Transmission scheduling for multi-process multi-sensor remote estimation via approximate dynamic programming
In this paper, we consider a remote estimation problem where multiple dynamical systems are observed by smart sensors, which transmit their local estimates to a remote estimator over channels prone to packet losses. Unlike previous works, we allow multiple sensors to transmit simultaneously even tho...
        Saved in:
      
    
          | Published in | Automatica (Oxford) Vol. 136; p. 110061 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.02.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0005-1098 1873-2836 1873-2836  | 
| DOI | 10.1016/j.automatica.2021.110061 | 
Cover
| Abstract | In this paper, we consider a remote estimation problem where multiple dynamical systems are observed by smart sensors, which transmit their local estimates to a remote estimator over channels prone to packet losses. Unlike previous works, we allow multiple sensors to transmit simultaneously even though they can cause interference, thanks to the multi-packet reception capability at the remote estimator. In this setting, the remote estimator can decode multiple sensor transmissions (successful packet arrivals) as long as their signal-to-interference-and-noise ratios (SINR) are above a certain threshold. In this setting, we address the problem of optimal sensor transmission scheduling by minimizing a finite horizon discounted expected estimation error covariance cost across all systems at the remote estimator, subject to an average transmission cost. While this problem can be posed as a stochastic control problem, the optimal solution requires solving a Bellman equation for a dynamic programming (DP) problem, the complexity of which scales exponentially with the number of systems being measured and their state dimensions. In this paper, we resort to a novel Least Squares Temporal Difference (LSTD) Approximate Dynamic Programming (ADP) based approach to approximating the value function. More specifically, an off-policy based LSTD approach, named in short Enhanced-Exploration Greedy LSTD (EG-LSTD), is proposed. We discuss the convergence analysis of the EG-LSTD algorithm and its implementation. A Python based program is developed to implement and analyse the different aspects of the proposed method. Simulation examples are presented to support the results of the proposed approach both for the exact DP and ADP cases. | 
    
|---|---|
| AbstractList | In this paper, we consider a remote estimation problem where multiple dynamical systems are observed by smart sensors, which transmit their local estimates to a remote estimator over channels prone to packet losses. Unlike previous works, we allow multiple sensors to transmit simultaneously even though they can cause interference, thanks to the multi-packet reception capability at the remote estimator. In this setting, the remote estimator can decode multiple sensor transmissions (successful packet arrivals) as long as their signal-to-interference-and-noise ratios (SINR) are above a certain threshold. In this setting, we address the problem of optimal sensor transmission scheduling by minimizing a finite horizon discounted expected estimation error covariance cost across all systems at the remote estimator, subject to an average transmission cost. While this problem can be posed as a stochastic control problem, the optimal solution requires solving a Bellman equation for a dynamic programming (DP) problem, the complexity of which scales exponentially with the number of systems being measured and their state dimensions. In this paper, we resort to a novel Least Squares Temporal Difference (LSTD) Approximate Dynamic Programming (ADP) based approach to approximating the value function. More specifically, an off-policy based LSTD approach, named in short Enhanced-Exploration Greedy LSTD (EG-LSTD), is proposed. We discuss the convergence analysis of the EG-LSTD algorithm and its implementation. A Python based program is developed to implement and analyse the different aspects of the proposed method. Simulation examples are presented to support the results of the proposed approach both for the exact DP and ADP cases. | 
    
| ArticleNumber | 110061 | 
    
| Author | Tipaldi, Massimo Iervolino, Raffaele Forootani, Ali Dey, Subhrakanti  | 
    
| Author_xml | – sequence: 1 givenname: Ali surname: Forootani fullname: Forootani, Ali email: Ali.forootani@mu.ie organization: Hamilton Institute, Maynooth University, Maynooth, Co. Kildare W23F2K8, Ireland – sequence: 2 givenname: Raffaele surname: Iervolino fullname: Iervolino, Raffaele email: rafierv@na.it organization: Department of Electrical Engineering and Information Technology, University of Naples, Napoli 80125, Italy – sequence: 3 givenname: Massimo surname: Tipaldi fullname: Tipaldi, Massimo email: mtipaldi@unisannio.it organization: Department of Engineering, University of Sannio, Benevento 82100, Italy – sequence: 4 givenname: Subhrakanti surname: Dey fullname: Dey, Subhrakanti email: Subhra.Dey@mu.ie organization: Hamilton Institute, Maynooth University, Maynooth, Co. Kildare W23F2K8, Ireland  | 
    
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-509574$$DView record from Swedish Publication Index | 
    
| BookMark | eNqNkMtOwzAQRS1UJMrjH_IBpIyTOE02SKU8JSQ2ha01cSbFVRJXtlPg73FpERIbWI1mfO8dzzlmo970xFjEYcKB5xerCQ7edOi1wkkCCZ9wDpDzAzbmxTSNkyLNR2wMACLmUBZH7Ni5VWgzXiRj1i4s9q7TzmnTR069Uj20ul9GjbFRN7Rex2trFDm37xz1LjxZ6oyniJzX293Bu9EY4TqI37cTiuqPHjutojBZWuy6EHrKDhtsHZ3t6wl7vr1ZzO_jx6e7h_nsMVapED7OG4VVJlIupqqogJIMmkooKMtSYV0IUokQCWY5ToEHUYY844BpUyLHEqr0hJ3vct0brYdKrm34kv2QBrW81i8zaexSDoMUUAZ3kF_u5Moa5yw1Umn_dZS3qFvJQW5Ry5X8QS23qOUOdQgofgV8b_yH9WpnpcBjo8lKpzT1imptSXlZG_13yCfO66VI | 
    
| CitedBy_id | crossref_primary_10_1016_j_arcontrol_2024_100972 crossref_primary_10_1109_LCSYS_2025_3547629 crossref_primary_10_1109_JIOT_2024_3369096 crossref_primary_10_1109_TAC_2023_3279902 crossref_primary_10_1016_j_automatica_2024_111884 crossref_primary_10_1109_TWC_2022_3225581 crossref_primary_10_1109_TII_2024_3441625 crossref_primary_10_1109_TWC_2023_3277861 crossref_primary_10_1109_JIOT_2024_3373669 crossref_primary_10_1109_JESTPE_2024_3453949 crossref_primary_10_1016_j_automatica_2024_111517 crossref_primary_10_1016_j_engappai_2022_105638 crossref_primary_10_1016_j_neucom_2022_10_011 crossref_primary_10_1016_j_compeleceng_2022_108573 crossref_primary_10_1109_TCNS_2023_3337416 crossref_primary_10_1109_TSMC_2023_3327492 crossref_primary_10_3389_fcteg_2022_861055 crossref_primary_10_1080_00207721_2024_2304666 crossref_primary_10_1016_j_future_2022_10_015  | 
    
| Cites_doi | 10.1109/TAC.2017.2709914 10.1109/TAC.2014.2319011 10.1016/j.automatica.2017.09.021 10.1109/TWC.2005.858019 10.1109/TAC.2014.2314222 10.1007/978-3-642-29946-9_13 10.1109/TSMCB.2010.2050586 10.1049/iet-cta.2019.0289 10.1109/TAC.2008.921012 10.1109/TNNLS.2013.2247418 10.1080/00207179.2019.1661521 10.1016/j.automatica.2019.108759 10.1109/TAC.2011.2115290 10.1016/j.automatica.2018.06.019 10.1016/j.ifacol.2020.12.314 10.1109/JPROC.2006.887306 10.1109/9.580874 10.1109/JAS.2020.1003231 10.1023/A:1022192903948 10.1016/j.automatica.2005.09.016 10.1109/TAC.2016.2602499 10.1016/j.sysconle.2019.01.007 10.1016/j.ifacol.2017.08.1311 10.1109/TCOMM.2012.021712.100782 10.1016/j.sysconle.2006.11.003 10.1016/j.cam.2008.07.037 10.1016/j.ifacsc.2020.100106 10.1016/j.automatica.2011.02.037 10.1287/opre.51.6.850.24925 10.1109/LCSYS.2021.3069708 10.1109/TAC.2012.2215253 10.1109/TAC.2017.2678920 10.1016/j.automatica.2016.09.015 10.1016/j.automatica.2018.01.021 10.1109/TAC.2011.2152210  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2021 Elsevier Ltd | 
    
| DBID | AAYXX CITATION ADTPV AOWAS DF2  | 
    
| DOI | 10.1016/j.automatica.2021.110061 | 
    
| DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Uppsala universitet  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1873-2836 | 
    
| ExternalDocumentID | oai_DiVA_org_uu_509574 10_1016_j_automatica_2021_110061 S0005109821005896  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23N 3R3 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K T9H TAE TN5 VH1 WH7 WUQ X6Y XFK XPP ZMT ~G- 77I AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ADTPV AGCQF AOWAS DF2  | 
    
| ID | FETCH-LOGICAL-c355t-6fcab453157c8b0e240fb5c0999cad85ec2552a46a7011574a1410a3f9a1a90b3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0005-1098 1873-2836  | 
    
| IngestDate | Tue Sep 09 23:27:11 EDT 2025 Wed Oct 01 05:21:59 EDT 2025 Thu Apr 24 23:02:19 EDT 2025 Fri Feb 23 02:41:01 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Wireless sensor networks Approximate dynamic programming Least Squares Temporal Difference Markov Decision Process Sensor scheduling Kalman filter  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c355t-6fcab453157c8b0e240fb5c0999cad85ec2552a46a7011574a1410a3f9a1a90b3 | 
    
| ParticipantIDs | swepub_primary_oai_DiVA_org_uu_509574 crossref_citationtrail_10_1016_j_automatica_2021_110061 crossref_primary_10_1016_j_automatica_2021_110061 elsevier_sciencedirect_doi_10_1016_j_automatica_2021_110061  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-02-01 | 
    
| PublicationDateYYYYMMDD | 2022-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Automatica (Oxford) | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Schenato (b33) 2008; 53 Forootani, Tipaldi, Ghaniee Zarch, Liuzza, Glielmo (b10) 2020; 13 Busoniu, Ernst, De Schutter, Babuska (b4) 2011; 41 Zanella, Zorzi (b42) 2012; 60 Shi, Cheng, Chen (b36) 2011; 47 Han, Wu, Zhang, Shi (b17) 2017; 75 Pezzutto, M., Schenato, L., & Dey, S. (2020). Transmission scheduling for remote estimation with multi-packet reception under multi-sensor interference. In Nourian, Leong, Dey (b25) 2014; 59 Wu, Jia, Johansson, Shi (b39) 2013; 26 Perez-Neira, Campalans (b27) 2010 (pp. 102-114). Ren, Wu, Dey, Shi (b31) 2018; 87 penalization. In Wang, Polydorides, Bertsekas (b38) 2009 Gupta, Hassibi, Murray (b16) 2007; 56 and Nedic, Bertsekas (b24) 2003; 13 Wu, Ren, Dey, Shi (b40) 2018; 96 Bertsekas, Yu (b3) 2009; 227 Forootani, Tipaldi, Iervolino, Dey (b12) 2022; 6 Forootani, Liuzza, Tipaldi, Glielmo (b9) 2019 Liu, Quevedo, Johansson, Vucetic, Li (b23) 2021 Pezzutto, Schenato, Dey (b29) 2021 Schenato, Sinopoli, Franceschetti, Poolla, Sastry (b34) 2007; 95 Tsitsiklis, Van Roy (b37) 1997; 42 Ren, Wu, Johansson, Shi, Shi (b32) 2018; 63 Bertsekas (b2) 2012 Hoffman, M. W., Lazaric, A., Ghavamzadeh, M., & Munos, R. Regularized least squares temporal difference learning with nested Leong, Dey, Quevedo (b19) 2017; 62 Forootani, Iervolino, Tipaldi, Neilson (b8) 2020; 7 Deng, Chen, Belta (b6) 2017; 62 Xu, Y., & Hespanha, J. P. (2005). Estimation under uncontrolled and controlled communications in networked control systems. In . Papandriopoulos, Evans, Dey (b26) 2005; 4 Bertsekas (b1) 2011; 56 Geist, Pietquin (b14) 2013; 24 Forootani, Tipaldi, Ghaniee Zarch, Liuzza, Glielmo (b11) 2020; 94 (pp. 842-847). De Farias, Van Roy (b5) 2003; 51 Forootani, Iervolino, Tipaldi (b7) 2019; 13 Gupta, Chung, Hassibi, Murray (b15) 2006; 42 Leong, Quevedo, Tanaka, Dey, Ahlen (b20) 2017; 50 Li, Chen, Wong (b22) 2019; 126 Shi, Cheng, Chen (b35) 2011; 56 Gatsis, Ribeiro, Pappas (b13) 2018; 91 Leong, Ramaswamy, Quevedo, Karl, Shi (b21) 2020; 113 Pezzutto, Schenato, Dey (b30) 2021 Zhao, Zhang, Hu, Abate, Tomlin (b43) 2014; 59 Forootani (10.1016/j.automatica.2021.110061_b12) 2022; 6 Gatsis (10.1016/j.automatica.2021.110061_b13) 2018; 91 Li (10.1016/j.automatica.2021.110061_b22) 2019; 126 Papandriopoulos (10.1016/j.automatica.2021.110061_b26) 2005; 4 Gupta (10.1016/j.automatica.2021.110061_b15) 2006; 42 10.1016/j.automatica.2021.110061_b18 Ren (10.1016/j.automatica.2021.110061_b32) 2018; 63 Forootani (10.1016/j.automatica.2021.110061_b7) 2019; 13 Forootani (10.1016/j.automatica.2021.110061_b9) 2019 Nedic (10.1016/j.automatica.2021.110061_b24) 2003; 13 Bertsekas (10.1016/j.automatica.2021.110061_b1) 2011; 56 Wang (10.1016/j.automatica.2021.110061_b38) 2009 Pezzutto (10.1016/j.automatica.2021.110061_b29) 2021 Deng (10.1016/j.automatica.2021.110061_b6) 2017; 62 Wu (10.1016/j.automatica.2021.110061_b39) 2013; 26 Forootani (10.1016/j.automatica.2021.110061_b11) 2020; 94 Bertsekas (10.1016/j.automatica.2021.110061_b2) 2012 Geist (10.1016/j.automatica.2021.110061_b14) 2013; 24 Schenato (10.1016/j.automatica.2021.110061_b34) 2007; 95 Zanella (10.1016/j.automatica.2021.110061_b42) 2012; 60 Leong (10.1016/j.automatica.2021.110061_b20) 2017; 50 10.1016/j.automatica.2021.110061_b28 Shi (10.1016/j.automatica.2021.110061_b35) 2011; 56 Leong (10.1016/j.automatica.2021.110061_b19) 2017; 62 Liu (10.1016/j.automatica.2021.110061_b23) 2021 Nourian (10.1016/j.automatica.2021.110061_b25) 2014; 59 10.1016/j.automatica.2021.110061_b41 Shi (10.1016/j.automatica.2021.110061_b36) 2011; 47 Busoniu (10.1016/j.automatica.2021.110061_b4) 2011; 41 Gupta (10.1016/j.automatica.2021.110061_b16) 2007; 56 Bertsekas (10.1016/j.automatica.2021.110061_b3) 2009; 227 Zhao (10.1016/j.automatica.2021.110061_b43) 2014; 59 De Farias (10.1016/j.automatica.2021.110061_b5) 2003; 51 Ren (10.1016/j.automatica.2021.110061_b31) 2018; 87 Forootani (10.1016/j.automatica.2021.110061_b8) 2020; 7 Pezzutto (10.1016/j.automatica.2021.110061_b30) 2021 Han (10.1016/j.automatica.2021.110061_b17) 2017; 75 Tsitsiklis (10.1016/j.automatica.2021.110061_b37) 1997; 42 Forootani (10.1016/j.automatica.2021.110061_b10) 2020; 13 Perez-Neira (10.1016/j.automatica.2021.110061_b27) 2010 Leong (10.1016/j.automatica.2021.110061_b21) 2020; 113 Schenato (10.1016/j.automatica.2021.110061_b33) 2008; 53 Wu (10.1016/j.automatica.2021.110061_b40) 2018; 96  | 
    
| References_xml | – volume: 62 start-page: 1880 year: 2017 end-page: 1895 ident: b19 article-title: Sensor scheduling in variance based event triggered estimation with packet drops publication-title: IEEE Transactions on Automatic Control – reference: (pp. 102-114). – year: 2009 ident: b38 article-title: Approximate simulation-based solution of large-scale least squares problems – reference: (pp. 842-847). – reference: and – volume: 126 year: 2019 ident: b22 article-title: Power control for multi-sensor remote state estimation over interference channel publication-title: Systems & Control Letters – volume: 51 start-page: 850 year: 2003 end-page: 865 ident: b5 article-title: The linear programming approach to approximate dynamic programming publication-title: Operations Research – volume: 13 start-page: 2387 year: 2019 end-page: 2398 ident: b7 article-title: Applying unweighted least-squares based techniques to stochastic dynamic programming: theory and application publication-title: IET Control Theory & Applications – volume: 59 start-page: 825 year: 2014 end-page: 2830 ident: b43 article-title: On the optimal solutions of the infinite-horizon linear sensor scheduling problem publication-title: IEEE Transactions on Automatic Control – volume: 56 start-page: 2128 year: 2011 end-page: 2139 ident: b1 article-title: Temporal difference methods for general projected equations publication-title: IEEE Transactions on Automatic Control – volume: 42 start-page: 251 year: 2006 end-page: 260 ident: b15 article-title: On a stochastic sensor selection algorithm with applications in sensor scheduling and sensor coverage publication-title: Automatica – volume: 60 start-page: 1058 year: 2012 end-page: 1071 ident: b42 article-title: Theoretical analysis of the capture probability in wireless systems with multiple packet reception capabilities publication-title: IEEE Transactions on Communications – volume: 59 start-page: 2128 year: 2014 end-page: 2143 ident: b25 article-title: Optimal energy allocation for Kalman filtering over packet dropping links with imperfect acknowledgments and energy harvesting constraints publication-title: IEEE Transactions on Automatic Control – year: 2019 ident: b9 article-title: Allocating resources via price management systems: a dynamic programming-based approach publication-title: International Journal of Control – volume: 91 start-page: 1 year: 2018 end-page: 9 ident: b13 article-title: Random access design for wireless control systems publication-title: Automatica – volume: 50 start-page: 8945 year: 2017 end-page: 8950 ident: b20 article-title: Event-based transmission scheduling and LQG control over a packet dropping link publication-title: IFAC-PapersOnLine – volume: 94 start-page: 1544 year: 2020 end-page: 1555 ident: b11 article-title: Modelling and solving resource allocation problems via a dynamic programming approach publication-title: International Journal of Control – volume: 47 start-page: 1693 year: 2011 end-page: 1698 ident: b36 article-title: Sensor data scheduling for optimal state estimation with communication energy constraint publication-title: Automatica – volume: 4 start-page: 2705 year: 2005 end-page: 2715 ident: b26 article-title: Optimal power control for Rayleigh-faded multiuser systems with outage constraints publication-title: IEEE Transactions on Wireless Communication – volume: 6 start-page: 271 year: 2022 end-page: 276 ident: b12 article-title: Enhanced exploration least-squares methods for optimal stopping problems publication-title: IEEE Control System Letter – volume: 113 year: 2020 ident: b21 article-title: Deep reinforcement learning for wireless sensor scheduling in cyber–physical systems publication-title: Automatica – year: 2012 ident: b2 article-title: Dynamic programming and optimal control, vol. II, – volume: 56 start-page: 439 year: 2007 end-page: 446 ident: b16 article-title: Optimal LQG control across packet-dropping links publication-title: Systems & Control Letters – volume: 62 start-page: 4549 year: 2017 end-page: 4563 ident: b6 article-title: An approximate dynamic programming approach to multi-agent persistent monitoring in stochastic environments with temporal logic constraints publication-title: IEEE Transactions on Automatic Control – year: 2021 ident: b29 article-title: Transmission power allocation for remote estimation with multi-packet reception capabilities – volume: 53 start-page: 1311 year: 2008 end-page: 1317 ident: b33 article-title: Optimal estimation in networked control systems subject to random delay and packet drop publication-title: IEEE Transactions on Automatic Control – volume: 13 start-page: 79 year: 2003 end-page: 110 ident: b24 article-title: Least squares policy evaluation algorithms with linear function approximation publication-title: Discrete Event Dynamic Systems – volume: 26 year: 2013 ident: b39 article-title: Event-based sensor data scheduling: Trade-off between communication rate and estimation quality publication-title: IEEE Transactions on Automatic Control – year: 2021 ident: b23 article-title: Remote state estimation of multiple systems over multiple Markov fading channels – reference: Xu, Y., & Hespanha, J. P. (2005). Estimation under uncontrolled and controlled communications in networked control systems. In – volume: 24 start-page: 845 year: 2013 end-page: 867 ident: b14 article-title: Algorithmic survey of parametric value function approximation publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 42 year: 1997 ident: b37 article-title: An analysis of temporal-difference learning with function approximation publication-title: IEEE Transactions on Automatic Control – reference: . – reference: Hoffman, M. W., Lazaric, A., Ghavamzadeh, M., & Munos, R. Regularized least squares temporal difference learning with nested – volume: 87 year: 2018 ident: b31 article-title: Attack allocation on remote state estimation in multi-systems: Structural results and asymptotic solution publication-title: Automatica – volume: 227 start-page: 27 year: 2009 end-page: 50 ident: b3 article-title: Projected equation methods for approximate solution of large linear systems publication-title: Journal of Computational and Applied Mathematics – volume: 63 start-page: 85 year: 2018 end-page: 100 ident: b32 article-title: Infinite horizon optimal transmission power control for remote state estimation over fading channels publication-title: IEEE Transactions on Automatic Control – volume: 95 start-page: 163 year: 2007 end-page: 187 ident: b34 article-title: Foundations of control and estimation over lossy networks publication-title: Proceedings of the IEEE – volume: 56 start-page: 2190 year: 2011 end-page: 2195 ident: b35 article-title: Optimal periodic sensor scheduling with limited resources publication-title: IEEE Transactions on Automatic Control – year: 2021 ident: b30 article-title: Transmission power allocation for remote estimation with multi-packet reception capabilities – volume: 41 start-page: 196 year: 2011 end-page: 209 ident: b4 article-title: Cross-entropy optimization of control policies with adaptive basis functions publication-title: IEEE Transaction on Systems, Man, and Cybernetics - Part B: Cybernetics – volume: 7 start-page: 975 year: 2020 end-page: 990 ident: b8 article-title: Approximate dynamic programming for stochastic resource allocation problems publication-title: IEEE/CAA Journal of Automatica Sinica – volume: 13 start-page: 1 year: 2020 end-page: 15 ident: b10 article-title: A least-squares temporal difference based method for solving resource allocation problems publication-title: IFAC Journal of Systems and Control – reference: penalization. In – year: 2010 ident: b27 article-title: Cross-layer resource allocation in wireless communications: Techniques and models from PHY and MAC layer interaction – reference: Pezzutto, M., Schenato, L., & Dey, S. (2020). Transmission scheduling for remote estimation with multi-packet reception under multi-sensor interference. In – volume: 96 start-page: 22 year: 2018 end-page: 31 ident: b40 article-title: Optimal scheduling of multiple sensors over shared channels with packet transmission constraint publication-title: Automatica – volume: 75 start-page: 260 year: 2017 end-page: 270 ident: b17 article-title: Optimal sensor scheduling for multiple linear dynamical systems publication-title: Automatica – year: 2012 ident: 10.1016/j.automatica.2021.110061_b2 – volume: 63 start-page: 85 issue: 1 year: 2018 ident: 10.1016/j.automatica.2021.110061_b32 article-title: Infinite horizon optimal transmission power control for remote state estimation over fading channels publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2017.2709914 – volume: 59 start-page: 2128 issue: 8 year: 2014 ident: 10.1016/j.automatica.2021.110061_b25 article-title: Optimal energy allocation for Kalman filtering over packet dropping links with imperfect acknowledgments and energy harvesting constraints publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2014.2319011 – year: 2021 ident: 10.1016/j.automatica.2021.110061_b30 – volume: 87 year: 2018 ident: 10.1016/j.automatica.2021.110061_b31 article-title: Attack allocation on remote state estimation in multi-systems: Structural results and asymptotic solution publication-title: Automatica doi: 10.1016/j.automatica.2017.09.021 – volume: 4 start-page: 2705 issue: 6 year: 2005 ident: 10.1016/j.automatica.2021.110061_b26 article-title: Optimal power control for Rayleigh-faded multiuser systems with outage constraints publication-title: IEEE Transactions on Wireless Communication doi: 10.1109/TWC.2005.858019 – volume: 59 start-page: 825 issue: 10 year: 2014 ident: 10.1016/j.automatica.2021.110061_b43 article-title: On the optimal solutions of the infinite-horizon linear sensor scheduling problem publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2014.2314222 – ident: 10.1016/j.automatica.2021.110061_b18 doi: 10.1007/978-3-642-29946-9_13 – volume: 41 start-page: 196 issue: 1 year: 2011 ident: 10.1016/j.automatica.2021.110061_b4 article-title: Cross-entropy optimization of control policies with adaptive basis functions publication-title: IEEE Transaction on Systems, Man, and Cybernetics - Part B: Cybernetics doi: 10.1109/TSMCB.2010.2050586 – year: 2019 ident: 10.1016/j.automatica.2021.110061_b9 article-title: Allocating resources via price management systems: a dynamic programming-based approach publication-title: International Journal of Control – volume: 13 start-page: 2387 issue: 15 year: 2019 ident: 10.1016/j.automatica.2021.110061_b7 article-title: Applying unweighted least-squares based techniques to stochastic dynamic programming: theory and application publication-title: IET Control Theory & Applications doi: 10.1049/iet-cta.2019.0289 – volume: 53 start-page: 1311 issue: 5 year: 2008 ident: 10.1016/j.automatica.2021.110061_b33 article-title: Optimal estimation in networked control systems subject to random delay and packet drop publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2008.921012 – volume: 24 start-page: 845 issue: 6 year: 2013 ident: 10.1016/j.automatica.2021.110061_b14 article-title: Algorithmic survey of parametric value function approximation publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2013.2247418 – volume: 94 start-page: 1544 issue: 6 year: 2020 ident: 10.1016/j.automatica.2021.110061_b11 article-title: Modelling and solving resource allocation problems via a dynamic programming approach publication-title: International Journal of Control doi: 10.1080/00207179.2019.1661521 – volume: 113 year: 2020 ident: 10.1016/j.automatica.2021.110061_b21 article-title: Deep reinforcement learning for wireless sensor scheduling in cyber–physical systems publication-title: Automatica doi: 10.1016/j.automatica.2019.108759 – year: 2021 ident: 10.1016/j.automatica.2021.110061_b23 – year: 2010 ident: 10.1016/j.automatica.2021.110061_b27 – volume: 56 start-page: 2128 issue: 9 year: 2011 ident: 10.1016/j.automatica.2021.110061_b1 article-title: Temporal difference methods for general projected equations publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2011.2115290 – volume: 96 start-page: 22 year: 2018 ident: 10.1016/j.automatica.2021.110061_b40 article-title: Optimal scheduling of multiple sensors over shared channels with packet transmission constraint publication-title: Automatica doi: 10.1016/j.automatica.2018.06.019 – ident: 10.1016/j.automatica.2021.110061_b28 doi: 10.1016/j.ifacol.2020.12.314 – volume: 95 start-page: 163 issue: 1 year: 2007 ident: 10.1016/j.automatica.2021.110061_b34 article-title: Foundations of control and estimation over lossy networks publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2006.887306 – volume: 42 issue: 5 year: 1997 ident: 10.1016/j.automatica.2021.110061_b37 article-title: An analysis of temporal-difference learning with function approximation publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.580874 – volume: 7 start-page: 975 issue: 4 year: 2020 ident: 10.1016/j.automatica.2021.110061_b8 article-title: Approximate dynamic programming for stochastic resource allocation problems publication-title: IEEE/CAA Journal of Automatica Sinica doi: 10.1109/JAS.2020.1003231 – year: 2009 ident: 10.1016/j.automatica.2021.110061_b38 – volume: 13 start-page: 79 year: 2003 ident: 10.1016/j.automatica.2021.110061_b24 article-title: Least squares policy evaluation algorithms with linear function approximation publication-title: Discrete Event Dynamic Systems doi: 10.1023/A:1022192903948 – ident: 10.1016/j.automatica.2021.110061_b41 – volume: 42 start-page: 251 issue: 2 year: 2006 ident: 10.1016/j.automatica.2021.110061_b15 article-title: On a stochastic sensor selection algorithm with applications in sensor scheduling and sensor coverage publication-title: Automatica doi: 10.1016/j.automatica.2005.09.016 – volume: 62 start-page: 1880 issue: 4 year: 2017 ident: 10.1016/j.automatica.2021.110061_b19 article-title: Sensor scheduling in variance based event triggered estimation with packet drops publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2016.2602499 – volume: 126 year: 2019 ident: 10.1016/j.automatica.2021.110061_b22 article-title: Power control for multi-sensor remote state estimation over interference channel publication-title: Systems & Control Letters doi: 10.1016/j.sysconle.2019.01.007 – volume: 50 start-page: 8945 issue: 1 year: 2017 ident: 10.1016/j.automatica.2021.110061_b20 article-title: Event-based transmission scheduling and LQG control over a packet dropping link publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2017.08.1311 – volume: 60 start-page: 1058 issue: 4 year: 2012 ident: 10.1016/j.automatica.2021.110061_b42 article-title: Theoretical analysis of the capture probability in wireless systems with multiple packet reception capabilities publication-title: IEEE Transactions on Communications doi: 10.1109/TCOMM.2012.021712.100782 – volume: 56 start-page: 439 issue: 6 year: 2007 ident: 10.1016/j.automatica.2021.110061_b16 article-title: Optimal LQG control across packet-dropping links publication-title: Systems & Control Letters doi: 10.1016/j.sysconle.2006.11.003 – volume: 227 start-page: 27 year: 2009 ident: 10.1016/j.automatica.2021.110061_b3 article-title: Projected equation methods for approximate solution of large linear systems publication-title: Journal of Computational and Applied Mathematics doi: 10.1016/j.cam.2008.07.037 – volume: 13 start-page: 1 year: 2020 ident: 10.1016/j.automatica.2021.110061_b10 article-title: A least-squares temporal difference based method for solving resource allocation problems publication-title: IFAC Journal of Systems and Control doi: 10.1016/j.ifacsc.2020.100106 – volume: 47 start-page: 1693 issue: 8 year: 2011 ident: 10.1016/j.automatica.2021.110061_b36 article-title: Sensor data scheduling for optimal state estimation with communication energy constraint publication-title: Automatica doi: 10.1016/j.automatica.2011.02.037 – year: 2021 ident: 10.1016/j.automatica.2021.110061_b29 – volume: 51 start-page: 850 issue: 6 year: 2003 ident: 10.1016/j.automatica.2021.110061_b5 article-title: The linear programming approach to approximate dynamic programming publication-title: Operations Research doi: 10.1287/opre.51.6.850.24925 – volume: 6 start-page: 271 year: 2022 ident: 10.1016/j.automatica.2021.110061_b12 article-title: Enhanced exploration least-squares methods for optimal stopping problems publication-title: IEEE Control System Letter doi: 10.1109/LCSYS.2021.3069708 – volume: 26 issue: 4 year: 2013 ident: 10.1016/j.automatica.2021.110061_b39 article-title: Event-based sensor data scheduling: Trade-off between communication rate and estimation quality publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2012.2215253 – volume: 62 start-page: 4549 issue: 9 year: 2017 ident: 10.1016/j.automatica.2021.110061_b6 article-title: An approximate dynamic programming approach to multi-agent persistent monitoring in stochastic environments with temporal logic constraints publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2017.2678920 – volume: 75 start-page: 260 year: 2017 ident: 10.1016/j.automatica.2021.110061_b17 article-title: Optimal sensor scheduling for multiple linear dynamical systems publication-title: Automatica doi: 10.1016/j.automatica.2016.09.015 – volume: 91 start-page: 1 year: 2018 ident: 10.1016/j.automatica.2021.110061_b13 article-title: Random access design for wireless control systems publication-title: Automatica doi: 10.1016/j.automatica.2018.01.021 – volume: 56 start-page: 2190 issue: 9 year: 2011 ident: 10.1016/j.automatica.2021.110061_b35 article-title: Optimal periodic sensor scheduling with limited resources publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2011.2152210  | 
    
| SSID | ssj0004182 | 
    
| Score | 2.4981756 | 
    
| Snippet | In this paper, we consider a remote estimation problem where multiple dynamical systems are observed by smart sensors, which transmit their local estimates to... | 
    
| SourceID | swepub crossref elsevier  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 110061 | 
    
| SubjectTerms | Approximate dynamic programming Kalman filter Least Squares Temporal Difference Markov Decision Process Sensor scheduling Wireless sensor networks  | 
    
| Title | Transmission scheduling for multi-process multi-sensor remote estimation via approximate dynamic programming | 
    
| URI | https://dx.doi.org/10.1016/j.automatica.2021.110061 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-509574  | 
    
| Volume | 136 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004182 issn: 0005-1098 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004182 issn: 0005-1098 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004182 issn: 0005-1098 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-2836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004182 issn: 0005-1098 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004182 issn: 0005-1098 databaseCode: AKRWK dateStart: 19630101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIryqDzAGJqkTuKIqSpUBUQnirpZjuOgotJWpUFM_HbubPfBgFSJMY6cRHeO7zvru-8IuVQR90OVR16Qh5CgxGHmSZ9rL_LDIoH4lISGjPnUi7t99jCIBhXSXtTCIK3S7f12Tze7tRtpOGs2psMh1vjigko5JC3YGw9ltxlLsIvB9feK5sECbhXDjeJmyh2bx3K8ZDmfGGVUVCAKA-TE-3HwZ4ha1xI18aezR3YdcKQt-237pKLHB2RnTU7wkIxM4AHH4QkYhbQVwghWm1MAptQwB72prQtwVx-Qw8KtmQZ_aYp6G7aQkX4OJTVq4184omlu-9ZTx-Z6h4cekX7n7rnd9Vw3BU8Bpph7caFkxuCXixLFM19DKC-ySCFCVDLnkVaQXYSSxTJBmJgwiRRQ2SxSGcjUz5rHpDqejPUJGBBgTcHzAs-PmPIzpKhyCPSZ0oVKm6xGkoUBhXJS49jxYiQWnLI3sTK9QNMLa_oaCZYzp1ZuY4M5NwsfiV9LR0BU2GD2lXXr8n0ouH07fGmJyexVlKUASAXWOP3XW87Idoh1E4bufU6q81mpLwDNzLO6Wa51stW6f-z2fgApAvd1 | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RTl6QHGQOLm4YipKlQFSqcWsVmO46Ci0lalRUz8du5st5QBqRJjHDmJ7hzfd9Z33xFyriLuM5VHXpAzSFBilnnS59qLfFYkEJ8SZsiYj-242Q3vn6PnEqnPamGQVun2frunm93ajVw5a16Nej2s8cUFlXJIWrA3XrxCVsOIJZiBXX798DzCgFvJcCO5mXJH57EkLzmdDI00KkoQsQBJ8X4c_BmjFsVETQBqbJFNhxxpzX7cNinpwQ7ZWNAT3CV9E3nAc3gERiFvhTiC5eYUkCk11EFvZAsD3NU7JLFwa6zBYZqi4IatZKQfPUmN3Pgnjmia28b11NG53uChe6TbuO3Um55rp-ApABUTLy6UzEL456JE8czXEMuLLFIIEZXMeaQVpBdMhrFMECcmoUQOqKwWqQxk6mfVfVIeDAf6AAwIuKbgeYEHSKHyM-Socoj0mdKFSqthhSQzAwrltMax5UVfzEhlr-LH9AJNL6zpKySYzxxZvY0l5lzPfCR-rR0BYWGJ2RfWrfP3oeL2Te-pJobjFzGdCsBUYI3Df73ljKw1O48t0bprPxyRdYZFFIb7fUzKk_FUnwC0mWSnZul-A90d-Qo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transmission+scheduling+for+multi-process+multi-sensor+remote+estimation+via+approximate+dynamic+programming&rft.jtitle=Automatica+%28Oxford%29&rft.au=Forootani%2C+Ali&rft.au=Iervolino%2C+Raffaele&rft.au=Tipaldi%2C+Massimo&rft.au=Dey%2C+Subhrakanti&rft.date=2022-02-01&rft.issn=0005-1098&rft.volume=136&rft.spage=110061&rft_id=info:doi/10.1016%2Fj.automatica.2021.110061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_automatica_2021_110061 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon |