Value Iteration Architecture Based Deep Learning for Intelligent Routing Exploiting Heterogeneous Computing Platforms

Recently, the rapid advancement of high computing platforms has accelerated the development and applications of artificial intelligence techniques. Deep learning, which has been regarded as the next paradigm to revolutionize users’ experiences, has attracted networking researchers’ interests to reli...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on computers Vol. 68; no. 6; pp. 939 - 950
Main Authors Fadlullah, Zubair Md, Mao, Bomin, Tang, Fengxiao, Kato, Nei
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9340
1557-9956
DOI10.1109/TC.2018.2874483

Cover

Abstract Recently, the rapid advancement of high computing platforms has accelerated the development and applications of artificial intelligence techniques. Deep learning, which has been regarded as the next paradigm to revolutionize users’ experiences, has attracted networking researchers’ interests to relieve the burden due to the exponentially growing traffic and increasing complexities. Various intelligent packet transmission strategies have been proposed to tackle different network problems. However, most of the existing research just focuses on the network related improvements and neglects the analysis about the computation consumptions. In this paper, we propose a Value Iteration Architecture based Deep Learning (VIADL) method to conduct routing design to address the limitations of existing deep learning based routing algorithms in dynamic networks. Besides the network performance analysis, we also study the complexity of our proposal as well as the resource consumptions in different deployment manners. Moreover, we adopt the Heterogeneous Computing Platform (HCP) to conduct the training and running of the proposed VIADL since the theoretical analysis demonstrates the significant reduction of the time complexity with the multiple GPUs in HCPs. Furthermore, simulation results demonstrate that compared with the existing deep learning based method, our proposal can guarantee more stable network performance when network topology changes.
AbstractList Recently, the rapid advancement of high computing platforms has accelerated the development and applications of artificial intelligence techniques. Deep learning, which has been regarded as the next paradigm to revolutionize users’ experiences, has attracted networking researchers’ interests to relieve the burden due to the exponentially growing traffic and increasing complexities. Various intelligent packet transmission strategies have been proposed to tackle different network problems. However, most of the existing research just focuses on the network related improvements and neglects the analysis about the computation consumptions. In this paper, we propose a Value Iteration Architecture based Deep Learning (VIADL) method to conduct routing design to address the limitations of existing deep learning based routing algorithms in dynamic networks. Besides the network performance analysis, we also study the complexity of our proposal as well as the resource consumptions in different deployment manners. Moreover, we adopt the Heterogeneous Computing Platform (HCP) to conduct the training and running of the proposed VIADL since the theoretical analysis demonstrates the significant reduction of the time complexity with the multiple GPUs in HCPs. Furthermore, simulation results demonstrate that compared with the existing deep learning based method, our proposal can guarantee more stable network performance when network topology changes.
Author Kato, Nei
Tang, Fengxiao
Fadlullah, Zubair Md
Mao, Bomin
Author_xml – sequence: 1
  givenname: Zubair Md
  orcidid: 0000-0002-4785-2425
  surname: Fadlullah
  fullname: Fadlullah, Zubair Md
  email: zubair@it.is.tohoku.ac.jp
  organization: Graduate School of Information Sciences, Tohoku University, Sendai, Japan
– sequence: 2
  givenname: Bomin
  orcidid: 0000-0001-7780-5972
  surname: Mao
  fullname: Mao, Bomin
  email: bomin.mao@it.is.tohoku.ac.jp
  organization: Graduate School of Information Sciences, Tohoku University, Sendai, Japan
– sequence: 3
  givenname: Fengxiao
  orcidid: 0000-0003-2414-4802
  surname: Tang
  fullname: Tang, Fengxiao
  email: fengxiao.tang@it.is.tohoku.ac.jp
  organization: Graduate School of Information Sciences, Tohoku University, Sendai, Japan
– sequence: 4
  givenname: Nei
  orcidid: 0000-0001-8769-302X
  surname: Kato
  fullname: Kato, Nei
  email: kato@it.is.tohoku.ac.jp
  organization: Graduate School of Information Sciences, Tohoku University, Sendai, Japan
BookMark eNp9kE1LxDAQhoMouH6cPXgJeO46aZI2OWpddWFBkdVridmpRrpNTVLQf2_XFQ8enEuGzPPMwHtAdjvfISEnDKaMgT5fVtMcmJrmqhRC8R0yYVKWmday2CUTGEeZ5gL2yUGMbwBQ5KAnZHgy7YB0njCY5HxHL4J9dQltGgLSSxNxRa8Qe7pAEzrXvdDGBzrvErate8Eu0Qc_pM3_7KNvvftub3Fc58cp-iHSyq_7LXLfmjTq63hE9hrTRjz-eQ_J4_VsWd1mi7ubeXWxyCyXMmUWtLaFVvnKSlU-55blTYEWGt2sSgOFZEoLo4yQAgUYQFuMmOSMo3w2peSH5Gy7tw_-fcCY6jc_hG48WeebAgYFHym5pWzwMQZsauvSdxopGNfWDOpNwvWyqjcJ1z8Jj975H68Pbm3C5z_G6dZwiPhLK6GkyDn_AmtBiXc
CODEN ITCOB4
CitedBy_id crossref_primary_10_1109_TVT_2024_3397707
crossref_primary_10_1109_JIOT_2024_3427686
crossref_primary_10_1007_s11235_024_01217_3
crossref_primary_10_1109_TVT_2020_2995877
crossref_primary_10_1109_JIOT_2020_3042901
crossref_primary_10_1109_TVT_2020_2971001
crossref_primary_10_1109_TVT_2020_2972806
crossref_primary_10_1109_TCOMM_2024_3429166
crossref_primary_10_1109_TVT_2020_2987751
crossref_primary_10_1109_COMST_2021_3089688
crossref_primary_10_1109_TVT_2019_2925562
crossref_primary_10_1007_s11227_021_03888_0
crossref_primary_10_1109_ACCESS_2021_3069210
crossref_primary_10_1109_TVT_2019_2953809
crossref_primary_10_1038_s41598_021_01638_z
crossref_primary_10_1080_17517575_2021_1986861
crossref_primary_10_1109_TVT_2020_2981995
crossref_primary_10_1109_ACCESS_2020_2975088
crossref_primary_10_1109_TC_2019_2906881
crossref_primary_10_1109_TC_2023_3236868
crossref_primary_10_1109_TII_2021_3090719
crossref_primary_10_1109_ACCESS_2019_2946298
crossref_primary_10_1109_TNSM_2023_3240396
crossref_primary_10_1109_TNNLS_2021_3054867
crossref_primary_10_1109_TVT_2020_2980905
crossref_primary_10_1109_JIOT_2024_3477494
crossref_primary_10_1109_JIOT_2019_2954283
crossref_primary_10_1109_JETCAS_2020_2992128
crossref_primary_10_1109_JSTSP_2021_3055957
crossref_primary_10_1109_TVT_2020_2967077
crossref_primary_10_1109_TVT_2020_3005707
crossref_primary_10_1109_TC_2021_3074806
crossref_primary_10_1109_ACCESS_2019_2909401
Cites_doi 10.1038/nature14539
10.1109/JIOT.2018.2811808
10.1109/MNET.2018.1700202
10.1109/TC.2015.2401031
10.1109/71.993206
10.1109/TC.2016.2620469
10.1038/nature24270
10.1109/ICC.2017.7997286
10.1109/TETC.2018.2805718
10.1109/GLOCOMW.2016.7849067
10.1109/TC.2016.2574349
10.1109/ICNP.2016.7785324
10.1109/COMST.2017.2707140
10.1109/MWC.2016.1600317WC
10.1109/TNN.1998.712192
10.1109/TC.2017.2709742
10.1007/3-540-45683-X_22
10.1287/moor.12.3.441
10.1002/dac.3497
10.1109/JSAC.2018.2804019
10.1109/MWC.2018.1700417
10.1109/WCNC.2017.7925498
10.1109/MNET.2015.7166187
10.1109/INFOCOM.2018.8485853
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TC.2018.2874483
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9956
EndPage 950
ExternalDocumentID 10_1109_TC_2018_2874483
8485423
Genre orig-research
GrantInformation_xml – fundername: JSPS KAKENHI
  grantid: 16H05858
GroupedDBID --Z
-DZ
-~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETEA
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
TWZ
UHB
UPT
XZL
YZZ
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c355t-c099c6982dc587b2c12f6ec0f9fd7a0651894a8a454e40a0ec687b5313e5ba753
IEDL.DBID RIE
ISSN 0018-9340
IngestDate Mon Jun 30 06:57:55 EDT 2025
Wed Oct 01 00:45:16 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Wed Aug 27 02:47:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-c099c6982dc587b2c12f6ec0f9fd7a0651894a8a454e40a0ec687b5313e5ba753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2414-4802
0000-0002-4785-2425
0000-0001-7780-5972
0000-0001-8769-302X
PQID 2222201063
PQPubID 85452
PageCount 12
ParticipantIDs ieee_primary_8485423
proquest_journals_2222201063
crossref_primary_10_1109_TC_2018_2874483
crossref_citationtrail_10_1109_TC_2018_2874483
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on computers
PublicationTitleAbbrev TC
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References littman (ref39) 1995
ref12
ref37
ref15
ref14
mittal (ref4) 2018
ref11
ref10
(ref7) 2018
tamar (ref33) 2016
ref2
ref1
niu (ref25) 2017; abs 1706 2416
lee (ref13) 2012
ref17
ref38
ref16
ref19
ref18
alzantot (ref34) 0
(ref30) 2012
(ref36) 2013
dai (ref28) 2017; abs 1704 1665
singh (ref6) 2018
ref24
ref23
ref20
ref22
kalia (ref26) 2015
ref21
ref27
(ref35) 2010
ref29
ref8
ref9
(ref41) 2005
goodfellow (ref32) 2016
(ref31) 2004
ref40
baker (ref3) 2009; 12
lecun (ref5) 2015; 521
(ref42) 2015
References_xml – volume: 521
  start-page: 436
  year: 2015
  ident: ref5
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2016
  ident: ref32
  publication-title: Deep Learning
– ident: ref14
  doi: 10.1109/JIOT.2018.2811808
– ident: ref21
  doi: 10.1109/MNET.2018.1700202
– ident: ref11
  doi: 10.1109/TC.2015.2401031
– ident: ref12
  doi: 10.1109/71.993206
– volume: abs 1704 1665
  year: 2017
  ident: ref28
  article-title: Learning combinatorial optimization algorithms over graphs
  publication-title: CoRR
– year: 2005
  ident: ref41
  article-title: Star network
– ident: ref15
  doi: 10.1109/TC.2016.2620469
– ident: ref19
  doi: 10.1038/nature24270
– ident: ref24
  doi: 10.1109/ICC.2017.7997286
– ident: ref23
  doi: 10.1109/TETC.2018.2805718
– ident: ref27
  doi: 10.1109/GLOCOMW.2016.7849067
– volume: 12
  start-page: 16
  year: 2009
  ident: ref3
  article-title: The PetaFlops router: Harnessing FPGAs and accelerators for high performance computing
  publication-title: LINKS
– ident: ref2
  doi: 10.1109/TC.2016.2574349
– ident: ref18
  doi: 10.1109/ICNP.2016.7785324
– start-page: 409
  year: 2015
  ident: ref26
  article-title: Raising the bar for using GPUs in software packet processing
  publication-title: Proc 10th USENIX Conf Networked Syst Des Implementation
– start-page: 394
  year: 1995
  ident: ref39
  article-title: On the complexity of solving Markov decision problems
  publication-title: Proc 11th Conf Uncertainty Artif Intell
– ident: ref8
  doi: 10.1109/COMST.2017.2707140
– ident: ref17
  doi: 10.1109/MWC.2016.1600317WC
– ident: ref29
  doi: 10.1109/TNN.1998.712192
– ident: ref1
  doi: 10.1109/TC.2017.2709742
– year: 2012
  ident: ref30
  article-title: Internet topology zoo
– year: 2015
  ident: ref42
  article-title: Tensorflow
– ident: ref37
  doi: 10.1007/3-540-45683-X_22
– ident: ref40
  doi: 10.1287/moor.12.3.441
– ident: ref9
  doi: 10.1002/dac.3497
– year: 2018
  ident: ref6
  article-title: All the machine learning features you need to know about in the latest android oreo
– start-page: 2154
  year: 2016
  ident: ref33
  article-title: Value iteration networks
  publication-title: Proc Neural Inf Process Syst
– ident: ref16
  doi: 10.1109/JSAC.2018.2804019
– year: 2018
  ident: ref7
– year: 2012
  ident: ref13
  article-title: Resource allocation and scheduling in heterogeneous cloud environments
– ident: ref38
  doi: 10.1109/MWC.2018.1700417
– year: 2018
  ident: ref4
  article-title: Deep learning applications
– year: 2004
  ident: ref31
  article-title: NP-hardness
– year: 2013
  ident: ref36
  article-title: Convolutional neural network
– year: 2010
  ident: ref35
  article-title: Value iteration
– ident: ref22
  doi: 10.1109/WCNC.2017.7925498
– ident: ref10
  doi: 10.1109/MNET.2015.7166187
– ident: ref20
  doi: 10.1109/INFOCOM.2018.8485853
– volume: abs 1706 2416
  year: 2017
  ident: ref25
  article-title: Generalized value iteration networks: Life beyond lattices
  publication-title: CoRR
– year: 0
  ident: ref34
  article-title: Deep reinforcement learning demysitifed (Episode 2)-Policy iteration, value iteration and Q-learning
SSID ssj0006209
Score 2.438839
Snippet Recently, the rapid advancement of high computing platforms has accelerated the development and applications of artificial intelligence techniques. Deep...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 939
SubjectTerms Algorithms
Artificial intelligence
Complexity
Computation
Computer architecture
Computer simulation
computing platforms
Deep learning
deep reinforcement learning
Graphics processing units
Heterogeneous networks
Iterative methods
link failures
Machine learning
Network routing
Network topologies
Packet transmission
Platforms
Proposals
Routing
Supervised learning
Title Value Iteration Architecture Based Deep Learning for Intelligent Routing Exploiting Heterogeneous Computing Platforms
URI https://ieeexplore.ieee.org/document/8485423
https://www.proquest.com/docview/2222201063
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1557-9956
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006209
  issn: 0018-9340
  databaseCode: RIE
  dateStart: 19680101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_ZQXq26vORDDxyaECeOYx9hAS2VQD0sFbfImUyqqqtd1E0u_Hpsx4mgD6k5WfZYsjQez-f482eAT6SqOksNj3hDTSSsVaRMgVEqUeaU2HLq7jvf3snZvfjykD9swOfxLgwRefIZxa7oz_LrFXbuV9mZEiq36X8TNgsl-7ta46orBzoHtwGciSTI-PBEn82njsKlYi_1rrJXGcg_qfLHOuyTy_U23A7D6jklP-OurWJ8-k2x8X_HvQPvAspk5_202IUNWu7B9vCCAwsBvQdvX8gR7kP3zSw6YjdeaNn6i52_OGVgFzbf1eyS6JEFUdbvzCJedjOKerbM8YtcvWf2_fDFmePbrGwrrbo164fg6r8uTOsA8_o93F9fzaezKDzLEKEFJ22EFlSi1CqtMVdFlSJPG0mYNLqpC2MhDVdaGGVELkgkJiGU1szGekZ5Zez26ANsLVdL-ggs45VG5MgbizLypNYNShRUoa7RUFFMIB5cVWLQLHdPZyxKv3dJdDmfls63ZfDtBE7HDo-9XMe_Tfedp0az4KQJHA1zoQzhvC5T97ndc3bw916H8Ma2655DdgRb7a-Oji1aaasTP02fAaIs6Qg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2VcgAOFFoQCwV84MCBpHFiJ_axXah2oVtx2KLeImcyQVVXuxWbXPh6bMeJSgGJnKxkLFkaj-c5fn4D8I5UVWep4RFvqImEtYqUKTBKc8wlJbaduvvOi_N8diE-X8rLHfgw3oUhIk8-o9g1_Vl-vcHO_So7UkJJm_7vwX0phJD9ba1x3c0HQge3IZyJJAj58EQfLaeOxKViL_aust9ykC-q8sdK7NPL6R4shoH1rJLruGurGH_e0Wz835E_gccBZ7LjfmI8hR1a78PeUMOBhZDeh0e3BAkPoPtmVh2xuZdath5jx7fOGdiJzXg1-0h0w4Is63dmMS-bj7KeLXMMI_fec_uufHPmGDcb-5U23Zb1Q3Dvv65M6yDz9hlcnH5aTmdRKMwQoYUnbYQWVmKuVVqjVEWVIk-bnDBpdFMXxoIarrQwyggpSCQmIcytmY32jGRl7AbpOeyuN2t6ASzjlUbkyBuLM2RS6wZzFFShrtFQUUwgHlxVYlAtd8UzVqXfvSS6XE5L59sy-HYC78cON71gx79ND5ynRrPgpAkcDnOhDAG9LVP3uP1z9vLvvd7Cg9lycVaezc-_vIKH1lb3jLJD2G1_dPTaYpe2euOn7C_4uuxV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Value+Iteration+Architecture+Based+Deep+Learning+for+Intelligent+Routing+Exploiting+Heterogeneous+Computing+Platforms&rft.jtitle=IEEE+transactions+on+computers&rft.au=Zubair+Md+Fadlullah&rft.au=Mao%2C+Bomin&rft.au=Tang%2C+Fengxiao&rft.au=Kato%2C+Nei&rft.date=2019-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9340&rft.eissn=1557-9956&rft.volume=68&rft.issue=6&rft.spage=939&rft_id=info:doi/10.1109%2FTC.2018.2874483&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9340&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9340&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9340&client=summon