Transmission scheduling for multi-process multi-sensor remote estimation via approximate dynamic programming

In this paper, we consider a remote estimation problem where multiple dynamical systems are observed by smart sensors, which transmit their local estimates to a remote estimator over channels prone to packet losses. Unlike previous works, we allow multiple sensors to transmit simultaneously even tho...

Full description

Saved in:
Bibliographic Details
Published inAutomatica (Oxford) Vol. 136; p. 110061
Main Authors Forootani, Ali, Iervolino, Raffaele, Tipaldi, Massimo, Dey, Subhrakanti
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2022
Subjects
Online AccessGet full text
ISSN0005-1098
1873-2836
1873-2836
DOI10.1016/j.automatica.2021.110061

Cover

Abstract In this paper, we consider a remote estimation problem where multiple dynamical systems are observed by smart sensors, which transmit their local estimates to a remote estimator over channels prone to packet losses. Unlike previous works, we allow multiple sensors to transmit simultaneously even though they can cause interference, thanks to the multi-packet reception capability at the remote estimator. In this setting, the remote estimator can decode multiple sensor transmissions (successful packet arrivals) as long as their signal-to-interference-and-noise ratios (SINR) are above a certain threshold. In this setting, we address the problem of optimal sensor transmission scheduling by minimizing a finite horizon discounted expected estimation error covariance cost across all systems at the remote estimator, subject to an average transmission cost. While this problem can be posed as a stochastic control problem, the optimal solution requires solving a Bellman equation for a dynamic programming (DP) problem, the complexity of which scales exponentially with the number of systems being measured and their state dimensions. In this paper, we resort to a novel Least Squares Temporal Difference (LSTD) Approximate Dynamic Programming (ADP) based approach to approximating the value function. More specifically, an off-policy based LSTD approach, named in short Enhanced-Exploration Greedy LSTD (EG-LSTD), is proposed. We discuss the convergence analysis of the EG-LSTD algorithm and its implementation. A Python based program is developed to implement and analyse the different aspects of the proposed method. Simulation examples are presented to support the results of the proposed approach both for the exact DP and ADP cases.
AbstractList In this paper, we consider a remote estimation problem where multiple dynamical systems are observed by smart sensors, which transmit their local estimates to a remote estimator over channels prone to packet losses. Unlike previous works, we allow multiple sensors to transmit simultaneously even though they can cause interference, thanks to the multi-packet reception capability at the remote estimator. In this setting, the remote estimator can decode multiple sensor transmissions (successful packet arrivals) as long as their signal-to-interference-and-noise ratios (SINR) are above a certain threshold. In this setting, we address the problem of optimal sensor transmission scheduling by minimizing a finite horizon discounted expected estimation error covariance cost across all systems at the remote estimator, subject to an average transmission cost. While this problem can be posed as a stochastic control problem, the optimal solution requires solving a Bellman equation for a dynamic programming (DP) problem, the complexity of which scales exponentially with the number of systems being measured and their state dimensions. In this paper, we resort to a novel Least Squares Temporal Difference (LSTD) Approximate Dynamic Programming (ADP) based approach to approximating the value function. More specifically, an off-policy based LSTD approach, named in short Enhanced-Exploration Greedy LSTD (EG-LSTD), is proposed. We discuss the convergence analysis of the EG-LSTD algorithm and its implementation. A Python based program is developed to implement and analyse the different aspects of the proposed method. Simulation examples are presented to support the results of the proposed approach both for the exact DP and ADP cases.
ArticleNumber 110061
Author Tipaldi, Massimo
Iervolino, Raffaele
Forootani, Ali
Dey, Subhrakanti
Author_xml – sequence: 1
  givenname: Ali
  surname: Forootani
  fullname: Forootani, Ali
  email: Ali.forootani@mu.ie
  organization: Hamilton Institute, Maynooth University, Maynooth, Co. Kildare W23F2K8, Ireland
– sequence: 2
  givenname: Raffaele
  surname: Iervolino
  fullname: Iervolino, Raffaele
  email: rafierv@na.it
  organization: Department of Electrical Engineering and Information Technology, University of Naples, Napoli 80125, Italy
– sequence: 3
  givenname: Massimo
  surname: Tipaldi
  fullname: Tipaldi, Massimo
  email: mtipaldi@unisannio.it
  organization: Department of Engineering, University of Sannio, Benevento 82100, Italy
– sequence: 4
  givenname: Subhrakanti
  surname: Dey
  fullname: Dey, Subhrakanti
  email: Subhra.Dey@mu.ie
  organization: Hamilton Institute, Maynooth University, Maynooth, Co. Kildare W23F2K8, Ireland
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-509574$$DView record from Swedish Publication Index
BookMark eNqNkMtOwzAQRS1UJMrjH_IBpIyTOE02SKU8JSQ2ha01cSbFVRJXtlPg73FpERIbWI1mfO8dzzlmo970xFjEYcKB5xerCQ7edOi1wkkCCZ9wDpDzAzbmxTSNkyLNR2wMACLmUBZH7Ni5VWgzXiRj1i4s9q7TzmnTR069Uj20ul9GjbFRN7Rex2trFDm37xz1LjxZ6oyniJzX293Bu9EY4TqI37cTiuqPHjutojBZWuy6EHrKDhtsHZ3t6wl7vr1ZzO_jx6e7h_nsMVapED7OG4VVJlIupqqogJIMmkooKMtSYV0IUokQCWY5ToEHUYY844BpUyLHEqr0hJ3vct0brYdKrm34kv2QBrW81i8zaexSDoMUUAZ3kF_u5Moa5yw1Umn_dZS3qFvJQW5Ry5X8QS23qOUOdQgofgV8b_yH9WpnpcBjo8lKpzT1imptSXlZG_13yCfO66VI
CitedBy_id crossref_primary_10_1016_j_arcontrol_2024_100972
crossref_primary_10_1109_LCSYS_2025_3547629
crossref_primary_10_1109_JIOT_2024_3369096
crossref_primary_10_1109_TAC_2023_3279902
crossref_primary_10_1016_j_automatica_2024_111884
crossref_primary_10_1109_TWC_2022_3225581
crossref_primary_10_1109_TII_2024_3441625
crossref_primary_10_1109_TWC_2023_3277861
crossref_primary_10_1109_JIOT_2024_3373669
crossref_primary_10_1109_JESTPE_2024_3453949
crossref_primary_10_1016_j_automatica_2024_111517
crossref_primary_10_1016_j_engappai_2022_105638
crossref_primary_10_1016_j_neucom_2022_10_011
crossref_primary_10_1016_j_compeleceng_2022_108573
crossref_primary_10_1109_TCNS_2023_3337416
crossref_primary_10_1109_TSMC_2023_3327492
crossref_primary_10_3389_fcteg_2022_861055
crossref_primary_10_1080_00207721_2024_2304666
crossref_primary_10_1016_j_future_2022_10_015
Cites_doi 10.1109/TAC.2017.2709914
10.1109/TAC.2014.2319011
10.1016/j.automatica.2017.09.021
10.1109/TWC.2005.858019
10.1109/TAC.2014.2314222
10.1007/978-3-642-29946-9_13
10.1109/TSMCB.2010.2050586
10.1049/iet-cta.2019.0289
10.1109/TAC.2008.921012
10.1109/TNNLS.2013.2247418
10.1080/00207179.2019.1661521
10.1016/j.automatica.2019.108759
10.1109/TAC.2011.2115290
10.1016/j.automatica.2018.06.019
10.1016/j.ifacol.2020.12.314
10.1109/JPROC.2006.887306
10.1109/9.580874
10.1109/JAS.2020.1003231
10.1023/A:1022192903948
10.1016/j.automatica.2005.09.016
10.1109/TAC.2016.2602499
10.1016/j.sysconle.2019.01.007
10.1016/j.ifacol.2017.08.1311
10.1109/TCOMM.2012.021712.100782
10.1016/j.sysconle.2006.11.003
10.1016/j.cam.2008.07.037
10.1016/j.ifacsc.2020.100106
10.1016/j.automatica.2011.02.037
10.1287/opre.51.6.850.24925
10.1109/LCSYS.2021.3069708
10.1109/TAC.2012.2215253
10.1109/TAC.2017.2678920
10.1016/j.automatica.2016.09.015
10.1016/j.automatica.2018.01.021
10.1109/TAC.2011.2152210
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
ADTPV
AOWAS
DF2
DOI 10.1016/j.automatica.2021.110061
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2836
ExternalDocumentID oai_DiVA_org_uu_509574
10_1016_j_automatica_2021_110061
S0005109821005896
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
3R3
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
T9H
TAE
TN5
VH1
WH7
WUQ
X6Y
XFK
XPP
ZMT
~G-
77I
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTPV
AGCQF
AOWAS
DF2
ID FETCH-LOGICAL-c355t-6fcab453157c8b0e240fb5c0999cad85ec2552a46a7011574a1410a3f9a1a90b3
IEDL.DBID .~1
ISSN 0005-1098
1873-2836
IngestDate Tue Sep 09 23:27:11 EDT 2025
Wed Oct 01 05:21:59 EDT 2025
Thu Apr 24 23:02:19 EDT 2025
Fri Feb 23 02:41:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wireless sensor networks
Approximate dynamic programming
Least Squares Temporal Difference
Markov Decision Process
Sensor scheduling
Kalman filter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-6fcab453157c8b0e240fb5c0999cad85ec2552a46a7011574a1410a3f9a1a90b3
ParticipantIDs swepub_primary_oai_DiVA_org_uu_509574
crossref_citationtrail_10_1016_j_automatica_2021_110061
crossref_primary_10_1016_j_automatica_2021_110061
elsevier_sciencedirect_doi_10_1016_j_automatica_2021_110061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Automatica (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Schenato (b33) 2008; 53
Forootani, Tipaldi, Ghaniee Zarch, Liuzza, Glielmo (b10) 2020; 13
Busoniu, Ernst, De Schutter, Babuska (b4) 2011; 41
Zanella, Zorzi (b42) 2012; 60
Shi, Cheng, Chen (b36) 2011; 47
Han, Wu, Zhang, Shi (b17) 2017; 75
Pezzutto, M., Schenato, L., & Dey, S. (2020). Transmission scheduling for remote estimation with multi-packet reception under multi-sensor interference. In
Nourian, Leong, Dey (b25) 2014; 59
Wu, Jia, Johansson, Shi (b39) 2013; 26
Perez-Neira, Campalans (b27) 2010
(pp. 102-114).
Ren, Wu, Dey, Shi (b31) 2018; 87
penalization. In
Wang, Polydorides, Bertsekas (b38) 2009
Gupta, Hassibi, Murray (b16) 2007; 56
and
Nedic, Bertsekas (b24) 2003; 13
Wu, Ren, Dey, Shi (b40) 2018; 96
Bertsekas, Yu (b3) 2009; 227
Forootani, Tipaldi, Iervolino, Dey (b12) 2022; 6
Forootani, Liuzza, Tipaldi, Glielmo (b9) 2019
Liu, Quevedo, Johansson, Vucetic, Li (b23) 2021
Pezzutto, Schenato, Dey (b29) 2021
Schenato, Sinopoli, Franceschetti, Poolla, Sastry (b34) 2007; 95
Tsitsiklis, Van Roy (b37) 1997; 42
Ren, Wu, Johansson, Shi, Shi (b32) 2018; 63
Bertsekas (b2) 2012
Hoffman, M. W., Lazaric, A., Ghavamzadeh, M., & Munos, R. Regularized least squares temporal difference learning with nested
Leong, Dey, Quevedo (b19) 2017; 62
Forootani, Iervolino, Tipaldi, Neilson (b8) 2020; 7
Deng, Chen, Belta (b6) 2017; 62
Xu, Y., & Hespanha, J. P. (2005). Estimation under uncontrolled and controlled communications in networked control systems. In
.
Papandriopoulos, Evans, Dey (b26) 2005; 4
Bertsekas (b1) 2011; 56
Geist, Pietquin (b14) 2013; 24
Forootani, Tipaldi, Ghaniee Zarch, Liuzza, Glielmo (b11) 2020; 94
(pp. 842-847).
De Farias, Van Roy (b5) 2003; 51
Forootani, Iervolino, Tipaldi (b7) 2019; 13
Gupta, Chung, Hassibi, Murray (b15) 2006; 42
Leong, Quevedo, Tanaka, Dey, Ahlen (b20) 2017; 50
Li, Chen, Wong (b22) 2019; 126
Shi, Cheng, Chen (b35) 2011; 56
Gatsis, Ribeiro, Pappas (b13) 2018; 91
Leong, Ramaswamy, Quevedo, Karl, Shi (b21) 2020; 113
Pezzutto, Schenato, Dey (b30) 2021
Zhao, Zhang, Hu, Abate, Tomlin (b43) 2014; 59
Forootani (10.1016/j.automatica.2021.110061_b12) 2022; 6
Gatsis (10.1016/j.automatica.2021.110061_b13) 2018; 91
Li (10.1016/j.automatica.2021.110061_b22) 2019; 126
Papandriopoulos (10.1016/j.automatica.2021.110061_b26) 2005; 4
Gupta (10.1016/j.automatica.2021.110061_b15) 2006; 42
10.1016/j.automatica.2021.110061_b18
Ren (10.1016/j.automatica.2021.110061_b32) 2018; 63
Forootani (10.1016/j.automatica.2021.110061_b7) 2019; 13
Forootani (10.1016/j.automatica.2021.110061_b9) 2019
Nedic (10.1016/j.automatica.2021.110061_b24) 2003; 13
Bertsekas (10.1016/j.automatica.2021.110061_b1) 2011; 56
Wang (10.1016/j.automatica.2021.110061_b38) 2009
Pezzutto (10.1016/j.automatica.2021.110061_b29) 2021
Deng (10.1016/j.automatica.2021.110061_b6) 2017; 62
Wu (10.1016/j.automatica.2021.110061_b39) 2013; 26
Forootani (10.1016/j.automatica.2021.110061_b11) 2020; 94
Bertsekas (10.1016/j.automatica.2021.110061_b2) 2012
Geist (10.1016/j.automatica.2021.110061_b14) 2013; 24
Schenato (10.1016/j.automatica.2021.110061_b34) 2007; 95
Zanella (10.1016/j.automatica.2021.110061_b42) 2012; 60
Leong (10.1016/j.automatica.2021.110061_b20) 2017; 50
10.1016/j.automatica.2021.110061_b28
Shi (10.1016/j.automatica.2021.110061_b35) 2011; 56
Leong (10.1016/j.automatica.2021.110061_b19) 2017; 62
Liu (10.1016/j.automatica.2021.110061_b23) 2021
Nourian (10.1016/j.automatica.2021.110061_b25) 2014; 59
10.1016/j.automatica.2021.110061_b41
Shi (10.1016/j.automatica.2021.110061_b36) 2011; 47
Busoniu (10.1016/j.automatica.2021.110061_b4) 2011; 41
Gupta (10.1016/j.automatica.2021.110061_b16) 2007; 56
Bertsekas (10.1016/j.automatica.2021.110061_b3) 2009; 227
Zhao (10.1016/j.automatica.2021.110061_b43) 2014; 59
De Farias (10.1016/j.automatica.2021.110061_b5) 2003; 51
Ren (10.1016/j.automatica.2021.110061_b31) 2018; 87
Forootani (10.1016/j.automatica.2021.110061_b8) 2020; 7
Pezzutto (10.1016/j.automatica.2021.110061_b30) 2021
Han (10.1016/j.automatica.2021.110061_b17) 2017; 75
Tsitsiklis (10.1016/j.automatica.2021.110061_b37) 1997; 42
Forootani (10.1016/j.automatica.2021.110061_b10) 2020; 13
Perez-Neira (10.1016/j.automatica.2021.110061_b27) 2010
Leong (10.1016/j.automatica.2021.110061_b21) 2020; 113
Schenato (10.1016/j.automatica.2021.110061_b33) 2008; 53
Wu (10.1016/j.automatica.2021.110061_b40) 2018; 96
References_xml – volume: 62
  start-page: 1880
  year: 2017
  end-page: 1895
  ident: b19
  article-title: Sensor scheduling in variance based event triggered estimation with packet drops
  publication-title: IEEE Transactions on Automatic Control
– reference: (pp. 102-114).
– year: 2009
  ident: b38
  article-title: Approximate simulation-based solution of large-scale least squares problems
– reference: (pp. 842-847).
– reference: and
– volume: 126
  year: 2019
  ident: b22
  article-title: Power control for multi-sensor remote state estimation over interference channel
  publication-title: Systems & Control Letters
– volume: 51
  start-page: 850
  year: 2003
  end-page: 865
  ident: b5
  article-title: The linear programming approach to approximate dynamic programming
  publication-title: Operations Research
– volume: 13
  start-page: 2387
  year: 2019
  end-page: 2398
  ident: b7
  article-title: Applying unweighted least-squares based techniques to stochastic dynamic programming: theory and application
  publication-title: IET Control Theory & Applications
– volume: 59
  start-page: 825
  year: 2014
  end-page: 2830
  ident: b43
  article-title: On the optimal solutions of the infinite-horizon linear sensor scheduling problem
  publication-title: IEEE Transactions on Automatic Control
– volume: 56
  start-page: 2128
  year: 2011
  end-page: 2139
  ident: b1
  article-title: Temporal difference methods for general projected equations
  publication-title: IEEE Transactions on Automatic Control
– volume: 42
  start-page: 251
  year: 2006
  end-page: 260
  ident: b15
  article-title: On a stochastic sensor selection algorithm with applications in sensor scheduling and sensor coverage
  publication-title: Automatica
– volume: 60
  start-page: 1058
  year: 2012
  end-page: 1071
  ident: b42
  article-title: Theoretical analysis of the capture probability in wireless systems with multiple packet reception capabilities
  publication-title: IEEE Transactions on Communications
– volume: 59
  start-page: 2128
  year: 2014
  end-page: 2143
  ident: b25
  article-title: Optimal energy allocation for Kalman filtering over packet dropping links with imperfect acknowledgments and energy harvesting constraints
  publication-title: IEEE Transactions on Automatic Control
– year: 2019
  ident: b9
  article-title: Allocating resources via price management systems: a dynamic programming-based approach
  publication-title: International Journal of Control
– volume: 91
  start-page: 1
  year: 2018
  end-page: 9
  ident: b13
  article-title: Random access design for wireless control systems
  publication-title: Automatica
– volume: 50
  start-page: 8945
  year: 2017
  end-page: 8950
  ident: b20
  article-title: Event-based transmission scheduling and LQG control over a packet dropping link
  publication-title: IFAC-PapersOnLine
– volume: 94
  start-page: 1544
  year: 2020
  end-page: 1555
  ident: b11
  article-title: Modelling and solving resource allocation problems via a dynamic programming approach
  publication-title: International Journal of Control
– volume: 47
  start-page: 1693
  year: 2011
  end-page: 1698
  ident: b36
  article-title: Sensor data scheduling for optimal state estimation with communication energy constraint
  publication-title: Automatica
– volume: 4
  start-page: 2705
  year: 2005
  end-page: 2715
  ident: b26
  article-title: Optimal power control for Rayleigh-faded multiuser systems with outage constraints
  publication-title: IEEE Transactions on Wireless Communication
– volume: 6
  start-page: 271
  year: 2022
  end-page: 276
  ident: b12
  article-title: Enhanced exploration least-squares methods for optimal stopping problems
  publication-title: IEEE Control System Letter
– volume: 113
  year: 2020
  ident: b21
  article-title: Deep reinforcement learning for wireless sensor scheduling in cyber–physical systems
  publication-title: Automatica
– year: 2012
  ident: b2
  article-title: Dynamic programming and optimal control, vol. II,
– volume: 56
  start-page: 439
  year: 2007
  end-page: 446
  ident: b16
  article-title: Optimal LQG control across packet-dropping links
  publication-title: Systems & Control Letters
– volume: 62
  start-page: 4549
  year: 2017
  end-page: 4563
  ident: b6
  article-title: An approximate dynamic programming approach to multi-agent persistent monitoring in stochastic environments with temporal logic constraints
  publication-title: IEEE Transactions on Automatic Control
– year: 2021
  ident: b29
  article-title: Transmission power allocation for remote estimation with multi-packet reception capabilities
– volume: 53
  start-page: 1311
  year: 2008
  end-page: 1317
  ident: b33
  article-title: Optimal estimation in networked control systems subject to random delay and packet drop
  publication-title: IEEE Transactions on Automatic Control
– volume: 13
  start-page: 79
  year: 2003
  end-page: 110
  ident: b24
  article-title: Least squares policy evaluation algorithms with linear function approximation
  publication-title: Discrete Event Dynamic Systems
– volume: 26
  year: 2013
  ident: b39
  article-title: Event-based sensor data scheduling: Trade-off between communication rate and estimation quality
  publication-title: IEEE Transactions on Automatic Control
– year: 2021
  ident: b23
  article-title: Remote state estimation of multiple systems over multiple Markov fading channels
– reference: Xu, Y., & Hespanha, J. P. (2005). Estimation under uncontrolled and controlled communications in networked control systems. In
– volume: 24
  start-page: 845
  year: 2013
  end-page: 867
  ident: b14
  article-title: Algorithmic survey of parametric value function approximation
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 42
  year: 1997
  ident: b37
  article-title: An analysis of temporal-difference learning with function approximation
  publication-title: IEEE Transactions on Automatic Control
– reference: .
– reference: Hoffman, M. W., Lazaric, A., Ghavamzadeh, M., & Munos, R. Regularized least squares temporal difference learning with nested
– volume: 87
  year: 2018
  ident: b31
  article-title: Attack allocation on remote state estimation in multi-systems: Structural results and asymptotic solution
  publication-title: Automatica
– volume: 227
  start-page: 27
  year: 2009
  end-page: 50
  ident: b3
  article-title: Projected equation methods for approximate solution of large linear systems
  publication-title: Journal of Computational and Applied Mathematics
– volume: 63
  start-page: 85
  year: 2018
  end-page: 100
  ident: b32
  article-title: Infinite horizon optimal transmission power control for remote state estimation over fading channels
  publication-title: IEEE Transactions on Automatic Control
– volume: 95
  start-page: 163
  year: 2007
  end-page: 187
  ident: b34
  article-title: Foundations of control and estimation over lossy networks
  publication-title: Proceedings of the IEEE
– volume: 56
  start-page: 2190
  year: 2011
  end-page: 2195
  ident: b35
  article-title: Optimal periodic sensor scheduling with limited resources
  publication-title: IEEE Transactions on Automatic Control
– year: 2021
  ident: b30
  article-title: Transmission power allocation for remote estimation with multi-packet reception capabilities
– volume: 41
  start-page: 196
  year: 2011
  end-page: 209
  ident: b4
  article-title: Cross-entropy optimization of control policies with adaptive basis functions
  publication-title: IEEE Transaction on Systems, Man, and Cybernetics - Part B: Cybernetics
– volume: 7
  start-page: 975
  year: 2020
  end-page: 990
  ident: b8
  article-title: Approximate dynamic programming for stochastic resource allocation problems
  publication-title: IEEE/CAA Journal of Automatica Sinica
– volume: 13
  start-page: 1
  year: 2020
  end-page: 15
  ident: b10
  article-title: A least-squares temporal difference based method for solving resource allocation problems
  publication-title: IFAC Journal of Systems and Control
– reference: penalization. In
– year: 2010
  ident: b27
  article-title: Cross-layer resource allocation in wireless communications: Techniques and models from PHY and MAC layer interaction
– reference: Pezzutto, M., Schenato, L., & Dey, S. (2020). Transmission scheduling for remote estimation with multi-packet reception under multi-sensor interference. In
– volume: 96
  start-page: 22
  year: 2018
  end-page: 31
  ident: b40
  article-title: Optimal scheduling of multiple sensors over shared channels with packet transmission constraint
  publication-title: Automatica
– volume: 75
  start-page: 260
  year: 2017
  end-page: 270
  ident: b17
  article-title: Optimal sensor scheduling for multiple linear dynamical systems
  publication-title: Automatica
– year: 2012
  ident: 10.1016/j.automatica.2021.110061_b2
– volume: 63
  start-page: 85
  issue: 1
  year: 2018
  ident: 10.1016/j.automatica.2021.110061_b32
  article-title: Infinite horizon optimal transmission power control for remote state estimation over fading channels
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2017.2709914
– volume: 59
  start-page: 2128
  issue: 8
  year: 2014
  ident: 10.1016/j.automatica.2021.110061_b25
  article-title: Optimal energy allocation for Kalman filtering over packet dropping links with imperfect acknowledgments and energy harvesting constraints
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2014.2319011
– year: 2021
  ident: 10.1016/j.automatica.2021.110061_b30
– volume: 87
  year: 2018
  ident: 10.1016/j.automatica.2021.110061_b31
  article-title: Attack allocation on remote state estimation in multi-systems: Structural results and asymptotic solution
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.09.021
– volume: 4
  start-page: 2705
  issue: 6
  year: 2005
  ident: 10.1016/j.automatica.2021.110061_b26
  article-title: Optimal power control for Rayleigh-faded multiuser systems with outage constraints
  publication-title: IEEE Transactions on Wireless Communication
  doi: 10.1109/TWC.2005.858019
– volume: 59
  start-page: 825
  issue: 10
  year: 2014
  ident: 10.1016/j.automatica.2021.110061_b43
  article-title: On the optimal solutions of the infinite-horizon linear sensor scheduling problem
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2014.2314222
– ident: 10.1016/j.automatica.2021.110061_b18
  doi: 10.1007/978-3-642-29946-9_13
– volume: 41
  start-page: 196
  issue: 1
  year: 2011
  ident: 10.1016/j.automatica.2021.110061_b4
  article-title: Cross-entropy optimization of control policies with adaptive basis functions
  publication-title: IEEE Transaction on Systems, Man, and Cybernetics - Part B: Cybernetics
  doi: 10.1109/TSMCB.2010.2050586
– year: 2019
  ident: 10.1016/j.automatica.2021.110061_b9
  article-title: Allocating resources via price management systems: a dynamic programming-based approach
  publication-title: International Journal of Control
– volume: 13
  start-page: 2387
  issue: 15
  year: 2019
  ident: 10.1016/j.automatica.2021.110061_b7
  article-title: Applying unweighted least-squares based techniques to stochastic dynamic programming: theory and application
  publication-title: IET Control Theory & Applications
  doi: 10.1049/iet-cta.2019.0289
– volume: 53
  start-page: 1311
  issue: 5
  year: 2008
  ident: 10.1016/j.automatica.2021.110061_b33
  article-title: Optimal estimation in networked control systems subject to random delay and packet drop
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2008.921012
– volume: 24
  start-page: 845
  issue: 6
  year: 2013
  ident: 10.1016/j.automatica.2021.110061_b14
  article-title: Algorithmic survey of parametric value function approximation
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2013.2247418
– volume: 94
  start-page: 1544
  issue: 6
  year: 2020
  ident: 10.1016/j.automatica.2021.110061_b11
  article-title: Modelling and solving resource allocation problems via a dynamic programming approach
  publication-title: International Journal of Control
  doi: 10.1080/00207179.2019.1661521
– volume: 113
  year: 2020
  ident: 10.1016/j.automatica.2021.110061_b21
  article-title: Deep reinforcement learning for wireless sensor scheduling in cyber–physical systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2019.108759
– year: 2021
  ident: 10.1016/j.automatica.2021.110061_b23
– year: 2010
  ident: 10.1016/j.automatica.2021.110061_b27
– volume: 56
  start-page: 2128
  issue: 9
  year: 2011
  ident: 10.1016/j.automatica.2021.110061_b1
  article-title: Temporal difference methods for general projected equations
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2011.2115290
– volume: 96
  start-page: 22
  year: 2018
  ident: 10.1016/j.automatica.2021.110061_b40
  article-title: Optimal scheduling of multiple sensors over shared channels with packet transmission constraint
  publication-title: Automatica
  doi: 10.1016/j.automatica.2018.06.019
– ident: 10.1016/j.automatica.2021.110061_b28
  doi: 10.1016/j.ifacol.2020.12.314
– volume: 95
  start-page: 163
  issue: 1
  year: 2007
  ident: 10.1016/j.automatica.2021.110061_b34
  article-title: Foundations of control and estimation over lossy networks
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2006.887306
– volume: 42
  issue: 5
  year: 1997
  ident: 10.1016/j.automatica.2021.110061_b37
  article-title: An analysis of temporal-difference learning with function approximation
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.580874
– volume: 7
  start-page: 975
  issue: 4
  year: 2020
  ident: 10.1016/j.automatica.2021.110061_b8
  article-title: Approximate dynamic programming for stochastic resource allocation problems
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2020.1003231
– year: 2009
  ident: 10.1016/j.automatica.2021.110061_b38
– volume: 13
  start-page: 79
  year: 2003
  ident: 10.1016/j.automatica.2021.110061_b24
  article-title: Least squares policy evaluation algorithms with linear function approximation
  publication-title: Discrete Event Dynamic Systems
  doi: 10.1023/A:1022192903948
– ident: 10.1016/j.automatica.2021.110061_b41
– volume: 42
  start-page: 251
  issue: 2
  year: 2006
  ident: 10.1016/j.automatica.2021.110061_b15
  article-title: On a stochastic sensor selection algorithm with applications in sensor scheduling and sensor coverage
  publication-title: Automatica
  doi: 10.1016/j.automatica.2005.09.016
– volume: 62
  start-page: 1880
  issue: 4
  year: 2017
  ident: 10.1016/j.automatica.2021.110061_b19
  article-title: Sensor scheduling in variance based event triggered estimation with packet drops
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2016.2602499
– volume: 126
  year: 2019
  ident: 10.1016/j.automatica.2021.110061_b22
  article-title: Power control for multi-sensor remote state estimation over interference channel
  publication-title: Systems & Control Letters
  doi: 10.1016/j.sysconle.2019.01.007
– volume: 50
  start-page: 8945
  issue: 1
  year: 2017
  ident: 10.1016/j.automatica.2021.110061_b20
  article-title: Event-based transmission scheduling and LQG control over a packet dropping link
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2017.08.1311
– volume: 60
  start-page: 1058
  issue: 4
  year: 2012
  ident: 10.1016/j.automatica.2021.110061_b42
  article-title: Theoretical analysis of the capture probability in wireless systems with multiple packet reception capabilities
  publication-title: IEEE Transactions on Communications
  doi: 10.1109/TCOMM.2012.021712.100782
– volume: 56
  start-page: 439
  issue: 6
  year: 2007
  ident: 10.1016/j.automatica.2021.110061_b16
  article-title: Optimal LQG control across packet-dropping links
  publication-title: Systems & Control Letters
  doi: 10.1016/j.sysconle.2006.11.003
– volume: 227
  start-page: 27
  year: 2009
  ident: 10.1016/j.automatica.2021.110061_b3
  article-title: Projected equation methods for approximate solution of large linear systems
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2008.07.037
– volume: 13
  start-page: 1
  year: 2020
  ident: 10.1016/j.automatica.2021.110061_b10
  article-title: A least-squares temporal difference based method for solving resource allocation problems
  publication-title: IFAC Journal of Systems and Control
  doi: 10.1016/j.ifacsc.2020.100106
– volume: 47
  start-page: 1693
  issue: 8
  year: 2011
  ident: 10.1016/j.automatica.2021.110061_b36
  article-title: Sensor data scheduling for optimal state estimation with communication energy constraint
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.02.037
– year: 2021
  ident: 10.1016/j.automatica.2021.110061_b29
– volume: 51
  start-page: 850
  issue: 6
  year: 2003
  ident: 10.1016/j.automatica.2021.110061_b5
  article-title: The linear programming approach to approximate dynamic programming
  publication-title: Operations Research
  doi: 10.1287/opre.51.6.850.24925
– volume: 6
  start-page: 271
  year: 2022
  ident: 10.1016/j.automatica.2021.110061_b12
  article-title: Enhanced exploration least-squares methods for optimal stopping problems
  publication-title: IEEE Control System Letter
  doi: 10.1109/LCSYS.2021.3069708
– volume: 26
  issue: 4
  year: 2013
  ident: 10.1016/j.automatica.2021.110061_b39
  article-title: Event-based sensor data scheduling: Trade-off between communication rate and estimation quality
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2012.2215253
– volume: 62
  start-page: 4549
  issue: 9
  year: 2017
  ident: 10.1016/j.automatica.2021.110061_b6
  article-title: An approximate dynamic programming approach to multi-agent persistent monitoring in stochastic environments with temporal logic constraints
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2017.2678920
– volume: 75
  start-page: 260
  year: 2017
  ident: 10.1016/j.automatica.2021.110061_b17
  article-title: Optimal sensor scheduling for multiple linear dynamical systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.09.015
– volume: 91
  start-page: 1
  year: 2018
  ident: 10.1016/j.automatica.2021.110061_b13
  article-title: Random access design for wireless control systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2018.01.021
– volume: 56
  start-page: 2190
  issue: 9
  year: 2011
  ident: 10.1016/j.automatica.2021.110061_b35
  article-title: Optimal periodic sensor scheduling with limited resources
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2011.2152210
SSID ssj0004182
Score 2.4981756
Snippet In this paper, we consider a remote estimation problem where multiple dynamical systems are observed by smart sensors, which transmit their local estimates to...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 110061
SubjectTerms Approximate dynamic programming
Kalman filter
Least Squares Temporal Difference
Markov Decision Process
Sensor scheduling
Wireless sensor networks
Title Transmission scheduling for multi-process multi-sensor remote estimation via approximate dynamic programming
URI https://dx.doi.org/10.1016/j.automatica.2021.110061
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-509574
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004182
  issn: 0005-1098
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004182
  issn: 0005-1098
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004182
  issn: 0005-1098
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-2836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004182
  issn: 0005-1098
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004182
  issn: 0005-1098
  databaseCode: AKRWK
  dateStart: 19630101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIryqDzAGJqkTuKIqSpUBUQnirpZjuOgotJWpUFM_HbubPfBgFSJMY6cRHeO7zvru-8IuVQR90OVR16Qh5CgxGHmSZ9rL_LDIoH4lISGjPnUi7t99jCIBhXSXtTCIK3S7f12Tze7tRtpOGs2psMh1vjigko5JC3YGw9ltxlLsIvB9feK5sECbhXDjeJmyh2bx3K8ZDmfGGVUVCAKA-TE-3HwZ4ha1xI18aezR3YdcKQt-237pKLHB2RnTU7wkIxM4AHH4QkYhbQVwghWm1MAptQwB72prQtwVx-Qw8KtmQZ_aYp6G7aQkX4OJTVq4184omlu-9ZTx-Z6h4cekX7n7rnd9Vw3BU8Bpph7caFkxuCXixLFM19DKC-ySCFCVDLnkVaQXYSSxTJBmJgwiRRQ2SxSGcjUz5rHpDqejPUJGBBgTcHzAs-PmPIzpKhyCPSZ0oVKm6xGkoUBhXJS49jxYiQWnLI3sTK9QNMLa_oaCZYzp1ZuY4M5NwsfiV9LR0BU2GD2lXXr8n0ouH07fGmJyexVlKUASAXWOP3XW87Idoh1E4bufU6q81mpLwDNzLO6Wa51stW6f-z2fgApAvd1
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RTl6QHGQOLm4YipKlQFSqcWsVmO46Ci0lalRUz8du5st5QBqRJjHDmJ7hzfd9Z33xFyriLuM5VHXpAzSFBilnnS59qLfFYkEJ8SZsiYj-242Q3vn6PnEqnPamGQVun2frunm93ajVw5a16Nej2s8cUFlXJIWrA3XrxCVsOIJZiBXX798DzCgFvJcCO5mXJH57EkLzmdDI00KkoQsQBJ8X4c_BmjFsVETQBqbJFNhxxpzX7cNinpwQ7ZWNAT3CV9E3nAc3gERiFvhTiC5eYUkCk11EFvZAsD3NU7JLFwa6zBYZqi4IatZKQfPUmN3Pgnjmia28b11NG53uChe6TbuO3Um55rp-ApABUTLy6UzEL456JE8czXEMuLLFIIEZXMeaQVpBdMhrFMECcmoUQOqKwWqQxk6mfVfVIeDAf6AAwIuKbgeYEHSKHyM-Socoj0mdKFSqthhSQzAwrltMax5UVfzEhlr-LH9AJNL6zpKySYzxxZvY0l5lzPfCR-rR0BYWGJ2RfWrfP3oeL2Te-pJobjFzGdCsBUYI3Df73ljKw1O48t0bprPxyRdYZFFIb7fUzKk_FUnwC0mWSnZul-A90d-Qo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transmission+scheduling+for+multi-process+multi-sensor+remote+estimation+via+approximate+dynamic+programming&rft.jtitle=Automatica+%28Oxford%29&rft.au=Forootani%2C+Ali&rft.au=Iervolino%2C+Raffaele&rft.au=Tipaldi%2C+Massimo&rft.au=Dey%2C+Subhrakanti&rft.date=2022-02-01&rft.issn=0005-1098&rft.volume=136&rft.spage=110061&rft_id=info:doi/10.1016%2Fj.automatica.2021.110061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_automatica_2021_110061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon