Using recurrent neural networks to detect changes in autocorrelated processes for quality monitoring
With the growing of automation in manufacturing, process quality characteristics are being measured at higher rates and data are more likely to be autocorrelated. A widely used approach for statistical process monitoring in the case of autocorrelated data is the residual chart. This chart requires t...
Saved in:
| Published in | Computers & industrial engineering Vol. 52; no. 4; pp. 502 - 520 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Elsevier Ltd
01.05.2007
Pergamon Press Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0360-8352 1879-0550 |
| DOI | 10.1016/j.cie.2007.03.003 |
Cover
| Abstract | With the growing of automation in manufacturing, process quality characteristics are being measured at higher rates and data are more likely to be autocorrelated. A widely used approach for statistical process monitoring in the case of autocorrelated data is the residual chart. This chart requires that a suitable model has been identified for the time series of process observations before residuals can be obtained. In this work, a new neural-based procedure, which is alleviated from the need for building a time series model, is introduced for quality control in the case of serially correlated data. In particular, the Elman’s recurrent neural network is proposed for manufacturing process quality control. Performance comparisons between the neural-based algorithm and several control charts are also presented in the paper in order to validate the approach. Different magnitudes of the process mean shift, under the presence of various levels of autocorrelation, are considered. The simulation results indicate that the neural-based procedure may perform better than other control charting schemes in several instances for both small and large shifts. Given the simplicity of the proposed neural network and its adaptability, this approach is proved from simulation experiments to be a feasible alternative for quality monitoring in the case of autocorrelated process data. |
|---|---|
| AbstractList | With the growing of automation in manufacturing, process quality characteristics are being measured at higher rates and data are more likely to be autocorrelated. A widely used approach for statistical process monitoring in the case of autocorrelated data is the residual chart. This chart requires that a suitable model has been identified for the time series of process observations before residuals can be obtained. In this work, a new neural-based procedure, which is alleviated from the need for building a time series model, is introduced for quality control in the case of serially correlated data. In particular, the Elman's recurrent neural network is proposed for manufacturing process quality control. Performance comparisons between the neural-based algorithm and several control charts are also presented in the paper in order to validate the approach. Different magnitudes of the process mean shift, under the presence of various levels of autocorrelation, are considered. The simulation results indicate that the neural-based procedure may perform better than other control charting schemes in several instances for both small and large shifts. Given the simplicity of the proposed neural network and its adaptability, this approach is proved from simulation experiments to be a feasible alternative for quality monitoring in the case of autocorrelated process data. [PUBLICATION ABSTRACT] With the growing of automation in manufacturing, process quality characteristics are being measured at higher rates and data are more likely to be autocorrelated. A widely used approach for statistical process monitoring in the case of autocorrelated data is the residual chart. This chart requires that a suitable model has been identified for the time series of process observations before residuals can be obtained. In this work, a new neural-based procedure, which is alleviated from the need for building a time series model, is introduced for quality control in the case of serially correlated data. In particular, the Elman’s recurrent neural network is proposed for manufacturing process quality control. Performance comparisons between the neural-based algorithm and several control charts are also presented in the paper in order to validate the approach. Different magnitudes of the process mean shift, under the presence of various levels of autocorrelation, are considered. The simulation results indicate that the neural-based procedure may perform better than other control charting schemes in several instances for both small and large shifts. Given the simplicity of the proposed neural network and its adaptability, this approach is proved from simulation experiments to be a feasible alternative for quality monitoring in the case of autocorrelated process data. |
| Author | Pacella, Massimo Semeraro, Quirico |
| Author_xml | – sequence: 1 givenname: Massimo surname: Pacella fullname: Pacella, Massimo email: massimo.pacella@unile.it organization: Dipartimento di Ingegneria dell’Innovazione, Universita’ degli Studi di Lecce, Via per Monteroni, 73100 Lecce, Italy – sequence: 2 givenname: Quirico surname: Semeraro fullname: Semeraro, Quirico email: quirico.semeraro@polimi.it organization: Dipartimento di Meccanica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy |
| BookMark | eNp9kTFv2zAQhYnCAWq7-QHZiA7dpNyJJiWhU2E0aYEAWeqZoKlTSlcmE5JqkX8fGu7kIeBw4N37Hg7vVmzhgyfGbhBqBFS3h9o6qhuAtgZRA4gPbIld21cgJSzYEoSCqhOy-chWKR0AYCN7XLJhl5x_4pHsHCP5zD3N0Uyl5H8h_kk8Bz5QJpu5_W38EyXuPDdzDjYUYDKZBv4cg6WUymwMkb_MZnL5lR-DdznEYv-JXY1mSnT9v67Z7u77r-2P6uHx_uf220NlhZS5ElJJMKfXl39PrerGjbJI1krTteNm7BTuURLQphPYjWovscEWselGiUqs2Zezb1noZaaU9dElS9NkPIU56abvUai-L8LPF8JDmKMvu-kGRVvcm5NbexbZGFKKNGrrssku-ByNmzSCPkWvD6VP-hS9BqFL9IXEC_I5uqOJr-8yX88MlYD-Ooo6FYm3NLhynKyH4N6h3wAuGZ6m |
| CODEN | CINDDL |
| CitedBy_id | crossref_primary_10_1080_00207543_2014_993774 crossref_primary_10_7769_gesec_v14i12_3253 crossref_primary_10_1080_00207541003694803 crossref_primary_10_1016_j_asoc_2016_06_020 crossref_primary_10_1002_qre_2701 crossref_primary_10_1007_s00170_012_4595_0 crossref_primary_10_1016_j_minpro_2015_11_013 crossref_primary_10_4028_www_scientific_net_AMM_157_158_11 crossref_primary_10_1016_j_csda_2007_10_029 crossref_primary_10_1016_j_cie_2012_01_002 crossref_primary_10_1016_j_cie_2010_10_001 crossref_primary_10_1108_IJQRM_05_2014_0053 crossref_primary_10_1016_j_ijpe_2012_09_002 crossref_primary_10_1108_17410381111149602 crossref_primary_10_1016_j_chemolab_2010_05_021 crossref_primary_10_1007_s12204_018_2029_3 crossref_primary_10_1016_j_powtec_2010_09_023 crossref_primary_10_1002_qre_1227 crossref_primary_10_1080_00949655_2022_2066104 crossref_primary_10_1007_s10845_013_0847_6 crossref_primary_10_1080_00207543_2016_1140919 crossref_primary_10_1016_j_asoc_2012_03_066 crossref_primary_10_1080_02664763_2013_871507 crossref_primary_10_1016_j_cie_2010_02_004 crossref_primary_10_1007_s00170_011_3199_4 crossref_primary_10_1016_j_cie_2007_08_001 crossref_primary_10_1080_10170660909509162 crossref_primary_10_3390_rs8060506 crossref_primary_10_1016_j_ress_2017_09_002 crossref_primary_10_3390_en15051685 crossref_primary_10_1016_j_ijpe_2014_02_008 crossref_primary_10_1016_j_eswa_2024_123682 crossref_primary_10_1109_JIOT_2021_3051414 |
| Cites_doi | 10.1016/0360-8352(93)90010-U 10.1016/0360-8352(91)90097-P 10.2307/2348446 10.1016/S0360-8352(96)00310-5 10.1016/S0360-8352(01)00031-6 10.1016/S0893-6080(96)00072-X 10.2307/1391421 10.1080/00207549608905024 10.1080/02664769723657 10.1207/s15516709cog1402_1 10.1080/0020754032000123614 10.1016/j.engappai.2003.11.005 10.1080/0020754021000042409 10.2307/1269191 10.1080/00207540110071750 10.1080/00207540512331311822 10.1080/00224065.1991.11979324 10.1016/S0925-2312(97)00161-6 10.1080/00207729608929207 10.2307/1270950 10.1080/00207540410001715706 10.2307/1271390 10.1023/A:1008818817588 10.1080/00207720120528 10.1080/07408179808966453 10.1023/B:JIMS.0000037713.74607.00 10.1016/S0893-6080(00)00081-2 10.1080/002075499190987 10.1016/S0360-8352(99)00004-2 |
| ContentType | Journal Article |
| Copyright | 2007 Elsevier Ltd Copyright Pergamon Press Inc. May 2007 |
| Copyright_xml | – notice: 2007 Elsevier Ltd – notice: Copyright Pergamon Press Inc. May 2007 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.cie.2007.03.003 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-0550 |
| EndPage | 520 |
| ExternalDocumentID | 1273132341 10_1016_j_cie_2007_03_003 S0360835207000587 |
| Genre | Feature |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO ABAOU ABDPE ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACRPL ADBBV ADEZE ADGUI ADMUD ADNMO ADRHT ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSH SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD 7SC 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c355t-35650a0a0a93559e768f46c1ecc5a87f4f861b15e0e48318f6b512171128f5163 |
| IEDL.DBID | AIKHN |
| ISSN | 0360-8352 |
| IngestDate | Thu Oct 02 05:57:57 EDT 2025 Sun Jul 13 03:31:39 EDT 2025 Thu Apr 24 23:00:51 EDT 2025 Wed Oct 01 00:49:22 EDT 2025 Sun Apr 06 06:54:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Quality monitoring ARMA models Manufacturing Recurrent neural network |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c355t-35650a0a0a93559e768f46c1ecc5a87f4f861b15e0e48318f6b512171128f5163 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 213748326 |
| PQPubID | 9545 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_29913699 proquest_journals_213748326 crossref_citationtrail_10_1016_j_cie_2007_03_003 crossref_primary_10_1016_j_cie_2007_03_003 elsevier_sciencedirect_doi_10_1016_j_cie_2007_03_003 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2007-05-01 |
| PublicationDateYYYYMMDD | 2007-05-01 |
| PublicationDate_xml | – month: 05 year: 2007 text: 2007-05-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Computers & industrial engineering |
| PublicationYear | 2007 |
| Publisher | Elsevier Ltd Pergamon Press Inc |
| Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
| References | Hwarng (bib19) 2005; 43 Stone, Taylor (bib28) 1995; 44 Cook, Chiu (bib11) 1998; 30 Alwan, Roberts (bib2) 1988; 6 Barghash, Santarisi (bib4) 2004; 15 Cheng, Cheng (bib8) 2001; 40 Tsoi, Back (bib29) 1997; 15 Zorriassantine, Tannock (bib33) 1998; 9 Chiu, Chen, Lee (bib9) 2001; 32 Alwan, Roberts (bib3) 1995; 44 Cohen, Saad, Marom (bib10) 1997; 10 Haykin (bib16) 1994 Cook, Zobel, Nottingham (bib12) 2001; 39 Zhang (bib32) 1998; 40 Elman (bib13) 1990; 14 Wardell, Moskowitz, Plante (bib30) 1994; 36 Pacella, Semeraro, Anglani (bib23) 2004; 17 Pugh (bib26) 1991; 21 Chang, Aw (bib7) 1996; 34 Al-Ghanim (bib1) 1997; 32 Box, Jenkins, Reinsel (bib6) 1994 Blanco, Delgado, Pegalajar (bib5) 2001; 14 Guh, Hsieh (bib14) 1999; 36 Hwarng, Hubele (bib17) 1993; 24 Montgomery (bib22) 2000 Pacella, Semeraro, Anglani (bib24) 2004; 40 Zhang (bib31) 1997; 24 Jiang, Tsui, Woodall (bib21) 2000; 42 Jang, Yang, Kang (bib20) 2003; 41 Hwarng (bib18) 2004; 42 Ryan (bib27) 1991; 23 Pham, Liu (bib25) 1996; 27 Guh, Tannock (bib15) 1999; 37 Haykin (10.1016/j.cie.2007.03.003_bib16) 1994 Cook (10.1016/j.cie.2007.03.003_bib11) 1998; 30 Guh (10.1016/j.cie.2007.03.003_bib14) 1999; 36 Pham (10.1016/j.cie.2007.03.003_bib25) 1996; 27 Cohen (10.1016/j.cie.2007.03.003_bib10) 1997; 10 Chang (10.1016/j.cie.2007.03.003_bib7) 1996; 34 Alwan (10.1016/j.cie.2007.03.003_bib3) 1995; 44 Hwarng (10.1016/j.cie.2007.03.003_bib17) 1993; 24 Zhang (10.1016/j.cie.2007.03.003_bib32) 1998; 40 Cheng (10.1016/j.cie.2007.03.003_bib8) 2001; 40 Hwarng (10.1016/j.cie.2007.03.003_bib19) 2005; 43 Barghash (10.1016/j.cie.2007.03.003_bib4) 2004; 15 Jang (10.1016/j.cie.2007.03.003_bib20) 2003; 41 Ryan (10.1016/j.cie.2007.03.003_bib27) 1991; 23 Pugh (10.1016/j.cie.2007.03.003_bib26) 1991; 21 Jiang (10.1016/j.cie.2007.03.003_bib21) 2000; 42 Zhang (10.1016/j.cie.2007.03.003_bib31) 1997; 24 Blanco (10.1016/j.cie.2007.03.003_bib5) 2001; 14 Montgomery (10.1016/j.cie.2007.03.003_bib22) 2000 Stone (10.1016/j.cie.2007.03.003_bib28) 1995; 44 Box (10.1016/j.cie.2007.03.003_bib6) 1994 Chiu (10.1016/j.cie.2007.03.003_bib9) 2001; 32 Hwarng (10.1016/j.cie.2007.03.003_bib18) 2004; 42 Cook (10.1016/j.cie.2007.03.003_bib12) 2001; 39 Guh (10.1016/j.cie.2007.03.003_bib15) 1999; 37 Tsoi (10.1016/j.cie.2007.03.003_bib29) 1997; 15 Zorriassantine (10.1016/j.cie.2007.03.003_bib33) 1998; 9 Wardell (10.1016/j.cie.2007.03.003_bib30) 1994; 36 Al-Ghanim (10.1016/j.cie.2007.03.003_bib1) 1997; 32 Pacella (10.1016/j.cie.2007.03.003_bib23) 2004; 17 Alwan (10.1016/j.cie.2007.03.003_bib2) 1988; 6 Elman (10.1016/j.cie.2007.03.003_bib13) 1990; 14 Pacella (10.1016/j.cie.2007.03.003_bib24) 2004; 40 |
| References_xml | – volume: 30 start-page: 227 year: 1998 end-page: 234 ident: bib11 article-title: Using radial basis function neural networks to recognize shifts in correlated manufacturing process parameters publication-title: IIE Transactions – volume: 44 start-page: 227 year: 1995 end-page: 234 ident: bib28 article-title: Time series models in statistical process control: considerations of applicability publication-title: The Statistician – volume: 40 start-page: 309 year: 2001 end-page: 321 ident: bib8 article-title: A neural network-based procedure for the monitoring of exponential mean publication-title: Computers & Industrial Engineering – volume: 27 start-page: 221 year: 1996 end-page: 226 ident: bib25 article-title: Training of Elman networks and dynamic system modelling publication-title: International Journal of Systems Science – volume: 10 start-page: 51 year: 1997 end-page: 59 ident: bib10 article-title: Efficient training of recurrent neural networks with time delays publication-title: Neural Networks – volume: 14 start-page: 179 year: 1990 end-page: 211 ident: bib13 article-title: Finding structure in time publication-title: Cognitive Science – volume: 39 start-page: 3881 year: 2001 end-page: 3887 ident: bib12 article-title: Utilization of neural networks for the recognition of variance shifts in correlated manufacturing process parameters publication-title: International Journal of Production Research – volume: 34 start-page: 2265 year: 1996 end-page: 2278 ident: bib7 article-title: A neural fuzzy control chart for detecting and classifying process mean shifts publication-title: International Journal of Production Research – volume: 24 start-page: 219 year: 1993 end-page: 235 ident: bib17 article-title: Back-propagation pattern recognizers for X control charts: methodology and performance publication-title: Computers & Industrial Engineering – volume: 21 start-page: 253 year: 1991 end-page: 255 ident: bib26 article-title: A comparison of neural networks to SPC charts publication-title: Computers & Industrial Engineering – volume: 9 start-page: 209 year: 1998 end-page: 224 ident: bib33 article-title: A review of neural networks for statistical process control publication-title: Journal of Intelligent Manufacturing – volume: 14 start-page: 93 year: 2001 end-page: 105 ident: bib5 article-title: A real-coded genetic algorithm for training recurrent neural networks publication-title: Neural Networks – volume: 24 start-page: 475 year: 1997 end-page: 492 ident: bib31 article-title: Detection capability of residual control chart for stationary process data publication-title: Journal of Applied Statistics – year: 1994 ident: bib6 article-title: Time series analysis: Forecasting and control – year: 2000 ident: bib22 article-title: Introduction to statistical quality control – volume: 40 start-page: 4581 year: 2004 end-page: 4607 ident: bib24 article-title: Adaptive resonance theory-based neural algorithms for manufacturing process quality control publication-title: International Journal of Production Research – volume: 17 start-page: 83 year: 2004 end-page: 96 ident: bib23 article-title: Manufacturing quality control by means of a Fuzzy ART network trained on natural process data publication-title: Engineering Applications of Artificial Intelligence – volume: 15 start-page: 183 year: 1997 end-page: 223 ident: bib29 article-title: Discrete time recurrent neural network architectures: A unifying review publication-title: Neurocomputing – volume: 6 start-page: 87 year: 1988 end-page: 95 ident: bib2 article-title: Time-series modeling for statistical process control publication-title: Journal of Business & Economic Statistics – volume: 40 start-page: 24 year: 1998 end-page: 38 ident: bib32 article-title: A statistical control chart for stationary process data publication-title: Technometrics – volume: 15 start-page: 635 year: 2004 end-page: 644 ident: bib4 article-title: Pattern recognition of control chart using artificial neural networks – analyzing the effect of the training parameters publication-title: Journal of Intelligent Manufacturing – volume: 37 start-page: 1743 year: 1999 end-page: 1765 ident: bib15 article-title: Recognition of control chart concurrent patterns using a neural network approach publication-title: International Journal of Production Research – volume: 42 start-page: 399 year: 2000 end-page: 410 ident: bib21 article-title: A new SPC monitoring method: the ARMA chart publication-title: Technometrics – volume: 44 start-page: 269 year: 1995 end-page: 306 ident: bib3 article-title: The problem of misplaced control limits publication-title: Journal of the Royal Statistical Society, Series C – volume: 41 start-page: 1239 year: 2003 end-page: 1254 ident: bib20 article-title: Application of artificial neural network to identify non-random variation patterns on the run chart in automotive assembly process publication-title: International Journal of Production Research – volume: 23 start-page: 200 year: 1991 end-page: 202 ident: bib27 article-title: Discussion (of “Some statistical process control methods for autocorrelated data” by D.C. Montogomery and C.M. Mastrangelo) publication-title: Journal of Quality Technology – volume: 32 start-page: 137 year: 2001 end-page: 143 ident: bib9 article-title: Shifts recognition in correlated process data using a neural network publication-title: International Journal of Systems Science – volume: 36 start-page: 97 year: 1999 end-page: 108 ident: bib14 article-title: A neural network based model for abnormal pattern recognition of control charts publication-title: Computers & Industrial Engineering – volume: 36 start-page: 3 year: 1994 end-page: 17 ident: bib30 article-title: Run-length distribution of special cause control charts of correlation processes publication-title: Technometrics – volume: 32 start-page: 627 year: 1997 end-page: 639 ident: bib1 article-title: An unsupervised learning neural algorithm for identifying process behavior on control charts and a comparison with supervised learning approaches publication-title: Computers & Industrial Engineering – year: 1994 ident: bib16 article-title: Neural networks, a comprehensive foundation – volume: 42 start-page: 573 year: 2004 end-page: 595 ident: bib18 article-title: Detecting process mean shift in the presence of autocorrelation: a neural network based monitoring scheme publication-title: International Journal of Production Research – volume: 43 start-page: 1761 year: 2005 end-page: 1783 ident: bib19 article-title: Simultaneous identification of mean shift and correlation change in AR(1) processes publication-title: International Journal of Production Research – volume: 24 start-page: 219 issue: 2 year: 1993 ident: 10.1016/j.cie.2007.03.003_bib17 article-title: Back-propagation pattern recognizers for X control charts: methodology and performance publication-title: Computers & Industrial Engineering doi: 10.1016/0360-8352(93)90010-U – year: 1994 ident: 10.1016/j.cie.2007.03.003_bib6 – volume: 21 start-page: 253 year: 1991 ident: 10.1016/j.cie.2007.03.003_bib26 article-title: A comparison of neural networks to SPC charts publication-title: Computers & Industrial Engineering doi: 10.1016/0360-8352(91)90097-P – volume: 44 start-page: 227 issue: 2 year: 1995 ident: 10.1016/j.cie.2007.03.003_bib28 article-title: Time series models in statistical process control: considerations of applicability publication-title: The Statistician doi: 10.2307/2348446 – volume: 44 start-page: 269 issue: 3 year: 1995 ident: 10.1016/j.cie.2007.03.003_bib3 article-title: The problem of misplaced control limits publication-title: Journal of the Royal Statistical Society, Series C – volume: 32 start-page: 627 year: 1997 ident: 10.1016/j.cie.2007.03.003_bib1 article-title: An unsupervised learning neural algorithm for identifying process behavior on control charts and a comparison with supervised learning approaches publication-title: Computers & Industrial Engineering doi: 10.1016/S0360-8352(96)00310-5 – volume: 40 start-page: 309 year: 2001 ident: 10.1016/j.cie.2007.03.003_bib8 article-title: A neural network-based procedure for the monitoring of exponential mean publication-title: Computers & Industrial Engineering doi: 10.1016/S0360-8352(01)00031-6 – volume: 10 start-page: 51 issue: 1 year: 1997 ident: 10.1016/j.cie.2007.03.003_bib10 article-title: Efficient training of recurrent neural networks with time delays publication-title: Neural Networks doi: 10.1016/S0893-6080(96)00072-X – volume: 6 start-page: 87 issue: 1 year: 1988 ident: 10.1016/j.cie.2007.03.003_bib2 article-title: Time-series modeling for statistical process control publication-title: Journal of Business & Economic Statistics doi: 10.2307/1391421 – volume: 34 start-page: 2265 issue: 8 year: 1996 ident: 10.1016/j.cie.2007.03.003_bib7 article-title: A neural fuzzy control chart for detecting and classifying process mean shifts publication-title: International Journal of Production Research doi: 10.1080/00207549608905024 – volume: 24 start-page: 475 issue: 4 year: 1997 ident: 10.1016/j.cie.2007.03.003_bib31 article-title: Detection capability of residual control chart for stationary process data publication-title: Journal of Applied Statistics doi: 10.1080/02664769723657 – volume: 14 start-page: 179 year: 1990 ident: 10.1016/j.cie.2007.03.003_bib13 article-title: Finding structure in time publication-title: Cognitive Science doi: 10.1207/s15516709cog1402_1 – volume: 42 start-page: 573 issue: 3 year: 2004 ident: 10.1016/j.cie.2007.03.003_bib18 article-title: Detecting process mean shift in the presence of autocorrelation: a neural network based monitoring scheme publication-title: International Journal of Production Research doi: 10.1080/0020754032000123614 – volume: 17 start-page: 83 issue: 1 year: 2004 ident: 10.1016/j.cie.2007.03.003_bib23 article-title: Manufacturing quality control by means of a Fuzzy ART network trained on natural process data publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2003.11.005 – volume: 41 start-page: 1239 issue: 6 year: 2003 ident: 10.1016/j.cie.2007.03.003_bib20 article-title: Application of artificial neural network to identify non-random variation patterns on the run chart in automotive assembly process publication-title: International Journal of Production Research doi: 10.1080/0020754021000042409 – volume: 36 start-page: 3 issue: 1 year: 1994 ident: 10.1016/j.cie.2007.03.003_bib30 article-title: Run-length distribution of special cause control charts of correlation processes publication-title: Technometrics doi: 10.2307/1269191 – volume: 39 start-page: 3881 issue: 17 year: 2001 ident: 10.1016/j.cie.2007.03.003_bib12 article-title: Utilization of neural networks for the recognition of variance shifts in correlated manufacturing process parameters publication-title: International Journal of Production Research doi: 10.1080/00207540110071750 – year: 1994 ident: 10.1016/j.cie.2007.03.003_bib16 – volume: 43 start-page: 1761 issue: 9 year: 2005 ident: 10.1016/j.cie.2007.03.003_bib19 article-title: Simultaneous identification of mean shift and correlation change in AR(1) processes publication-title: International Journal of Production Research doi: 10.1080/00207540512331311822 – volume: 23 start-page: 200 issue: 3 year: 1991 ident: 10.1016/j.cie.2007.03.003_bib27 article-title: Discussion (of “Some statistical process control methods for autocorrelated data” by D.C. Montogomery and C.M. Mastrangelo) publication-title: Journal of Quality Technology doi: 10.1080/00224065.1991.11979324 – volume: 15 start-page: 183 year: 1997 ident: 10.1016/j.cie.2007.03.003_bib29 article-title: Discrete time recurrent neural network architectures: A unifying review publication-title: Neurocomputing doi: 10.1016/S0925-2312(97)00161-6 – volume: 27 start-page: 221 issue: 2 year: 1996 ident: 10.1016/j.cie.2007.03.003_bib25 article-title: Training of Elman networks and dynamic system modelling publication-title: International Journal of Systems Science doi: 10.1080/00207729608929207 – volume: 42 start-page: 399 issue: 4 year: 2000 ident: 10.1016/j.cie.2007.03.003_bib21 article-title: A new SPC monitoring method: the ARMA chart publication-title: Technometrics doi: 10.2307/1270950 – volume: 40 start-page: 4581 issue: 21 year: 2004 ident: 10.1016/j.cie.2007.03.003_bib24 article-title: Adaptive resonance theory-based neural algorithms for manufacturing process quality control publication-title: International Journal of Production Research doi: 10.1080/00207540410001715706 – volume: 40 start-page: 24 issue: 1 year: 1998 ident: 10.1016/j.cie.2007.03.003_bib32 article-title: A statistical control chart for stationary process data publication-title: Technometrics doi: 10.2307/1271390 – volume: 9 start-page: 209 year: 1998 ident: 10.1016/j.cie.2007.03.003_bib33 article-title: A review of neural networks for statistical process control publication-title: Journal of Intelligent Manufacturing doi: 10.1023/A:1008818817588 – volume: 32 start-page: 137 issue: 2 year: 2001 ident: 10.1016/j.cie.2007.03.003_bib9 article-title: Shifts recognition in correlated process data using a neural network publication-title: International Journal of Systems Science doi: 10.1080/00207720120528 – volume: 30 start-page: 227 year: 1998 ident: 10.1016/j.cie.2007.03.003_bib11 article-title: Using radial basis function neural networks to recognize shifts in correlated manufacturing process parameters publication-title: IIE Transactions doi: 10.1080/07408179808966453 – volume: 15 start-page: 635 year: 2004 ident: 10.1016/j.cie.2007.03.003_bib4 article-title: Pattern recognition of control chart using artificial neural networks – analyzing the effect of the training parameters publication-title: Journal of Intelligent Manufacturing doi: 10.1023/B:JIMS.0000037713.74607.00 – volume: 14 start-page: 93 year: 2001 ident: 10.1016/j.cie.2007.03.003_bib5 article-title: A real-coded genetic algorithm for training recurrent neural networks publication-title: Neural Networks doi: 10.1016/S0893-6080(00)00081-2 – year: 2000 ident: 10.1016/j.cie.2007.03.003_bib22 – volume: 37 start-page: 1743 year: 1999 ident: 10.1016/j.cie.2007.03.003_bib15 article-title: Recognition of control chart concurrent patterns using a neural network approach publication-title: International Journal of Production Research doi: 10.1080/002075499190987 – volume: 36 start-page: 97 year: 1999 ident: 10.1016/j.cie.2007.03.003_bib14 article-title: A neural network based model for abnormal pattern recognition of control charts publication-title: Computers & Industrial Engineering doi: 10.1016/S0360-8352(99)00004-2 |
| SSID | ssj0004591 |
| Score | 2.0558143 |
| Snippet | With the growing of automation in manufacturing, process quality characteristics are being measured at higher rates and data are more likely to be... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 502 |
| SubjectTerms | ARMA models Comparative analysis Manufacturing Neural networks Quality control Quality monitoring Recurrent neural network Simulation Studies Time series |
| Title | Using recurrent neural networks to detect changes in autocorrelated processes for quality monitoring |
| URI | https://dx.doi.org/10.1016/j.cie.2007.03.003 https://www.proquest.com/docview/213748326 https://www.proquest.com/docview/29913699 |
| Volume | 52 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AKRWK dateStart: 19770101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71scDAo4AoheKBCSk0zjtjVVEVEF2gUreoSWypqKRVkw4s_HbuYgcVJDqgbH5Gftx9tu--A7hJfIkLhTuGTB3bQH3NjTB1LSMUaZy4EjVkQN7Iz2NvNHEep-60BoPKF4bMKrXsVzK9lNY6padHs7eaz3svKHtL_ICLloLj-XVoov4JggY0-w9Po_EWabgKnIflDapQPW6WZl7YsiYyJKpT-y_19EtQl9pneAQHGjayvvqzY6iJrAWHGkIyvUHzFuxv8QueQFoaBLA13akTCxMj9kpsJlO23zkrliwV9IzAlANwzuYZm22KZUJBOxaIQ1O2Uq4EmIf4liknzA_2XsoC6uYUJsP718HI0GEVjATBRWHYiOHMGX3ErR4KPHBIx0s4TqY7C3zpyMDjMXeFKRycxkB6MaIC7iMyC6SL-O0MGtkyE-fAEss3Q-FJbqemk-Jp1_NR3QlyuI1D6VttMKvRjBLNOU6hLxZRZVz2humCYmH6kWkTUWkbbr-rrBThxq7CTjVF0Y9VE6FC2FWtU01npLdsHlmcmHgQzbbh-jsX9xo9oMwysdxgEQTTtheGF__rtgN76maYzCUvoVGsN-IKIU0Rd6F-98m7euF-ASgu9H4 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBRwFRysMDE1JonDhxMiIEKo92AaRuUZPYUlFJqzYdWPjt3MVOBUgwoGx-Rn7cfbbvvgM4z6TGhcKFo3PhO6ivuRPngefEKk-zQKOGjMgbudcPuy_ifhAMVuC69oUhs0or-41Mr6S1TenY0exMR6POE8reCj_goqXgeHIV1kTgSTqBXX7wL5ThJmwelnaoeP20WRl5YbuWxpCITv3flNMPMV3pntsd2LKgkV2Z_9qFFVU0YdsCSGa357wJm1_YBfcgr8wB2Ixu1ImDiRF3JTZTGMvvOSsnLFf0iMCM---cjQo2XJSTjEJ2jBGF5mxqHAkwD9EtMy6Y7-ytkgTUzT683N48X3cdG1TByRBalI6PCM4d0kfM6rHC44YWYcZxKoNhJLXQUchTHihXCZzESIcpYgIuEZdFOkD0dgCNYlKoQ2CZJ91YhZr7uStyPOuGEpWdInfbNNbSa4Fbj2aSWcZxCnwxTmrTsldMVxQJUyauTzSlLbhYVpkauo2_Cot6ipJvayZBdfBXtXY9nYndsPPE48TDg1i2BWfLXNxp9HwyLNRkgUUQSvthHB_9r9szWO8-9x6Tx7v-Qxs2zB0xGU4eQ6OcLdQJgpsyPa0W7ycvlvVG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+recurrent+neural+networks+to+detect+changes+in+autocorrelated+processes+for+quality+monitoring&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Pacella%2C+Massimo&rft.au=Semeraro%2C+Quirico&rft.date=2007-05-01&rft.issn=0360-8352&rft.volume=52&rft.issue=4&rft.spage=502&rft.epage=520&rft_id=info:doi/10.1016%2Fj.cie.2007.03.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2007_03_003 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |