Deep learning-based series AC arc detection algorithms
Various studies on arc detection methods are described. Series AC arc is detected based on the characteristics extracted from arc voltage, frequency, and time domain of the current. Methods of arc detection using artificial intelligence have been studied previously. In the present study, the perform...
        Saved in:
      
    
          | Published in | JOURNAL OF POWER ELECTRONICS Vol. 21; no. 10; pp. 1621 - 1631 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Singapore
          Springer Singapore
    
        01.10.2021
     전력전자학회  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1598-2092 2093-4718  | 
| DOI | 10.1007/s43236-021-00299-5 | 
Cover
| Abstract | Various studies on arc detection methods are described. Series AC arc is detected based on the characteristics extracted from arc voltage, frequency, and time domain of the current. Methods of arc detection using artificial intelligence have been studied previously. In the present study, the performance of multiple methods is analyzed by comparing different input parameters and artificial neural networks. In addition to the input parameters presented in the literature, the performance is compared and analyzed using the following parameters: zero-crossing period, frequency average, instantaneous frequency, entropy, combination of fast Fourier transform (FFT) and maximum slip difference, and combination of FFT and frequency average. These parameters and different neural networks are studied in the bounded and unbounded case, and the performance is compared. For different combinations of neural networks and input parameters, another research question is to identify the input parameters to be used if the number of training data is limited. Moreover, this study investigates the change in detection rate depending on the number of training samples. As a result, the minimum dataset size required to obtain the final detection rate is identified. | 
    
|---|---|
| AbstractList | Various studies on arc detection methods are described. Series AC arc is detected based on the characteristics extracted from arc voltage, frequency, and time domain of the current. Methods of arc detection using artificial intelligence have been studied previously. In the present study, the performance of multiple methods is analyzed by comparing different input parameters and artificial neural networks. In addition to the input parameters presented in the literature, the performance is compared and analyzed using the following parameters: zero-crossing period, frequency average, instantaneous frequency, entropy, combination of fast Fourier transform (FFT) and maximum slip difference, and combination of FFT and frequency average. These parameters and different neural networks are studied in the bounded and unbounded case, and the performance is compared. For different combinations of neural networks and input parameters, another research question is to identify the input parameters to be used if the number of training data is limited. Moreover, this study investigates the change in detection rate depending on the number of training samples. As a result, the minimum dataset size required to obtain the final detection rate is identified. Various studies on arc detection methods are described. Series AC arc is detected based on the characteristics extracted from arc voltage, frequency, and time domain of the current. Methods of arc detection using artificial intelligence have been studied previously. In the present study, the performance of multiple methods is analyzed by comparing different input parameters and artificial neural networks. In addition to the input parameters presented in the literature, the performance is compared and analyzed using the following parameters: zero-crossing period, frequency average, instantaneous frequency, entropy, combination of fast Fourier transform (FFT) and maximum slip difference, and combination of FFT and frequency average. These parameters and different neural networks are studied in the bounded and unbounded case, and the performance is compared. For different combinations of neural networks and input parameters, another research question is to identify the input parameters to be used if the number of training data is limited. Moreover, this study investigates the change in detection rate depending on the number of training samples. As a result, the minimum dataset size required to obtain the final detection rate is identified. KCI Citation Count: 6  | 
    
| Author | Kwak, Sangshin Dang, Hoang-Long Choi, Seungdeog Park, Chang-Ju  | 
    
| Author_xml | – sequence: 1 givenname: Chang-Ju surname: Park fullname: Park, Chang-Ju organization: School of Electrical and Electronics Engineering, Chung-Ang University – sequence: 2 givenname: Hoang-Long surname: Dang fullname: Dang, Hoang-Long organization: School of Electrical and Electronics Engineering, Chung-Ang University – sequence: 3 givenname: Sangshin surname: Kwak fullname: Kwak, Sangshin email: sskwak@cau.ac.kr organization: School of Electrical and Electronics Engineering, Chung-Ang University – sequence: 4 givenname: Seungdeog surname: Choi fullname: Choi, Seungdeog organization: Department of Electrical and Computer Engineering, Mississippi State University  | 
    
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002766114$$DAccess content in National Research Foundation of Korea (NRF) | 
    
| BookMark | eNp9kD1PwzAURS1UJErpH2DKwsBgeLbjxB6r8k2lSqi75TgvxTR1kB0G_j0pYWLodKWne-6TzjmZhC4gIZcMbhhAeZtywUVBgTMKwLWm8oRMOWhB85KpCZkyqRUdDvyMzFPyFeTAuVKgpqS4Q_zMWrQx-LCllU1YZwmjx5QtlpmNLquxR9f7LmS23XbR9-_7dEFOG9smnP_ljGwe7jfLJ7paPz4vFyvqhJQ9lYWy3JUyR7QKStQ6BytEXVZOVVgJZNpJ2ejC5bUqJdTQFMyBqnVVcleIGbkeZ0NszM5501n_m9vO7KJZvG2ejVYlB6WG7tXY3fnUexPq1JqXxeuaD14EVwWwvGBw2ORjz8UupYiN-Yx-b-O3YWAOPs3o0wyc-fVp5ACpf5DzvT1I6aP17XFUjGga_oQtRvPRfcUwWDtG_QBE-ogQ | 
    
| CitedBy_id | crossref_primary_10_1007_s42835_021_00976_2 crossref_primary_10_1016_j_epsr_2023_109459 crossref_primary_10_1109_ACCESS_2022_3192517 crossref_primary_10_1007_s43236_022_00575_y crossref_primary_10_3390_electronics12122572 crossref_primary_10_1007_s42835_022_01273_2 crossref_primary_10_1109_ACCESS_2022_3157298 crossref_primary_10_1109_TIE_2022_3222632 crossref_primary_10_1109_TIM_2023_3267365 crossref_primary_10_3390_machines10121174 crossref_primary_10_1038_s41598_025_88109_x crossref_primary_10_1007_s42835_023_01426_x crossref_primary_10_1109_ACCESS_2021_3135526 crossref_primary_10_1007_s43236_022_00415_z  | 
    
| Cites_doi | 10.1109/ACCESS.2020.3027002 10.1109/TPWRD.2006.887098 10.1109/TPWRD.2002.803793 10.1109/TIM.2018.2880939 10.1109/TSG.2016.2642988 10.1109/ACCESS.2019.2905358 10.1109/28.887231 10.1161/01.CIR.101.23.e215 10.1109/61.847225 10.1109/TPEL.2020.2969561 10.1109/TIA.2019.2923764 10.1109/TII.2015.2486379 10.1109/61.736683 10.1109/TIE.2017.2758745 10.1109/TIA.2019.2894992 10.1109/61.400864 10.1109/TII.2018.2885945 10.1109/TPWRD.2004.834891 10.1109/TIM.2016.2627248 10.1109/TIA.2016.2515991 10.1109/TPWRS.2006.876646 10.1109/ACCESS.2019.2927635 10.1109/TIM.2018.2826878 10.1109/ELECSYM.2019.8901671 10.1109/TII.2021.3069849 10.1109/ISMSIT.2018.8567071 10.1109/HPCA.2019.00028 10.1109/HOLM.2017.8088107  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Korean Institute of Power Electronics 2021 | 
    
| Copyright_xml | – notice: The Korean Institute of Power Electronics 2021 | 
    
| DBID | AAYXX CITATION JDI ACYCR  | 
    
| DEWEY | 621.381 | 
    
| DOI | 10.1007/s43236-021-00299-5 | 
    
| DatabaseName | CrossRef [Open Access] KoreaScience Korean Citation Index  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| DocumentTitleAlternate | Deep learning-based series AC arc detection algorithms | 
    
| EISSN | 2093-4718 | 
    
| EndPage | 1631 | 
    
| ExternalDocumentID | oai_kci_go_kr_ARTI_9872088 JAKO202132860146106 10_1007_s43236_021_00299_5  | 
    
| GroupedDBID | .UV 0R~ 406 5GY 9ZL AACDK AAHNG AAJBT AASML AATNV AAYYP ABAKF ABECU ABMQK ABTEG ABTKH ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADTPH ADYFF AEFQL AEMSY AENEX AESKC AGMZJ AGQEE AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW BGNMA DBRKI DPUIP EBLON EBS FIGPU FNLPD GW5 IKXTQ IWAJR JDI JZLTJ LLZTM M4Y MZR NPVJJ NQJWS NU0 OK1 P2P PT4 ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW TDB UOJIU UTJUX ZMTXR ZZE AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION AAUYE ADKNI AFQWF AMYLF KOV ACYCR  | 
    
| ID | FETCH-LOGICAL-c355t-568a2c754eea807e9940a33d7bc8beb3e19c55f96c4d8750d0f61c08d9b72c63 | 
    
| ISSN | 1598-2092 | 
    
| IngestDate | Tue Nov 21 21:45:37 EST 2023 Thu Nov 16 16:01:06 EST 2023 Wed Oct 01 03:55:29 EDT 2025 Thu Apr 24 23:06:11 EDT 2025 Fri Feb 21 02:48:32 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Keywords | Arc detection Deep learning Series arc Neural network  | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c355t-568a2c754eea807e9940a33d7bc8beb3e19c55f96c4d8750d0f61c08d9b72c63 | 
    
| Notes | KISTI1.1003/JNL.JAKO202132860146106 https://link.springer.com/article/10.1007/s43236-021-00299-5  | 
    
| OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202132860146106&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9872088 kisti_ndsl_JAKO202132860146106 crossref_primary_10_1007_s43236_021_00299_5 crossref_citationtrail_10_1007_s43236_021_00299_5 springer_journals_10_1007_s43236_021_00299_5  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-10-01 | 
    
| PublicationDateYYYYMMDD | 2021-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Singapore | 
    
| PublicationPlace_xml | – name: Singapore | 
    
| PublicationTitle | JOURNAL OF POWER ELECTRONICS | 
    
| PublicationTitleAbbrev | J. Power Electron | 
    
| PublicationTitleAlternate | Journal of power electronics | 
    
| PublicationYear | 2021 | 
    
| Publisher | Springer Singapore 전력전자학회  | 
    
| Publisher_xml | – name: Springer Singapore – name: 전력전자학회  | 
    
| References | Kim, Kim, Ko, Byun, Aggarwal, Johns (CR5) 2002; 17 Russell, Benner (CR11) 1995; 10 CR19 CR17 CR16 Qu, Wang, Liu (CR14) 2019; 68 Saleh, Rahman (CR4) 2005; 20 Radojevic, Terzija, Djuric (CR7) 2000; 15 Le, Yao, Miller, Tsao (CR24) 2020; 35 Lim, Runolfsson (CR6) 2007; 22 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (CR15) 2000; 101 Borges, Fernandes, Silva, Silva (CR28) 2016; 12 Gu, Lai, Wang, Huang, Yang (CR27) 2019; 55 Satpathi, Yeap, Ukil, Geddada (CR26) 2018; 65 Li, Liu, Li, Guo (CR22) 2020; 8 Djuric, Radojevic, Terzija (CR9) 1999; 14 Lee, Park, Shin, Radojevie (CR10) 2006; 21 Jiang (CR21) 2019; 7 CR29 CR25 Saleh, Aljankawey, Errouissi, Rahman (CR3) 2016; 52 Saleh, Valdes, Mardegan, Alsayid (CR12) 2019; 55 Wang, Zhang, Zhang, Zhang (CR18) 2019; 15 Wang, Geng, Dong (CR8) 2018; 9 Bao, Jiang, Gao (CR1) 2019; 7 CR20 Wang, Zhang, Zhang (CR23) 2018; 67 Artale, Cataliotti, Cosentino, Di Cara, Nuccio, Tinè (CR2) 2017; 66 Charytoniuk, Lee, Chen, Cultrera, Maffetone (CR13) 2000; 36 Y Wang (299_CR18) 2019; 15 N Qu (299_CR14) 2019; 68 C-H Kim (299_CR5) 2002; 17 K Satpathi (299_CR26) 2018; 65 ZM Radojevic (299_CR7) 2000; 15 FAS Borges (299_CR28) 2016; 12 Y Wang (299_CR23) 2018; 67 AL Goldberger (299_CR15) 2000; 101 SA Saleh (299_CR4) 2005; 20 W Li (299_CR22) 2020; 8 MB Djuric (299_CR9) 1999; 14 299_CR29 BD Russell (299_CR11) 1995; 10 G Artale (299_CR2) 2017; 66 299_CR25 299_CR20 J Jiang (299_CR21) 2019; 7 V Le (299_CR24) 2020; 35 G Bao (299_CR1) 2019; 7 J Gu (299_CR27) 2019; 55 J Lim (299_CR6) 2007; 22 B Wang (299_CR8) 2018; 9 299_CR19 SA Saleh (299_CR3) 2016; 52 CJ Lee (299_CR10) 2006; 21 SA Saleh (299_CR12) 2019; 55 299_CR16 299_CR17 W Charytoniuk (299_CR13) 2000; 36  | 
    
| References_xml | – volume: 8 start-page: 177815 year: 2020 end-page: 177822 ident: CR22 article-title: Series arc fault diagnosis and line selection method based on recurrent neural network publication-title: IEEE Access. doi: 10.1109/ACCESS.2020.3027002 – volume: 22 start-page: 95 issue: 1 year: 2007 end-page: 100 ident: CR6 article-title: Improvement of the voltage difference method to detect arcing faults within unfused grounded-Wye 22.9-kV shunt capacitor bank publication-title: IEEE Trans. Power Delivery. doi: 10.1109/TPWRD.2006.887098 – ident: CR16 – volume: 17 start-page: 921 issue: 4 year: 2002 end-page: 929 ident: CR5 article-title: A novel fault-detection technique of high-impedance arcing faults in transmission lines using the wavelet transform publication-title: IEEE Trans. Power Delivery doi: 10.1109/TPWRD.2002.803793 – volume: 68 start-page: 3785 issue: 10 year: 2019 end-page: 3792 ident: CR14 article-title: An arc fault detection method based on current amplitude spectrum and sparse representation publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2880939 – ident: CR29 – volume: 9 start-page: 3783 issue: 4 year: 2018 end-page: 3791 ident: CR8 article-title: High-impedance fault detection based on nonlinear voltage-current characteristic profile identification publication-title: IEEE Trans. Smart Grid. doi: 10.1109/TSG.2016.2642988 – volume: 7 start-page: 47221 year: 2019 end-page: 47229 ident: CR21 article-title: Series arc detection and complex load recognition based on principal component analysis and support vector machine publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2905358 – volume: 36 start-page: 1756 issue: 6 year: 2000 end-page: 1761 ident: CR13 article-title: Arcing fault detection in underground distribution networks-feasibility study publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.887231 – volume: 101 start-page: 215 issue: 23 year: 2000 end-page: 220 ident: CR15 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 15 start-page: 31 issue: 1 year: 2000 end-page: 37 ident: CR7 article-title: Numerical algorithm for overhead lines arcing faults detection and distance and directional protection publication-title: IEEE Trans. Power Delivery doi: 10.1109/61.847225 – ident: CR25 – volume: 35 start-page: 7826 issue: 8 year: 2020 end-page: 7839 ident: CR24 article-title: Series DC arc fault detection based on ensemble machine learning publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2020.2969561 – volume: 55 start-page: 4536 issue: 5 year: 2019 end-page: 4550 ident: CR12 article-title: The state-of-the-art methods for digital detection and identification of arcing current faults publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2019.2923764 – volume: 12 start-page: 824 issue: 2 year: 2016 end-page: 833 ident: CR28 article-title: Feature extraction and power quality disturbances classification using smart meters signals publication-title: IEEE Trans. Industr. Inf. doi: 10.1109/TII.2015.2486379 – volume: 14 start-page: 60 issue: 1 year: 1999 end-page: 67 ident: CR9 article-title: Time-domain solution of fault distance estimation and arcing faults detection on overhead lines publication-title: IEEE Trans. Power Delivery doi: 10.1109/61.736683 – ident: CR19 – volume: 65 start-page: 4080 issue: 5 year: 2018 end-page: 4091 ident: CR26 article-title: Short-time Fourier transform based transient analysis of VSC interfaced point-to-point DC system publication-title: IEEE Trans. Industr. Electron. doi: 10.1109/TIE.2017.2758745 – volume: 55 start-page: 2464 issue: 3 year: 2019 end-page: 2471 ident: CR27 article-title: Design of a DC series arc fault detector for photovoltaic system protection publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2019.2894992 – volume: 10 start-page: 676 issue: 2 year: 1995 end-page: 683 ident: CR11 article-title: Arcing fault detection for distribution feeders: security assessment in long term field trials publication-title: IEEE Trans. Power Delivery doi: 10.1109/61.400864 – volume: 15 start-page: 6210 issue: 12 year: 2019 end-page: 6219 ident: CR18 article-title: Series AC arc fault detection method based on hybrid time and frequency analysis and fully connected neural network publication-title: IEEE Trans. Industr. Inf. doi: 10.1109/TII.2018.2885945 – volume: 20 start-page: 1273 issue: 2 year: 2005 end-page: 1282 ident: CR4 article-title: Modeling and protection of a three-phase power transformer using wavelet packet transform publication-title: IEEE Trans. Power Delivery doi: 10.1109/TPWRD.2004.834891 – ident: CR17 – volume: 66 start-page: 888 issue: 5 year: 2017 end-page: 896 ident: CR2 article-title: Arc Fault detection method based on CZT low-frequency harmonic current analysis publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2016.2627248 – volume: 52 start-page: 2110 issue: 3 year: 2016 end-page: 2121 ident: CR3 article-title: Phase-based digital protection for arc flash faults publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2016.2515991 – volume: 21 start-page: 1460 issue: 3 year: 2006 end-page: 1462 ident: CR10 article-title: A new two-terminal numerical algorithm for fault location, distance protection, and arcing fault recognition publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2006.876646 – volume: 7 start-page: 92161 year: 2019 end-page: 92170 ident: CR1 article-title: Novel series arc fault detector using high-frequency coupling analysis and multi-indicator algorithm publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2927635 – ident: CR20 – volume: 67 start-page: 2526 issue: 11 year: 2018 end-page: 2537 ident: CR23 article-title: A new methodology for identifying arc fault by sparse representation and neural network publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2826878 – volume: 66 start-page: 888 issue: 5 year: 2017 ident: 299_CR2 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2016.2627248 – volume: 20 start-page: 1273 issue: 2 year: 2005 ident: 299_CR4 publication-title: IEEE Trans. Power Delivery doi: 10.1109/TPWRD.2004.834891 – volume: 10 start-page: 676 issue: 2 year: 1995 ident: 299_CR11 publication-title: IEEE Trans. Power Delivery doi: 10.1109/61.400864 – volume: 55 start-page: 2464 issue: 3 year: 2019 ident: 299_CR27 publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2019.2894992 – volume: 67 start-page: 2526 issue: 11 year: 2018 ident: 299_CR23 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2826878 – volume: 8 start-page: 177815 year: 2020 ident: 299_CR22 publication-title: IEEE Access. doi: 10.1109/ACCESS.2020.3027002 – volume: 65 start-page: 4080 issue: 5 year: 2018 ident: 299_CR26 publication-title: IEEE Trans. Industr. Electron. doi: 10.1109/TIE.2017.2758745 – ident: 299_CR20 doi: 10.1109/ELECSYM.2019.8901671 – volume: 101 start-page: 215 issue: 23 year: 2000 ident: 299_CR15 publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 35 start-page: 7826 issue: 8 year: 2020 ident: 299_CR24 publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2020.2969561 – volume: 22 start-page: 95 issue: 1 year: 2007 ident: 299_CR6 publication-title: IEEE Trans. Power Delivery. doi: 10.1109/TPWRD.2006.887098 – volume: 12 start-page: 824 issue: 2 year: 2016 ident: 299_CR28 publication-title: IEEE Trans. Industr. Inf. doi: 10.1109/TII.2015.2486379 – volume: 15 start-page: 6210 issue: 12 year: 2019 ident: 299_CR18 publication-title: IEEE Trans. Industr. Inf. doi: 10.1109/TII.2018.2885945 – volume: 9 start-page: 3783 issue: 4 year: 2018 ident: 299_CR8 publication-title: IEEE Trans. Smart Grid. doi: 10.1109/TSG.2016.2642988 – volume: 7 start-page: 92161 year: 2019 ident: 299_CR1 publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2927635 – volume: 55 start-page: 4536 issue: 5 year: 2019 ident: 299_CR12 publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2019.2923764 – volume: 68 start-page: 3785 issue: 10 year: 2019 ident: 299_CR14 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2880939 – volume: 52 start-page: 2110 issue: 3 year: 2016 ident: 299_CR3 publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2016.2515991 – volume: 14 start-page: 60 issue: 1 year: 1999 ident: 299_CR9 publication-title: IEEE Trans. Power Delivery doi: 10.1109/61.736683 – ident: 299_CR19 doi: 10.1109/TII.2021.3069849 – ident: 299_CR17 doi: 10.1109/ISMSIT.2018.8567071 – ident: 299_CR16 doi: 10.1109/HPCA.2019.00028 – ident: 299_CR29 – volume: 21 start-page: 1460 issue: 3 year: 2006 ident: 299_CR10 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2006.876646 – ident: 299_CR25 doi: 10.1109/HOLM.2017.8088107 – volume: 7 start-page: 47221 year: 2019 ident: 299_CR21 publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2905358 – volume: 36 start-page: 1756 issue: 6 year: 2000 ident: 299_CR13 publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.887231 – volume: 17 start-page: 921 issue: 4 year: 2002 ident: 299_CR5 publication-title: IEEE Trans. Power Delivery doi: 10.1109/TPWRD.2002.803793 – volume: 15 start-page: 31 issue: 1 year: 2000 ident: 299_CR7 publication-title: IEEE Trans. Power Delivery doi: 10.1109/61.847225  | 
    
| SSID | ssib040228808 ssj0003009991 ssib036278191 ssib001106542  | 
    
| Score | 2.318758 | 
    
| Snippet | Various studies on arc detection methods are described. Series AC arc is detected based on the characteristics extracted from arc voltage, frequency, and time... | 
    
| SourceID | nrf kisti crossref springer  | 
    
| SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 1621 | 
    
| SubjectTerms | Electrical Machines and Networks Engineering Original Article Power Electronics 전기공학  | 
    
| Title | Deep learning-based series AC arc detection algorithms | 
    
| URI | https://link.springer.com/article/10.1007/s43236-021-00299-5 http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202132860146106&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002766114  | 
    
| Volume | 21 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Journal of Power Electronics, 2021, 21(10), , pp.1621-1631 | 
    
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2093-4718 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib040228808 issn: 1598-2092 databaseCode: AFBBN dateStart: 20200101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1dj5NAcFPbF30wfsb6cSHGN-QCLCzw2Ku91Hq25q7Ge9vAMvRqG7i0NEZ_vbPLQrlUL54vULZDt-wM87XzQcg7J6CZHUTMojQLLM_xYitmQWyFThBQLxJhqPqnfJ6y8Vdvculfdjo_W1FLuzI5Fr_-mFfyP1jFMcSrzJK9A2abH8UB_Iz4xSNiGI__hOMPANd134eFJQVSasqJYWsOhqbMwk-hBN0MfL0oNsvySlcnP4z9-TL7Njo3R2ej4fx8Nq1bG-rEaL0zj7NMdnvndsUnxoUcPyu0DJTc-0e8qtzN-UK6uPYxBIUKHrgAZDEpFIu2z8F1mui1mz5H80K27UY7AdocNJJIqhrcHYMaw0tqSSnYZrtVYnRNXnaLiTpMfwf6spITB8y-iu_YetSlMpDaseQWY2T5e9HWBBw2xZkVMEdgroC5f4_0XBQIdpf0BqcnJ9OaGXmyMFCoCx99V6ajUqZV_V39iDoJS6ViHvyLG4pOT1oDS9Rf8k12sOeuVJn5I_JQ2yDGoCKox6QD-RPyoFWZ8ilhkrSMm6RlVKRlDIYGkpbRkJaxJ61nZH46mg_Hlm6xYQlUNEvLZ2HsisD3AOLQDiCKPDumNA0SESaQUHAi4ftZxISXomVrp3bGHGGHaZQErmD0OenmRQ4viJH4Nsg9b0hd6lGAJEMRTB0XRBZnCYM-cerl4EKXn5ddUNb877jpE7O557oqvnIr9JFaZZ6n2zWfDD7NJOlSN2SyQJJjsz55i8vPV2LJZVF1eV4UfLXhaDp-5FEYuChy--R9jR2uX_XtLZO-vBv4K3J__z69Jt1ys4M3qNWWyZGmv98VCZEu | 
    
| linkProvider | Library Specific Holdings | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+series+AC+arc+detection+algorithms&rft.jtitle=JOURNAL+OF+POWER+ELECTRONICS&rft.au=Park%2C+Chang-Ju&rft.au=Dang%2C+Hoang-Long&rft.au=Kwak%2C+Sangshin&rft.au=Choi%2C+Seungdeog&rft.date=2021-10-01&rft.pub=Springer+Singapore&rft.issn=1598-2092&rft.eissn=2093-4718&rft.volume=21&rft.issue=10&rft.spage=1621&rft.epage=1631&rft_id=info:doi/10.1007%2Fs43236-021-00299-5&rft.externalDocID=10_1007_s43236_021_00299_5 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-2092&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-2092&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-2092&client=summon |