Reinforcement Learning With Sequences of Motion Primitives for Robust Manipulation
Physical contact events often allow a natural decomposition of manipulation tasks into action phases and subgoals. Within the motion primitive paradigm, each action phase corresponds to a motion primitive, and the subgoals correspond to the goal parameters of these primitives. Current state-of-the-a...
Saved in:
| Published in | IEEE transactions on robotics Vol. 28; no. 6; pp. 1360 - 1370 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.12.2012
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1552-3098 1941-0468 |
| DOI | 10.1109/TRO.2012.2210294 |
Cover
| Abstract | Physical contact events often allow a natural decomposition of manipulation tasks into action phases and subgoals. Within the motion primitive paradigm, each action phase corresponds to a motion primitive, and the subgoals correspond to the goal parameters of these primitives. Current state-of-the-art reinforcement learning algorithms are able to efficiently and robustly optimize the parameters of motion primitives in very high-dimensional problems. These algorithms often consider only shape parameters, which determine the trajectory between the start- and end-point of the movement. In manipulation, however, it is also crucial to optimize the goal parameters, which represent the subgoals between the motion primitives. We therefore extend the policy improvement with path integrals (PI 2 ) algorithm to simultaneously optimize shape and goal parameters. Applying simultaneous shape and goal learning to sequences of motion primitives leads to the novel algorithm PI 2 Seq. We use our methods to address a fundamental challenge in manipulation: improving the robustness of everyday pick-and-place tasks. |
|---|---|
| AbstractList | Physical contact events often allow a natural decomposition of manipulation tasks into action phases and subgoals. Within the motion primitive paradigm, each action phase corresponds to a motion primitive, and the subgoals correspond to the goal parameters of these primitives. Current state-of-the-art reinforcement learning algorithms are able to efficiently and robustly optimize the parameters of motion primitives in very high-dimensional problems. These algorithms often consider only shape parameters, which determine the trajectory between the start- and end-point of the movement. In manipulation, however, it is also crucial to optimize the goal parameters, which represent the subgoals between the motion primitives. We therefore extend the policy improvement with path integrals (PI...) algorithm to simultaneously optimize shape and goal parameters. Applying simultaneous shape and goal learning to sequences of motion primitives leads to the novel algorithm PI2 Seq. We use our methods to address a fundamental challenge in manipulation: improving the robustness of everyday pick-and-place tasks. (ProQuest: ... denotes formulae/symbols omitted.) Physical contact events often allow a natural decomposition of manipulation tasks into action phases and subgoals. Within the motion primitive paradigm, each action phase corresponds to a motion primitive, and the subgoals correspond to the goal parameters of these primitives. Current state-of-the-art reinforcement learning algorithms are able to efficiently and robustly optimize the parameters of motion primitives in very high-dimensional problems. These algorithms often consider only shape parameters, which determine the trajectory between the start- and end-point of the movement. In manipulation, however, it is also crucial to optimize the goal parameters, which represent the subgoals between the motion primitives. We therefore extend the policy improvement with path integrals (PI 2 ) algorithm to simultaneously optimize shape and goal parameters. Applying simultaneous shape and goal learning to sequences of motion primitives leads to the novel algorithm PI 2 Seq. We use our methods to address a fundamental challenge in manipulation: improving the robustness of everyday pick-and-place tasks. |
| Author | Theodorou, E. A. Schaal, S. Stulp, F. |
| Author_xml | – sequence: 1 givenname: F. surname: Stulp fullname: Stulp, F. email: freek.stulp@ensta-paristech.fr organization: Comput. Learning & Motor Control Lab., Univ. of Southern California (USC), Los Angeles, CA, USA – sequence: 2 givenname: E. A. surname: Theodorou fullname: Theodorou, E. A. email: etheodor@usc.edu organization: Comput. Learning & Motor Control Lab., Univ. of Southern California (USC), Los Angeles, CA, USA – sequence: 3 givenname: S. surname: Schaal fullname: Schaal, S. email: sschaal@usc.edu organization: Comput. Learning & Motor Control Lab., Univ. of Southern California (USC), Los Angeles, CA, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28268767$$DView record in Pascal Francis https://hal.science/hal-00766177$$DView record in HAL |
| BookMark | eNp9kcFrFDEUxoNUsK29C14GxIOHWZNMJm9yLKVaYUvLtuIxvGbf2JRpsibZgv-9me7agwfJIeHl9318j--IHYQYiLF3gi-E4Obz7epqIbmQCykFl0a9YofCKNFypYeD-u572XbcDG_YUc4PnEtleHfIVivyYYzJ0SOF0iwJU_DhZ_PDl_vmhn5tKTjKTRyby1h8DM118o---Kc6rLJmFe-2uTSXGPxmO-GMvGWvR5wynezvY_b9y_nt2UW7vPr67ex02bqu70sLCKhcj2tD47BWo0ENqI1BrmtwDTB0nDiNjtRaO4C-VyD1Gu7qFwow3TH7tPO9x8luaixMv21Eby9Ol3aecQ5aC4AnUdkPO3aTYt0pF_sQtynUeFboekB1Znb8uKcwO5zGhMH5_OItB6kH0FA5veNcijknGq3z5Xn3ktBPVnA7d2JrJ3buxO47qUL-j_Cv938k73cST0QvuJam1yC7P71Il34 |
| CODEN | ITREAE |
| CitedBy_id | crossref_primary_10_1002_ecs2_2447 crossref_primary_10_1007_s11370_018_0262_0 crossref_primary_10_1109_TAMD_2015_2494460 crossref_primary_10_1109_TCYB_2020_2983923 crossref_primary_10_1017_S0269888924000080 crossref_primary_10_1109_TII_2020_2971643 crossref_primary_10_1109_TRO_2014_2344431 crossref_primary_10_3390_e18050165 crossref_primary_10_1109_JSEN_2023_3330190 crossref_primary_10_1016_j_robot_2019_103386 crossref_primary_10_1109_LRA_2025_3541911 crossref_primary_10_1109_TMRB_2021_3137971 crossref_primary_10_1016_j_compag_2021_106037 crossref_primary_10_1109_TRO_2024_3468770 crossref_primary_10_1109_TCYB_2022_3192049 crossref_primary_10_1109_TMECH_2021_3110825 crossref_primary_10_1109_TCDS_2020_2968056 crossref_primary_10_1109_TCST_2021_3139762 crossref_primary_10_1016_j_ifacol_2020_12_2197 crossref_primary_10_1016_j_rcim_2024_102896 crossref_primary_10_1109_TRO_2018_2808924 crossref_primary_10_1177_1729881421998585 crossref_primary_10_1108_IR_11_2023_0284 crossref_primary_10_1109_LRA_2022_3184003 crossref_primary_10_1177_02783649211030952 crossref_primary_10_1016_j_robot_2015_09_011 crossref_primary_10_1109_TIE_2018_2884240 crossref_primary_10_1109_LRA_2022_3156656 crossref_primary_10_3390_machines11030350 crossref_primary_10_1109_TNNLS_2021_3112718 crossref_primary_10_1049_ccs2_12005 crossref_primary_10_1109_TNNLS_2018_2852711 crossref_primary_10_1109_TAMD_2015_2426192 crossref_primary_10_1109_TIE_2023_3294600 crossref_primary_10_1080_01691864_2014_992955 crossref_primary_10_1016_j_jfranklin_2024_106773 crossref_primary_10_1142_S2972335324500066 crossref_primary_10_3390_app112311184 crossref_primary_10_1016_j_robot_2024_104785 crossref_primary_10_1016_j_neucom_2019_04_100 crossref_primary_10_1007_s12206_020_1230_0 crossref_primary_10_1109_LRA_2021_3058874 crossref_primary_10_1017_S0263574721001934 crossref_primary_10_1109_TCST_2020_3018426 crossref_primary_10_1109_TNNLS_2017_2773458 crossref_primary_10_1109_LRA_2022_3150024 crossref_primary_10_1017_S0269888919000079 crossref_primary_10_1108_IR_08_2023_0180 crossref_primary_10_3390_robotics13080118 crossref_primary_10_3390_app10051555 crossref_primary_10_1137_16M105767X crossref_primary_10_1016_j_robot_2017_11_012 crossref_primary_10_1145_3072959_3083723 crossref_primary_10_1109_LRA_2019_2896467 crossref_primary_10_1177_02783649231201196 crossref_primary_10_1016_j_ifacol_2021_04_105 crossref_primary_10_1109_TCYB_2021_3108165 crossref_primary_10_1109_TCDS_2016_2538961 crossref_primary_10_1109_TASE_2024_3451296 crossref_primary_10_1016_j_ifacol_2023_10_865 crossref_primary_10_1109_TMECH_2017_2717461 crossref_primary_10_1109_TFUZZ_2023_3297665 crossref_primary_10_1142_S0219843617500050 crossref_primary_10_5772_56479 crossref_primary_10_1016_j_rcim_2021_102310 crossref_primary_10_1016_j_robot_2020_103515 crossref_primary_10_1109_TSMC_2018_2885481 crossref_primary_10_1016_j_neunet_2015_05_005 crossref_primary_10_1109_LRA_2022_3141778 crossref_primary_10_1016_j_ins_2023_119700 crossref_primary_10_1038_s41597_020_00776_9 crossref_primary_10_1016_j_rcim_2025_102983 crossref_primary_10_1109_LRA_2022_3187833 crossref_primary_10_1016_j_inffus_2024_102379 crossref_primary_10_1007_s11370_022_00421_x crossref_primary_10_1109_LRA_2021_3073883 crossref_primary_10_1109_TRO_2024_3502223 crossref_primary_10_1016_j_actaastro_2021_03_029 crossref_primary_10_1109_TRO_2019_2958211 crossref_primary_10_1109_TRO_2017_2679202 crossref_primary_10_1109_ACCESS_2024_3418573 crossref_primary_10_1177_02783649221143399 crossref_primary_10_1108_AA_11_2020_0168 crossref_primary_10_1016_j_mechatronics_2021_102609 crossref_primary_10_1109_ACCESS_2019_2905051 crossref_primary_10_1109_TRO_2022_3152685 crossref_primary_10_1016_j_promfg_2021_10_006 crossref_primary_10_1109_TCDS_2018_2868921 crossref_primary_10_1109_TRO_2014_2304775 crossref_primary_10_1109_TIE_2019_2916396 crossref_primary_10_1038_s41597_021_01101_8 crossref_primary_10_1017_S0263574715000405 crossref_primary_10_3389_frobt_2019_00105 crossref_primary_10_1109_TCYB_2015_2414277 crossref_primary_10_1109_TCDS_2020_3021762 crossref_primary_10_1109_TIE_2020_3044776 crossref_primary_10_1145_3083723 crossref_primary_10_3390_robotics11050085 |
| Cites_doi | 10.1145/1553374.1553522 10.1109/IROS.2011.6094877 10.1142/S0219843604000290 10.1109/IROS.2009.5354833 10.1109/ROMAN.2008.4600697 10.1109/IROS.2011.6095059 10.1109/ROBOT.2009.5152423 10.1109/IROS.2010.5649494 10.1007/s00221-004-1862-9 10.15607/RSS.2010.VI.029 10.1109/ICRA.2011.5979644 10.1016/j.conb.2006.10.005 10.1109/ICHR.2010.5686320 10.1016/j.robot.2010.06.001 10.1109/TRO.2010.2065430 10.1016/j.robot.2011.07.004 10.15607/RSS.2010.VI.005 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2012 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2012 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 1XC |
| DOI | 10.1109/TRO.2012.2210294 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences Computer Science |
| EISSN | 1941-0468 |
| EndPage | 1370 |
| ExternalDocumentID | oai:HAL:hal-00766177v1 3470837831 28268767 10_1109_TRO_2012_2210294 6295672 |
| Genre | orig-research Feature |
| GroupedDBID | .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS VJK AAYXX CITATION IQODW RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 1XC |
| ID | FETCH-LOGICAL-c355t-7a7a4c5ad9ef8d4f9a67a699a06194677830e0efce4d6c77554726d7b677a1793 |
| IEDL.DBID | RIE |
| ISSN | 1552-3098 |
| IngestDate | Tue Oct 14 20:26:37 EDT 2025 Mon Jun 30 03:04:20 EDT 2025 Wed Apr 02 07:26:30 EDT 2025 Wed Oct 01 01:12:23 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Tue Aug 26 17:00:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Policy Gripping Learning and adaptive systems manipulation planning Path integral Reinforcement learning Task scheduling Multidimensional analysis Manipulation Robustness Planning Learning algorithm Motion control Artificial intelligence |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c355t-7a7a4c5ad9ef8d4f9a67a699a06194677830e0efce4d6c77554726d7b677a1793 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| PQID | 1616174399 |
| PQPubID | 27625 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_TRO_2012_2210294 crossref_primary_10_1109_TRO_2012_2210294 hal_primary_oai_HAL_hal_00766177v1 proquest_journals_1616174399 pascalfrancis_primary_28268767 ieee_primary_6295672 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2012-12-01 |
| PublicationDateYYYYMMDD | 2012-12-01 |
| PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on robotics |
| PublicationTitleAbbrev | TRO |
| PublicationYear | 2012 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 theodorou (ref27) 2010; 11 ref30 hsiao (ref8) 2010 stulp (ref22) 2011 ref2 ijspeert (ref10) 2002 mlling (ref14) 2010 horswill (ref7) 1993 kober (ref11) 2010 (ref3) 0 ref24 ref23 ref26 ref20 ref21 (ref19) 0 peters (ref16) 2009 ref29 ref9 rubinstein (ref18) 2004 ref4 quigley (ref17) 2009 ref6 ref5 theodorou (ref28) 2011 stulp (ref25) 2012 |
| References_xml | – ident: ref30 doi: 10.1145/1553374.1553522 – ident: ref24 doi: 10.1109/IROS.2011.6094877 – start-page: 273 year: 2010 ident: ref14 article-title: Simulating human table tennis with a biomimetic robot setup publication-title: Animals Animats Proc 1st Int Conf Simulation Adaptive Behav – ident: ref13 doi: 10.1142/S0219843604000290 – ident: ref2 doi: 10.1109/IROS.2009.5354833 – ident: ref20 doi: 10.1109/ROMAN.2008.4600697 – start-page: 469 year: 2009 ident: ref16 article-title: Towards motor skill learning for robotics publication-title: Proc 14th Int Symp Robot Res – start-page: 231 year: 2011 ident: ref22 article-title: Hierarchical reinforcement learning with motion primitives publication-title: Proc IEEE-RAS Int Conf Humanoid Robots – ident: ref15 doi: 10.1109/IROS.2011.6095059 – ident: ref6 doi: 10.1109/ROBOT.2009.5152423 – start-page: 1398 year: 2002 ident: ref10 article-title: Movement imitation with nonlinear dynamical systems in humanoid robots publication-title: Proc IEEE Int Conf Robot Autom – ident: ref9 doi: 10.1109/IROS.2010.5649494 – year: 0 ident: ref3 – start-page: 1 year: 2012 ident: ref25 article-title: Path integral policy improvement with covariance matrix adaptation publication-title: Proc 10th Int Conf Mach Learn – year: 2011 ident: ref28 publication-title: Iterative Path Integral Stochastic Optimal Control Theory and Applications to Motor Control – year: 2009 ident: ref17 article-title: ROS: An open-source robot operating system publication-title: Proc Open-Source Softw Workshop Int Conf Robot Autom – ident: ref4 doi: 10.1007/s00221-004-1862-9 – year: 0 ident: ref19 – year: 2010 ident: ref8 article-title: Task-driven tactile exploration publication-title: Proc Robot Sci Syst doi: 10.15607/RSS.2010.VI.029 – ident: ref23 doi: 10.1109/ICRA.2011.5979644 – ident: ref5 doi: 10.1016/j.conb.2006.10.005 – ident: ref21 doi: 10.1109/ICHR.2010.5686320 – ident: ref12 doi: 10.1016/j.robot.2010.06.001 – ident: ref29 doi: 10.1109/TRO.2010.2065430 – ident: ref26 doi: 10.1016/j.robot.2011.07.004 – volume: 11 start-page: 3137 year: 2010 ident: ref27 article-title: A generalized path integral control approach to reinforcement learning publication-title: J Mach Learn Res – year: 2010 ident: ref11 article-title: Reinforcement learning to adjust robot movements to new situations publication-title: Proc Robot Sci Syst doi: 10.15607/RSS.2010.VI.005 – year: 1993 ident: ref7 publication-title: Specialization for Perceptual Processes – year: 2004 ident: ref18 publication-title: The Cross-Entropy Method A Unified Approach to Combinatorial Optimization Monte-Carlo Simulation and Machine Learning |
| SSID | ssj0024903 |
| Score | 2.4887471 |
| Snippet | Physical contact events often allow a natural decomposition of manipulation tasks into action phases and subgoals. Within the motion primitive paradigm, each... |
| SourceID | hal proquest pascalfrancis crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1360 |
| SubjectTerms | Adaptative systems Adaptive systems Algorithms Applied sciences Artificial intelligence Computer Science Computer science; control theory; systems Control theory. Systems Exact sciences and technology Grasping Integrals Learning Learning and adaptive systems Learning systems Manipulation manipulation planning Manipulators Optimization reinforcement learning Robotics |
| Title | Reinforcement Learning With Sequences of Motion Primitives for Robust Manipulation |
| URI | https://ieeexplore.ieee.org/document/6295672 https://www.proquest.com/docview/1616174399 https://hal.science/hal-00766177 |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0468 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024903 issn: 1552-3098 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4BJzjALg8RYJGFuCCR1k1dOz6i1aIKUUAFBLfIcRyKQC2iKYf99TvjPIAFIW5RbEeOx49v7PH3AeyjS6AcApEQ0YEIScM61KnOQysjG2WGd1xGjuLgTPavxclt73YODpu7MM45H3zmWvToz_KziZ3RVllbRojmFU648yqW5V2tV1497VWQiVEs7HId10eSXLevhucUwxW1IvJvtHi3BM2PKADSK6tQXKSZYtPkpabFh-nZrznHKzCoa1uGmjy0ZkXasn__I3L87u_8gOUKfLKjsrf8hDk3XoWlN5SEazAcOs-lav22IavoV-_YzX0xYpd13DWb5Gzg9X_YBemC0Zw5ZViMDSfpbFqwgRnf18pg63B9_Ofqdz-sdBdCi-ijCJVRRtieybTL40zk2khlpNaG05YHMc51ueMut05k0iqFiERFMlMpJhka8BuwMJ6M3SawLO1hg6NThomiK4S2uBymcYfbDo-VkwG0a1MktiIlJ22Mx8Q7J1wnaLyEjJdUxgvgoCnxVBJyfJF3D63bZCMm7f7RaULv6AQSwZt66QSwRqZpclVWCWD3XWdo0tFHlbiEqAB26t6RVON-miB-lqWPt_X5Z7dhkWpYBsTswELxPHO_ENYU6a7vz_8AuDLxCg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4a2wE4wGBMyxjDQlyQSOumjl0fp2lTN5qBSid2sxzH2SZQi9aUA3897zk_YBtC3KLYjhw___ie_fx9AG_RJVAegUiM6EDEpGEd61yXsZOJSwrLB74gRzE7k-NzcXqRXqzB--4ujPc-BJ_5Hj2Gs_xi4Va0VdaXCaJ5hRPuRiqESOvbWr-Z9XTQQSZOsXjI9ag9lOS6P5t-pCiupJeQh6PFrUXowRWFQAZtFYqMtEtsnLJWtbg3QYdV5_gpZG1962CTr71VlffczztUjv_7Q5vwpIGf7KDuL89gzc-fw-M_SAm3YDr1gU3VhY1D1hCwXrIv19UV-9xGXrNFybKgAMQ-kTIYzZpLhsXYdJGvlhXL7Py61QZ7AefHR7PDcdwoL8QO8UcVK6uscKkttC9HhSi1lcpKrS2nTQ_inBtyz33pvCikUwoxiUpkoXJMsjTkt2F9vpj7HWBFnmKDo1uGiWIohHa4IOajAXcDPlJeRtBvTWFcQ0tO6hjfTHBPuDZoPEPGM43xInjXlfheU3L8I-8btG6Xjbi0xwcTQ-_oDBLhm_oxiGCLTNPlaqwSwf6tztClo5cqcRFREey1vcM0I39pEEHL2svb_ftnX8PD8SybmMnJ2YeX8IhqW4fH7MF6dbPyrxDkVPl-6Nu_AHyg9Fc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+Learning+With+Sequences+of+Motion+Primitives+for+Robust+Manipulation&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Stulp%2C+F&rft.au=Theodorou%2C+EA&rft.au=Schaal%2C+S&rft.date=2012-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1552-3098&rft.eissn=1941-0468&rft.volume=28&rft.issue=6&rft.spage=1360&rft_id=info:doi/10.1109%2FTRO.2012.2210294&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3470837831 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon |