Smolyarova, T. E., Lukyanenko, A. V., Karacharov, A. A., Nemtsev, I. V., Khartov, S. V.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0022-2461
1573-4803
DOI10.1007/s10853-021-06206-4

Cover

Abstract Nowadays, the technical advances call for efficient electromagnetic interference (EMI) shielding of transparent devices which may be subject to data theft. We developed Cu–Ag and Ni–Ag meshes on flexible PET substrate for highly efficiency transparent EMI shielding coating. Cu–Ag and Ni–Ag meshes obtained with galvanic deposition of copper and nickel on thin Ag seed mesh which was made by cracked template method. Coefficients S 11 , S 21 and shielding efficiency ( SE ) were measured for Cu–Ag and Ni–Ag meshes in X-band (8–12 GHz) and K-band (18–26.5 GHz). 90 s copper deposition increase SE from 23.2 to 43.7 dB at 8 GHz with a transparency of 82.2% and a sheet resistance of 0.25 Ω/sq. The achieved maximum SE was 47.6 dB for Cu–Ag mesh with 67.8% transparency and 41.1 dB for Ni–Ag mesh with 77.8% transparency. Cu–Ag and Ni–Ag meshes have high bending and long-term stability. Minimum bend radius is lower than 100 µm. This effect allows to produce different forms of transparent shielding objects, for example, origami method. Our coatings are the leading among all literary solutions in three-dimensional coordinates: of sheet resistance–optical transmittance–cost of produced. Graphical abstract
AbstractList Nowadays, the technical advances call for efficient electromagnetic interference (EMI) shielding of transparent devices which may be subject to data theft. We developed Cu-Ag and Ni-Ag meshes on flexible PET substrate for highly efficiency transparent EMI shielding coating. Cu-Ag and Ni-Ag meshes obtained with galvanic deposition of copper and nickel on thin Ag seed mesh which was made by cracked template method. Coefficients S.sub.11, S.sub.21 and shielding efficiency (SE) were measured for Cu-Ag and Ni-Ag meshes in X-band (8-12 GHz) and K-band (18-26.5 GHz). 90 s copper deposition increase SE from 23.2 to 43.7 dB at 8 GHz with a transparency of 82.2% and a sheet resistance of 0.25 â¦/sq. The achieved maximum SE was 47.6 dB for Cu-Ag mesh with 67.8% transparency and 41.1 dB for Ni-Ag mesh with 77.8% transparency. Cu-Ag and Ni-Ag meshes have high bending and long-term stability. Minimum bend radius is lower than 100 [micro]m. This effect allows to produce different forms of transparent shielding objects, for example, origami method. Our coatings are the leading among all literary solutions in three-dimensional coordinates: of sheet resistance-optical transmittance-cost of produced.
Nowadays, the technical advances call for efficient electromagnetic interference (EMI) shielding of transparent devices which may be subject to data theft. We developed Cu–Ag and Ni–Ag meshes on flexible PET substrate for highly efficiency transparent EMI shielding coating. Cu–Ag and Ni–Ag meshes obtained with galvanic deposition of copper and nickel on thin Ag seed mesh which was made by cracked template method. Coefficients S₁₁, S₂₁ and shielding efficiency (SE) were measured for Cu–Ag and Ni–Ag meshes in X-band (8–12 GHz) and K-band (18–26.5 GHz). 90 s copper deposition increase SE from 23.2 to 43.7 dB at 8 GHz with a transparency of 82.2% and a sheet resistance of 0.25 Ω/sq. The achieved maximum SE was 47.6 dB for Cu–Ag mesh with 67.8% transparency and 41.1 dB for Ni–Ag mesh with 77.8% transparency. Cu–Ag and Ni–Ag meshes have high bending and long-term stability. Minimum bend radius is lower than 100 µm. This effect allows to produce different forms of transparent shielding objects, for example, origami method. Our coatings are the leading among all literary solutions in three-dimensional coordinates: of sheet resistance–optical transmittance–cost of produced.
Nowadays, the technical advances call for efficient electromagnetic interference (EMI) shielding of transparent devices which may be subject to data theft. We developed Cu-Ag and Ni-Ag meshes on flexible PET substrate for highly efficiency transparent EMI shielding coating. Cu-Ag and Ni-Ag meshes obtained with galvanic deposition of copper and nickel on thin Ag seed mesh which was made by cracked template method. Coefficients S.sub.11, S.sub.21 and shielding efficiency (SE) were measured for Cu-Ag and Ni-Ag meshes in X-band (8-12 GHz) and K-band (18-26.5 GHz). 90 s copper deposition increase SE from 23.2 to 43.7 dB at 8 GHz with a transparency of 82.2% and a sheet resistance of 0.25 â¦/sq. The achieved maximum SE was 47.6 dB for Cu-Ag mesh with 67.8% transparency and 41.1 dB for Ni-Ag mesh with 77.8% transparency. Cu-Ag and Ni-Ag meshes have high bending and long-term stability. Minimum bend radius is lower than 100 [micro]m. This effect allows to produce different forms of transparent shielding objects, for example, origami method. Our coatings are the leading among all literary solutions in three-dimensional coordinates: of sheet resistance-optical transmittance-cost of produced. Graphical abstract
Nowadays, the technical advances call for efficient electromagnetic interference (EMI) shielding of transparent devices which may be subject to data theft. We developed Cu–Ag and Ni–Ag meshes on flexible PET substrate for highly efficiency transparent EMI shielding coating. Cu–Ag and Ni–Ag meshes obtained with galvanic deposition of copper and nickel on thin Ag seed mesh which was made by cracked template method. Coefficients S11, S21 and shielding efficiency (SE) were measured for Cu–Ag and Ni–Ag meshes in X-band (8–12 GHz) and K-band (18–26.5 GHz). 90 s copper deposition increase SE from 23.2 to 43.7 dB at 8 GHz with a transparency of 82.2% and a sheet resistance of 0.25 Ω/sq. The achieved maximum SE was 47.6 dB for Cu–Ag mesh with 67.8% transparency and 41.1 dB for Ni–Ag mesh with 77.8% transparency. Cu–Ag and Ni–Ag meshes have high bending and long-term stability. Minimum bend radius is lower than 100 µm. This effect allows to produce different forms of transparent shielding objects, for example, origami method. Our coatings are the leading among all literary solutions in three-dimensional coordinates: of sheet resistance–optical transmittance–cost of produced.
Nowadays, the technical advances call for efficient electromagnetic interference (EMI) shielding of transparent devices which may be subject to data theft. We developed Cu–Ag and Ni–Ag meshes on flexible PET substrate for highly efficiency transparent EMI shielding coating. Cu–Ag and Ni–Ag meshes obtained with galvanic deposition of copper and nickel on thin Ag seed mesh which was made by cracked template method. Coefficients S 11 , S 21 and shielding efficiency ( SE ) were measured for Cu–Ag and Ni–Ag meshes in X-band (8–12 GHz) and K-band (18–26.5 GHz). 90 s copper deposition increase SE from 23.2 to 43.7 dB at 8 GHz with a transparency of 82.2% and a sheet resistance of 0.25 Ω/sq. The achieved maximum SE was 47.6 dB for Cu–Ag mesh with 67.8% transparency and 41.1 dB for Ni–Ag mesh with 77.8% transparency. Cu–Ag and Ni–Ag meshes have high bending and long-term stability. Minimum bend radius is lower than 100 µm. This effect allows to produce different forms of transparent shielding objects, for example, origami method. Our coatings are the leading among all literary solutions in three-dimensional coordinates: of sheet resistance–optical transmittance–cost of produced. Graphical abstract
Audience Academic
Author Nemtsev, I. V.
Podshivalov, I. V.
Karacharov, A. A.
Khartov, S. V.
Voronin, A. S.
Fadeev, Y. V.
Govorun, I. V.
Simunin, M. M.
Karpova, D. V.
Smolyarova, T. E.
Tambasov, I. A.
Lukyanenko, A. V.
Author_xml – sequence: 1
  givenname: A. S.
  orcidid: 0000-0001-6908-9945
  surname: Voronin
  fullname: Voronin, A. S.
  email: a.voronin1988@mail.ru
  organization: Federal Research Center «Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences» (FRC KSC SB RAS), Siberian Federal University
– sequence: 2
  givenname: Y. V.
  surname: Fadeev
  fullname: Fadeev, Y. V.
  organization: Federal Research Center «Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences» (FRC KSC SB RAS)
– sequence: 3
  givenname: I. V.
  surname: Govorun
  fullname: Govorun, I. V.
  organization: Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, Reshetnev Siberian State University of Science and Technology (Reshetnev University)
– sequence: 4
  givenname: I. V.
  surname: Podshivalov
  fullname: Podshivalov, I. V.
  organization: Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences
– sequence: 5
  givenname: M. M.
  surname: Simunin
  fullname: Simunin, M. M.
  organization: Federal Research Center «Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences» (FRC KSC SB RAS), Siberian Federal University, Reshetnev Siberian State University of Science and Technology (Reshetnev University)
– sequence: 6
  givenname: I. A.
  surname: Tambasov
  fullname: Tambasov, I. A.
  organization: Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences
– sequence: 7
  givenname: D. V.
  surname: Karpova
  fullname: Karpova, D. V.
  organization: Federal Research Center «Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences» (FRC KSC SB RAS)
– sequence: 8
  givenname: T. E.
  surname: Smolyarova
  fullname: Smolyarova, T. E.
  organization: Siberian Federal University, Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences
– sequence: 9
  givenname: A. V.
  surname: Lukyanenko
  fullname: Lukyanenko, A. V.
  organization: Siberian Federal University, Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences
– sequence: 10
  givenname: A. A.
  surname: Karacharov
  fullname: Karacharov, A. A.
  organization: Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences
– sequence: 11
  givenname: I. V.
  surname: Nemtsev
  fullname: Nemtsev, I. V.
  organization: Federal Research Center «Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences» (FRC KSC SB RAS), Siberian Federal University, Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences
– sequence: 12
  givenname: S. V.
  surname: Khartov
  fullname: Khartov, S. V.
  organization: Federal Research Center «Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences» (FRC KSC SB RAS)
BookMark eNp9ks1q3DAQgE1JoZu0L9CToJf24GT0Y618XJb-BEIK_TkLrTz2KrVlV5Jpeus7lL5gn6RyXSjJIQikQXyfmBnNaXHiR49F8ZzCOQXYXkQKquIlMFqCZCBL8ajY0GrLS6GAnxQbAMZKJiR9UpzGeAMA1ZbRTfFrP__-8XPXEeMbcu3WeMB4xEgOJmJDRk9sMPZLDhMOU28SEhMJtq2zDn0iKRgfJxOWGHu0KYyD6TwmZ0k8Ouwb5ztiR5OW85tLR4K3Fvt-EQa0R-OdNT2ZMLRjGIy3-LR43Jo-4rN_51nx-c3rT_t35dX7t5f73VVpeVWlvNeyAYmirqixHKQRUB-UogpBgZWHrbQAbd2aw5YeWquqWigmhKUNt0oIfla8XN-dwvh1xpj04OKSmvE4zlEzySVXjNWQ0Rf30JtxDj5np1klqqWhtcrU-Up1pkftfDvm7ti8GhyczX_Wuny_k1JWjFLBs_DqjpCZhLepM3OM-vLjh7usWlkbxhgDttq6lLualWBcrynoZRj0Ogw6D4P-Owx6KZTdU6fgBhO-PyzxVYoZ9h2G_yU_YP0BO3DK_g
CitedBy_id crossref_primary_10_1016_j_isci_2024_111543
crossref_primary_10_3390_coatings15020189
crossref_primary_10_1002_admt_202401013
crossref_primary_10_1016_j_surfin_2023_102793
crossref_primary_10_1103_PhysRevE_108_044143
crossref_primary_10_1088_1361_6439_acb65e
crossref_primary_10_3390_ma15041449
crossref_primary_10_1051_itmconf_20245902013
crossref_primary_10_1039_D2QM00223J
crossref_primary_10_3390_ma18051067
crossref_primary_10_1002_admt_202302057
crossref_primary_10_1021_acsami_3c02088
crossref_primary_10_1002_admt_202201532
crossref_primary_10_1364_OE_511501
crossref_primary_10_1039_D3NR01130E
crossref_primary_10_1007_s12666_024_03546_y
crossref_primary_10_1016_j_ceramint_2022_01_351
crossref_primary_10_3390_app13084846
crossref_primary_10_1364_OE_438979
crossref_primary_10_7498_aps_74_20241305
crossref_primary_10_1680_jsuin_23_00067
crossref_primary_10_1016_j_compstruct_2025_119124
crossref_primary_10_1002_smsc_202100077
crossref_primary_10_1364_OE_468843
crossref_primary_10_1016_j_rineng_2024_103888
crossref_primary_10_1364_OME_478830
crossref_primary_10_1007_s11664_024_10916_1
crossref_primary_10_48084_etasr_5252
crossref_primary_10_1021_acsami_3c16405
crossref_primary_10_1007_s10854_024_14121_y
crossref_primary_10_1007_s40820_024_01525_y
crossref_primary_10_1021_acsami_3c14788
crossref_primary_10_3390_nano12030387
crossref_primary_10_1007_s10854_022_09155_z
crossref_primary_10_1088_1361_6463_ad13c6
crossref_primary_10_1007_s12034_024_03145_z
Cites_doi 10.1039/C9NA00108E
10.1021/acs.nanolett.5b01531
10.1002/adfm.201202646
10.1021/acs.nanolett.5b04134
10.1021/acs.nanolett.6b05205
10.1007/s10853-019-03507-7
10.1002/adma.201303514
10.1021/nl5003075
10.1364/OE.26.027545
10.1021/acsami.7b14626
10.1002/anie.201408621
10.1016/j.compositesb.2019.107406
10.1038/ncomms13771
10.1126/sciadv.aap9264
10.1007/s12274-013-0391-x
10.1021/acs.accounts.5b00506
10.1016/j.surfcoat.2006.01.004
10.1021/acsami.8b00492
10.1364/OE.24.022989
10.1038/nnano.2013.84
10.1016/j.apsusc.2015.12.182
10.7567/JJAP.53.05HB11
10.1364/OE.22.026891
10.1021/la300961m
10.1039/c4nr00869c
10.1021/acsami.8b06691
10.1016/j.tsf.2015.04.001
10.1016/j.carbon.2016.12.092
10.1002/adma.200700134
10.1038/ncomms4121
10.1002/smll.201600309
10.1016/j.jallcom.2015.09.279
10.1039/C7RA06524H
10.1039/c3tc32167c
10.1016/j.solmat.2016.04.056
10.1016/j.surfcoat.2010.08.055
10.1021/acsami.7b02443
10.1021/la300720y
10.1134/S1063785019040187
10.1039/C3CC48561G
10.1016/j.cap.2018.10.016
10.1002/admt.201600095
10.1016/j.matdes.2015.09.142
10.1039/C4NR03771E
10.1002/app.29812
10.1016/j.surfcoat.2015.11.007
10.1002/adma.201200359
10.1002/adma.201302950
10.1021/nl051375r
10.1063/1.2734897
10.1016/j.carbon.2014.09.054
10.1038/nnano.2010.132
10.1021/am503154z
10.1016/j.carbon.2018.01.016
10.1039/C8TC04423F
10.1039/C5TA03348A
10.1021/nl102725k
10.1088/2053-1591/1/2/026301
10.1021/acsomega.7b02033
10.1002/adem.202001310
10.1039/C6NR02619B
10.1016/j.mattod.2014.08.018
10.2528/PIER13050312
10.1364/OME.8.003485
10.1039/C8NR08399A
10.1002/adma.201102284
10.1088/0957-4484/23/45/455704
10.1038/srep25601
10.1002/smll.201400911
10.1016/j.synthmet.2010.06.027
10.1039/C4TC02733G
10.1063/1.3701582
10.1021/nl101680s
10.1016/j.surfcoat.2018.03.085
10.1088/0957-4484/22/7/075201
10.1039/C5RA21988D
10.1021/nn1008808
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
COPYRIGHT 2021 Springer
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: COPYRIGHT 2021 Springer
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
ISR
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOI 10.1007/s10853-021-06206-4
DatabaseName CrossRef
Gale In Context: Science
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

ProQuest Materials Science Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-4803
EndPage 14762
ExternalDocumentID A666521143
10_1007_s10853_021_06206_4
GrantInformation_xml – fundername: Российский Фонд Фундаментальных Исследований (РФФИ)
  grantid: «mol_a» No18-38-00852
  funderid: http://dx.doi.org/10.13039/501100002261
GroupedDBID -4Y
-58
-5G
-BR
-EM
-XW
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
29K
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDEX
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IFM
IGS
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P9N
PDBOC
PF-
PKN
PT4
PT5
PTHSS
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z91
Z92
ZE2
ZMTXR
ZY4
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c355t-c396d06e4951ac306a409b8818e080c6b76c00f9fab71bfc85948244c1d3c8443
IEDL.DBID U2A
ISSN 0022-2461
IngestDate Thu Sep 04 23:01:19 EDT 2025
Sun Jul 13 04:44:07 EDT 2025
Tue Jun 10 20:19:04 EDT 2025
Fri Jun 27 04:10:56 EDT 2025
Tue Jul 01 01:40:09 EDT 2025
Thu Apr 24 22:51:12 EDT 2025
Fri Feb 21 02:48:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-c396d06e4951ac306a409b8818e080c6b76c00f9fab71bfc85948244c1d3c8443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6908-9945
PQID 2545000598
PQPubID 2043599
PageCount 22
ParticipantIDs proquest_miscellaneous_2636382290
proquest_journals_2545000598
gale_infotracacademiconefile_A666521143
gale_incontextgauss_ISR_A666521143
crossref_citationtrail_10_1007_s10853_021_06206_4
crossref_primary_10_1007_s10853_021_06206_4
springer_journals_10_1007_s10853_021_06206_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210900
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 9
  year: 2021
  text: 20210900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials science
PublicationTitleAbbrev J Mater Sci
PublicationYear 2021
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Gupta, Rao, Srivastava, Kumar, Kiruthika, Kulkarni (CR33) 2014; 6
Kim, Kim, Kim (CR79) 2016; 89
Song, You, Lim, Park, Jung, Kim, Kim, Kim, Kim, Park, Kang, Heo, Jin, Park, Kang (CR15) 2013; 23
Hecht, Heintz, Lee, Hu, Moore, Cucksey, Risser (CR47) 2011; 22
Xia, Fang, Li, Zhang, Yao, Chen, Ding, Ouyang (CR13) 2017; 9
Tsapenko, Goldt, Shulga, Popov, Maslakov, Anisimov, Sorokin, Nasibulin (CR49) 2018; 130
An, Gwak, Kim, Kim, Jang, Kim, Park (CR64) 2016; 16
Zhou, Azumi, Shimada (CR67) 2019; 11
Lee, Kim, Kim, Baik, Park, Lee, Nam, Park, Lee, Yi, Cho (CR51) 2014; 6
Han, Pei, Huang, Zhang, Rong, Lin, Guo, Sun, Guo, Carnahan, Giersig, Wang, Gao, Ren, Kempa (CR31) 2014; 26
Choi, Kang, Lee, Park (CR8) 2015; 583
Ahn, Choe, Park, Kim, Son, Lee, Park, Ko (CR62) 2015; 3
Voronin, Simunin, Fadeev, Ivanchenko, Karpova, Tambasov, Khartov (CR41) 2019; 45
Bonninghoff, Chu, Chang, Mehretie, Lai (CR55) 2018; 349
Seo, Noh, Na, Kim (CR71) 2016; 155
Zhu, Zhu, Hoekstra, Li, Xiu, Xue, Zeng, Wang (CR37) 2012; 100
Zhang, Xia, Gai (CR11) 2018; 3
Peng, Li, Han, Rong, Lu, Wang, Zeng, Zhou, Liu, Kempa, Gao (CR59) 2016; 1
Jia, Yan, Liu, Ma, Wu, Li (CR2) 2018; 10
Ye, Rathmell, Stewart, Ha, Wilson, Chen, Wiley (CR52) 2014; 50
Wang, Ruan (CR5) 2016; 656
Jiang, Hou, Chen, Wang, Sun, Tang, Jin, Guo, Zhang, Du, Tai, Tan, Kauppinen, Liu, Cheng (CR68) 2018; 4
Guo, Ren (CR1) 2015; 18
Deignan, Goldthorpe (CR18) 2017; 7
Araki, Jiu, Nogi, Koga, Nagao, Sugahara, Suganuma (CR14) 2014; 7
Kiruthika, Rao, Kumar, Gupta, Kulkarni (CR42) 2014; 1
Shen, Chen, Zhang, Liu (CR80) 2018; 26
Liu, Tan (CR76) 2013; 140
Ok, Kwak, Huard, Youn, Guo (CR24) 2013; 25
Gao, Wang, Ding, Lee, Leu (CR38) 2014; 14
Rao, Kulkarni (CR58) 2014; 6
CR43
Wu, Kong, Ruan, Hsu, Wang, Yu, Carney, Hu, Fan, Cui (CR56) 2013; 8
CR40
Hong, Kim, Kim, Kim, Park, Kim, Cho (CR10) 2012; 23
Qi, Li, Zhu, Yang, Zhao, Song (CR25) 2016; 6
Hu, Gao, Dong, Li, Shan, Yang, Li (CR4) 2012; 28
Kim, Lee, Lee, Lee, Choi, Jung, Jung, Choi (CR27) 2014; 10
Kiruthika, Gupta, Rao, Chakraborty, Padmavathy, Kulkarni (CR32) 2014; 2
Deng, Hsu, Chen, Chandrashekar, Liao, Ayitimuda, Wu, Guo, Lin, Zhou, Aisijiang, Xie, Cui, Liu, Peng (CR19) 2015; 15
Guo, Sun, Liu, Suo, Ren (CR36) 2014; 5
Wang, Lu, Tan (CR30) 2016; 24
Kaskela, Nasibulin, Timmermans, Aitchison, Papadimitratos, Tian, Zhu, Jiang, Brown, Zakhidov, Kauppinen (CR48) 2010; 10
Lu, Ma, Tan, Wang, Ding (CR78) 2016; 8
Miao, Liu, McEleney, Wang (CR22) 2019; 54
Kim, Park, Lee (CR45) 2006; 201
Tran, Lu, Lin (CR60) 2015; 283
Ye, Stewart, Chen, Li, Rathmell, Wiley (CR20) 2016; 49
Choi, Lee, Kim (CR21) 2019; 177
Yang, Gupta (CR73) 2005; 5
Geetha, Kumar, Rao, Vijayan, Trivedi (CR72) 2009; 112
Lim, Lee, Pandey, Yoo, Sang, Ju, Hwang, Choi (CR23) 2014; 22
Xu, Anlage, Hu, Gruner (CR9) 2007; 90
Maniyara, Mkhitaryan, Chen, Ghosh, Pruneri (CR77) 2016; 7
CR17
Kang, Guo (CR26) 2007; 19
Bai, Liao, Huang, Song, Liu, Fang, Xu, Cui, Wu (CR6) 2017; 17
Qiu, Luo, Liang, Ning, Wang, Li, Zhi (CR70) 2015; 81
CR54
Kim, Lee, Kim, Lee (CR12) 2010; 160
Lee, Jin, Ovhal, Kumar, Kang (CR44) 2019; 7
Lee, Lee, Lee, Yeo, Hong, Nam, Lee, Lee, Ko (CR63) 2012; 24
Wang, Bai, Zhou, Ni, Lin (CR29) 2018; 8
Bae, Kim, Lee, Xu, Park, Zheng, Balakrishnan, Lei, Kim, Song, Kim, Kim, Ozyilmaz, Ahn, Hong, Iijima (CR50) 2010; 5
Jung, Lee, Ha, Cho, Kim, Kwon, Won, Hong, Ko (CR3) 2017; 9
Shukla (CR74) 2019; 1
Song, Kulinich, Li, Liu, Zeng (CR46) 2015; 54
Zhang, Khan, Cai, Liang, Liu, Deng, Huang, Li, Li (CR65) 2018; 10
CR28
Voronin, Ivanchenko, Simunin, Shiverskiy, Aleksandrovsky, Nemtsev, Fadeev, Karpova, Khartov (CR34) 2016; 364
Han, Lin, Liu, Fu, Ma, Jin, Tan (CR39) 2016; 6
Wu, Hu, Rowell, Kong, Cha, McDonough, Zhu, Yang, McGehee, Cui (CR7) 2010; 10
Kim, Joh, Hong, Oh (CR57) 2019; 19
Rathmell, Wiley (CR16) 2011; 23
Park, Kim, Lee, Kim, Lee (CR61) 2010; 205
Tokuno, Nogi, Jiu, Sugahara, Suganuma (CR35) 2012; 28
Gunes, Shin, Biswas, Han, Kim, Chae, Choi, Lee (CR69) 2010; 4
Kim, Kim, Jeong, Choi, Lee, Choi (CR53) 2015; 3
Khan, Lee, Jang, Xiong, Zhang, Tang, Guo, Li (CR66) 2016; 12
Han, Liu, Han, Lin, Jin (CR75) 2017; 115
M Song (6206_CR15) 2013; 23
KW Seo (6206_CR71) 2016; 155
JG Ok (6206_CR24) 2013; 25
H Wu (6206_CR7) 2010; 10
YM Liu (6206_CR76) 2013; 140
JW Lim (6206_CR23) 2014; 22
MJ Hu (6206_CR4) 2012; 28
JF Zhu (6206_CR37) 2012; 100
H Wu (6206_CR56) 2013; 8
Y Zhou (6206_CR67) 2019; 11
HB Lee (6206_CR44) 2019; 7
XP Bai (6206_CR6) 2017; 17
SR Ye (6206_CR52) 2014; 50
S Bae (6206_CR50) 2010; 5
MH Kim (6206_CR57) 2019; 19
G Deignan (6206_CR18) 2017; 7
R Gupta (6206_CR33) 2014; 6
SJ Lee (6206_CR51) 2014; 6
Y Han (6206_CR75) 2017; 115
A Khan (6206_CR66) 2016; 12
JH Choi (6206_CR21) 2019; 177
LF Qi (6206_CR25) 2016; 6
HJ Kim (6206_CR27) 2014; 10
T Araki (6206_CR14) 2014; 7
SR Ye (6206_CR20) 2016; 49
YJ Xia (6206_CR13) 2017; 9
B Deng (6206_CR19) 2015; 15
YL Yang (6206_CR73) 2005; 5
S Kiruthika (6206_CR32) 2014; 2
6206_CR40
BR Kim (6206_CR12) 2010; 160
6206_CR43
DH Kim (6206_CR45) 2006; 201
DH Kim (6206_CR79) 2016; 89
J Jung (6206_CR3) 2017; 9
AS Voronin (6206_CR41) 2019; 45
T Tokuno (6206_CR35) 2012; 28
S Ahn (6206_CR62) 2015; 3
L Miao (6206_CR22) 2019; 54
S Geetha (6206_CR72) 2009; 112
DS Hecht (6206_CR47) 2011; 22
6206_CR17
F Gunes (6206_CR69) 2010; 4
YJ Choi (6206_CR8) 2015; 583
Y Han (6206_CR39) 2016; 6
ZG Lu (6206_CR78) 2016; 8
B Han (6206_CR31) 2014; 26
A Kaskela (6206_CR48) 2010; 10
S Shen (6206_CR80) 2018; 26
WQ Wang (6206_CR29) 2018; 8
H Xu (6206_CR9) 2007; 90
V Shukla (6206_CR74) 2019; 1
6206_CR54
P Lee (6206_CR63) 2012; 24
RA Maniyara (6206_CR77) 2016; 7
CF Guo (6206_CR1) 2015; 18
BW An (6206_CR64) 2016; 16
MG Kang (6206_CR26) 2007; 19
S Jiang (6206_CR68) 2018; 4
HY Wang (6206_CR30) 2016; 24
6206_CR28
CF Guo (6206_CR36) 2014; 5
DP Tran (6206_CR60) 2015; 283
AP Tsapenko (6206_CR49) 2018; 130
TC Gao (6206_CR38) 2014; 14
RL Wang (6206_CR5) 2016; 656
LC Jia (6206_CR2) 2018; 10
N Bonninghoff (6206_CR55) 2018; 349
HJ Kim (6206_CR53) 2015; 3
Q Peng (6206_CR59) 2016; 1
JZ Song (6206_CR46) 2015; 54
HL Zhang (6206_CR11) 2018; 3
AS Voronin (6206_CR34) 2016; 364
JW Park (6206_CR61) 2010; 205
KDM Rao (6206_CR58) 2014; 6
TF Qiu (6206_CR70) 2015; 81
S Kiruthika (6206_CR42) 2014; 1
AR Rathmell (6206_CR16) 2011; 23
SK Hong (6206_CR10) 2012; 23
CP Zhang (6206_CR65) 2018; 10
References_xml – volume: 4
  start-page: 4595
  year: 2010
  end-page: 4600
  ident: CR69
  article-title: Layer-by-layer doping of few-layer graphene film
  publication-title: ACS Nano
– volume: 18
  start-page: 143
  year: 2015
  end-page: 154
  ident: CR1
  article-title: Flexible transparent conductors based on metal nanowire networks
  publication-title: Mater Today
– volume: 26
  start-page: 27545
  year: 2018
  end-page: 27554
  ident: CR80
  article-title: High-performance composite Ag-Ni mesh based flexible transparent conductive film as multifunctional devices
  publication-title: Opt Express
– volume: 155
  start-page: 51
  year: 2016
  end-page: 59
  ident: CR71
  article-title: Random mesh-like Ag networks prepared via self-assembled Ag nanoparticles for ITO-free flexible organic solar cells
  publication-title: Solar Energy Mater Solar Cells
– volume: 160
  start-page: 1838
  year: 2010
  end-page: 1842
  ident: CR12
  article-title: Intrinsic electromagnetic radiation shielding/absorbing characteristics of polyaniline-coated transparent thin films
  publication-title: Synth Met
– volume: 364
  start-page: 931
  year: 2016
  end-page: 937
  ident: CR34
  article-title: High performance hybrid rGO/Ag quasi-periodic mesh transparent electrodes for flexible electrochromic devices
  publication-title: Appl Surf Sci
– volume: 5
  start-page: 3121
  year: 2014
  ident: CR36
  article-title: Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography
  publication-title: Nat Commun
– volume: 17
  start-page: 1883
  year: 2017
  end-page: 1891
  ident: CR6
  article-title: Continuous draw spinning of extra-long silver submicron fibers with micrometer patterning capability
  publication-title: Nano Lett
– volume: 201
  start-page: 927
  year: 2006
  end-page: 931
  ident: CR45
  article-title: Preparation of high quality ITO films on a plastic substrate using RF magnetron sputtering
  publication-title: Surf Coat Tech
– volume: 1
  start-page: 1600095
  year: 2016
  ident: CR59
  article-title: Colossal figure of merit in transparent-conducting metallic ribbon networks
  publication-title: Adv Mater Technol
– volume: 5
  start-page: 574
  year: 2010
  end-page: 578
  ident: CR50
  article-title: Roll-to-roll production of 30-inch graphene films for transparent electrodes
  publication-title: Nat Nanotechnol
– volume: 177
  start-page: 107406
  year: 2019
  ident: CR21
  article-title: Ultra-bendable and durable Graphene-Urethane composite/silver nanowire film for flexible transparent electrodes and electromagnetic-interference shielding
  publication-title: Composite Part B Eng
– volume: 54
  start-page: 10355
  year: 2019
  end-page: 10370
  ident: CR22
  article-title: Epoxy-embedded silver nanowire meshes for transparent flexible electrodes
  publication-title: J Mater Sci
– volume: 6
  start-page: 13531
  year: 2016
  end-page: 13536
  ident: CR25
  article-title: Realization of a flexible and mechanically robust Ag mesh transparent electrode and its application in a PDLC device
  publication-title: RSC Adv
– volume: 140
  start-page: 353
  year: 2013
  end-page: 368
  ident: CR76
  article-title: Frequency dependent model of sheet resistance and effect analysis on shielding effectiveness of transparent conductive mesh coatings
  publication-title: Prog Electromagn Res
– ident: CR54
– volume: 15
  start-page: 4206
  year: 2015
  end-page: 4213
  ident: CR19
  article-title: Roll-to-Roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes
  publication-title: Nano Lett
– volume: 1
  start-page: 1640
  year: 2019
  end-page: 1671
  ident: CR74
  article-title: Review of electromagnetic interference shielding materials fabricated by iron ingredients
  publication-title: Nanoscale Adv
– volume: 45
  start-page: 366
  year: 2019
  end-page: 369
  ident: CR41
  article-title: Technological basis of the formation of micromesh transparent electrodes by means of a self-organized template and the study of their properties
  publication-title: Tech Phys Lett
– volume: 19
  start-page: 8
  year: 2019
  end-page: 13
  ident: CR57
  article-title: Coupled Ag nanocrystal-based transparent mesh electrodes for transparent and flexible electro-magnetic interference shielding films
  publication-title: Curr Appl Phys
– volume: 130
  start-page: 448
  year: 2018
  end-page: 457
  ident: CR49
  article-title: Highly conductive and transparent films of HAuCl -doped single-walled carbon nanotubes for flexible applications
  publication-title: Carbon
– volume: 7
  start-page: 35590
  year: 2017
  end-page: 35597
  ident: CR18
  article-title: The dependence of silver nanowire stability on network composition and processing parameters
  publication-title: RSC Adv
– volume: 8
  start-page: 3485
  year: 2018
  end-page: 3493
  ident: CR29
  article-title: Petal-shaped metallic mesh with high electromagnetic shielding efficiency and smoothed uniform diffraction
  publication-title: Opt Mater Express
– volume: 23
  start-page: 455704
  year: 2012
  ident: CR10
  article-title: Electromagnetic interference shielding effectiveness of monolayer graphene
  publication-title: Nanotechnology
– volume: 115
  start-page: 34
  year: 2017
  end-page: 42
  ident: CR75
  article-title: High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding
  publication-title: Carbon
– volume: 10
  start-page: 4242
  year: 2010
  end-page: 4248
  ident: CR7
  article-title: Electrospun metal nanofiber webs as high-performance transparent electrode
  publication-title: Nano Lett
– volume: 9
  start-page: 19001
  year: 2017
  end-page: 19010
  ident: CR13
  article-title: Solution-processed highly superparamagnetic and conductive PEDOT:PSS/Fe O nanocomposite films with high transparency and high mechanical flexibility
  publication-title: ACS Appl Mater Interfaces
– volume: 7
  start-page: 1087
  year: 2019
  end-page: 1110
  ident: CR44
  article-title: Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review
  publication-title: J Mater Chem C
– volume: 50
  start-page: 2562
  year: 2014
  end-page: 2564
  ident: CR52
  article-title: A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films
  publication-title: Chem Commun
– volume: 10
  start-page: 21009
  year: 2018
  end-page: 21017
  ident: CR65
  article-title: Stretchable transparent electrodes with solution-processed regular metal mesh for an electroluminescent light-emitting film
  publication-title: ACS Appl Mater Interfaces
– volume: 9
  start-page: 44609
  year: 2017
  end-page: 44616
  ident: CR3
  article-title: Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications
  publication-title: ACS Appl Mater Interfaces
– volume: 583
  start-page: 226
  year: 2015
  end-page: 232
  ident: CR8
  article-title: Electromagnetic interference shielding behaviors of Zn-based conducting oxide films prepared by atomic layer deposition
  publication-title: Thin Solid Films
– volume: 19
  start-page: 1391
  year: 2007
  end-page: 1396
  ident: CR26
  article-title: Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes
  publication-title: Adv Mater
– volume: 7
  start-page: 236
  year: 2014
  end-page: 245
  ident: CR14
  article-title: Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method
  publication-title: Nano Res
– volume: 205
  start-page: 915
  year: 2010
  end-page: 921
  ident: CR61
  article-title: The effect of film microstructures on cracking of transparent conductive oxide (TCO) coatings on polymer substrates
  publication-title: Surf Coat Tech
– volume: 24
  start-page: 22989
  year: 2016
  end-page: 23000
  ident: CR30
  article-title: Generation of uniform diffraction pattern and high EMI shielding performance by metallic mesh composed of ring and rotated sub-ring arrays
  publication-title: Opt Express
– volume: 1
  start-page: 026301
  year: 2014
  ident: CR42
  article-title: Metal wire network based transparent conducting electrodes fabricated using interconnected crackled layer as template
  publication-title: Mater Res Express
– volume: 2
  start-page: 2089
  year: 2014
  end-page: 2094
  ident: CR32
  article-title: Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network
  publication-title: J Mater Chem C
– volume: 4
  start-page: 9264
  year: 2018
  ident: CR68
  article-title: Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes
  publication-title: Sci Adv
– volume: 656
  start-page: 936
  year: 2016
  end-page: 943
  ident: CR5
  article-title: Synthesis of copper nanowires and its application to flexible transparent electrode
  publication-title: J Alloy Compd
– ident: CR43
– volume: 23
  start-page: 4177
  year: 2013
  end-page: 4184
  ident: CR15
  article-title: Highly efficient and bendable organic solar cells with solution-processed silver nanowire electrodes
  publication-title: Adv Funct Mater
– volume: 23
  start-page: 4798
  year: 2011
  end-page: 4803
  ident: CR16
  article-title: The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates
  publication-title: Adv Mater
– volume: 11
  start-page: 3804
  year: 2019
  end-page: 3813
  ident: CR67
  article-title: A highly durable, stretchable, transparent and conductive carbon nanotube–polymeric acid hybrid film
  publication-title: Nanoscale
– volume: 22
  start-page: 075201
  year: 2011
  ident: CR47
  article-title: High conductivity transparent carbon nanotube films deposited from superacid
  publication-title: Nanotechnology
– volume: 3
  start-page: 16621
  year: 2015
  end-page: 16626
  ident: CR53
  article-title: A cupronickel-based micromesh film for use as a high-performance and low-voltage transparent heater
  publication-title: J Mater Chem A
– volume: 6
  start-page: 25601
  year: 2016
  ident: CR39
  article-title: Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding
  publication-title: Sci Rep
– volume: 6
  start-page: 13688
  year: 2014
  end-page: 13696
  ident: CR33
  article-title: Spray coating of crack templates for the fabrication of transparent conductors and heaters on flat and curved surfaces
  publication-title: ACS Appl Mater Interfaces
– volume: 112
  start-page: 2073
  year: 2009
  end-page: 2086
  ident: CR72
  article-title: EMI shielding: methods and materials-a review
  publication-title: J Appl Polym Sci
– volume: 6
  start-page: 5645
  year: 2014
  end-page: 5651
  ident: CR58
  article-title: A highly crystalline single Au wire network as a high temperature transparent heater
  publication-title: Nanoscale
– volume: 10
  start-page: 3767
  year: 2014
  end-page: 3774
  ident: CR27
  article-title: High-durable AgNi nanomesh film for a transparent conducting electrode
  publication-title: Small
– volume: 6
  start-page: 11828
  year: 2014
  end-page: 11834
  ident: CR51
  article-title: A roll-to-roll welding process for planarized silver nanowire electrodes
  publication-title: Nanoscale
– volume: 26
  start-page: 873
  year: 2014
  end-page: 877
  ident: CR31
  article-title: Uniform self-forming metallic network as a high-performance transparent conductive electrode
  publication-title: Adv Mater
– volume: 8
  start-page: 16684
  year: 2016
  end-page: 16693
  ident: CR78
  article-title: Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance
  publication-title: Nanoscale
– ident: CR40
– volume: 25
  start-page: 6554
  year: 2013
  end-page: 6561
  ident: CR24
  article-title: Photo-roll lithography (PRL) for continuous and scalable patterning with application in flexible electronics
  publication-title: Adv Mater
– volume: 14
  start-page: 2105
  year: 2014
  end-page: 2110
  ident: CR38
  article-title: Uniform and ordered copper nanomeshes by microsphere lithography for transparent electrodes
  publication-title: Nano Lett
– volume: 10
  start-page: 4349
  year: 2010
  end-page: 4355
  ident: CR48
  article-title: Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique
  publication-title: Nano Lett
– volume: 8
  start-page: 421
  year: 2013
  end-page: 425
  ident: CR56
  article-title: A transparent electrode based on a metal nanotrough network
  publication-title: Nat Nanotechnol
– volume: 81
  start-page: 232
  year: 2015
  end-page: 238
  ident: CR70
  article-title: Hydrogen reduced graphene oxide/metal grid hybrid film: towards high performance transparent conductive electrode for flexible electrochromic devices
  publication-title: Carbon
– volume: 90
  start-page: 183119
  year: 2007
  ident: CR9
  article-title: Microwave shielding of transparent and conducting single-walled carbon nanotube films
  publication-title: Appl Phys Lett
– volume: 10
  start-page: 11941
  year: 2018
  end-page: 11949
  ident: CR2
  article-title: Highly efficient and reliable transparent electromagnetic interference shielding, film
  publication-title: ACS Appl Mater Interfaces
– volume: 28
  start-page: 9298
  year: 2012
  end-page: 9302
  ident: CR35
  article-title: Transparent electrodes fabricated via the self-assembly of silver nanowires using a bubble template
  publication-title: Langmuir
– volume: 89
  start-page: 703
  year: 2016
  end-page: 707
  ident: CR79
  article-title: Transparent and flexible film for shielding electromagnetic interference
  publication-title: Mater Design
– volume: 100
  start-page: 143109
  year: 2012
  ident: CR37
  article-title: Metallic nanomesh electrodes with controllable optical properties for organic solar cells
  publication-title: Appl Phys Lett
– volume: 3
  start-page: 2765
  year: 2018
  end-page: 2772
  ident: CR11
  article-title: Ultrathin active layer for transparent electromagnetic shielding window
  publication-title: ACS Omega
– volume: 12
  start-page: 3021
  year: 2016
  end-page: 3030
  ident: CR66
  article-title: High-Performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process
  publication-title: Small
– ident: CR17
– volume: 49
  start-page: 442
  year: 2016
  end-page: 451
  ident: CR20
  article-title: How copper nanowires grow and how to control their properties
  publication-title: Accounts Chem Res
– volume: 349
  start-page: 224
  year: 2018
  end-page: 232
  ident: CR55
  article-title: Preparation and characterization of micron-scale molybdenum metal mesh electrodes
  publication-title: Surf Coat Tech
– volume: 5
  start-page: 2131
  year: 2005
  end-page: 2134
  ident: CR73
  article-title: Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding
  publication-title: Nano Lett
– volume: 22
  start-page: 26891
  year: 2014
  end-page: 26899
  ident: CR23
  article-title: Effect of geometric lattice design on optical/electrical properties of transparent silver grid for organic solar cells
  publication-title: Opt Express
– volume: 24
  start-page: 3326
  year: 2012
  end-page: 3332
  ident: CR63
  article-title: Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network
  publication-title: Adv Mater
– volume: 3
  start-page: 2319
  year: 2015
  end-page: 2325
  ident: CR62
  article-title: Directed self-assembly of rhombic carbon nanotube nanomesh films for transparent and stretchable electrodes
  publication-title: J Mater Chem C
– volume: 28
  start-page: 7101
  year: 2012
  end-page: 7106
  ident: CR4
  article-title: Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding
  publication-title: Langmuir
– volume: 283
  start-page: 298
  year: 2015
  end-page: 310
  ident: CR60
  article-title: Effects of cyclic deformation on conductive characteristics of indium tin oxide thin film on polyethylene terephthalate substrate
  publication-title: Surf & Coat Tech
– ident: CR28
– volume: 54
  start-page: 462
  year: 2015
  end-page: 466
  ident: CR46
  article-title: A general one-pot strategy for the synthesis of high-performance transparent-conducting-oxide nanocrystal inks for all-solution-processed devices
  publication-title: Angew Chem Int Edit
– volume: 16
  start-page: 471
  year: 2016
  end-page: 478
  ident: CR64
  article-title: Stretchable, Transparent electrodes as wearable heaters using nanotrough networks of metallic glasses with superior mechanical properties and thermal stability
  publication-title: Nano Lett
– volume: 7
  start-page: 13771
  year: 2016
  ident: CR77
  article-title: An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq−1)
  publication-title: Nat Commun
– volume: 1
  start-page: 1640
  year: 2019
  ident: 6206_CR74
  publication-title: Nanoscale Adv
  doi: 10.1039/C9NA00108E
– volume: 15
  start-page: 4206
  year: 2015
  ident: 6206_CR19
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.5b01531
– volume: 23
  start-page: 4177
  year: 2013
  ident: 6206_CR15
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201202646
– volume: 16
  start-page: 471
  year: 2016
  ident: 6206_CR64
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.5b04134
– volume: 17
  start-page: 1883
  year: 2017
  ident: 6206_CR6
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.6b05205
– volume: 54
  start-page: 10355
  year: 2019
  ident: 6206_CR22
  publication-title: J Mater Sci
  doi: 10.1007/s10853-019-03507-7
– volume: 25
  start-page: 6554
  year: 2013
  ident: 6206_CR24
  publication-title: Adv Mater
  doi: 10.1002/adma.201303514
– volume: 14
  start-page: 2105
  year: 2014
  ident: 6206_CR38
  publication-title: Nano Lett
  doi: 10.1021/nl5003075
– volume: 26
  start-page: 27545
  year: 2018
  ident: 6206_CR80
  publication-title: Opt Express
  doi: 10.1364/OE.26.027545
– volume: 9
  start-page: 44609
  year: 2017
  ident: 6206_CR3
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b14626
– ident: 6206_CR28
– volume: 54
  start-page: 462
  year: 2015
  ident: 6206_CR46
  publication-title: Angew Chem Int Edit
  doi: 10.1002/anie.201408621
– volume: 177
  start-page: 107406
  year: 2019
  ident: 6206_CR21
  publication-title: Composite Part B Eng
  doi: 10.1016/j.compositesb.2019.107406
– ident: 6206_CR43
– volume: 7
  start-page: 13771
  year: 2016
  ident: 6206_CR77
  publication-title: Nat Commun
  doi: 10.1038/ncomms13771
– volume: 4
  start-page: 9264
  year: 2018
  ident: 6206_CR68
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aap9264
– volume: 7
  start-page: 236
  year: 2014
  ident: 6206_CR14
  publication-title: Nano Res
  doi: 10.1007/s12274-013-0391-x
– volume: 49
  start-page: 442
  year: 2016
  ident: 6206_CR20
  publication-title: Accounts Chem Res
  doi: 10.1021/acs.accounts.5b00506
– volume: 201
  start-page: 927
  year: 2006
  ident: 6206_CR45
  publication-title: Surf Coat Tech
  doi: 10.1016/j.surfcoat.2006.01.004
– volume: 10
  start-page: 11941
  year: 2018
  ident: 6206_CR2
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b00492
– volume: 24
  start-page: 22989
  year: 2016
  ident: 6206_CR30
  publication-title: Opt Express
  doi: 10.1364/OE.24.022989
– volume: 8
  start-page: 421
  year: 2013
  ident: 6206_CR56
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2013.84
– volume: 364
  start-page: 931
  year: 2016
  ident: 6206_CR34
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2015.12.182
– ident: 6206_CR54
  doi: 10.7567/JJAP.53.05HB11
– volume: 22
  start-page: 26891
  year: 2014
  ident: 6206_CR23
  publication-title: Opt Express
  doi: 10.1364/OE.22.026891
– volume: 28
  start-page: 9298
  year: 2012
  ident: 6206_CR35
  publication-title: Langmuir
  doi: 10.1021/la300961m
– volume: 6
  start-page: 5645
  year: 2014
  ident: 6206_CR58
  publication-title: Nanoscale
  doi: 10.1039/c4nr00869c
– volume: 10
  start-page: 21009
  year: 2018
  ident: 6206_CR65
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b06691
– volume: 583
  start-page: 226
  year: 2015
  ident: 6206_CR8
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2015.04.001
– volume: 115
  start-page: 34
  year: 2017
  ident: 6206_CR75
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.12.092
– volume: 19
  start-page: 1391
  year: 2007
  ident: 6206_CR26
  publication-title: Adv Mater
  doi: 10.1002/adma.200700134
– volume: 5
  start-page: 3121
  year: 2014
  ident: 6206_CR36
  publication-title: Nat Commun
  doi: 10.1038/ncomms4121
– volume: 12
  start-page: 3021
  year: 2016
  ident: 6206_CR66
  publication-title: Small
  doi: 10.1002/smll.201600309
– volume: 656
  start-page: 936
  year: 2016
  ident: 6206_CR5
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2015.09.279
– volume: 7
  start-page: 35590
  year: 2017
  ident: 6206_CR18
  publication-title: RSC Adv
  doi: 10.1039/C7RA06524H
– volume: 2
  start-page: 2089
  year: 2014
  ident: 6206_CR32
  publication-title: J Mater Chem C
  doi: 10.1039/c3tc32167c
– volume: 155
  start-page: 51
  year: 2016
  ident: 6206_CR71
  publication-title: Solar Energy Mater Solar Cells
  doi: 10.1016/j.solmat.2016.04.056
– volume: 205
  start-page: 915
  year: 2010
  ident: 6206_CR61
  publication-title: Surf Coat Tech
  doi: 10.1016/j.surfcoat.2010.08.055
– volume: 9
  start-page: 19001
  year: 2017
  ident: 6206_CR13
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b02443
– volume: 28
  start-page: 7101
  year: 2012
  ident: 6206_CR4
  publication-title: Langmuir
  doi: 10.1021/la300720y
– volume: 45
  start-page: 366
  year: 2019
  ident: 6206_CR41
  publication-title: Tech Phys Lett
  doi: 10.1134/S1063785019040187
– volume: 50
  start-page: 2562
  year: 2014
  ident: 6206_CR52
  publication-title: Chem Commun
  doi: 10.1039/C3CC48561G
– volume: 19
  start-page: 8
  year: 2019
  ident: 6206_CR57
  publication-title: Curr Appl Phys
  doi: 10.1016/j.cap.2018.10.016
– volume: 1
  start-page: 1600095
  year: 2016
  ident: 6206_CR59
  publication-title: Adv Mater Technol
  doi: 10.1002/admt.201600095
– volume: 89
  start-page: 703
  year: 2016
  ident: 6206_CR79
  publication-title: Mater Design
  doi: 10.1016/j.matdes.2015.09.142
– volume: 6
  start-page: 11828
  year: 2014
  ident: 6206_CR51
  publication-title: Nanoscale
  doi: 10.1039/C4NR03771E
– volume: 112
  start-page: 2073
  year: 2009
  ident: 6206_CR72
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.29812
– volume: 283
  start-page: 298
  year: 2015
  ident: 6206_CR60
  publication-title: Surf & Coat Tech
  doi: 10.1016/j.surfcoat.2015.11.007
– volume: 24
  start-page: 3326
  year: 2012
  ident: 6206_CR63
  publication-title: Adv Mater
  doi: 10.1002/adma.201200359
– volume: 26
  start-page: 873
  year: 2014
  ident: 6206_CR31
  publication-title: Adv Mater
  doi: 10.1002/adma.201302950
– volume: 5
  start-page: 2131
  year: 2005
  ident: 6206_CR73
  publication-title: Nano Lett
  doi: 10.1021/nl051375r
– volume: 90
  start-page: 183119
  year: 2007
  ident: 6206_CR9
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2734897
– volume: 81
  start-page: 232
  year: 2015
  ident: 6206_CR70
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.09.054
– volume: 5
  start-page: 574
  year: 2010
  ident: 6206_CR50
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2010.132
– volume: 6
  start-page: 13688
  year: 2014
  ident: 6206_CR33
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am503154z
– volume: 130
  start-page: 448
  year: 2018
  ident: 6206_CR49
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.01.016
– volume: 7
  start-page: 1087
  year: 2019
  ident: 6206_CR44
  publication-title: J Mater Chem C
  doi: 10.1039/C8TC04423F
– volume: 3
  start-page: 16621
  year: 2015
  ident: 6206_CR53
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA03348A
– volume: 10
  start-page: 4242
  year: 2010
  ident: 6206_CR7
  publication-title: Nano Lett
  doi: 10.1021/nl102725k
– volume: 1
  start-page: 026301
  year: 2014
  ident: 6206_CR42
  publication-title: Mater Res Express
  doi: 10.1088/2053-1591/1/2/026301
– volume: 3
  start-page: 2765
  year: 2018
  ident: 6206_CR11
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b02033
– ident: 6206_CR17
  doi: 10.1002/adem.202001310
– volume: 8
  start-page: 16684
  year: 2016
  ident: 6206_CR78
  publication-title: Nanoscale
  doi: 10.1039/C6NR02619B
– volume: 18
  start-page: 143
  year: 2015
  ident: 6206_CR1
  publication-title: Mater Today
  doi: 10.1016/j.mattod.2014.08.018
– volume: 140
  start-page: 353
  year: 2013
  ident: 6206_CR76
  publication-title: Prog Electromagn Res
  doi: 10.2528/PIER13050312
– volume: 8
  start-page: 3485
  year: 2018
  ident: 6206_CR29
  publication-title: Opt Mater Express
  doi: 10.1364/OME.8.003485
– ident: 6206_CR40
– volume: 11
  start-page: 3804
  year: 2019
  ident: 6206_CR67
  publication-title: Nanoscale
  doi: 10.1039/C8NR08399A
– volume: 23
  start-page: 4798
  year: 2011
  ident: 6206_CR16
  publication-title: Adv Mater
  doi: 10.1002/adma.201102284
– volume: 23
  start-page: 455704
  year: 2012
  ident: 6206_CR10
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/45/455704
– volume: 6
  start-page: 25601
  year: 2016
  ident: 6206_CR39
  publication-title: Sci Rep
  doi: 10.1038/srep25601
– volume: 10
  start-page: 3767
  year: 2014
  ident: 6206_CR27
  publication-title: Small
  doi: 10.1002/smll.201400911
– volume: 160
  start-page: 1838
  year: 2010
  ident: 6206_CR12
  publication-title: Synth Met
  doi: 10.1016/j.synthmet.2010.06.027
– volume: 3
  start-page: 2319
  year: 2015
  ident: 6206_CR62
  publication-title: J Mater Chem C
  doi: 10.1039/C4TC02733G
– volume: 100
  start-page: 143109
  year: 2012
  ident: 6206_CR37
  publication-title: Appl Phys Lett
  doi: 10.1063/1.3701582
– volume: 10
  start-page: 4349
  year: 2010
  ident: 6206_CR48
  publication-title: Nano Lett
  doi: 10.1021/nl101680s
– volume: 349
  start-page: 224
  year: 2018
  ident: 6206_CR55
  publication-title: Surf Coat Tech
  doi: 10.1016/j.surfcoat.2018.03.085
– volume: 22
  start-page: 075201
  year: 2011
  ident: 6206_CR47
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/7/075201
– volume: 6
  start-page: 13531
  year: 2016
  ident: 6206_CR25
  publication-title: RSC Adv
  doi: 10.1039/C5RA21988D
– volume: 4
  start-page: 4595
  year: 2010
  ident: 6206_CR69
  publication-title: ACS Nano
  doi: 10.1021/nn1008808
SSID ssj0005721
Score 2.517688
Snippet Nowadays, the technical advances call for efficient electromagnetic interference (EMI) shielding of transparent devices which may be subject to data theft. We...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14741
SubjectTerms Bend radius
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Coatings
Copper
Crystallography and Scattering Methods
Deformation
Deposition
Efficiency
Electrical resistivity
electromagnetic interference
Electromagnetic shielding
Electromagnetism
Graphene
Materials Science
Mechanical properties
Metals & Corrosion
Nickel
Polymer Sciences
Radiation
Science
Silver
Solid Mechanics
Substrates
Sulfur
Superhigh frequencies
Theft
Thin films
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVKe4EDggIiUJCLkDhAROJ4HedUrSqWFokegEq9Wf7KtlI3WZqsxJH_gPiD_JLOeJ2GgtpLFClOrGRszxtn3htCXheiMtIInsqaVSn4Y5YaJ-o002UBgCOTdeBxfz4SB8f808nkJG64dTGtclgTw0LtWot75O8hkJkENRG5t_yeYtUo_LsaS2jcIVs5A1-LTPHZxzHFo2T5oBaOummRNBOpc-CoUkxQyASDqJpfc0z_Ls___ScN7mf2gNyPuJFO14Z-SDZ8s03u_aUm-Ij83l_9-flrOqe6cfTobH2-8N2p7yg6K0fbhtoLDfPWUZSkOgecSXVHfZCRAO9D-yB1jvywnsYCOQs9b5DoSLtTTHaDnqhtNSZLU9zDpf5H2PuHGxYeWcRodLoc6QiPyfHsw7f9gzRWXUgtYI8ejpVwmfAQOeXaQkShIQQ0Ehy7B3RphSmFzbK6qrUpc1NbiYIvABJs7gorOS-ekM2mbfxTQrVgruSurMq84pPCa89NJauJ9CJjmuUJyYdPrmyUJMfKGOdqFFNGMykwkwpmUjwhb6_uWa4FOW5t_QotqVDposFUmrledZ06_PpFTSFwA-wCeDEhb2KjuoXurY7MBHgJFMe61nJnGBEqzvVOjSMzIbtXl2GW4ufXjW9X0EYUsNChtn5C3g0jaXzEzS_w7PYen5O7LIxhTHrbIZv9xcq_AJTUm5dhKlwCHgUN3Q
  priority: 102
  providerName: ProQuest
Title Cu–Ag and Ni–Ag meshes based on cracked template as efficient transparent electromagnetic shielding coating with excellent mechanical performance
URI https://link.springer.com/article/10.1007/s10853-021-06206-4
https://www.proquest.com/docview/2545000598
https://www.proquest.com/docview/2636382290
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R9gIHVF4iUFYGIXGASHk6zjFb7baAWKHCSuVkOY6zrdRNqiYrcex_QPxBfgkzXqfb8pK4JJEyiZWM7fkmme8zwMuY56UoeeKLOsp9jMeRX1a89gOVxQg4AlFbHveHGT-cJ--O02NHCuuGavfhl6Sdqa-R3TC0-FRSEPAI8-BkC3ZS0pPCXjyPik1hRxaFg0Y4qaU5qsyf73EjHP06Kf_2d9QGneku3HVokRVr996DW6a5D3euaQg-gO_7qx-X34oFU03FZqfr46XpTkzHKERVrG2YvlA4WitGQlRniC6Z6pix4hEYc1hvBc6JFdYztyzOUi0aojey7oRK3LAlpltFJdKMvtwy89V-8ccLloa4w-Rqdr4hITyE-XTyef_Qd2st-BoRR4_bnFcBN5gvhUpjHqEw8SsFhnODmFLzMuM6COq8VmUWlrUWJPOC0ECHVaxFksSPYLtpG_MYmOJRlSVVlmdhnqSxUSYpc5GnwvAgUlHoQTi8cqmdEDmth3EmNxLK5CaJbpLWTTLx4PXVNedrGY5_Wr8gT0rSt2iogGahVl0n3346kgWma4hYECV68MoZ1S02r5XjI-BDkCTWDcu9oUdIN8I7iYl1atVthAfPr07j2KTXrxrTrtCGxzi9kaK-B2-GnrS5xd8f4Mn_mT-F25Ht01T6tgfb_cXKPEOs1Jcj2BLTgxHsFNPxeEb7gy_vJ7gfT2Yfj0Z24PwEeNAQXA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7QE4IH5FoIBBIA4Qkb91kkOFltJql7YrVFqpN9exnS1SN1marIAb74B4nT5Mn4SZrNNQEL31soq0TqxkxvNjz_cNwPOQp1mS8chN8iB10R8HbqZ57noyDjHg8JK8wXFvj_lwL_qw399fgpMWC0Nlla1NbAy1LhXtkb_BRKbfsIkkb2dfXOoaRaerbQsNaVsr6NWGYswCOzbN96-YwlWro_co7xdBsLG-uzZ0bZcBV6GvrfE35drjBjMFXyqMoCWmPFmCjsxgNKV4FnPleXmayyz2s1wlRHCCTlH5OlRJFIX43CuwHNEGSg-W362PP-50RSZx4Ld85cTcZmE7FryHrtKlEgmPB5jXR-dc498O4p-T2sYBbtyEGzZyZYOFqt2CJVPchut_8BnegV9r89MfPwcTJgvNxp8X11NTHZqKkbvUrCyYOpZoOTQjUqwjjHSZrJhpiCzQ_7G6IVsnhFrNbIueqZwUBLVk1SGV2-FMTJWSyrUZ7SIz8605fcAbpoZwzKR2bNYBIu7C3qVI5B70irIw94FJHug40nEa-2nUD400UZYmaT8x3Atk4Dvgt59cKEuKTr05jkRH50xiEigm0YhJRA68OrtntqAEuXD0M5KkIK6Ngop5JnJeVWL0aUcMMHXE6AkjVgde2kF5idMrabER-BJEz3Vu5EqrEcJam0p0a8OBp2d_o52gzy8LU85xDA_R1BK7vwOvW03qHvH_F3hw8YxP4Opwd3tLbI3Gmw_hWtDoM5XgrUCvPp6bRxiz1dljuzAYHFz2WvwNRg1QBg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEB1BKiF4oFyFocCCkHgAt75s1vZjVBpaChECKpWn1e56nSIaO6ptCfHEP1T9wX4JM740ablIiJfIUsaX3YxnzmTnnAV4FopEx1pwN86CxMV8HLg6FZnrqShEwOHFWcPjfjcR23v8zf5wf4nF33S790uSLaeBVJryamOeZhtLxDdMMy61F3giwJqYX4YVTntIDGBl9Prz7taizSMK_F4xnLTTOuLM769yLjldDNG_rJU2KWi8Cqp_-Lbz5Ot6Xel18_2CruP_jO4GXO_wKRu1DnUTLtn8FlxbUi28DSeb9emP49GUqTxlky_t8cyWB7ZklBRTVuTMHCmMDykj6atDxLNMlcw2chX4HKxqJNWJh1axbiOemZrmRKhk5QE11eGdmCkUNWUz-q-Y2W_NGgOeMLPEVibnYvMF7eEO7I23Pm1uu93uDq5BjFPhZyJST1is0HxlsHJRWGrqGAGERRRrhI6E8bwsyZSOfJ2ZmIRlEIwYPw1NzHl4FwZ5kdt7wJQI0oinURL5CR-GVlmukzgZxlZ4gQp8B_z-Z5Wmkz6nHTgO5UK0maZc4pTLZsold-DF2TnzVvjjr9ZPyVskKWrk1LIzVXVZyp2PH-QIC0TESIhLHXjeGWUF3t6ojgGBgyARrnOWa73XyS6mlBJL-WGjpxM78OTsa4wGNP0qt0WNNiLEgEoa_g687B1tcYk_D-D-v5k_hivvX43l253J7gO4GjSuSn13azCojmr7EIFapR917-JP2l4zgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cu-Ag+and+Ni-Ag+meshes+based+on+cracked+template+as+efficient+transparent+electromagnetic+shielding+coating+with+excellent+mechanical+performance&rft.jtitle=Journal+of+materials+science&rft.au=Voronin%2C+A.+S&rft.au=Fadeev%2C+Y.+V&rft.au=Govorun%2C+I.+V&rft.au=Podshivalov%2C+I.+V&rft.date=2021-09-01&rft.pub=Springer&rft.issn=0022-2461&rft.volume=56&rft.issue=26&rft.spage=14741&rft_id=info:doi/10.1007%2Fs10853-021-06206-4&rft.externalDBID=ISR&rft.externalDocID=A666521143
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2461&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2461&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2461&client=summon