Using recurrent neural networks to detect changes in autocorrelated processes for quality monitoring

With the growing of automation in manufacturing, process quality characteristics are being measured at higher rates and data are more likely to be autocorrelated. A widely used approach for statistical process monitoring in the case of autocorrelated data is the residual chart. This chart requires t...

Full description

Saved in:
Bibliographic Details
Published inComputers & industrial engineering Vol. 52; no. 4; pp. 502 - 520
Main Authors Pacella, Massimo, Semeraro, Quirico
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.05.2007
Pergamon Press Inc
Subjects
Online AccessGet full text
ISSN0360-8352
1879-0550
DOI10.1016/j.cie.2007.03.003

Cover

Abstract With the growing of automation in manufacturing, process quality characteristics are being measured at higher rates and data are more likely to be autocorrelated. A widely used approach for statistical process monitoring in the case of autocorrelated data is the residual chart. This chart requires that a suitable model has been identified for the time series of process observations before residuals can be obtained. In this work, a new neural-based procedure, which is alleviated from the need for building a time series model, is introduced for quality control in the case of serially correlated data. In particular, the Elman’s recurrent neural network is proposed for manufacturing process quality control. Performance comparisons between the neural-based algorithm and several control charts are also presented in the paper in order to validate the approach. Different magnitudes of the process mean shift, under the presence of various levels of autocorrelation, are considered. The simulation results indicate that the neural-based procedure may perform better than other control charting schemes in several instances for both small and large shifts. Given the simplicity of the proposed neural network and its adaptability, this approach is proved from simulation experiments to be a feasible alternative for quality monitoring in the case of autocorrelated process data.
AbstractList With the growing of automation in manufacturing, process quality characteristics are being measured at higher rates and data are more likely to be autocorrelated. A widely used approach for statistical process monitoring in the case of autocorrelated data is the residual chart. This chart requires that a suitable model has been identified for the time series of process observations before residuals can be obtained. In this work, a new neural-based procedure, which is alleviated from the need for building a time series model, is introduced for quality control in the case of serially correlated data. In particular, the Elman's recurrent neural network is proposed for manufacturing process quality control. Performance comparisons between the neural-based algorithm and several control charts are also presented in the paper in order to validate the approach. Different magnitudes of the process mean shift, under the presence of various levels of autocorrelation, are considered. The simulation results indicate that the neural-based procedure may perform better than other control charting schemes in several instances for both small and large shifts. Given the simplicity of the proposed neural network and its adaptability, this approach is proved from simulation experiments to be a feasible alternative for quality monitoring in the case of autocorrelated process data. [PUBLICATION ABSTRACT]
With the growing of automation in manufacturing, process quality characteristics are being measured at higher rates and data are more likely to be autocorrelated. A widely used approach for statistical process monitoring in the case of autocorrelated data is the residual chart. This chart requires that a suitable model has been identified for the time series of process observations before residuals can be obtained. In this work, a new neural-based procedure, which is alleviated from the need for building a time series model, is introduced for quality control in the case of serially correlated data. In particular, the Elman’s recurrent neural network is proposed for manufacturing process quality control. Performance comparisons between the neural-based algorithm and several control charts are also presented in the paper in order to validate the approach. Different magnitudes of the process mean shift, under the presence of various levels of autocorrelation, are considered. The simulation results indicate that the neural-based procedure may perform better than other control charting schemes in several instances for both small and large shifts. Given the simplicity of the proposed neural network and its adaptability, this approach is proved from simulation experiments to be a feasible alternative for quality monitoring in the case of autocorrelated process data.
Author Pacella, Massimo
Semeraro, Quirico
Author_xml – sequence: 1
  givenname: Massimo
  surname: Pacella
  fullname: Pacella, Massimo
  email: massimo.pacella@unile.it
  organization: Dipartimento di Ingegneria dell’Innovazione, Universita’ degli Studi di Lecce, Via per Monteroni, 73100 Lecce, Italy
– sequence: 2
  givenname: Quirico
  surname: Semeraro
  fullname: Semeraro, Quirico
  email: quirico.semeraro@polimi.it
  organization: Dipartimento di Meccanica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
BookMark eNp9kTFv2zAQhYnCAWq7-QHZiA7dpNyJJiWhU2E0aYEAWeqZoKlTSlcmE5JqkX8fGu7kIeBw4N37Hg7vVmzhgyfGbhBqBFS3h9o6qhuAtgZRA4gPbIld21cgJSzYEoSCqhOy-chWKR0AYCN7XLJhl5x_4pHsHCP5zD3N0Uyl5H8h_kk8Bz5QJpu5_W38EyXuPDdzDjYUYDKZBv4cg6WUymwMkb_MZnL5lR-DdznEYv-JXY1mSnT9v67Z7u77r-2P6uHx_uf220NlhZS5ElJJMKfXl39PrerGjbJI1krTteNm7BTuURLQphPYjWovscEWselGiUqs2Zezb1noZaaU9dElS9NkPIU56abvUai-L8LPF8JDmKMvu-kGRVvcm5NbexbZGFKKNGrrssku-ByNmzSCPkWvD6VP-hS9BqFL9IXEC_I5uqOJr-8yX88MlYD-Ooo6FYm3NLhynKyH4N6h3wAuGZ6m
CODEN CINDDL
CitedBy_id crossref_primary_10_1080_00207543_2014_993774
crossref_primary_10_7769_gesec_v14i12_3253
crossref_primary_10_1080_00207541003694803
crossref_primary_10_1016_j_asoc_2016_06_020
crossref_primary_10_1002_qre_2701
crossref_primary_10_1007_s00170_012_4595_0
crossref_primary_10_1016_j_minpro_2015_11_013
crossref_primary_10_4028_www_scientific_net_AMM_157_158_11
crossref_primary_10_1016_j_csda_2007_10_029
crossref_primary_10_1016_j_cie_2012_01_002
crossref_primary_10_1016_j_cie_2010_10_001
crossref_primary_10_1108_IJQRM_05_2014_0053
crossref_primary_10_1016_j_ijpe_2012_09_002
crossref_primary_10_1108_17410381111149602
crossref_primary_10_1016_j_chemolab_2010_05_021
crossref_primary_10_1007_s12204_018_2029_3
crossref_primary_10_1016_j_powtec_2010_09_023
crossref_primary_10_1002_qre_1227
crossref_primary_10_1080_00949655_2022_2066104
crossref_primary_10_1007_s10845_013_0847_6
crossref_primary_10_1080_00207543_2016_1140919
crossref_primary_10_1016_j_asoc_2012_03_066
crossref_primary_10_1080_02664763_2013_871507
crossref_primary_10_1016_j_cie_2010_02_004
crossref_primary_10_1007_s00170_011_3199_4
crossref_primary_10_1016_j_cie_2007_08_001
crossref_primary_10_1080_10170660909509162
crossref_primary_10_3390_rs8060506
crossref_primary_10_1016_j_ress_2017_09_002
crossref_primary_10_3390_en15051685
crossref_primary_10_1016_j_ijpe_2014_02_008
crossref_primary_10_1016_j_eswa_2024_123682
crossref_primary_10_1109_JIOT_2021_3051414
Cites_doi 10.1016/0360-8352(93)90010-U
10.1016/0360-8352(91)90097-P
10.2307/2348446
10.1016/S0360-8352(96)00310-5
10.1016/S0360-8352(01)00031-6
10.1016/S0893-6080(96)00072-X
10.2307/1391421
10.1080/00207549608905024
10.1080/02664769723657
10.1207/s15516709cog1402_1
10.1080/0020754032000123614
10.1016/j.engappai.2003.11.005
10.1080/0020754021000042409
10.2307/1269191
10.1080/00207540110071750
10.1080/00207540512331311822
10.1080/00224065.1991.11979324
10.1016/S0925-2312(97)00161-6
10.1080/00207729608929207
10.2307/1270950
10.1080/00207540410001715706
10.2307/1271390
10.1023/A:1008818817588
10.1080/00207720120528
10.1080/07408179808966453
10.1023/B:JIMS.0000037713.74607.00
10.1016/S0893-6080(00)00081-2
10.1080/002075499190987
10.1016/S0360-8352(99)00004-2
ContentType Journal Article
Copyright 2007 Elsevier Ltd
Copyright Pergamon Press Inc. May 2007
Copyright_xml – notice: 2007 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. May 2007
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cie.2007.03.003
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
EndPage 520
ExternalDocumentID 1273132341
10_1016_j_cie_2007_03_003
S0360835207000587
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
ABAOU
ABDPE
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADGUI
ADMUD
ADNMO
ADRHT
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSH
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c355t-35650a0a0a93559e768f46c1ecc5a87f4f861b15e0e48318f6b512171128f5163
IEDL.DBID AIKHN
ISSN 0360-8352
IngestDate Thu Oct 02 05:57:57 EDT 2025
Sun Jul 13 03:31:39 EDT 2025
Thu Apr 24 23:00:51 EDT 2025
Wed Oct 01 00:49:22 EDT 2025
Sun Apr 06 06:54:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Quality monitoring
ARMA models
Manufacturing
Recurrent neural network
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-35650a0a0a93559e768f46c1ecc5a87f4f861b15e0e48318f6b512171128f5163
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 213748326
PQPubID 9545
PageCount 19
ParticipantIDs proquest_miscellaneous_29913699
proquest_journals_213748326
crossref_citationtrail_10_1016_j_cie_2007_03_003
crossref_primary_10_1016_j_cie_2007_03_003
elsevier_sciencedirect_doi_10_1016_j_cie_2007_03_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-05-01
PublicationDateYYYYMMDD 2007-05-01
PublicationDate_xml – month: 05
  year: 2007
  text: 2007-05-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computers & industrial engineering
PublicationYear 2007
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Hwarng (bib19) 2005; 43
Stone, Taylor (bib28) 1995; 44
Cook, Chiu (bib11) 1998; 30
Alwan, Roberts (bib2) 1988; 6
Barghash, Santarisi (bib4) 2004; 15
Cheng, Cheng (bib8) 2001; 40
Tsoi, Back (bib29) 1997; 15
Zorriassantine, Tannock (bib33) 1998; 9
Chiu, Chen, Lee (bib9) 2001; 32
Alwan, Roberts (bib3) 1995; 44
Cohen, Saad, Marom (bib10) 1997; 10
Haykin (bib16) 1994
Cook, Zobel, Nottingham (bib12) 2001; 39
Zhang (bib32) 1998; 40
Elman (bib13) 1990; 14
Wardell, Moskowitz, Plante (bib30) 1994; 36
Pacella, Semeraro, Anglani (bib23) 2004; 17
Pugh (bib26) 1991; 21
Chang, Aw (bib7) 1996; 34
Al-Ghanim (bib1) 1997; 32
Box, Jenkins, Reinsel (bib6) 1994
Blanco, Delgado, Pegalajar (bib5) 2001; 14
Guh, Hsieh (bib14) 1999; 36
Hwarng, Hubele (bib17) 1993; 24
Montgomery (bib22) 2000
Pacella, Semeraro, Anglani (bib24) 2004; 40
Zhang (bib31) 1997; 24
Jiang, Tsui, Woodall (bib21) 2000; 42
Jang, Yang, Kang (bib20) 2003; 41
Hwarng (bib18) 2004; 42
Ryan (bib27) 1991; 23
Pham, Liu (bib25) 1996; 27
Guh, Tannock (bib15) 1999; 37
Haykin (10.1016/j.cie.2007.03.003_bib16) 1994
Cook (10.1016/j.cie.2007.03.003_bib11) 1998; 30
Guh (10.1016/j.cie.2007.03.003_bib14) 1999; 36
Pham (10.1016/j.cie.2007.03.003_bib25) 1996; 27
Cohen (10.1016/j.cie.2007.03.003_bib10) 1997; 10
Chang (10.1016/j.cie.2007.03.003_bib7) 1996; 34
Alwan (10.1016/j.cie.2007.03.003_bib3) 1995; 44
Hwarng (10.1016/j.cie.2007.03.003_bib17) 1993; 24
Zhang (10.1016/j.cie.2007.03.003_bib32) 1998; 40
Cheng (10.1016/j.cie.2007.03.003_bib8) 2001; 40
Hwarng (10.1016/j.cie.2007.03.003_bib19) 2005; 43
Barghash (10.1016/j.cie.2007.03.003_bib4) 2004; 15
Jang (10.1016/j.cie.2007.03.003_bib20) 2003; 41
Ryan (10.1016/j.cie.2007.03.003_bib27) 1991; 23
Pugh (10.1016/j.cie.2007.03.003_bib26) 1991; 21
Jiang (10.1016/j.cie.2007.03.003_bib21) 2000; 42
Zhang (10.1016/j.cie.2007.03.003_bib31) 1997; 24
Blanco (10.1016/j.cie.2007.03.003_bib5) 2001; 14
Montgomery (10.1016/j.cie.2007.03.003_bib22) 2000
Stone (10.1016/j.cie.2007.03.003_bib28) 1995; 44
Box (10.1016/j.cie.2007.03.003_bib6) 1994
Chiu (10.1016/j.cie.2007.03.003_bib9) 2001; 32
Hwarng (10.1016/j.cie.2007.03.003_bib18) 2004; 42
Cook (10.1016/j.cie.2007.03.003_bib12) 2001; 39
Guh (10.1016/j.cie.2007.03.003_bib15) 1999; 37
Tsoi (10.1016/j.cie.2007.03.003_bib29) 1997; 15
Zorriassantine (10.1016/j.cie.2007.03.003_bib33) 1998; 9
Wardell (10.1016/j.cie.2007.03.003_bib30) 1994; 36
Al-Ghanim (10.1016/j.cie.2007.03.003_bib1) 1997; 32
Pacella (10.1016/j.cie.2007.03.003_bib23) 2004; 17
Alwan (10.1016/j.cie.2007.03.003_bib2) 1988; 6
Elman (10.1016/j.cie.2007.03.003_bib13) 1990; 14
Pacella (10.1016/j.cie.2007.03.003_bib24) 2004; 40
References_xml – volume: 30
  start-page: 227
  year: 1998
  end-page: 234
  ident: bib11
  article-title: Using radial basis function neural networks to recognize shifts in correlated manufacturing process parameters
  publication-title: IIE Transactions
– volume: 44
  start-page: 227
  year: 1995
  end-page: 234
  ident: bib28
  article-title: Time series models in statistical process control: considerations of applicability
  publication-title: The Statistician
– volume: 40
  start-page: 309
  year: 2001
  end-page: 321
  ident: bib8
  article-title: A neural network-based procedure for the monitoring of exponential mean
  publication-title: Computers & Industrial Engineering
– volume: 27
  start-page: 221
  year: 1996
  end-page: 226
  ident: bib25
  article-title: Training of Elman networks and dynamic system modelling
  publication-title: International Journal of Systems Science
– volume: 10
  start-page: 51
  year: 1997
  end-page: 59
  ident: bib10
  article-title: Efficient training of recurrent neural networks with time delays
  publication-title: Neural Networks
– volume: 14
  start-page: 179
  year: 1990
  end-page: 211
  ident: bib13
  article-title: Finding structure in time
  publication-title: Cognitive Science
– volume: 39
  start-page: 3881
  year: 2001
  end-page: 3887
  ident: bib12
  article-title: Utilization of neural networks for the recognition of variance shifts in correlated manufacturing process parameters
  publication-title: International Journal of Production Research
– volume: 34
  start-page: 2265
  year: 1996
  end-page: 2278
  ident: bib7
  article-title: A neural fuzzy control chart for detecting and classifying process mean shifts
  publication-title: International Journal of Production Research
– volume: 24
  start-page: 219
  year: 1993
  end-page: 235
  ident: bib17
  article-title: Back-propagation pattern recognizers for X control charts: methodology and performance
  publication-title: Computers & Industrial Engineering
– volume: 21
  start-page: 253
  year: 1991
  end-page: 255
  ident: bib26
  article-title: A comparison of neural networks to SPC charts
  publication-title: Computers & Industrial Engineering
– volume: 9
  start-page: 209
  year: 1998
  end-page: 224
  ident: bib33
  article-title: A review of neural networks for statistical process control
  publication-title: Journal of Intelligent Manufacturing
– volume: 14
  start-page: 93
  year: 2001
  end-page: 105
  ident: bib5
  article-title: A real-coded genetic algorithm for training recurrent neural networks
  publication-title: Neural Networks
– volume: 24
  start-page: 475
  year: 1997
  end-page: 492
  ident: bib31
  article-title: Detection capability of residual control chart for stationary process data
  publication-title: Journal of Applied Statistics
– year: 1994
  ident: bib6
  article-title: Time series analysis: Forecasting and control
– year: 2000
  ident: bib22
  article-title: Introduction to statistical quality control
– volume: 40
  start-page: 4581
  year: 2004
  end-page: 4607
  ident: bib24
  article-title: Adaptive resonance theory-based neural algorithms for manufacturing process quality control
  publication-title: International Journal of Production Research
– volume: 17
  start-page: 83
  year: 2004
  end-page: 96
  ident: bib23
  article-title: Manufacturing quality control by means of a Fuzzy ART network trained on natural process data
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 15
  start-page: 183
  year: 1997
  end-page: 223
  ident: bib29
  article-title: Discrete time recurrent neural network architectures: A unifying review
  publication-title: Neurocomputing
– volume: 6
  start-page: 87
  year: 1988
  end-page: 95
  ident: bib2
  article-title: Time-series modeling for statistical process control
  publication-title: Journal of Business & Economic Statistics
– volume: 40
  start-page: 24
  year: 1998
  end-page: 38
  ident: bib32
  article-title: A statistical control chart for stationary process data
  publication-title: Technometrics
– volume: 15
  start-page: 635
  year: 2004
  end-page: 644
  ident: bib4
  article-title: Pattern recognition of control chart using artificial neural networks – analyzing the effect of the training parameters
  publication-title: Journal of Intelligent Manufacturing
– volume: 37
  start-page: 1743
  year: 1999
  end-page: 1765
  ident: bib15
  article-title: Recognition of control chart concurrent patterns using a neural network approach
  publication-title: International Journal of Production Research
– volume: 42
  start-page: 399
  year: 2000
  end-page: 410
  ident: bib21
  article-title: A new SPC monitoring method: the ARMA chart
  publication-title: Technometrics
– volume: 44
  start-page: 269
  year: 1995
  end-page: 306
  ident: bib3
  article-title: The problem of misplaced control limits
  publication-title: Journal of the Royal Statistical Society, Series C
– volume: 41
  start-page: 1239
  year: 2003
  end-page: 1254
  ident: bib20
  article-title: Application of artificial neural network to identify non-random variation patterns on the run chart in automotive assembly process
  publication-title: International Journal of Production Research
– volume: 23
  start-page: 200
  year: 1991
  end-page: 202
  ident: bib27
  article-title: Discussion (of “Some statistical process control methods for autocorrelated data” by D.C. Montogomery and C.M. Mastrangelo)
  publication-title: Journal of Quality Technology
– volume: 32
  start-page: 137
  year: 2001
  end-page: 143
  ident: bib9
  article-title: Shifts recognition in correlated process data using a neural network
  publication-title: International Journal of Systems Science
– volume: 36
  start-page: 97
  year: 1999
  end-page: 108
  ident: bib14
  article-title: A neural network based model for abnormal pattern recognition of control charts
  publication-title: Computers & Industrial Engineering
– volume: 36
  start-page: 3
  year: 1994
  end-page: 17
  ident: bib30
  article-title: Run-length distribution of special cause control charts of correlation processes
  publication-title: Technometrics
– volume: 32
  start-page: 627
  year: 1997
  end-page: 639
  ident: bib1
  article-title: An unsupervised learning neural algorithm for identifying process behavior on control charts and a comparison with supervised learning approaches
  publication-title: Computers & Industrial Engineering
– year: 1994
  ident: bib16
  article-title: Neural networks, a comprehensive foundation
– volume: 42
  start-page: 573
  year: 2004
  end-page: 595
  ident: bib18
  article-title: Detecting process mean shift in the presence of autocorrelation: a neural network based monitoring scheme
  publication-title: International Journal of Production Research
– volume: 43
  start-page: 1761
  year: 2005
  end-page: 1783
  ident: bib19
  article-title: Simultaneous identification of mean shift and correlation change in AR(1) processes
  publication-title: International Journal of Production Research
– volume: 24
  start-page: 219
  issue: 2
  year: 1993
  ident: 10.1016/j.cie.2007.03.003_bib17
  article-title: Back-propagation pattern recognizers for X control charts: methodology and performance
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/0360-8352(93)90010-U
– year: 1994
  ident: 10.1016/j.cie.2007.03.003_bib6
– volume: 21
  start-page: 253
  year: 1991
  ident: 10.1016/j.cie.2007.03.003_bib26
  article-title: A comparison of neural networks to SPC charts
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/0360-8352(91)90097-P
– volume: 44
  start-page: 227
  issue: 2
  year: 1995
  ident: 10.1016/j.cie.2007.03.003_bib28
  article-title: Time series models in statistical process control: considerations of applicability
  publication-title: The Statistician
  doi: 10.2307/2348446
– volume: 44
  start-page: 269
  issue: 3
  year: 1995
  ident: 10.1016/j.cie.2007.03.003_bib3
  article-title: The problem of misplaced control limits
  publication-title: Journal of the Royal Statistical Society, Series C
– volume: 32
  start-page: 627
  year: 1997
  ident: 10.1016/j.cie.2007.03.003_bib1
  article-title: An unsupervised learning neural algorithm for identifying process behavior on control charts and a comparison with supervised learning approaches
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/S0360-8352(96)00310-5
– volume: 40
  start-page: 309
  year: 2001
  ident: 10.1016/j.cie.2007.03.003_bib8
  article-title: A neural network-based procedure for the monitoring of exponential mean
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/S0360-8352(01)00031-6
– volume: 10
  start-page: 51
  issue: 1
  year: 1997
  ident: 10.1016/j.cie.2007.03.003_bib10
  article-title: Efficient training of recurrent neural networks with time delays
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(96)00072-X
– volume: 6
  start-page: 87
  issue: 1
  year: 1988
  ident: 10.1016/j.cie.2007.03.003_bib2
  article-title: Time-series modeling for statistical process control
  publication-title: Journal of Business & Economic Statistics
  doi: 10.2307/1391421
– volume: 34
  start-page: 2265
  issue: 8
  year: 1996
  ident: 10.1016/j.cie.2007.03.003_bib7
  article-title: A neural fuzzy control chart for detecting and classifying process mean shifts
  publication-title: International Journal of Production Research
  doi: 10.1080/00207549608905024
– volume: 24
  start-page: 475
  issue: 4
  year: 1997
  ident: 10.1016/j.cie.2007.03.003_bib31
  article-title: Detection capability of residual control chart for stationary process data
  publication-title: Journal of Applied Statistics
  doi: 10.1080/02664769723657
– volume: 14
  start-page: 179
  year: 1990
  ident: 10.1016/j.cie.2007.03.003_bib13
  article-title: Finding structure in time
  publication-title: Cognitive Science
  doi: 10.1207/s15516709cog1402_1
– volume: 42
  start-page: 573
  issue: 3
  year: 2004
  ident: 10.1016/j.cie.2007.03.003_bib18
  article-title: Detecting process mean shift in the presence of autocorrelation: a neural network based monitoring scheme
  publication-title: International Journal of Production Research
  doi: 10.1080/0020754032000123614
– volume: 17
  start-page: 83
  issue: 1
  year: 2004
  ident: 10.1016/j.cie.2007.03.003_bib23
  article-title: Manufacturing quality control by means of a Fuzzy ART network trained on natural process data
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2003.11.005
– volume: 41
  start-page: 1239
  issue: 6
  year: 2003
  ident: 10.1016/j.cie.2007.03.003_bib20
  article-title: Application of artificial neural network to identify non-random variation patterns on the run chart in automotive assembly process
  publication-title: International Journal of Production Research
  doi: 10.1080/0020754021000042409
– volume: 36
  start-page: 3
  issue: 1
  year: 1994
  ident: 10.1016/j.cie.2007.03.003_bib30
  article-title: Run-length distribution of special cause control charts of correlation processes
  publication-title: Technometrics
  doi: 10.2307/1269191
– volume: 39
  start-page: 3881
  issue: 17
  year: 2001
  ident: 10.1016/j.cie.2007.03.003_bib12
  article-title: Utilization of neural networks for the recognition of variance shifts in correlated manufacturing process parameters
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540110071750
– year: 1994
  ident: 10.1016/j.cie.2007.03.003_bib16
– volume: 43
  start-page: 1761
  issue: 9
  year: 2005
  ident: 10.1016/j.cie.2007.03.003_bib19
  article-title: Simultaneous identification of mean shift and correlation change in AR(1) processes
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540512331311822
– volume: 23
  start-page: 200
  issue: 3
  year: 1991
  ident: 10.1016/j.cie.2007.03.003_bib27
  article-title: Discussion (of “Some statistical process control methods for autocorrelated data” by D.C. Montogomery and C.M. Mastrangelo)
  publication-title: Journal of Quality Technology
  doi: 10.1080/00224065.1991.11979324
– volume: 15
  start-page: 183
  year: 1997
  ident: 10.1016/j.cie.2007.03.003_bib29
  article-title: Discrete time recurrent neural network architectures: A unifying review
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(97)00161-6
– volume: 27
  start-page: 221
  issue: 2
  year: 1996
  ident: 10.1016/j.cie.2007.03.003_bib25
  article-title: Training of Elman networks and dynamic system modelling
  publication-title: International Journal of Systems Science
  doi: 10.1080/00207729608929207
– volume: 42
  start-page: 399
  issue: 4
  year: 2000
  ident: 10.1016/j.cie.2007.03.003_bib21
  article-title: A new SPC monitoring method: the ARMA chart
  publication-title: Technometrics
  doi: 10.2307/1270950
– volume: 40
  start-page: 4581
  issue: 21
  year: 2004
  ident: 10.1016/j.cie.2007.03.003_bib24
  article-title: Adaptive resonance theory-based neural algorithms for manufacturing process quality control
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540410001715706
– volume: 40
  start-page: 24
  issue: 1
  year: 1998
  ident: 10.1016/j.cie.2007.03.003_bib32
  article-title: A statistical control chart for stationary process data
  publication-title: Technometrics
  doi: 10.2307/1271390
– volume: 9
  start-page: 209
  year: 1998
  ident: 10.1016/j.cie.2007.03.003_bib33
  article-title: A review of neural networks for statistical process control
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1023/A:1008818817588
– volume: 32
  start-page: 137
  issue: 2
  year: 2001
  ident: 10.1016/j.cie.2007.03.003_bib9
  article-title: Shifts recognition in correlated process data using a neural network
  publication-title: International Journal of Systems Science
  doi: 10.1080/00207720120528
– volume: 30
  start-page: 227
  year: 1998
  ident: 10.1016/j.cie.2007.03.003_bib11
  article-title: Using radial basis function neural networks to recognize shifts in correlated manufacturing process parameters
  publication-title: IIE Transactions
  doi: 10.1080/07408179808966453
– volume: 15
  start-page: 635
  year: 2004
  ident: 10.1016/j.cie.2007.03.003_bib4
  article-title: Pattern recognition of control chart using artificial neural networks – analyzing the effect of the training parameters
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1023/B:JIMS.0000037713.74607.00
– volume: 14
  start-page: 93
  year: 2001
  ident: 10.1016/j.cie.2007.03.003_bib5
  article-title: A real-coded genetic algorithm for training recurrent neural networks
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(00)00081-2
– year: 2000
  ident: 10.1016/j.cie.2007.03.003_bib22
– volume: 37
  start-page: 1743
  year: 1999
  ident: 10.1016/j.cie.2007.03.003_bib15
  article-title: Recognition of control chart concurrent patterns using a neural network approach
  publication-title: International Journal of Production Research
  doi: 10.1080/002075499190987
– volume: 36
  start-page: 97
  year: 1999
  ident: 10.1016/j.cie.2007.03.003_bib14
  article-title: A neural network based model for abnormal pattern recognition of control charts
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/S0360-8352(99)00004-2
SSID ssj0004591
Score 2.0558143
Snippet With the growing of automation in manufacturing, process quality characteristics are being measured at higher rates and data are more likely to be...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 502
SubjectTerms ARMA models
Comparative analysis
Manufacturing
Neural networks
Quality control
Quality monitoring
Recurrent neural network
Simulation
Studies
Time series
Title Using recurrent neural networks to detect changes in autocorrelated processes for quality monitoring
URI https://dx.doi.org/10.1016/j.cie.2007.03.003
https://www.proquest.com/docview/213748326
https://www.proquest.com/docview/29913699
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AKRWK
  dateStart: 19770101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71scDAo4AoheKBCSk0zjtjVVEVEF2gUreoSWypqKRVkw4s_HbuYgcVJDqgbH5Gftx9tu--A7hJfIkLhTuGTB3bQH3NjTB1LSMUaZy4EjVkQN7Iz2NvNHEep-60BoPKF4bMKrXsVzK9lNY6padHs7eaz3svKHtL_ICLloLj-XVoov4JggY0-w9Po_EWabgKnIflDapQPW6WZl7YsiYyJKpT-y_19EtQl9pneAQHGjayvvqzY6iJrAWHGkIyvUHzFuxv8QueQFoaBLA13akTCxMj9kpsJlO23zkrliwV9IzAlANwzuYZm22KZUJBOxaIQ1O2Uq4EmIf4liknzA_2XsoC6uYUJsP718HI0GEVjATBRWHYiOHMGX3ErR4KPHBIx0s4TqY7C3zpyMDjMXeFKRycxkB6MaIC7iMyC6SL-O0MGtkyE-fAEss3Q-FJbqemk-Jp1_NR3QlyuI1D6VttMKvRjBLNOU6hLxZRZVz2humCYmH6kWkTUWkbbr-rrBThxq7CTjVF0Y9VE6FC2FWtU01npLdsHlmcmHgQzbbh-jsX9xo9oMwysdxgEQTTtheGF__rtgN76maYzCUvoVGsN-IKIU0Rd6F-98m7euF-ASgu9H4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBRwFRysMDE1JonDhxMiIEKo92AaRuUZPYUlFJqzYdWPjt3MVOBUgwoGx-Rn7cfbbvvgM4z6TGhcKFo3PhO6ivuRPngefEKk-zQKOGjMgbudcPuy_ifhAMVuC69oUhs0or-41Mr6S1TenY0exMR6POE8reCj_goqXgeHIV1kTgSTqBXX7wL5ThJmwelnaoeP20WRl5YbuWxpCITv3flNMPMV3pntsd2LKgkV2Z_9qFFVU0YdsCSGa357wJm1_YBfcgr8wB2Ixu1ImDiRF3JTZTGMvvOSsnLFf0iMCM---cjQo2XJSTjEJ2jBGF5mxqHAkwD9EtMy6Y7-ytkgTUzT683N48X3cdG1TByRBalI6PCM4d0kfM6rHC44YWYcZxKoNhJLXQUchTHihXCZzESIcpYgIuEZdFOkD0dgCNYlKoQ2CZJ91YhZr7uStyPOuGEpWdInfbNNbSa4Fbj2aSWcZxCnwxTmrTsldMVxQJUyauTzSlLbhYVpkauo2_Cot6ipJvayZBdfBXtXY9nYndsPPE48TDg1i2BWfLXNxp9HwyLNRkgUUQSvthHB_9r9szWO8-9x6Tx7v-Qxs2zB0xGU4eQ6OcLdQJgpsyPa0W7ycvlvVG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+recurrent+neural+networks+to+detect+changes+in+autocorrelated+processes+for+quality+monitoring&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Pacella%2C+Massimo&rft.au=Semeraro%2C+Quirico&rft.date=2007-05-01&rft.issn=0360-8352&rft.volume=52&rft.issue=4&rft.spage=502&rft.epage=520&rft_id=info:doi/10.1016%2Fj.cie.2007.03.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2007_03_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon