Deep learning-based series AC arc detection algorithms

Various studies on arc detection methods are described. Series AC arc is detected based on the characteristics extracted from arc voltage, frequency, and time domain of the current. Methods of arc detection using artificial intelligence have been studied previously. In the present study, the perform...

Full description

Saved in:
Bibliographic Details
Published inJOURNAL OF POWER ELECTRONICS Vol. 21; no. 10; pp. 1621 - 1631
Main Authors Park, Chang-Ju, Dang, Hoang-Long, Kwak, Sangshin, Choi, Seungdeog
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.10.2021
전력전자학회
Subjects
Online AccessGet full text
ISSN1598-2092
2093-4718
DOI10.1007/s43236-021-00299-5

Cover

Abstract Various studies on arc detection methods are described. Series AC arc is detected based on the characteristics extracted from arc voltage, frequency, and time domain of the current. Methods of arc detection using artificial intelligence have been studied previously. In the present study, the performance of multiple methods is analyzed by comparing different input parameters and artificial neural networks. In addition to the input parameters presented in the literature, the performance is compared and analyzed using the following parameters: zero-crossing period, frequency average, instantaneous frequency, entropy, combination of fast Fourier transform (FFT) and maximum slip difference, and combination of FFT and frequency average. These parameters and different neural networks are studied in the bounded and unbounded case, and the performance is compared. For different combinations of neural networks and input parameters, another research question is to identify the input parameters to be used if the number of training data is limited. Moreover, this study investigates the change in detection rate depending on the number of training samples. As a result, the minimum dataset size required to obtain the final detection rate is identified.
AbstractList Various studies on arc detection methods are described. Series AC arc is detected based on the characteristics extracted from arc voltage, frequency, and time domain of the current. Methods of arc detection using artificial intelligence have been studied previously. In the present study, the performance of multiple methods is analyzed by comparing different input parameters and artificial neural networks. In addition to the input parameters presented in the literature, the performance is compared and analyzed using the following parameters: zero-crossing period, frequency average, instantaneous frequency, entropy, combination of fast Fourier transform (FFT) and maximum slip difference, and combination of FFT and frequency average. These parameters and different neural networks are studied in the bounded and unbounded case, and the performance is compared. For different combinations of neural networks and input parameters, another research question is to identify the input parameters to be used if the number of training data is limited. Moreover, this study investigates the change in detection rate depending on the number of training samples. As a result, the minimum dataset size required to obtain the final detection rate is identified.
Various studies on arc detection methods are described. Series AC arc is detected based on the characteristics extracted from arc voltage, frequency, and time domain of the current. Methods of arc detection using artificial intelligence have been studied previously. In the present study, the performance of multiple methods is analyzed by comparing different input parameters and artificial neural networks. In addition to the input parameters presented in the literature, the performance is compared and analyzed using the following parameters: zero-crossing period, frequency average, instantaneous frequency, entropy, combination of fast Fourier transform (FFT) and maximum slip difference, and combination of FFT and frequency average. These parameters and different neural networks are studied in the bounded and unbounded case, and the performance is compared. For different combinations of neural networks and input parameters, another research question is to identify the input parameters to be used if the number of training data is limited. Moreover, this study investigates the change in detection rate depending on the number of training samples. As a result, the minimum dataset size required to obtain the final detection rate is identified. KCI Citation Count: 6
Author Kwak, Sangshin
Dang, Hoang-Long
Choi, Seungdeog
Park, Chang-Ju
Author_xml – sequence: 1
  givenname: Chang-Ju
  surname: Park
  fullname: Park, Chang-Ju
  organization: School of Electrical and Electronics Engineering, Chung-Ang University
– sequence: 2
  givenname: Hoang-Long
  surname: Dang
  fullname: Dang, Hoang-Long
  organization: School of Electrical and Electronics Engineering, Chung-Ang University
– sequence: 3
  givenname: Sangshin
  surname: Kwak
  fullname: Kwak, Sangshin
  email: sskwak@cau.ac.kr
  organization: School of Electrical and Electronics Engineering, Chung-Ang University
– sequence: 4
  givenname: Seungdeog
  surname: Choi
  fullname: Choi, Seungdeog
  organization: Department of Electrical and Computer Engineering, Mississippi State University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002766114$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kD1PwzAURS1UJErpH2DKwsBgeLbjxB6r8k2lSqi75TgvxTR1kB0G_j0pYWLodKWne-6TzjmZhC4gIZcMbhhAeZtywUVBgTMKwLWm8oRMOWhB85KpCZkyqRUdDvyMzFPyFeTAuVKgpqS4Q_zMWrQx-LCllU1YZwmjx5QtlpmNLquxR9f7LmS23XbR9-_7dEFOG9smnP_ljGwe7jfLJ7paPz4vFyvqhJQ9lYWy3JUyR7QKStQ6BytEXVZOVVgJZNpJ2ejC5bUqJdTQFMyBqnVVcleIGbkeZ0NszM5501n_m9vO7KJZvG2ejVYlB6WG7tXY3fnUexPq1JqXxeuaD14EVwWwvGBw2ORjz8UupYiN-Yx-b-O3YWAOPs3o0wyc-fVp5ACpf5DzvT1I6aP17XFUjGga_oQtRvPRfcUwWDtG_QBE-ogQ
CitedBy_id crossref_primary_10_1007_s42835_021_00976_2
crossref_primary_10_1016_j_epsr_2023_109459
crossref_primary_10_1109_ACCESS_2022_3192517
crossref_primary_10_1007_s43236_022_00575_y
crossref_primary_10_3390_electronics12122572
crossref_primary_10_1007_s42835_022_01273_2
crossref_primary_10_1109_ACCESS_2022_3157298
crossref_primary_10_1109_TIE_2022_3222632
crossref_primary_10_1109_TIM_2023_3267365
crossref_primary_10_3390_machines10121174
crossref_primary_10_1038_s41598_025_88109_x
crossref_primary_10_1007_s42835_023_01426_x
crossref_primary_10_1109_ACCESS_2021_3135526
crossref_primary_10_1007_s43236_022_00415_z
Cites_doi 10.1109/ACCESS.2020.3027002
10.1109/TPWRD.2006.887098
10.1109/TPWRD.2002.803793
10.1109/TIM.2018.2880939
10.1109/TSG.2016.2642988
10.1109/ACCESS.2019.2905358
10.1109/28.887231
10.1161/01.CIR.101.23.e215
10.1109/61.847225
10.1109/TPEL.2020.2969561
10.1109/TIA.2019.2923764
10.1109/TII.2015.2486379
10.1109/61.736683
10.1109/TIE.2017.2758745
10.1109/TIA.2019.2894992
10.1109/61.400864
10.1109/TII.2018.2885945
10.1109/TPWRD.2004.834891
10.1109/TIM.2016.2627248
10.1109/TIA.2016.2515991
10.1109/TPWRS.2006.876646
10.1109/ACCESS.2019.2927635
10.1109/TIM.2018.2826878
10.1109/ELECSYM.2019.8901671
10.1109/TII.2021.3069849
10.1109/ISMSIT.2018.8567071
10.1109/HPCA.2019.00028
10.1109/HOLM.2017.8088107
ContentType Journal Article
Copyright The Korean Institute of Power Electronics 2021
Copyright_xml – notice: The Korean Institute of Power Electronics 2021
DBID AAYXX
CITATION
JDI
ACYCR
DEWEY 621.381
DOI 10.1007/s43236-021-00299-5
DatabaseName CrossRef
[Open Access] KoreaScience
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Deep learning-based series AC arc detection algorithms
EISSN 2093-4718
EndPage 1631
ExternalDocumentID oai_kci_go_kr_ARTI_9872088
JAKO202132860146106
10_1007_s43236_021_00299_5
GroupedDBID .UV
0R~
406
5GY
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
AAYYP
ABAKF
ABECU
ABMQK
ABTEG
ABTKH
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADTPH
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AGMZJ
AGQEE
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
BGNMA
DBRKI
DPUIP
EBLON
EBS
FIGPU
FNLPD
GW5
IKXTQ
IWAJR
JDI
JZLTJ
LLZTM
M4Y
MZR
NPVJJ
NQJWS
NU0
OK1
P2P
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
TDB
UOJIU
UTJUX
ZMTXR
ZZE
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
AAUYE
ADKNI
AFQWF
AMYLF
KOV
ACYCR
ID FETCH-LOGICAL-c355t-568a2c754eea807e9940a33d7bc8beb3e19c55f96c4d8750d0f61c08d9b72c63
ISSN 1598-2092
IngestDate Tue Nov 21 21:45:37 EST 2023
Thu Nov 16 16:01:06 EST 2023
Wed Oct 01 03:55:29 EDT 2025
Thu Apr 24 23:06:11 EDT 2025
Fri Feb 21 02:48:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Arc detection
Deep learning
Series arc
Neural network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c355t-568a2c754eea807e9940a33d7bc8beb3e19c55f96c4d8750d0f61c08d9b72c63
Notes KISTI1.1003/JNL.JAKO202132860146106
https://link.springer.com/article/10.1007/s43236-021-00299-5
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202132860146106&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9872088
kisti_ndsl_JAKO202132860146106
crossref_primary_10_1007_s43236_021_00299_5
crossref_citationtrail_10_1007_s43236_021_00299_5
springer_journals_10_1007_s43236_021_00299_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle JOURNAL OF POWER ELECTRONICS
PublicationTitleAbbrev J. Power Electron
PublicationTitleAlternate Journal of power electronics
PublicationYear 2021
Publisher Springer Singapore
전력전자학회
Publisher_xml – name: Springer Singapore
– name: 전력전자학회
References Kim, Kim, Ko, Byun, Aggarwal, Johns (CR5) 2002; 17
Russell, Benner (CR11) 1995; 10
CR19
CR17
CR16
Qu, Wang, Liu (CR14) 2019; 68
Saleh, Rahman (CR4) 2005; 20
Radojevic, Terzija, Djuric (CR7) 2000; 15
Le, Yao, Miller, Tsao (CR24) 2020; 35
Lim, Runolfsson (CR6) 2007; 22
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (CR15) 2000; 101
Borges, Fernandes, Silva, Silva (CR28) 2016; 12
Gu, Lai, Wang, Huang, Yang (CR27) 2019; 55
Satpathi, Yeap, Ukil, Geddada (CR26) 2018; 65
Li, Liu, Li, Guo (CR22) 2020; 8
Djuric, Radojevic, Terzija (CR9) 1999; 14
Lee, Park, Shin, Radojevie (CR10) 2006; 21
Jiang (CR21) 2019; 7
CR29
CR25
Saleh, Aljankawey, Errouissi, Rahman (CR3) 2016; 52
Saleh, Valdes, Mardegan, Alsayid (CR12) 2019; 55
Wang, Zhang, Zhang, Zhang (CR18) 2019; 15
Wang, Geng, Dong (CR8) 2018; 9
Bao, Jiang, Gao (CR1) 2019; 7
CR20
Wang, Zhang, Zhang (CR23) 2018; 67
Artale, Cataliotti, Cosentino, Di Cara, Nuccio, Tinè (CR2) 2017; 66
Charytoniuk, Lee, Chen, Cultrera, Maffetone (CR13) 2000; 36
Y Wang (299_CR18) 2019; 15
N Qu (299_CR14) 2019; 68
C-H Kim (299_CR5) 2002; 17
K Satpathi (299_CR26) 2018; 65
ZM Radojevic (299_CR7) 2000; 15
FAS Borges (299_CR28) 2016; 12
Y Wang (299_CR23) 2018; 67
AL Goldberger (299_CR15) 2000; 101
SA Saleh (299_CR4) 2005; 20
W Li (299_CR22) 2020; 8
MB Djuric (299_CR9) 1999; 14
299_CR29
BD Russell (299_CR11) 1995; 10
G Artale (299_CR2) 2017; 66
299_CR25
299_CR20
J Jiang (299_CR21) 2019; 7
V Le (299_CR24) 2020; 35
G Bao (299_CR1) 2019; 7
J Gu (299_CR27) 2019; 55
J Lim (299_CR6) 2007; 22
B Wang (299_CR8) 2018; 9
299_CR19
SA Saleh (299_CR3) 2016; 52
CJ Lee (299_CR10) 2006; 21
SA Saleh (299_CR12) 2019; 55
299_CR16
299_CR17
W Charytoniuk (299_CR13) 2000; 36
References_xml – volume: 8
  start-page: 177815
  year: 2020
  end-page: 177822
  ident: CR22
  article-title: Series arc fault diagnosis and line selection method based on recurrent neural network
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.3027002
– volume: 22
  start-page: 95
  issue: 1
  year: 2007
  end-page: 100
  ident: CR6
  article-title: Improvement of the voltage difference method to detect arcing faults within unfused grounded-Wye 22.9-kV shunt capacitor bank
  publication-title: IEEE Trans. Power Delivery.
  doi: 10.1109/TPWRD.2006.887098
– ident: CR16
– volume: 17
  start-page: 921
  issue: 4
  year: 2002
  end-page: 929
  ident: CR5
  article-title: A novel fault-detection technique of high-impedance arcing faults in transmission lines using the wavelet transform
  publication-title: IEEE Trans. Power Delivery
  doi: 10.1109/TPWRD.2002.803793
– volume: 68
  start-page: 3785
  issue: 10
  year: 2019
  end-page: 3792
  ident: CR14
  article-title: An arc fault detection method based on current amplitude spectrum and sparse representation
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2880939
– ident: CR29
– volume: 9
  start-page: 3783
  issue: 4
  year: 2018
  end-page: 3791
  ident: CR8
  article-title: High-impedance fault detection based on nonlinear voltage-current characteristic profile identification
  publication-title: IEEE Trans. Smart Grid.
  doi: 10.1109/TSG.2016.2642988
– volume: 7
  start-page: 47221
  year: 2019
  end-page: 47229
  ident: CR21
  article-title: Series arc detection and complex load recognition based on principal component analysis and support vector machine
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2905358
– volume: 36
  start-page: 1756
  issue: 6
  year: 2000
  end-page: 1761
  ident: CR13
  article-title: Arcing fault detection in underground distribution networks-feasibility study
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.887231
– volume: 101
  start-page: 215
  issue: 23
  year: 2000
  end-page: 220
  ident: CR15
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 15
  start-page: 31
  issue: 1
  year: 2000
  end-page: 37
  ident: CR7
  article-title: Numerical algorithm for overhead lines arcing faults detection and distance and directional protection
  publication-title: IEEE Trans. Power Delivery
  doi: 10.1109/61.847225
– ident: CR25
– volume: 35
  start-page: 7826
  issue: 8
  year: 2020
  end-page: 7839
  ident: CR24
  article-title: Series DC arc fault detection based on ensemble machine learning
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2020.2969561
– volume: 55
  start-page: 4536
  issue: 5
  year: 2019
  end-page: 4550
  ident: CR12
  article-title: The state-of-the-art methods for digital detection and identification of arcing current faults
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2019.2923764
– volume: 12
  start-page: 824
  issue: 2
  year: 2016
  end-page: 833
  ident: CR28
  article-title: Feature extraction and power quality disturbances classification using smart meters signals
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2015.2486379
– volume: 14
  start-page: 60
  issue: 1
  year: 1999
  end-page: 67
  ident: CR9
  article-title: Time-domain solution of fault distance estimation and arcing faults detection on overhead lines
  publication-title: IEEE Trans. Power Delivery
  doi: 10.1109/61.736683
– ident: CR19
– volume: 65
  start-page: 4080
  issue: 5
  year: 2018
  end-page: 4091
  ident: CR26
  article-title: Short-time Fourier transform based transient analysis of VSC interfaced point-to-point DC system
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2017.2758745
– volume: 55
  start-page: 2464
  issue: 3
  year: 2019
  end-page: 2471
  ident: CR27
  article-title: Design of a DC series arc fault detector for photovoltaic system protection
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2019.2894992
– volume: 10
  start-page: 676
  issue: 2
  year: 1995
  end-page: 683
  ident: CR11
  article-title: Arcing fault detection for distribution feeders: security assessment in long term field trials
  publication-title: IEEE Trans. Power Delivery
  doi: 10.1109/61.400864
– volume: 15
  start-page: 6210
  issue: 12
  year: 2019
  end-page: 6219
  ident: CR18
  article-title: Series AC arc fault detection method based on hybrid time and frequency analysis and fully connected neural network
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2018.2885945
– volume: 20
  start-page: 1273
  issue: 2
  year: 2005
  end-page: 1282
  ident: CR4
  article-title: Modeling and protection of a three-phase power transformer using wavelet packet transform
  publication-title: IEEE Trans. Power Delivery
  doi: 10.1109/TPWRD.2004.834891
– ident: CR17
– volume: 66
  start-page: 888
  issue: 5
  year: 2017
  end-page: 896
  ident: CR2
  article-title: Arc Fault detection method based on CZT low-frequency harmonic current analysis
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2016.2627248
– volume: 52
  start-page: 2110
  issue: 3
  year: 2016
  end-page: 2121
  ident: CR3
  article-title: Phase-based digital protection for arc flash faults
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2016.2515991
– volume: 21
  start-page: 1460
  issue: 3
  year: 2006
  end-page: 1462
  ident: CR10
  article-title: A new two-terminal numerical algorithm for fault location, distance protection, and arcing fault recognition
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2006.876646
– volume: 7
  start-page: 92161
  year: 2019
  end-page: 92170
  ident: CR1
  article-title: Novel series arc fault detector using high-frequency coupling analysis and multi-indicator algorithm
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2927635
– ident: CR20
– volume: 67
  start-page: 2526
  issue: 11
  year: 2018
  end-page: 2537
  ident: CR23
  article-title: A new methodology for identifying arc fault by sparse representation and neural network
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2826878
– volume: 66
  start-page: 888
  issue: 5
  year: 2017
  ident: 299_CR2
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2016.2627248
– volume: 20
  start-page: 1273
  issue: 2
  year: 2005
  ident: 299_CR4
  publication-title: IEEE Trans. Power Delivery
  doi: 10.1109/TPWRD.2004.834891
– volume: 10
  start-page: 676
  issue: 2
  year: 1995
  ident: 299_CR11
  publication-title: IEEE Trans. Power Delivery
  doi: 10.1109/61.400864
– volume: 55
  start-page: 2464
  issue: 3
  year: 2019
  ident: 299_CR27
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2019.2894992
– volume: 67
  start-page: 2526
  issue: 11
  year: 2018
  ident: 299_CR23
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2826878
– volume: 8
  start-page: 177815
  year: 2020
  ident: 299_CR22
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.3027002
– volume: 65
  start-page: 4080
  issue: 5
  year: 2018
  ident: 299_CR26
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2017.2758745
– ident: 299_CR20
  doi: 10.1109/ELECSYM.2019.8901671
– volume: 101
  start-page: 215
  issue: 23
  year: 2000
  ident: 299_CR15
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 35
  start-page: 7826
  issue: 8
  year: 2020
  ident: 299_CR24
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2020.2969561
– volume: 22
  start-page: 95
  issue: 1
  year: 2007
  ident: 299_CR6
  publication-title: IEEE Trans. Power Delivery.
  doi: 10.1109/TPWRD.2006.887098
– volume: 12
  start-page: 824
  issue: 2
  year: 2016
  ident: 299_CR28
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2015.2486379
– volume: 15
  start-page: 6210
  issue: 12
  year: 2019
  ident: 299_CR18
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2018.2885945
– volume: 9
  start-page: 3783
  issue: 4
  year: 2018
  ident: 299_CR8
  publication-title: IEEE Trans. Smart Grid.
  doi: 10.1109/TSG.2016.2642988
– volume: 7
  start-page: 92161
  year: 2019
  ident: 299_CR1
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2927635
– volume: 55
  start-page: 4536
  issue: 5
  year: 2019
  ident: 299_CR12
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2019.2923764
– volume: 68
  start-page: 3785
  issue: 10
  year: 2019
  ident: 299_CR14
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2880939
– volume: 52
  start-page: 2110
  issue: 3
  year: 2016
  ident: 299_CR3
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2016.2515991
– volume: 14
  start-page: 60
  issue: 1
  year: 1999
  ident: 299_CR9
  publication-title: IEEE Trans. Power Delivery
  doi: 10.1109/61.736683
– ident: 299_CR19
  doi: 10.1109/TII.2021.3069849
– ident: 299_CR17
  doi: 10.1109/ISMSIT.2018.8567071
– ident: 299_CR16
  doi: 10.1109/HPCA.2019.00028
– ident: 299_CR29
– volume: 21
  start-page: 1460
  issue: 3
  year: 2006
  ident: 299_CR10
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2006.876646
– ident: 299_CR25
  doi: 10.1109/HOLM.2017.8088107
– volume: 7
  start-page: 47221
  year: 2019
  ident: 299_CR21
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2905358
– volume: 36
  start-page: 1756
  issue: 6
  year: 2000
  ident: 299_CR13
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.887231
– volume: 17
  start-page: 921
  issue: 4
  year: 2002
  ident: 299_CR5
  publication-title: IEEE Trans. Power Delivery
  doi: 10.1109/TPWRD.2002.803793
– volume: 15
  start-page: 31
  issue: 1
  year: 2000
  ident: 299_CR7
  publication-title: IEEE Trans. Power Delivery
  doi: 10.1109/61.847225
SSID ssib040228808
ssj0003009991
ssib036278191
ssib001106542
Score 2.318758
Snippet Various studies on arc detection methods are described. Series AC arc is detected based on the characteristics extracted from arc voltage, frequency, and time...
SourceID nrf
kisti
crossref
springer
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1621
SubjectTerms Electrical Machines and Networks
Engineering
Original Article
Power Electronics
전기공학
Title Deep learning-based series AC arc detection algorithms
URI https://link.springer.com/article/10.1007/s43236-021-00299-5
http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202132860146106&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002766114
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Power Electronics, 2021, 21(10), , pp.1621-1631
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2093-4718
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib040228808
  issn: 1598-2092
  databaseCode: AFBBN
  dateStart: 20200101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1dj5NAcFPbF30wfsb6cSHGN-QCLCzw2Ku91Hq25q7Ge9vAMvRqG7i0NEZ_vbPLQrlUL54vULZDt-wM87XzQcg7J6CZHUTMojQLLM_xYitmQWyFThBQLxJhqPqnfJ6y8Vdvculfdjo_W1FLuzI5Fr_-mFfyP1jFMcSrzJK9A2abH8UB_Iz4xSNiGI__hOMPANd134eFJQVSasqJYWsOhqbMwk-hBN0MfL0oNsvySlcnP4z9-TL7Njo3R2ej4fx8Nq1bG-rEaL0zj7NMdnvndsUnxoUcPyu0DJTc-0e8qtzN-UK6uPYxBIUKHrgAZDEpFIu2z8F1mui1mz5H80K27UY7AdocNJJIqhrcHYMaw0tqSSnYZrtVYnRNXnaLiTpMfwf6spITB8y-iu_YetSlMpDaseQWY2T5e9HWBBw2xZkVMEdgroC5f4_0XBQIdpf0BqcnJ9OaGXmyMFCoCx99V6ajUqZV_V39iDoJS6ViHvyLG4pOT1oDS9Rf8k12sOeuVJn5I_JQ2yDGoCKox6QD-RPyoFWZ8ilhkrSMm6RlVKRlDIYGkpbRkJaxJ61nZH46mg_Hlm6xYQlUNEvLZ2HsisD3AOLQDiCKPDumNA0SESaQUHAi4ftZxISXomVrp3bGHGGHaZQErmD0OenmRQ4viJH4Nsg9b0hd6lGAJEMRTB0XRBZnCYM-cerl4EKXn5ddUNb877jpE7O557oqvnIr9JFaZZ6n2zWfDD7NJOlSN2SyQJJjsz55i8vPV2LJZVF1eV4UfLXhaDp-5FEYuChy--R9jR2uX_XtLZO-vBv4K3J__z69Jt1ys4M3qNWWyZGmv98VCZEu
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+series+AC+arc+detection+algorithms&rft.jtitle=JOURNAL+OF+POWER+ELECTRONICS&rft.au=Park%2C+Chang-Ju&rft.au=Dang%2C+Hoang-Long&rft.au=Kwak%2C+Sangshin&rft.au=Choi%2C+Seungdeog&rft.date=2021-10-01&rft.pub=Springer+Singapore&rft.issn=1598-2092&rft.eissn=2093-4718&rft.volume=21&rft.issue=10&rft.spage=1621&rft.epage=1631&rft_id=info:doi/10.1007%2Fs43236-021-00299-5&rft.externalDocID=10_1007_s43236_021_00299_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-2092&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-2092&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-2092&client=summon