Value Iteration Architecture Based Deep Learning for Intelligent Routing Exploiting Heterogeneous Computing Platforms
Recently, the rapid advancement of high computing platforms has accelerated the development and applications of artificial intelligence techniques. Deep learning, which has been regarded as the next paradigm to revolutionize users’ experiences, has attracted networking researchers’ interests to reli...
Saved in:
| Published in | IEEE transactions on computers Vol. 68; no. 6; pp. 939 - 950 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9340 1557-9956 |
| DOI | 10.1109/TC.2018.2874483 |
Cover
| Abstract | Recently, the rapid advancement of high computing platforms has accelerated the development and applications of artificial intelligence techniques. Deep learning, which has been regarded as the next paradigm to revolutionize users’ experiences, has attracted networking researchers’ interests to relieve the burden due to the exponentially growing traffic and increasing complexities. Various intelligent packet transmission strategies have been proposed to tackle different network problems. However, most of the existing research just focuses on the network related improvements and neglects the analysis about the computation consumptions. In this paper, we propose a Value Iteration Architecture based Deep Learning (VIADL) method to conduct routing design to address the limitations of existing deep learning based routing algorithms in dynamic networks. Besides the network performance analysis, we also study the complexity of our proposal as well as the resource consumptions in different deployment manners. Moreover, we adopt the Heterogeneous Computing Platform (HCP) to conduct the training and running of the proposed VIADL since the theoretical analysis demonstrates the significant reduction of the time complexity with the multiple GPUs in HCPs. Furthermore, simulation results demonstrate that compared with the existing deep learning based method, our proposal can guarantee more stable network performance when network topology changes. |
|---|---|
| AbstractList | Recently, the rapid advancement of high computing platforms has accelerated the development and applications of artificial intelligence techniques. Deep learning, which has been regarded as the next paradigm to revolutionize users’ experiences, has attracted networking researchers’ interests to relieve the burden due to the exponentially growing traffic and increasing complexities. Various intelligent packet transmission strategies have been proposed to tackle different network problems. However, most of the existing research just focuses on the network related improvements and neglects the analysis about the computation consumptions. In this paper, we propose a Value Iteration Architecture based Deep Learning (VIADL) method to conduct routing design to address the limitations of existing deep learning based routing algorithms in dynamic networks. Besides the network performance analysis, we also study the complexity of our proposal as well as the resource consumptions in different deployment manners. Moreover, we adopt the Heterogeneous Computing Platform (HCP) to conduct the training and running of the proposed VIADL since the theoretical analysis demonstrates the significant reduction of the time complexity with the multiple GPUs in HCPs. Furthermore, simulation results demonstrate that compared with the existing deep learning based method, our proposal can guarantee more stable network performance when network topology changes. |
| Author | Kato, Nei Tang, Fengxiao Fadlullah, Zubair Md Mao, Bomin |
| Author_xml | – sequence: 1 givenname: Zubair Md orcidid: 0000-0002-4785-2425 surname: Fadlullah fullname: Fadlullah, Zubair Md email: zubair@it.is.tohoku.ac.jp organization: Graduate School of Information Sciences, Tohoku University, Sendai, Japan – sequence: 2 givenname: Bomin orcidid: 0000-0001-7780-5972 surname: Mao fullname: Mao, Bomin email: bomin.mao@it.is.tohoku.ac.jp organization: Graduate School of Information Sciences, Tohoku University, Sendai, Japan – sequence: 3 givenname: Fengxiao orcidid: 0000-0003-2414-4802 surname: Tang fullname: Tang, Fengxiao email: fengxiao.tang@it.is.tohoku.ac.jp organization: Graduate School of Information Sciences, Tohoku University, Sendai, Japan – sequence: 4 givenname: Nei orcidid: 0000-0001-8769-302X surname: Kato fullname: Kato, Nei email: kato@it.is.tohoku.ac.jp organization: Graduate School of Information Sciences, Tohoku University, Sendai, Japan |
| BookMark | eNp9kE1LxDAQhoMouH6cPXgJeO46aZI2OWpddWFBkdVridmpRrpNTVLQf2_XFQ8enEuGzPPMwHtAdjvfISEnDKaMgT5fVtMcmJrmqhRC8R0yYVKWmday2CUTGEeZ5gL2yUGMbwBQ5KAnZHgy7YB0njCY5HxHL4J9dQltGgLSSxNxRa8Qe7pAEzrXvdDGBzrvErate8Eu0Qc_pM3_7KNvvftub3Fc58cp-iHSyq_7LXLfmjTq63hE9hrTRjz-eQ_J4_VsWd1mi7ubeXWxyCyXMmUWtLaFVvnKSlU-55blTYEWGt2sSgOFZEoLo4yQAgUYQFuMmOSMo3w2peSH5Gy7tw_-fcCY6jc_hG48WeebAgYFHym5pWzwMQZsauvSdxopGNfWDOpNwvWyqjcJ1z8Jj975H68Pbm3C5z_G6dZwiPhLK6GkyDn_AmtBiXc |
| CODEN | ITCOB4 |
| CitedBy_id | crossref_primary_10_1109_TVT_2024_3397707 crossref_primary_10_1109_JIOT_2024_3427686 crossref_primary_10_1007_s11235_024_01217_3 crossref_primary_10_1109_TVT_2020_2995877 crossref_primary_10_1109_JIOT_2020_3042901 crossref_primary_10_1109_TVT_2020_2971001 crossref_primary_10_1109_TVT_2020_2972806 crossref_primary_10_1109_TCOMM_2024_3429166 crossref_primary_10_1109_TVT_2020_2987751 crossref_primary_10_1109_COMST_2021_3089688 crossref_primary_10_1109_TVT_2019_2925562 crossref_primary_10_1007_s11227_021_03888_0 crossref_primary_10_1109_ACCESS_2021_3069210 crossref_primary_10_1109_TVT_2019_2953809 crossref_primary_10_1038_s41598_021_01638_z crossref_primary_10_1080_17517575_2021_1986861 crossref_primary_10_1109_TVT_2020_2981995 crossref_primary_10_1109_ACCESS_2020_2975088 crossref_primary_10_1109_TC_2019_2906881 crossref_primary_10_1109_TC_2023_3236868 crossref_primary_10_1109_TII_2021_3090719 crossref_primary_10_1109_ACCESS_2019_2946298 crossref_primary_10_1109_TNSM_2023_3240396 crossref_primary_10_1109_TNNLS_2021_3054867 crossref_primary_10_1109_TVT_2020_2980905 crossref_primary_10_1109_JIOT_2024_3477494 crossref_primary_10_1109_JIOT_2019_2954283 crossref_primary_10_1109_JETCAS_2020_2992128 crossref_primary_10_1109_JSTSP_2021_3055957 crossref_primary_10_1109_TVT_2020_2967077 crossref_primary_10_1109_TVT_2020_3005707 crossref_primary_10_1109_TC_2021_3074806 crossref_primary_10_1109_ACCESS_2019_2909401 |
| Cites_doi | 10.1038/nature14539 10.1109/JIOT.2018.2811808 10.1109/MNET.2018.1700202 10.1109/TC.2015.2401031 10.1109/71.993206 10.1109/TC.2016.2620469 10.1038/nature24270 10.1109/ICC.2017.7997286 10.1109/TETC.2018.2805718 10.1109/GLOCOMW.2016.7849067 10.1109/TC.2016.2574349 10.1109/ICNP.2016.7785324 10.1109/COMST.2017.2707140 10.1109/MWC.2016.1600317WC 10.1109/TNN.1998.712192 10.1109/TC.2017.2709742 10.1007/3-540-45683-X_22 10.1287/moor.12.3.441 10.1002/dac.3497 10.1109/JSAC.2018.2804019 10.1109/MWC.2018.1700417 10.1109/WCNC.2017.7925498 10.1109/MNET.2015.7166187 10.1109/INFOCOM.2018.8485853 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TC.2018.2874483 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9956 |
| EndPage | 950 |
| ExternalDocumentID | 10_1109_TC_2018_2874483 8485423 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: JSPS KAKENHI grantid: 16H05858 |
| GroupedDBID | --Z -DZ -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETEA AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 TWZ UHB UPT XZL YZZ AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c355t-c099c6982dc587b2c12f6ec0f9fd7a0651894a8a454e40a0ec687b5313e5ba753 |
| IEDL.DBID | RIE |
| ISSN | 0018-9340 |
| IngestDate | Mon Jun 30 06:57:55 EDT 2025 Wed Oct 01 00:45:16 EDT 2025 Thu Apr 24 23:07:31 EDT 2025 Wed Aug 27 02:47:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c355t-c099c6982dc587b2c12f6ec0f9fd7a0651894a8a454e40a0ec687b5313e5ba753 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2414-4802 0000-0002-4785-2425 0000-0001-7780-5972 0000-0001-8769-302X |
| PQID | 2222201063 |
| PQPubID | 85452 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_8485423 proquest_journals_2222201063 crossref_primary_10_1109_TC_2018_2874483 crossref_citationtrail_10_1109_TC_2018_2874483 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on computers |
| PublicationTitleAbbrev | TC |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | littman (ref39) 1995 ref12 ref37 ref15 ref14 mittal (ref4) 2018 ref11 ref10 (ref7) 2018 tamar (ref33) 2016 ref2 ref1 niu (ref25) 2017; abs 1706 2416 lee (ref13) 2012 ref17 ref38 ref16 ref19 ref18 alzantot (ref34) 0 (ref30) 2012 (ref36) 2013 dai (ref28) 2017; abs 1704 1665 singh (ref6) 2018 ref24 ref23 ref20 ref22 kalia (ref26) 2015 ref21 ref27 (ref35) 2010 ref29 ref8 ref9 (ref41) 2005 goodfellow (ref32) 2016 (ref31) 2004 ref40 baker (ref3) 2009; 12 lecun (ref5) 2015; 521 (ref42) 2015 |
| References_xml | – volume: 521 start-page: 436 year: 2015 ident: ref5 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – year: 2016 ident: ref32 publication-title: Deep Learning – ident: ref14 doi: 10.1109/JIOT.2018.2811808 – ident: ref21 doi: 10.1109/MNET.2018.1700202 – ident: ref11 doi: 10.1109/TC.2015.2401031 – ident: ref12 doi: 10.1109/71.993206 – volume: abs 1704 1665 year: 2017 ident: ref28 article-title: Learning combinatorial optimization algorithms over graphs publication-title: CoRR – year: 2005 ident: ref41 article-title: Star network – ident: ref15 doi: 10.1109/TC.2016.2620469 – ident: ref19 doi: 10.1038/nature24270 – ident: ref24 doi: 10.1109/ICC.2017.7997286 – ident: ref23 doi: 10.1109/TETC.2018.2805718 – ident: ref27 doi: 10.1109/GLOCOMW.2016.7849067 – volume: 12 start-page: 16 year: 2009 ident: ref3 article-title: The PetaFlops router: Harnessing FPGAs and accelerators for high performance computing publication-title: LINKS – ident: ref2 doi: 10.1109/TC.2016.2574349 – ident: ref18 doi: 10.1109/ICNP.2016.7785324 – start-page: 409 year: 2015 ident: ref26 article-title: Raising the bar for using GPUs in software packet processing publication-title: Proc 10th USENIX Conf Networked Syst Des Implementation – start-page: 394 year: 1995 ident: ref39 article-title: On the complexity of solving Markov decision problems publication-title: Proc 11th Conf Uncertainty Artif Intell – ident: ref8 doi: 10.1109/COMST.2017.2707140 – ident: ref17 doi: 10.1109/MWC.2016.1600317WC – ident: ref29 doi: 10.1109/TNN.1998.712192 – ident: ref1 doi: 10.1109/TC.2017.2709742 – year: 2012 ident: ref30 article-title: Internet topology zoo – year: 2015 ident: ref42 article-title: Tensorflow – ident: ref37 doi: 10.1007/3-540-45683-X_22 – ident: ref40 doi: 10.1287/moor.12.3.441 – ident: ref9 doi: 10.1002/dac.3497 – year: 2018 ident: ref6 article-title: All the machine learning features you need to know about in the latest android oreo – start-page: 2154 year: 2016 ident: ref33 article-title: Value iteration networks publication-title: Proc Neural Inf Process Syst – ident: ref16 doi: 10.1109/JSAC.2018.2804019 – year: 2018 ident: ref7 – year: 2012 ident: ref13 article-title: Resource allocation and scheduling in heterogeneous cloud environments – ident: ref38 doi: 10.1109/MWC.2018.1700417 – year: 2018 ident: ref4 article-title: Deep learning applications – year: 2004 ident: ref31 article-title: NP-hardness – year: 2013 ident: ref36 article-title: Convolutional neural network – year: 2010 ident: ref35 article-title: Value iteration – ident: ref22 doi: 10.1109/WCNC.2017.7925498 – ident: ref10 doi: 10.1109/MNET.2015.7166187 – ident: ref20 doi: 10.1109/INFOCOM.2018.8485853 – volume: abs 1706 2416 year: 2017 ident: ref25 article-title: Generalized value iteration networks: Life beyond lattices publication-title: CoRR – year: 0 ident: ref34 article-title: Deep reinforcement learning demysitifed (Episode 2)-Policy iteration, value iteration and Q-learning |
| SSID | ssj0006209 |
| Score | 2.438839 |
| Snippet | Recently, the rapid advancement of high computing platforms has accelerated the development and applications of artificial intelligence techniques. Deep... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 939 |
| SubjectTerms | Algorithms Artificial intelligence Complexity Computation Computer architecture Computer simulation computing platforms Deep learning deep reinforcement learning Graphics processing units Heterogeneous networks Iterative methods link failures Machine learning Network routing Network topologies Packet transmission Platforms Proposals Routing Supervised learning |
| Title | Value Iteration Architecture Based Deep Learning for Intelligent Routing Exploiting Heterogeneous Computing Platforms |
| URI | https://ieeexplore.ieee.org/document/8485423 https://www.proquest.com/docview/2222201063 |
| Volume | 68 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1557-9956 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006209 issn: 0018-9340 databaseCode: RIE dateStart: 19680101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_ZQXq26vORDDxyaECeOYx9hAS2VQD0sFbfImUyqqqtd1E0u_Hpsx4mgD6k5WfZYsjQez-f482eAT6SqOksNj3hDTSSsVaRMgVEqUeaU2HLq7jvf3snZvfjykD9swOfxLgwRefIZxa7oz_LrFXbuV9mZEiq36X8TNgsl-7ta46orBzoHtwGciSTI-PBEn82njsKlYi_1rrJXGcg_qfLHOuyTy_U23A7D6jklP-OurWJ8-k2x8X_HvQPvAspk5_202IUNWu7B9vCCAwsBvQdvX8gR7kP3zSw6YjdeaNn6i52_OGVgFzbf1eyS6JEFUdbvzCJedjOKerbM8YtcvWf2_fDFmePbrGwrrbo164fg6r8uTOsA8_o93F9fzaezKDzLEKEFJ22EFlSi1CqtMVdFlSJPG0mYNLqpC2MhDVdaGGVELkgkJiGU1szGekZ5Zez26ANsLVdL-ggs45VG5MgbizLypNYNShRUoa7RUFFMIB5cVWLQLHdPZyxKv3dJdDmfls63ZfDtBE7HDo-9XMe_Tfedp0az4KQJHA1zoQzhvC5T97ndc3bw916H8Ma2655DdgRb7a-Oji1aaasTP02fAaIs6Qg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2VcgAOFFoQCwV84MCBpHFiJ_axXah2oVtx2KLeImcyQVVXuxWbXPh6bMeJSgGJnKxkLFkaj-c5fn4D8I5UVWep4RFvqImEtYqUKTBKc8wlJbaduvvOi_N8diE-X8rLHfgw3oUhIk8-o9g1_Vl-vcHO_So7UkJJm_7vwX0phJD9ba1x3c0HQge3IZyJJAj58EQfLaeOxKViL_aust9ykC-q8sdK7NPL6R4shoH1rJLruGurGH_e0Wz835E_gccBZ7LjfmI8hR1a78PeUMOBhZDeh0e3BAkPoPtmVh2xuZdath5jx7fOGdiJzXg1-0h0w4Is63dmMS-bj7KeLXMMI_fec_uufHPmGDcb-5U23Zb1Q3Dvv65M6yDz9hlcnH5aTmdRKMwQoYUnbYQWVmKuVVqjVEWVIk-bnDBpdFMXxoIarrQwyggpSCQmIcytmY32jGRl7AbpOeyuN2t6ASzjlUbkyBuLM2RS6wZzFFShrtFQUUwgHlxVYlAtd8UzVqXfvSS6XE5L59sy-HYC78cON71gx79ND5ynRrPgpAkcDnOhDAG9LVP3uP1z9vLvvd7Cg9lycVaezc-_vIKH1lb3jLJD2G1_dPTaYpe2euOn7C_4uuxV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Value+Iteration+Architecture+Based+Deep+Learning+for+Intelligent+Routing+Exploiting+Heterogeneous+Computing+Platforms&rft.jtitle=IEEE+transactions+on+computers&rft.au=Zubair+Md+Fadlullah&rft.au=Mao%2C+Bomin&rft.au=Tang%2C+Fengxiao&rft.au=Kato%2C+Nei&rft.date=2019-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9340&rft.eissn=1557-9956&rft.volume=68&rft.issue=6&rft.spage=939&rft_id=info:doi/10.1109%2FTC.2018.2874483&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9340&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9340&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9340&client=summon |