Reinforcement Learning With Sequences of Motion Primitives for Robust Manipulation

Physical contact events often allow a natural decomposition of manipulation tasks into action phases and subgoals. Within the motion primitive paradigm, each action phase corresponds to a motion primitive, and the subgoals correspond to the goal parameters of these primitives. Current state-of-the-a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on robotics Vol. 28; no. 6; pp. 1360 - 1370
Main Authors Stulp, F., Theodorou, E. A., Schaal, S.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1552-3098
1941-0468
DOI10.1109/TRO.2012.2210294

Cover

Abstract Physical contact events often allow a natural decomposition of manipulation tasks into action phases and subgoals. Within the motion primitive paradigm, each action phase corresponds to a motion primitive, and the subgoals correspond to the goal parameters of these primitives. Current state-of-the-art reinforcement learning algorithms are able to efficiently and robustly optimize the parameters of motion primitives in very high-dimensional problems. These algorithms often consider only shape parameters, which determine the trajectory between the start- and end-point of the movement. In manipulation, however, it is also crucial to optimize the goal parameters, which represent the subgoals between the motion primitives. We therefore extend the policy improvement with path integrals (PI 2 ) algorithm to simultaneously optimize shape and goal parameters. Applying simultaneous shape and goal learning to sequences of motion primitives leads to the novel algorithm PI 2 Seq. We use our methods to address a fundamental challenge in manipulation: improving the robustness of everyday pick-and-place tasks.
AbstractList Physical contact events often allow a natural decomposition of manipulation tasks into action phases and subgoals. Within the motion primitive paradigm, each action phase corresponds to a motion primitive, and the subgoals correspond to the goal parameters of these primitives. Current state-of-the-art reinforcement learning algorithms are able to efficiently and robustly optimize the parameters of motion primitives in very high-dimensional problems. These algorithms often consider only shape parameters, which determine the trajectory between the start- and end-point of the movement. In manipulation, however, it is also crucial to optimize the goal parameters, which represent the subgoals between the motion primitives. We therefore extend the policy improvement with path integrals (PI...) algorithm to simultaneously optimize shape and goal parameters. Applying simultaneous shape and goal learning to sequences of motion primitives leads to the novel algorithm PI2 Seq. We use our methods to address a fundamental challenge in manipulation: improving the robustness of everyday pick-and-place tasks. (ProQuest: ... denotes formulae/symbols omitted.)
Physical contact events often allow a natural decomposition of manipulation tasks into action phases and subgoals. Within the motion primitive paradigm, each action phase corresponds to a motion primitive, and the subgoals correspond to the goal parameters of these primitives. Current state-of-the-art reinforcement learning algorithms are able to efficiently and robustly optimize the parameters of motion primitives in very high-dimensional problems. These algorithms often consider only shape parameters, which determine the trajectory between the start- and end-point of the movement. In manipulation, however, it is also crucial to optimize the goal parameters, which represent the subgoals between the motion primitives. We therefore extend the policy improvement with path integrals (PI 2 ) algorithm to simultaneously optimize shape and goal parameters. Applying simultaneous shape and goal learning to sequences of motion primitives leads to the novel algorithm PI 2 Seq. We use our methods to address a fundamental challenge in manipulation: improving the robustness of everyday pick-and-place tasks.
Author Theodorou, E. A.
Schaal, S.
Stulp, F.
Author_xml – sequence: 1
  givenname: F.
  surname: Stulp
  fullname: Stulp, F.
  email: freek.stulp@ensta-paristech.fr
  organization: Comput. Learning & Motor Control Lab., Univ. of Southern California (USC), Los Angeles, CA, USA
– sequence: 2
  givenname: E. A.
  surname: Theodorou
  fullname: Theodorou, E. A.
  email: etheodor@usc.edu
  organization: Comput. Learning & Motor Control Lab., Univ. of Southern California (USC), Los Angeles, CA, USA
– sequence: 3
  givenname: S.
  surname: Schaal
  fullname: Schaal, S.
  email: sschaal@usc.edu
  organization: Comput. Learning & Motor Control Lab., Univ. of Southern California (USC), Los Angeles, CA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28268767$$DView record in Pascal Francis
https://hal.science/hal-00766177$$DView record in HAL
BookMark eNp9kcFrFDEUxoNUsK29C14GxIOHWZNMJm9yLKVaYUvLtuIxvGbf2JRpsibZgv-9me7agwfJIeHl9318j--IHYQYiLF3gi-E4Obz7epqIbmQCykFl0a9YofCKNFypYeD-u572XbcDG_YUc4PnEtleHfIVivyYYzJ0SOF0iwJU_DhZ_PDl_vmhn5tKTjKTRyby1h8DM118o---Kc6rLJmFe-2uTSXGPxmO-GMvGWvR5wynezvY_b9y_nt2UW7vPr67ex02bqu70sLCKhcj2tD47BWo0ENqI1BrmtwDTB0nDiNjtRaO4C-VyD1Gu7qFwow3TH7tPO9x8luaixMv21Eby9Ol3aecQ5aC4AnUdkPO3aTYt0pF_sQtynUeFboekB1Znb8uKcwO5zGhMH5_OItB6kH0FA5veNcijknGq3z5Xn3ktBPVnA7d2JrJ3buxO47qUL-j_Cv938k73cST0QvuJam1yC7P71Il34
CODEN ITREAE
CitedBy_id crossref_primary_10_1002_ecs2_2447
crossref_primary_10_1007_s11370_018_0262_0
crossref_primary_10_1109_TAMD_2015_2494460
crossref_primary_10_1109_TCYB_2020_2983923
crossref_primary_10_1017_S0269888924000080
crossref_primary_10_1109_TII_2020_2971643
crossref_primary_10_1109_TRO_2014_2344431
crossref_primary_10_3390_e18050165
crossref_primary_10_1109_JSEN_2023_3330190
crossref_primary_10_1016_j_robot_2019_103386
crossref_primary_10_1109_LRA_2025_3541911
crossref_primary_10_1109_TMRB_2021_3137971
crossref_primary_10_1016_j_compag_2021_106037
crossref_primary_10_1109_TRO_2024_3468770
crossref_primary_10_1109_TCYB_2022_3192049
crossref_primary_10_1109_TMECH_2021_3110825
crossref_primary_10_1109_TCDS_2020_2968056
crossref_primary_10_1109_TCST_2021_3139762
crossref_primary_10_1016_j_ifacol_2020_12_2197
crossref_primary_10_1016_j_rcim_2024_102896
crossref_primary_10_1109_TRO_2018_2808924
crossref_primary_10_1177_1729881421998585
crossref_primary_10_1108_IR_11_2023_0284
crossref_primary_10_1109_LRA_2022_3184003
crossref_primary_10_1177_02783649211030952
crossref_primary_10_1016_j_robot_2015_09_011
crossref_primary_10_1109_TIE_2018_2884240
crossref_primary_10_1109_LRA_2022_3156656
crossref_primary_10_3390_machines11030350
crossref_primary_10_1109_TNNLS_2021_3112718
crossref_primary_10_1049_ccs2_12005
crossref_primary_10_1109_TNNLS_2018_2852711
crossref_primary_10_1109_TAMD_2015_2426192
crossref_primary_10_1109_TIE_2023_3294600
crossref_primary_10_1080_01691864_2014_992955
crossref_primary_10_1016_j_jfranklin_2024_106773
crossref_primary_10_1142_S2972335324500066
crossref_primary_10_3390_app112311184
crossref_primary_10_1016_j_robot_2024_104785
crossref_primary_10_1016_j_neucom_2019_04_100
crossref_primary_10_1007_s12206_020_1230_0
crossref_primary_10_1109_LRA_2021_3058874
crossref_primary_10_1017_S0263574721001934
crossref_primary_10_1109_TCST_2020_3018426
crossref_primary_10_1109_TNNLS_2017_2773458
crossref_primary_10_1109_LRA_2022_3150024
crossref_primary_10_1017_S0269888919000079
crossref_primary_10_1108_IR_08_2023_0180
crossref_primary_10_3390_robotics13080118
crossref_primary_10_3390_app10051555
crossref_primary_10_1137_16M105767X
crossref_primary_10_1016_j_robot_2017_11_012
crossref_primary_10_1145_3072959_3083723
crossref_primary_10_1109_LRA_2019_2896467
crossref_primary_10_1177_02783649231201196
crossref_primary_10_1016_j_ifacol_2021_04_105
crossref_primary_10_1109_TCYB_2021_3108165
crossref_primary_10_1109_TCDS_2016_2538961
crossref_primary_10_1109_TASE_2024_3451296
crossref_primary_10_1016_j_ifacol_2023_10_865
crossref_primary_10_1109_TMECH_2017_2717461
crossref_primary_10_1109_TFUZZ_2023_3297665
crossref_primary_10_1142_S0219843617500050
crossref_primary_10_5772_56479
crossref_primary_10_1016_j_rcim_2021_102310
crossref_primary_10_1016_j_robot_2020_103515
crossref_primary_10_1109_TSMC_2018_2885481
crossref_primary_10_1016_j_neunet_2015_05_005
crossref_primary_10_1109_LRA_2022_3141778
crossref_primary_10_1016_j_ins_2023_119700
crossref_primary_10_1038_s41597_020_00776_9
crossref_primary_10_1016_j_rcim_2025_102983
crossref_primary_10_1109_LRA_2022_3187833
crossref_primary_10_1016_j_inffus_2024_102379
crossref_primary_10_1007_s11370_022_00421_x
crossref_primary_10_1109_LRA_2021_3073883
crossref_primary_10_1109_TRO_2024_3502223
crossref_primary_10_1016_j_actaastro_2021_03_029
crossref_primary_10_1109_TRO_2019_2958211
crossref_primary_10_1109_TRO_2017_2679202
crossref_primary_10_1109_ACCESS_2024_3418573
crossref_primary_10_1177_02783649221143399
crossref_primary_10_1108_AA_11_2020_0168
crossref_primary_10_1016_j_mechatronics_2021_102609
crossref_primary_10_1109_ACCESS_2019_2905051
crossref_primary_10_1109_TRO_2022_3152685
crossref_primary_10_1016_j_promfg_2021_10_006
crossref_primary_10_1109_TCDS_2018_2868921
crossref_primary_10_1109_TRO_2014_2304775
crossref_primary_10_1109_TIE_2019_2916396
crossref_primary_10_1038_s41597_021_01101_8
crossref_primary_10_1017_S0263574715000405
crossref_primary_10_3389_frobt_2019_00105
crossref_primary_10_1109_TCYB_2015_2414277
crossref_primary_10_1109_TCDS_2020_3021762
crossref_primary_10_1109_TIE_2020_3044776
crossref_primary_10_1145_3083723
crossref_primary_10_3390_robotics11050085
Cites_doi 10.1145/1553374.1553522
10.1109/IROS.2011.6094877
10.1142/S0219843604000290
10.1109/IROS.2009.5354833
10.1109/ROMAN.2008.4600697
10.1109/IROS.2011.6095059
10.1109/ROBOT.2009.5152423
10.1109/IROS.2010.5649494
10.1007/s00221-004-1862-9
10.15607/RSS.2010.VI.029
10.1109/ICRA.2011.5979644
10.1016/j.conb.2006.10.005
10.1109/ICHR.2010.5686320
10.1016/j.robot.2010.06.001
10.1109/TRO.2010.2065430
10.1016/j.robot.2011.07.004
10.15607/RSS.2010.VI.005
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2012
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2012
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
1XC
DOI 10.1109/TRO.2012.2210294
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Computer Science
EISSN 1941-0468
EndPage 1370
ExternalDocumentID oai:HAL:hal-00766177v1
3470837831
28268767
10_1109_TRO_2012_2210294
6295672
Genre orig-research
Feature
GroupedDBID .DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
VJK
AAYXX
CITATION
IQODW
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c355t-7a7a4c5ad9ef8d4f9a67a699a06194677830e0efce4d6c77554726d7b677a1793
IEDL.DBID RIE
ISSN 1552-3098
IngestDate Tue Oct 14 20:26:37 EDT 2025
Mon Jun 30 03:04:20 EDT 2025
Wed Apr 02 07:26:30 EDT 2025
Wed Oct 01 01:12:23 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Tue Aug 26 17:00:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Policy
Gripping
Learning and adaptive systems
manipulation planning
Path integral
Reinforcement learning
Task scheduling
Multidimensional analysis
Manipulation
Robustness
Planning
Learning algorithm
Motion control
Artificial intelligence
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-7a7a4c5ad9ef8d4f9a67a699a06194677830e0efce4d6c77554726d7b677a1793
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1616174399
PQPubID 27625
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TRO_2012_2210294
crossref_primary_10_1109_TRO_2012_2210294
hal_primary_oai_HAL_hal_00766177v1
proquest_journals_1616174399
pascalfrancis_primary_28268767
ieee_primary_6295672
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on robotics
PublicationTitleAbbrev TRO
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
theodorou (ref27) 2010; 11
ref30
hsiao (ref8) 2010
stulp (ref22) 2011
ref2
ijspeert (ref10) 2002
mlling (ref14) 2010
horswill (ref7) 1993
kober (ref11) 2010
(ref3) 0
ref24
ref23
ref26
ref20
ref21
(ref19) 0
peters (ref16) 2009
ref29
ref9
rubinstein (ref18) 2004
ref4
quigley (ref17) 2009
ref6
ref5
theodorou (ref28) 2011
stulp (ref25) 2012
References_xml – ident: ref30
  doi: 10.1145/1553374.1553522
– ident: ref24
  doi: 10.1109/IROS.2011.6094877
– start-page: 273
  year: 2010
  ident: ref14
  article-title: Simulating human table tennis with a biomimetic robot setup
  publication-title: Animals Animats Proc 1st Int Conf Simulation Adaptive Behav
– ident: ref13
  doi: 10.1142/S0219843604000290
– ident: ref2
  doi: 10.1109/IROS.2009.5354833
– ident: ref20
  doi: 10.1109/ROMAN.2008.4600697
– start-page: 469
  year: 2009
  ident: ref16
  article-title: Towards motor skill learning for robotics
  publication-title: Proc 14th Int Symp Robot Res
– start-page: 231
  year: 2011
  ident: ref22
  article-title: Hierarchical reinforcement learning with motion primitives
  publication-title: Proc IEEE-RAS Int Conf Humanoid Robots
– ident: ref15
  doi: 10.1109/IROS.2011.6095059
– ident: ref6
  doi: 10.1109/ROBOT.2009.5152423
– start-page: 1398
  year: 2002
  ident: ref10
  article-title: Movement imitation with nonlinear dynamical systems in humanoid robots
  publication-title: Proc IEEE Int Conf Robot Autom
– ident: ref9
  doi: 10.1109/IROS.2010.5649494
– year: 0
  ident: ref3
– start-page: 1
  year: 2012
  ident: ref25
  article-title: Path integral policy improvement with covariance matrix adaptation
  publication-title: Proc 10th Int Conf Mach Learn
– year: 2011
  ident: ref28
  publication-title: Iterative Path Integral Stochastic Optimal Control Theory and Applications to Motor Control
– year: 2009
  ident: ref17
  article-title: ROS: An open-source robot operating system
  publication-title: Proc Open-Source Softw Workshop Int Conf Robot Autom
– ident: ref4
  doi: 10.1007/s00221-004-1862-9
– year: 0
  ident: ref19
– year: 2010
  ident: ref8
  article-title: Task-driven tactile exploration
  publication-title: Proc Robot Sci Syst
  doi: 10.15607/RSS.2010.VI.029
– ident: ref23
  doi: 10.1109/ICRA.2011.5979644
– ident: ref5
  doi: 10.1016/j.conb.2006.10.005
– ident: ref21
  doi: 10.1109/ICHR.2010.5686320
– ident: ref12
  doi: 10.1016/j.robot.2010.06.001
– ident: ref29
  doi: 10.1109/TRO.2010.2065430
– ident: ref26
  doi: 10.1016/j.robot.2011.07.004
– volume: 11
  start-page: 3137
  year: 2010
  ident: ref27
  article-title: A generalized path integral control approach to reinforcement learning
  publication-title: J Mach Learn Res
– year: 2010
  ident: ref11
  article-title: Reinforcement learning to adjust robot movements to new situations
  publication-title: Proc Robot Sci Syst
  doi: 10.15607/RSS.2010.VI.005
– year: 1993
  ident: ref7
  publication-title: Specialization for Perceptual Processes
– year: 2004
  ident: ref18
  publication-title: The Cross-Entropy Method A Unified Approach to Combinatorial Optimization Monte-Carlo Simulation and Machine Learning
SSID ssj0024903
Score 2.4887471
Snippet Physical contact events often allow a natural decomposition of manipulation tasks into action phases and subgoals. Within the motion primitive paradigm, each...
SourceID hal
proquest
pascalfrancis
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1360
SubjectTerms Adaptative systems
Adaptive systems
Algorithms
Applied sciences
Artificial intelligence
Computer Science
Computer science; control theory; systems
Control theory. Systems
Exact sciences and technology
Grasping
Integrals
Learning
Learning and adaptive systems
Learning systems
Manipulation
manipulation planning
Manipulators
Optimization
reinforcement learning
Robotics
Title Reinforcement Learning With Sequences of Motion Primitives for Robust Manipulation
URI https://ieeexplore.ieee.org/document/6295672
https://www.proquest.com/docview/1616174399
https://hal.science/hal-00766177
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0468
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024903
  issn: 1552-3098
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4BJzjALg8RYJGFuCCR1k1dOz6i1aIKUUAFBLfIcRyKQC2iKYf99TvjPIAFIW5RbEeOx49v7PH3AeyjS6AcApEQ0YEIScM61KnOQysjG2WGd1xGjuLgTPavxclt73YODpu7MM45H3zmWvToz_KziZ3RVllbRojmFU648yqW5V2tV1497VWQiVEs7HId10eSXLevhucUwxW1IvJvtHi3BM2PKADSK6tQXKSZYtPkpabFh-nZrznHKzCoa1uGmjy0ZkXasn__I3L87u_8gOUKfLKjsrf8hDk3XoWlN5SEazAcOs-lav22IavoV-_YzX0xYpd13DWb5Gzg9X_YBemC0Zw5ZViMDSfpbFqwgRnf18pg63B9_Ofqdz-sdBdCi-ijCJVRRtieybTL40zk2khlpNaG05YHMc51ueMut05k0iqFiERFMlMpJhka8BuwMJ6M3SawLO1hg6NThomiK4S2uBymcYfbDo-VkwG0a1MktiIlJ22Mx8Q7J1wnaLyEjJdUxgvgoCnxVBJyfJF3D63bZCMm7f7RaULv6AQSwZt66QSwRqZpclVWCWD3XWdo0tFHlbiEqAB26t6RVON-miB-lqWPt_X5Z7dhkWpYBsTswELxPHO_ENYU6a7vz_8AuDLxCg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4a2wE4wGBMyxjDQlyQSOumjl0fp2lTN5qBSid2sxzH2SZQi9aUA3897zk_YBtC3KLYjhw___ie_fx9AG_RJVAegUiM6EDEpGEd61yXsZOJSwrLB74gRzE7k-NzcXqRXqzB--4ujPc-BJ_5Hj2Gs_xi4Va0VdaXCaJ5hRPuRiqESOvbWr-Z9XTQQSZOsXjI9ag9lOS6P5t-pCiupJeQh6PFrUXowRWFQAZtFYqMtEtsnLJWtbg3QYdV5_gpZG1962CTr71VlffczztUjv_7Q5vwpIGf7KDuL89gzc-fw-M_SAm3YDr1gU3VhY1D1hCwXrIv19UV-9xGXrNFybKgAMQ-kTIYzZpLhsXYdJGvlhXL7Py61QZ7AefHR7PDcdwoL8QO8UcVK6uscKkttC9HhSi1lcpKrS2nTQ_inBtyz33pvCikUwoxiUpkoXJMsjTkt2F9vpj7HWBFnmKDo1uGiWIohHa4IOajAXcDPlJeRtBvTWFcQ0tO6hjfTHBPuDZoPEPGM43xInjXlfheU3L8I-8btG6Xjbi0xwcTQ-_oDBLhm_oxiGCLTNPlaqwSwf6tztClo5cqcRFREey1vcM0I39pEEHL2svb_ftnX8PD8SybmMnJ2YeX8IhqW4fH7MF6dbPyrxDkVPl-6Nu_AHyg9Fc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+Learning+With+Sequences+of+Motion+Primitives+for+Robust+Manipulation&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Stulp%2C+F&rft.au=Theodorou%2C+EA&rft.au=Schaal%2C+S&rft.date=2012-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1552-3098&rft.eissn=1941-0468&rft.volume=28&rft.issue=6&rft.spage=1360&rft_id=info:doi/10.1109%2FTRO.2012.2210294&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3470837831
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon