Multimodal convolutional neural network–based algorithm for real-time detection and differentiation of malignant and inflammatory biliary strictures in cholangioscopy: a proof-of-concept study (with video)

Deep learning algorithms gained attention for detection (computer-aided detection [CADe]) of biliary tract cancer in digital single-operator cholangioscopy (dSOC). We developed a multimodal convolutional neural network (CNN) for detection (CADe), characterization and discriminating (computer-aided d...

Full description

Saved in:
Bibliographic Details
Published inGastrointestinal endoscopy Vol. 101; no. 4; pp. 830 - 842.e2
Main Authors Ziegler, Joceline, Dobsch, Philipp, Rozema, Marten, Zuber-Jerger, Ina, Weigand, Kilian, Reuther, Stefan, Müller, Martina, Kandulski, Arne
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2025
Subjects
Online AccessGet full text
ISSN0016-5107
1097-6779
1097-6779
DOI10.1016/j.gie.2024.09.001

Cover

Abstract Deep learning algorithms gained attention for detection (computer-aided detection [CADe]) of biliary tract cancer in digital single-operator cholangioscopy (dSOC). We developed a multimodal convolutional neural network (CNN) for detection (CADe), characterization and discriminating (computer-aided diagnosis [CADx]) between malignant, inflammatory, and normal biliary tissue in raw dSOC videos. In addition, clinical metadata were included in the CNN algorithm to overcome limitations of image-only models. Based on dSOC videos and images of 111 patients (total of 15,158 still frames), a real-time CNN-based algorithm for CADe and CADx was developed and validated. We established an image-only model and metadata injection approach. In addition, frame-wise and case-based predictions on complete dSOC video sequences were validated. Model embeddings were visualized, and class activation maps highlighted relevant image regions. The concatenation-based CADx approach achieved a per-frame area under the receiver-operating characteristic curve of .871, sensitivity of .809 (95% CI, .784-.832), specificity of .773 (95% CI, .761-.785), positive predictive value of .450 (95% CI, .423-.467), and negative predictive value of .946 (95% CI, .940-.954) with respect to malignancy on 5715 test frames from complete videos of 20 patients. For case-based diagnosis using average prediction scores, 6 of 8 malignant cases and all 12 benign cases were identified correctly. Our algorithm distinguishes malignant and inflammatory bile duct lesions in dSOC videos, indicating the potential of CNN-based diagnostic support systems for both CADe and CADx. The integration of non-image data can improve CNN-based support systems, targeting current challenges in the assessment of biliary strictures. [Display omitted]
AbstractList Deep learning algorithms gained attention for detection (computer-aided detection [CADe]) of biliary tract cancer in digital single-operator cholangioscopy (dSOC). We developed a multimodal convolutional neural network (CNN) for detection (CADe), characterization and discriminating (computer-aided diagnosis [CADx]) between malignant, inflammatory, and normal biliary tissue in raw dSOC videos. In addition, clinical metadata were included in the CNN algorithm to overcome limitations of image-only models.BACKGROUND AND AIMSDeep learning algorithms gained attention for detection (computer-aided detection [CADe]) of biliary tract cancer in digital single-operator cholangioscopy (dSOC). We developed a multimodal convolutional neural network (CNN) for detection (CADe), characterization and discriminating (computer-aided diagnosis [CADx]) between malignant, inflammatory, and normal biliary tissue in raw dSOC videos. In addition, clinical metadata were included in the CNN algorithm to overcome limitations of image-only models.Based on dSOC videos and images of 111 patients (total of 15,158 still frames), a real-time CNN-based algorithm for CADe and CADx was developed and validated. We established an image-only model and metadata injection approach. In addition, frame-wise and case-based predictions on complete dSOC video sequences were validated. Model embeddings were visualized, and class activation maps highlighted relevant image regions.METHODSBased on dSOC videos and images of 111 patients (total of 15,158 still frames), a real-time CNN-based algorithm for CADe and CADx was developed and validated. We established an image-only model and metadata injection approach. In addition, frame-wise and case-based predictions on complete dSOC video sequences were validated. Model embeddings were visualized, and class activation maps highlighted relevant image regions.The concatenation-based CADx approach achieved a per-frame area under the receiver-operating characteristic curve of .871, sensitivity of .809 (95% CI, .784-.832), specificity of .773 (95% CI, .761-.785), positive predictive value of .450 (95% CI, .423-.467), and negative predictive value of .946 (95% CI, .940-.954) with respect to malignancy on 5715 test frames from complete videos of 20 patients. For case-based diagnosis using average prediction scores, 6 of 8 malignant cases and all 12 benign cases were identified correctly.RESULTSThe concatenation-based CADx approach achieved a per-frame area under the receiver-operating characteristic curve of .871, sensitivity of .809 (95% CI, .784-.832), specificity of .773 (95% CI, .761-.785), positive predictive value of .450 (95% CI, .423-.467), and negative predictive value of .946 (95% CI, .940-.954) with respect to malignancy on 5715 test frames from complete videos of 20 patients. For case-based diagnosis using average prediction scores, 6 of 8 malignant cases and all 12 benign cases were identified correctly.Our algorithm distinguishes malignant and inflammatory bile duct lesions in dSOC videos, indicating the potential of CNN-based diagnostic support systems for both CADe and CADx. The integration of non-image data can improve CNN-based support systems, targeting current challenges in the assessment of biliary strictures.CONCLUSIONSOur algorithm distinguishes malignant and inflammatory bile duct lesions in dSOC videos, indicating the potential of CNN-based diagnostic support systems for both CADe and CADx. The integration of non-image data can improve CNN-based support systems, targeting current challenges in the assessment of biliary strictures.
Deep learning algorithms gained attention for detection (computer-aided detection [CADe]) of biliary tract cancer in digital single-operator cholangioscopy (dSOC). We developed a multimodal convolutional neural network (CNN) for detection (CADe), characterization and discriminating (computer-aided diagnosis [CADx]) between malignant, inflammatory, and normal biliary tissue in raw dSOC videos. In addition, clinical metadata were included in the CNN algorithm to overcome limitations of image-only models. Based on dSOC videos and images of 111 patients (total of 15,158 still frames), a real-time CNN-based algorithm for CADe and CADx was developed and validated. We established an image-only model and metadata injection approach. In addition, frame-wise and case-based predictions on complete dSOC video sequences were validated. Model embeddings were visualized, and class activation maps highlighted relevant image regions. The concatenation-based CADx approach achieved a per-frame area under the receiver-operating characteristic curve of .871, sensitivity of .809 (95% CI, .784-.832), specificity of .773 (95% CI, .761-.785), positive predictive value of .450 (95% CI, .423-.467), and negative predictive value of .946 (95% CI, .940-.954) with respect to malignancy on 5715 test frames from complete videos of 20 patients. For case-based diagnosis using average prediction scores, 6 of 8 malignant cases and all 12 benign cases were identified correctly. Our algorithm distinguishes malignant and inflammatory bile duct lesions in dSOC videos, indicating the potential of CNN-based diagnostic support systems for both CADe and CADx. The integration of non-image data can improve CNN-based support systems, targeting current challenges in the assessment of biliary strictures.
Deep learning algorithms gained attention for detection (computer-aided detection [CADe]) of biliary tract cancer in digital single-operator cholangioscopy (dSOC). We developed a multimodal convolutional neural network (CNN) for detection (CADe), characterization and discriminating (computer-aided diagnosis [CADx]) between malignant, inflammatory, and normal biliary tissue in raw dSOC videos. In addition, clinical metadata were included in the CNN algorithm to overcome limitations of image-only models. Based on dSOC videos and images of 111 patients (total of 15,158 still frames), a real-time CNN-based algorithm for CADe and CADx was developed and validated. We established an image-only model and metadata injection approach. In addition, frame-wise and case-based predictions on complete dSOC video sequences were validated. Model embeddings were visualized, and class activation maps highlighted relevant image regions. The concatenation-based CADx approach achieved a per-frame area under the receiver-operating characteristic curve of .871, sensitivity of .809 (95% CI, .784-.832), specificity of .773 (95% CI, .761-.785), positive predictive value of .450 (95% CI, .423-.467), and negative predictive value of .946 (95% CI, .940-.954) with respect to malignancy on 5715 test frames from complete videos of 20 patients. For case-based diagnosis using average prediction scores, 6 of 8 malignant cases and all 12 benign cases were identified correctly. Our algorithm distinguishes malignant and inflammatory bile duct lesions in dSOC videos, indicating the potential of CNN-based diagnostic support systems for both CADe and CADx. The integration of non-image data can improve CNN-based support systems, targeting current challenges in the assessment of biliary strictures. [Display omitted]
Author Ziegler, Joceline
Rozema, Marten
Reuther, Stefan
Müller, Martina
Dobsch, Philipp
Zuber-Jerger, Ina
Weigand, Kilian
Kandulski, Arne
Author_xml – sequence: 1
  givenname: Joceline
  surname: Ziegler
  fullname: Ziegler, Joceline
  organization: Unetiq GmbH, München, Germany
– sequence: 2
  givenname: Philipp
  surname: Dobsch
  fullname: Dobsch, Philipp
  organization: Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
– sequence: 3
  givenname: Marten
  surname: Rozema
  fullname: Rozema, Marten
  organization: Unetiq GmbH, München, Germany
– sequence: 4
  givenname: Ina
  surname: Zuber-Jerger
  fullname: Zuber-Jerger, Ina
  organization: Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
– sequence: 5
  givenname: Kilian
  surname: Weigand
  fullname: Weigand, Kilian
  organization: Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
– sequence: 6
  givenname: Stefan
  surname: Reuther
  fullname: Reuther, Stefan
  organization: Unetiq GmbH, München, Germany
– sequence: 7
  givenname: Martina
  surname: Müller
  fullname: Müller, Martina
  organization: Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
– sequence: 8
  givenname: Arne
  surname: Kandulski
  fullname: Kandulski, Arne
  email: Arne.Kandulski@ukr.de
  organization: Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39265745$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFuVCEUhm9MjZ1WH8CNYVkXd4TLcBl0ZRqtJjVudE24cJgy5cII3Glm5zv4YL6DT1JmprpwoYHkhMP_kf_wnzUnIQZomucEzwkm_av1fOVg3uFuMcdijjF51MwIFrztORcnzax2-pYRzE-bs5zXGONlR8mT5pSKrmd8wWbNz0-TL26MRnmkY9hGPxUXQz0FmNKhlLuYbn99_zGoDAYpv4rJlZsR2ZhQAuXbygMyUEDvUaSCQcZZCwlCcerQixaNyrtVUKEcBC5Yr8ZRlZh2aHDeqVpzSU6XKUGu90jfRK_CysWs42b3Gim0STHatu7qVMOmVGAyO3RxV_2grTMQXz5tHlvlMzx7qOfN1_fvvlx-aK8_X328fHvdaspYaelC0E6ZgXKGVV0DIVYAN5ZwrviSDoT13GrRMTEQu-D9gDUdNGFCUbakgp43F8d3q6dvE-QiR5c1-OoY4pQlJXiB6zczUqUvHqTTMIKRm-TGOq38HUIVkKNAp5hzAvtHQrDcBy3XsgYt90FLLGSNtTJvjgzUIbcOkszaQf0V41LNQZro_kmLv2jtXXBa-VvY_Ye9B5A6ybk
Cites_doi 10.1016/S0140-6736(21)00153-7
10.1055/a-2034-3803
10.1055/a-1723-3369
10.1016/j.compbiomed.2021.104519
10.1007/s00464-021-08331-2
10.2147/JMDH.S306284
10.14309/ctg.0000000000000418
10.1007/s00464-020-08141-y
10.1016/j.media.2021.102307
10.1016/j.gie.2019.08.018
10.1109/JBHI.2016.2635662
10.1016/j.gie.2022.08.021
10.1016/j.gie.2019.11.025
10.1136/gutjnl-2018-317500
10.1016/j.gie.2021.06.027
10.1038/s41575-020-0310-z
10.1016/j.gie.2021.08.027
10.1136/gutjnl-2017-314547
10.14309/01.ajg.0000771984.13549.fa
10.1136/bmjopen-2020-048008
10.1038/s41551-018-0301-3
10.1016/j.gie.2015.08.004
10.1109/JBHI.2019.2907434
10.1007/s10120-018-0793-2
ContentType Journal Article
Copyright 2025 American Society for Gastrointestinal Endoscopy
Copyright © 2025 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
Copyright © 2024 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2025 American Society for Gastrointestinal Endoscopy
– notice: Copyright © 2025 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
– notice: Copyright © 2024 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.gie.2024.09.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-6779
EndPage 842.e2
ExternalDocumentID 39265745
10_1016_j_gie_2024_09_001
S0016510724034795
Genre Video-Audio Media
Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FD8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LZ1
M28
M41
MO0
N4W
N9A
O-L
O9-
OAUVE
OC.
ON0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SEL
SES
SEW
SJN
SPCBC
SSH
SSZ
T5K
UNMZH
UV1
WH7
WOW
X7M
Z5R
ZGI
ZXP
~G-
~HD
6I.
AAFTH
AFCTW
AGCQF
AGRNS
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c355t-34932adb3750a0a0b11f9e7df177a783b1567fc9259b1f476b0c3bc159a358393
IEDL.DBID .~1
ISSN 0016-5107
1097-6779
IngestDate Sat Sep 27 22:17:27 EDT 2025
Mon Jul 21 05:55:33 EDT 2025
Wed Oct 01 06:03:56 EDT 2025
Sat Jun 21 16:51:56 EDT 2025
Tue Oct 14 19:39:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords BTC
CADe
UMAP
PSC
CNN
NPV
PPV
DL
CADx
dSOC
AUC
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2025 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-34932adb3750a0a0b11f9e7df177a783b1567fc9259b1f476b0c3bc159a358393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0016510724034795
PMID 39265745
PQID 3104039251
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3104039251
pubmed_primary_39265745
crossref_primary_10_1016_j_gie_2024_09_001
elsevier_sciencedirect_doi_10_1016_j_gie_2024_09_001
elsevier_clinicalkey_doi_10_1016_j_gie_2024_09_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Gastrointestinal endoscopy
PublicationTitleAlternate Gastrointest Endosc
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Calderisi, Galatolo, Ceppa (bib20) 2019
Byrne, Chapados, Soudan (bib7) 2019; 68
Collins, Dhiman, Andaur Navarro (bib15) 2021; 11
Ogawa, Kanno, Koshita (bib1) 2021; 35
Wang, Xiao, Glissen Brown (bib30) 2018; 2
Wang, Berzin, Brown (bib10) 2019; 68
Pereira, Mascarenhas, Ribeiro (bib27) 2022; 10
Ribeiro, Saraiva, Afonso (bib29) 2021; 12
Subhash, Abadir, Iskander (bib6) 2021; 17
Robles-Medranda, Baquerizo-Burgos, Alcívar-Vásquez (bib13) 2023; 55
Jheng, Wang, Lin (bib18) 2022; 36
Saraiva, Ribeiro, Ferreira (bib14) 2022; 95
Hirasawa, Aoyama, Tanimoto (bib9) 2018; 21
Zhang, Zheng, Mak (bib8) 2017; 21
Kominami, Yoshida, Tanaka (bib11) 2016; 83
Marya, Powers, Petersen (bib12) 2023; 97
McInnes, Healy, Melville (bib25) 2020
Stassen, Goodchild, de Jonge (bib5) 2021; 94
Ningrum, Yuan, Kung (bib21) 2021; 14
Li, Zhuang, Wang (bib24) 2020
Thomas (bib22) 2021; 2021
Ghandour, Hsieh, Akshintala (bib28) 2021; 116
Guo, Xiao, Wu (bib31) 2020; 91
Valle, Kelley, Nervi (bib2) 2021; 397
He, Zhang, Ren (bib19)
Tang, Yan, Nan (bib23) 2022; 76
Qadir, Balasingham, Solhusvik (bib17) 2020; 24
Banales, Marin, Lamarca (bib3) 2020; 17
Gerges, Beyna, Tang (bib4) 2020; 91
Pacal, Karaboga (bib16) 2021; 134
Chattopadhyay, Sarkar, Howlader (bib26) 2018
Valle (10.1016/j.gie.2024.09.001_bib2) 2021; 397
Stassen (10.1016/j.gie.2024.09.001_bib5) 2021; 94
McInnes (10.1016/j.gie.2024.09.001_bib25) 2020
Qadir (10.1016/j.gie.2024.09.001_bib17) 2020; 24
Pereira (10.1016/j.gie.2024.09.001_bib27) 2022; 10
Ribeiro (10.1016/j.gie.2024.09.001_bib29) 2021; 12
Zhang (10.1016/j.gie.2024.09.001_bib8) 2017; 21
Thomas (10.1016/j.gie.2024.09.001_bib22) 2021; 2021
Ningrum (10.1016/j.gie.2024.09.001_bib21) 2021; 14
Robles-Medranda (10.1016/j.gie.2024.09.001_bib13) 2023; 55
Chattopadhyay (10.1016/j.gie.2024.09.001_bib26) 2018
Collins (10.1016/j.gie.2024.09.001_bib15) 2021; 11
Ghandour (10.1016/j.gie.2024.09.001_bib28) 2021; 116
Ogawa (10.1016/j.gie.2024.09.001_bib1) 2021; 35
Byrne (10.1016/j.gie.2024.09.001_bib7) 2019; 68
Calderisi (10.1016/j.gie.2024.09.001_bib20) 2019
Saraiva (10.1016/j.gie.2024.09.001_bib14) 2022; 95
Jheng (10.1016/j.gie.2024.09.001_bib18) 2022; 36
Wang (10.1016/j.gie.2024.09.001_bib10) 2019; 68
Subhash (10.1016/j.gie.2024.09.001_bib6) 2021; 17
Banales (10.1016/j.gie.2024.09.001_bib3) 2020; 17
Marya (10.1016/j.gie.2024.09.001_bib12) 2023; 97
He (10.1016/j.gie.2024.09.001_bib19)
Gerges (10.1016/j.gie.2024.09.001_bib4) 2020; 91
Pacal (10.1016/j.gie.2024.09.001_bib16) 2021; 134
Kominami (10.1016/j.gie.2024.09.001_bib11) 2016; 83
Guo (10.1016/j.gie.2024.09.001_bib31) 2020; 91
Tang (10.1016/j.gie.2024.09.001_bib23) 2022; 76
Li (10.1016/j.gie.2024.09.001_bib24) 2020
Hirasawa (10.1016/j.gie.2024.09.001_bib9) 2018; 21
Wang (10.1016/j.gie.2024.09.001_bib30) 2018; 2
References_xml – volume: 17
  start-page: 110
  year: 2021
  end-page: 120
  ident: bib6
  article-title: applications, limitations, and expansion of cholangioscopy in clinical practice
  publication-title: Gastroenterol Hepatol
– volume: 2021
  start-page: 2660
  year: 2021
  end-page: 2663
  ident: bib22
  article-title: Combining image features and patient metadata to enhance transfer learning
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
– volume: 10
  start-page: E262
  year: 2022
  end-page: E268
  ident: bib27
  article-title: Automatic detection of tumor vessels in indeterminate biliary strictures in digital single-operator cholangioscopy
  publication-title: Endosc Int Open
– volume: 97
  start-page: 268
  year: 2023
  end-page: 278
  ident: bib12
  article-title: Identification of patients with malignant biliary strictures using a cholangioscopy-based deep learning artificial intelligence (with video)
  publication-title: Gastrointest Endosc
– volume: 76
  year: 2022
  ident: bib23
  article-title: FusionM4Net: a multi-stage multi-modal learning algorithm for multi-label skin lesion classification
  publication-title: Med Image Anal
– volume: 17
  start-page: 557
  year: 2020
  end-page: 588
  ident: bib3
  article-title: Cholangiocarcinoma 2020: the next horizon in mechanisms and management
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 55
  start-page: 719
  year: 2023
  end-page: 727
  ident: bib13
  article-title: Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicentric validation of a convolutional neural network model
  publication-title: Endoscopy
– volume: 35
  start-page: 6481
  year: 2021
  end-page: 6488
  ident: bib1
  article-title: Cholangioscopy- versus fluoroscopy-guided transpapillary mapping biopsy for preoperative evaluation of extrahepatic cholangiocarcinoma: a prospective randomized crossover study
  publication-title: Surg Endosc
– volume: 24
  start-page: 180
  year: 2020
  end-page: 193
  ident: bib17
  article-title: Improving automatic polyp detection using CNN by exploiting temporal dependency in colonoscopy video
  publication-title: IEEE J Biomed Health Inform
– volume: 397
  start-page: 428
  year: 2021
  end-page: 444
  ident: bib2
  article-title: Biliary tract cancer
  publication-title: Lancet
– volume: 36
  start-page: 640
  year: 2022
  end-page: 650
  ident: bib18
  article-title: A novel machine learning-based algorithm to identify and classify lesions and anatomical landmarks in colonoscopy images
  publication-title: Surg Endosc
– volume: 95
  start-page: 339
  year: 2022
  end-page: 348
  ident: bib14
  article-title: Artificial intelligence for automatic diagnosis of biliary stricture malignancy status in single-operator cholangioscopy: a pilot study
  publication-title: Gastrointest Endosc
– ident: bib19
  article-title: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 11
  year: 2021
  ident: bib15
  article-title: Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence
  publication-title: BMJ Open
– start-page: 223
  year: 2019
  end-page: 230
  ident: bib20
  article-title: Improve image classification tasks using simple convolutional architectures with processed metadata injection
  publication-title: 2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)
– volume: 68
  start-page: 94
  year: 2019
  end-page: 100
  ident: bib7
  article-title: Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model
  publication-title: Gut
– volume: 134
  year: 2021
  ident: bib16
  article-title: A robust real-time deep learning based automatic polyp detection system
  publication-title: Comput Biol Med
– volume: 2
  start-page: 741
  year: 2018
  end-page: 748
  ident: bib30
  article-title: Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy
  publication-title: Nat Biomed Eng
– volume: 91
  start-page: 1105
  year: 2020
  end-page: 1113
  ident: bib4
  article-title: Digital single-operator peroral cholangioscopy-guided biopsy sampling versus ERCP-guided brushing for indeterminate biliary strictures: a prospective, randomized, multicenter trial (with video)
  publication-title: Gastrointest Endosc
– volume: 21
  start-page: 41
  year: 2017
  end-page: 47
  ident: bib8
  article-title: Automatic detection and classification of colorectal polyps by transferring low-level CNN Features from nonmedical domain
  publication-title: IEEE J Biomed Health Inform
– year: 2020
  ident: bib25
  article-title: UMAP: uniform manifold approximation and projection for dimension reduction
  publication-title: arXiv
– volume: 116
  start-page: S1
  year: 2021
  ident: bib28
  article-title: s1 machine learning for classification of indeterminate biliary strictures during cholangioscopy
  publication-title: Am J Gastroenterol
– volume: 12
  year: 2021
  ident: bib29
  article-title: Automatic identification of papillary projections in Indeterminate biliary strictures using digital single-operator cholangioscopy
  publication-title: Clin Transl Gastroenterol
– volume: 91
  start-page: 41
  year: 2020
  end-page: 51
  ident: bib31
  article-title: Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos)
  publication-title: Gastrointest Endosc
– volume: 21
  start-page: 653
  year: 2018
  end-page: 660
  ident: bib9
  article-title: Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images
  publication-title: Gastric Cancer
– start-page: 1996
  year: 2020
  end-page: 2000
  ident: bib24
  article-title: Fusing metadata and dermoscopy images for skin disease diagnosis
  publication-title: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)
– start-page: 839
  year: 2018
  end-page: 847
  ident: bib26
  article-title: Grad-CAM++: improved visual explanations for deep convolutional networks
  publication-title: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV)
– volume: 83
  start-page: 643
  year: 2016
  end-page: 649
  ident: bib11
  article-title: Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy
  publication-title: Gastrointest Endosc
– volume: 14
  start-page: 877
  year: 2021
  end-page: 885
  ident: bib21
  article-title: Deep learning classifier with patient’s metadata of dermoscopic images in malignant melanoma detection
  publication-title: J Multidiscip Healthc
– volume: 94
  start-page: 1059
  year: 2021
  end-page: 1068
  ident: bib5
  article-title: Diagnostic accuracy and interobserver agreement of digital single-operator cholangioscopy for indeterminate biliary strictures
  publication-title: Gastrointest Endosc
– volume: 68
  start-page: 1813
  year: 2019
  end-page: 1819
  ident: bib10
  article-title: Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study
  publication-title: Gut
– volume: 397
  start-page: 428
  year: 2021
  ident: 10.1016/j.gie.2024.09.001_bib2
  article-title: Biliary tract cancer
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00153-7
– volume: 55
  start-page: 719
  year: 2023
  ident: 10.1016/j.gie.2024.09.001_bib13
  article-title: Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicentric validation of a convolutional neural network model
  publication-title: Endoscopy
  doi: 10.1055/a-2034-3803
– start-page: 223
  year: 2019
  ident: 10.1016/j.gie.2024.09.001_bib20
  article-title: Improve image classification tasks using simple convolutional architectures with processed metadata injection
– ident: 10.1016/j.gie.2024.09.001_bib19
– volume: 10
  start-page: E262
  year: 2022
  ident: 10.1016/j.gie.2024.09.001_bib27
  article-title: Automatic detection of tumor vessels in indeterminate biliary strictures in digital single-operator cholangioscopy
  publication-title: Endosc Int Open
  doi: 10.1055/a-1723-3369
– volume: 134
  year: 2021
  ident: 10.1016/j.gie.2024.09.001_bib16
  article-title: A robust real-time deep learning based automatic polyp detection system
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104519
– volume: 36
  start-page: 640
  year: 2022
  ident: 10.1016/j.gie.2024.09.001_bib18
  article-title: A novel machine learning-based algorithm to identify and classify lesions and anatomical landmarks in colonoscopy images
  publication-title: Surg Endosc
  doi: 10.1007/s00464-021-08331-2
– volume: 14
  start-page: 877
  year: 2021
  ident: 10.1016/j.gie.2024.09.001_bib21
  article-title: Deep learning classifier with patient’s metadata of dermoscopic images in malignant melanoma detection
  publication-title: J Multidiscip Healthc
  doi: 10.2147/JMDH.S306284
– volume: 2021
  start-page: 2660
  year: 2021
  ident: 10.1016/j.gie.2024.09.001_bib22
  article-title: Combining image features and patient metadata to enhance transfer learning
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
– volume: 12
  year: 2021
  ident: 10.1016/j.gie.2024.09.001_bib29
  article-title: Automatic identification of papillary projections in Indeterminate biliary strictures using digital single-operator cholangioscopy
  publication-title: Clin Transl Gastroenterol
  doi: 10.14309/ctg.0000000000000418
– volume: 35
  start-page: 6481
  year: 2021
  ident: 10.1016/j.gie.2024.09.001_bib1
  article-title: Cholangioscopy- versus fluoroscopy-guided transpapillary mapping biopsy for preoperative evaluation of extrahepatic cholangiocarcinoma: a prospective randomized crossover study
  publication-title: Surg Endosc
  doi: 10.1007/s00464-020-08141-y
– volume: 76
  year: 2022
  ident: 10.1016/j.gie.2024.09.001_bib23
  article-title: FusionM4Net: a multi-stage multi-modal learning algorithm for multi-label skin lesion classification
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2021.102307
– volume: 91
  start-page: 41
  year: 2020
  ident: 10.1016/j.gie.2024.09.001_bib31
  article-title: Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos)
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2019.08.018
– volume: 17
  start-page: 110
  year: 2021
  ident: 10.1016/j.gie.2024.09.001_bib6
  article-title: applications, limitations, and expansion of cholangioscopy in clinical practice
  publication-title: Gastroenterol Hepatol
– volume: 21
  start-page: 41
  year: 2017
  ident: 10.1016/j.gie.2024.09.001_bib8
  article-title: Automatic detection and classification of colorectal polyps by transferring low-level CNN Features from nonmedical domain
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2016.2635662
– volume: 97
  start-page: 268
  year: 2023
  ident: 10.1016/j.gie.2024.09.001_bib12
  article-title: Identification of patients with malignant biliary strictures using a cholangioscopy-based deep learning artificial intelligence (with video)
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2022.08.021
– volume: 91
  start-page: 1105
  year: 2020
  ident: 10.1016/j.gie.2024.09.001_bib4
  article-title: Digital single-operator peroral cholangioscopy-guided biopsy sampling versus ERCP-guided brushing for indeterminate biliary strictures: a prospective, randomized, multicenter trial (with video)
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2019.11.025
– start-page: 839
  year: 2018
  ident: 10.1016/j.gie.2024.09.001_bib26
  article-title: Grad-CAM++: improved visual explanations for deep convolutional networks
– volume: 68
  start-page: 1813
  year: 2019
  ident: 10.1016/j.gie.2024.09.001_bib10
  article-title: Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study
  publication-title: Gut
  doi: 10.1136/gutjnl-2018-317500
– volume: 94
  start-page: 1059
  year: 2021
  ident: 10.1016/j.gie.2024.09.001_bib5
  article-title: Diagnostic accuracy and interobserver agreement of digital single-operator cholangioscopy for indeterminate biliary strictures
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2021.06.027
– volume: 17
  start-page: 557
  year: 2020
  ident: 10.1016/j.gie.2024.09.001_bib3
  article-title: Cholangiocarcinoma 2020: the next horizon in mechanisms and management
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/s41575-020-0310-z
– volume: 95
  start-page: 339
  year: 2022
  ident: 10.1016/j.gie.2024.09.001_bib14
  article-title: Artificial intelligence for automatic diagnosis of biliary stricture malignancy status in single-operator cholangioscopy: a pilot study
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2021.08.027
– volume: 68
  start-page: 94
  year: 2019
  ident: 10.1016/j.gie.2024.09.001_bib7
  article-title: Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model
  publication-title: Gut
  doi: 10.1136/gutjnl-2017-314547
– volume: 116
  start-page: S1
  year: 2021
  ident: 10.1016/j.gie.2024.09.001_bib28
  article-title: s1 machine learning for classification of indeterminate biliary strictures during cholangioscopy
  publication-title: Am J Gastroenterol
  doi: 10.14309/01.ajg.0000771984.13549.fa
– volume: 11
  year: 2021
  ident: 10.1016/j.gie.2024.09.001_bib15
  article-title: Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2020-048008
– year: 2020
  ident: 10.1016/j.gie.2024.09.001_bib25
  article-title: UMAP: uniform manifold approximation and projection for dimension reduction
  publication-title: arXiv
– volume: 2
  start-page: 741
  year: 2018
  ident: 10.1016/j.gie.2024.09.001_bib30
  article-title: Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-018-0301-3
– volume: 83
  start-page: 643
  year: 2016
  ident: 10.1016/j.gie.2024.09.001_bib11
  article-title: Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2015.08.004
– volume: 24
  start-page: 180
  year: 2020
  ident: 10.1016/j.gie.2024.09.001_bib17
  article-title: Improving automatic polyp detection using CNN by exploiting temporal dependency in colonoscopy video
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2907434
– start-page: 1996
  year: 2020
  ident: 10.1016/j.gie.2024.09.001_bib24
  article-title: Fusing metadata and dermoscopy images for skin disease diagnosis
– volume: 21
  start-page: 653
  year: 2018
  ident: 10.1016/j.gie.2024.09.001_bib9
  article-title: Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-018-0793-2
SSID ssj0008231
Score 2.4837503
Snippet Deep learning algorithms gained attention for detection (computer-aided detection [CADe]) of biliary tract cancer in digital single-operator cholangioscopy...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 830
SubjectTerms Aged
Algorithms
Bile Duct Neoplasms - complications
Bile Duct Neoplasms - diagnosis
Bile Duct Neoplasms - diagnostic imaging
Biliary Tract Neoplasms - complications
Biliary Tract Neoplasms - diagnosis
Biliary Tract Neoplasms - diagnostic imaging
Cholangiocarcinoma - diagnosis
Cholangitis - diagnosis
Cholangitis - diagnostic imaging
Cholestasis - diagnostic imaging
Cholestasis - etiology
Constriction, Pathologic - diagnostic imaging
Convolutional Neural Networks
Deep Learning
Diagnosis, Computer-Assisted - methods
Diagnosis, Differential
Endoscopy, Digestive System - methods
Female
Humans
Male
Middle Aged
Neural Networks, Computer
Proof of Concept Study
ROC Curve
Sensitivity and Specificity
Title Multimodal convolutional neural network–based algorithm for real-time detection and differentiation of malignant and inflammatory biliary strictures in cholangioscopy: a proof-of-concept study (with video)
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0016510724034795
https://dx.doi.org/10.1016/j.gie.2024.09.001
https://www.ncbi.nlm.nih.gov/pubmed/39265745
https://www.proquest.com/docview/3104039251
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1097-6779
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008231
  issn: 0016-5107
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL]
  customDbUrl:
  eissn: 1097-6779
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008231
  issn: 0016-5107
  databaseCode: ACRLP
  dateStart: 20200601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1097-6779
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008231
  issn: 0016-5107
  databaseCode: AIKHN
  dateStart: 20200601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1097-6779
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008231
  issn: 0016-5107
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1097-6779
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008231
  issn: 0016-5107
  databaseCode: AKRWK
  dateStart: 19710801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fSxwxEA-iUHwp2lprtTIFH1SI3m6ym9u-yVG5tipSFHwLyW5ybvF2RdcHX8Tv0A_W79BP0pnsrkWoFsothNtL2D8zmfxy85sZxjaMMYmSueB-YC1uUBLBbW49p2TiufNCiBBIe3iUjk_ll7PkbIaN-lgYolV2tr-16cFad2d2u7e5e1mWFOMbpahRijLKSZVRoLmUiqoY7Nz9oXmQm6u1ximn3r1nM3C8JiVlyozbVKddXZi_rE1PYc-wBu0vsJcdeIS99v4W2YyrXrEXh517_DX7GcJpp3WBnYhO3qkVfqO0laEJpO9f9z9o9SrAXEzqq7I5nwJiV0D8eMGp2DwUrgkUrQpMVUBfRKVpxQi1hynC9wlxaEIH1FJUrGlw2AOxbQ22VBAk-Ceu8XcIe-hqUtYUBnP7EQzg09ae45G3kZMQMt3CJv0zDBQdWG8tsdP9TyejMe8qNvAccUvDhUQ4aAorEIcY_Ngo8plThY-UMmooLO4Wlc8z3HPZyEuV2kEubI6QyogEoZp4w2arunJvGaRe2FRGmStiIQthhhlhkTQ2kVRuKLMVtt3LSl-2iTl0z1j7rlGwmgSrBxmx9lZY3EtT9xGnaCM1LhvPDZIPgx6p5L-GfejVReNUJf-LqVx9c60RSaOq4sNjn-VWjx5uHU-nOGmSd_930VU2H1Nh4kApWmOzzdWNe49oqbHrYTqss7m90beDY2o_fx0f_QbKMxol
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwELUolVouiEJboNAOEodSyWUTO_GGG0JF28JyAombZSf2NhWbIAgHLqj_0A_rP_AlzDgJCKm0UrUrRZu1lWRnPH6z82aGsU1jTKJkLrgfWIsOSiK4za3nVEw8d14IERJpx0fp6ER-O01OZ9henwtDtMrO9rc2PVjr7sx292tun5cl5fhGKWqUoopyUmXJM_ZcJrEiD-zzzQPPg-JcrTlOOQ3vQ5uB5DUpqVRm3NY67RrD_GFzegp8hk1of4HNd-gRdtsbfMVmXLXIXoy7-PgS-x3yaad1gYOIT97pFX6iupXhEFjftz9_0fZVgDmb1Bdl830KCF4BAeQZp27zULgmcLQqMFUBfReVppUj1B6miN8nRKIJA1BNUbOmIWIPRLc1eKSOICFAcYnfQ3Ciq0lZUx7M9Q4YwKetPcd33qZOQih1Cx_pr2Gg9MB66zU72f9yvDfiXcsGniNwabiQiAdNYQUCEYMvG0U-c6rwkVJGDYVFd1H5PEOny0ZeqtQOcmFzxFRGJIjVxBs2W9WVW2aQemFTGWWuiIUshBlmBEbS2ERSuaHMVtinXlb6vK3MoXvK2g-NgtUkWD3IiLa3wuJemrpPOUUjqXHf-NskeT_pkU7-a9pGry4a1yoFYEzl6qtLjVAadRUfHse8bfXo_tbxdIqrJln9v4t-YC9Hx-NDffj16OAdm4upS3HgF62x2ebiyq0jdGrs-7A07gBOzRol
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+convolutional+neural+network%E2%80%93based+algorithm+for+real-time+detection+and+differentiation+of+malignant+and+inflammatory+biliary+strictures+in+cholangioscopy%3A+a+proof-of-concept+study+%28with+video%29&rft.jtitle=Gastrointestinal+endoscopy&rft.au=Ziegler%2C+Joceline&rft.au=Dobsch%2C+Philipp&rft.au=Rozema%2C+Marten&rft.au=Zuber-Jerger%2C+Ina&rft.date=2025-04-01&rft.issn=0016-5107&rft.volume=101&rft.issue=4&rft.spage=830&rft.epage=842.e2&rft_id=info:doi/10.1016%2Fj.gie.2024.09.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_gie_2024_09_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-5107&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-5107&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-5107&client=summon