Multimodal convolutional neural network–based algorithm for real-time detection and differentiation of malignant and inflammatory biliary strictures in cholangioscopy: a proof-of-concept study (with video)
Deep learning algorithms gained attention for detection (computer-aided detection [CADe]) of biliary tract cancer in digital single-operator cholangioscopy (dSOC). We developed a multimodal convolutional neural network (CNN) for detection (CADe), characterization and discriminating (computer-aided d...
Saved in:
| Published in | Gastrointestinal endoscopy Vol. 101; no. 4; pp. 830 - 842.e2 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.04.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0016-5107 1097-6779 1097-6779 |
| DOI | 10.1016/j.gie.2024.09.001 |
Cover
| Abstract | Deep learning algorithms gained attention for detection (computer-aided detection [CADe]) of biliary tract cancer in digital single-operator cholangioscopy (dSOC). We developed a multimodal convolutional neural network (CNN) for detection (CADe), characterization and discriminating (computer-aided diagnosis [CADx]) between malignant, inflammatory, and normal biliary tissue in raw dSOC videos. In addition, clinical metadata were included in the CNN algorithm to overcome limitations of image-only models.
Based on dSOC videos and images of 111 patients (total of 15,158 still frames), a real-time CNN-based algorithm for CADe and CADx was developed and validated. We established an image-only model and metadata injection approach. In addition, frame-wise and case-based predictions on complete dSOC video sequences were validated. Model embeddings were visualized, and class activation maps highlighted relevant image regions.
The concatenation-based CADx approach achieved a per-frame area under the receiver-operating characteristic curve of .871, sensitivity of .809 (95% CI, .784-.832), specificity of .773 (95% CI, .761-.785), positive predictive value of .450 (95% CI, .423-.467), and negative predictive value of .946 (95% CI, .940-.954) with respect to malignancy on 5715 test frames from complete videos of 20 patients. For case-based diagnosis using average prediction scores, 6 of 8 malignant cases and all 12 benign cases were identified correctly.
Our algorithm distinguishes malignant and inflammatory bile duct lesions in dSOC videos, indicating the potential of CNN-based diagnostic support systems for both CADe and CADx. The integration of non-image data can improve CNN-based support systems, targeting current challenges in the assessment of biliary strictures.
[Display omitted] |
|---|---|
| AbstractList | Deep learning algorithms gained attention for detection (computer-aided detection [CADe]) of biliary tract cancer in digital single-operator cholangioscopy (dSOC). We developed a multimodal convolutional neural network (CNN) for detection (CADe), characterization and discriminating (computer-aided diagnosis [CADx]) between malignant, inflammatory, and normal biliary tissue in raw dSOC videos. In addition, clinical metadata were included in the CNN algorithm to overcome limitations of image-only models.BACKGROUND AND AIMSDeep learning algorithms gained attention for detection (computer-aided detection [CADe]) of biliary tract cancer in digital single-operator cholangioscopy (dSOC). We developed a multimodal convolutional neural network (CNN) for detection (CADe), characterization and discriminating (computer-aided diagnosis [CADx]) between malignant, inflammatory, and normal biliary tissue in raw dSOC videos. In addition, clinical metadata were included in the CNN algorithm to overcome limitations of image-only models.Based on dSOC videos and images of 111 patients (total of 15,158 still frames), a real-time CNN-based algorithm for CADe and CADx was developed and validated. We established an image-only model and metadata injection approach. In addition, frame-wise and case-based predictions on complete dSOC video sequences were validated. Model embeddings were visualized, and class activation maps highlighted relevant image regions.METHODSBased on dSOC videos and images of 111 patients (total of 15,158 still frames), a real-time CNN-based algorithm for CADe and CADx was developed and validated. We established an image-only model and metadata injection approach. In addition, frame-wise and case-based predictions on complete dSOC video sequences were validated. Model embeddings were visualized, and class activation maps highlighted relevant image regions.The concatenation-based CADx approach achieved a per-frame area under the receiver-operating characteristic curve of .871, sensitivity of .809 (95% CI, .784-.832), specificity of .773 (95% CI, .761-.785), positive predictive value of .450 (95% CI, .423-.467), and negative predictive value of .946 (95% CI, .940-.954) with respect to malignancy on 5715 test frames from complete videos of 20 patients. For case-based diagnosis using average prediction scores, 6 of 8 malignant cases and all 12 benign cases were identified correctly.RESULTSThe concatenation-based CADx approach achieved a per-frame area under the receiver-operating characteristic curve of .871, sensitivity of .809 (95% CI, .784-.832), specificity of .773 (95% CI, .761-.785), positive predictive value of .450 (95% CI, .423-.467), and negative predictive value of .946 (95% CI, .940-.954) with respect to malignancy on 5715 test frames from complete videos of 20 patients. For case-based diagnosis using average prediction scores, 6 of 8 malignant cases and all 12 benign cases were identified correctly.Our algorithm distinguishes malignant and inflammatory bile duct lesions in dSOC videos, indicating the potential of CNN-based diagnostic support systems for both CADe and CADx. The integration of non-image data can improve CNN-based support systems, targeting current challenges in the assessment of biliary strictures.CONCLUSIONSOur algorithm distinguishes malignant and inflammatory bile duct lesions in dSOC videos, indicating the potential of CNN-based diagnostic support systems for both CADe and CADx. The integration of non-image data can improve CNN-based support systems, targeting current challenges in the assessment of biliary strictures. Deep learning algorithms gained attention for detection (computer-aided detection [CADe]) of biliary tract cancer in digital single-operator cholangioscopy (dSOC). We developed a multimodal convolutional neural network (CNN) for detection (CADe), characterization and discriminating (computer-aided diagnosis [CADx]) between malignant, inflammatory, and normal biliary tissue in raw dSOC videos. In addition, clinical metadata were included in the CNN algorithm to overcome limitations of image-only models. Based on dSOC videos and images of 111 patients (total of 15,158 still frames), a real-time CNN-based algorithm for CADe and CADx was developed and validated. We established an image-only model and metadata injection approach. In addition, frame-wise and case-based predictions on complete dSOC video sequences were validated. Model embeddings were visualized, and class activation maps highlighted relevant image regions. The concatenation-based CADx approach achieved a per-frame area under the receiver-operating characteristic curve of .871, sensitivity of .809 (95% CI, .784-.832), specificity of .773 (95% CI, .761-.785), positive predictive value of .450 (95% CI, .423-.467), and negative predictive value of .946 (95% CI, .940-.954) with respect to malignancy on 5715 test frames from complete videos of 20 patients. For case-based diagnosis using average prediction scores, 6 of 8 malignant cases and all 12 benign cases were identified correctly. Our algorithm distinguishes malignant and inflammatory bile duct lesions in dSOC videos, indicating the potential of CNN-based diagnostic support systems for both CADe and CADx. The integration of non-image data can improve CNN-based support systems, targeting current challenges in the assessment of biliary strictures. Deep learning algorithms gained attention for detection (computer-aided detection [CADe]) of biliary tract cancer in digital single-operator cholangioscopy (dSOC). We developed a multimodal convolutional neural network (CNN) for detection (CADe), characterization and discriminating (computer-aided diagnosis [CADx]) between malignant, inflammatory, and normal biliary tissue in raw dSOC videos. In addition, clinical metadata were included in the CNN algorithm to overcome limitations of image-only models. Based on dSOC videos and images of 111 patients (total of 15,158 still frames), a real-time CNN-based algorithm for CADe and CADx was developed and validated. We established an image-only model and metadata injection approach. In addition, frame-wise and case-based predictions on complete dSOC video sequences were validated. Model embeddings were visualized, and class activation maps highlighted relevant image regions. The concatenation-based CADx approach achieved a per-frame area under the receiver-operating characteristic curve of .871, sensitivity of .809 (95% CI, .784-.832), specificity of .773 (95% CI, .761-.785), positive predictive value of .450 (95% CI, .423-.467), and negative predictive value of .946 (95% CI, .940-.954) with respect to malignancy on 5715 test frames from complete videos of 20 patients. For case-based diagnosis using average prediction scores, 6 of 8 malignant cases and all 12 benign cases were identified correctly. Our algorithm distinguishes malignant and inflammatory bile duct lesions in dSOC videos, indicating the potential of CNN-based diagnostic support systems for both CADe and CADx. The integration of non-image data can improve CNN-based support systems, targeting current challenges in the assessment of biliary strictures. [Display omitted] |
| Author | Ziegler, Joceline Rozema, Marten Reuther, Stefan Müller, Martina Dobsch, Philipp Zuber-Jerger, Ina Weigand, Kilian Kandulski, Arne |
| Author_xml | – sequence: 1 givenname: Joceline surname: Ziegler fullname: Ziegler, Joceline organization: Unetiq GmbH, München, Germany – sequence: 2 givenname: Philipp surname: Dobsch fullname: Dobsch, Philipp organization: Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany – sequence: 3 givenname: Marten surname: Rozema fullname: Rozema, Marten organization: Unetiq GmbH, München, Germany – sequence: 4 givenname: Ina surname: Zuber-Jerger fullname: Zuber-Jerger, Ina organization: Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany – sequence: 5 givenname: Kilian surname: Weigand fullname: Weigand, Kilian organization: Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany – sequence: 6 givenname: Stefan surname: Reuther fullname: Reuther, Stefan organization: Unetiq GmbH, München, Germany – sequence: 7 givenname: Martina surname: Müller fullname: Müller, Martina organization: Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany – sequence: 8 givenname: Arne surname: Kandulski fullname: Kandulski, Arne email: Arne.Kandulski@ukr.de organization: Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39265745$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkcFuVCEUhm9MjZ1WH8CNYVkXd4TLcBl0ZRqtJjVudE24cJgy5cII3Glm5zv4YL6DT1JmprpwoYHkhMP_kf_wnzUnIQZomucEzwkm_av1fOVg3uFuMcdijjF51MwIFrztORcnzax2-pYRzE-bs5zXGONlR8mT5pSKrmd8wWbNz0-TL26MRnmkY9hGPxUXQz0FmNKhlLuYbn99_zGoDAYpv4rJlZsR2ZhQAuXbygMyUEDvUaSCQcZZCwlCcerQixaNyrtVUKEcBC5Yr8ZRlZh2aHDeqVpzSU6XKUGu90jfRK_CysWs42b3Gim0STHatu7qVMOmVGAyO3RxV_2grTMQXz5tHlvlMzx7qOfN1_fvvlx-aK8_X328fHvdaspYaelC0E6ZgXKGVV0DIVYAN5ZwrviSDoT13GrRMTEQu-D9gDUdNGFCUbakgp43F8d3q6dvE-QiR5c1-OoY4pQlJXiB6zczUqUvHqTTMIKRm-TGOq38HUIVkKNAp5hzAvtHQrDcBy3XsgYt90FLLGSNtTJvjgzUIbcOkszaQf0V41LNQZro_kmLv2jtXXBa-VvY_Ye9B5A6ybk |
| Cites_doi | 10.1016/S0140-6736(21)00153-7 10.1055/a-2034-3803 10.1055/a-1723-3369 10.1016/j.compbiomed.2021.104519 10.1007/s00464-021-08331-2 10.2147/JMDH.S306284 10.14309/ctg.0000000000000418 10.1007/s00464-020-08141-y 10.1016/j.media.2021.102307 10.1016/j.gie.2019.08.018 10.1109/JBHI.2016.2635662 10.1016/j.gie.2022.08.021 10.1016/j.gie.2019.11.025 10.1136/gutjnl-2018-317500 10.1016/j.gie.2021.06.027 10.1038/s41575-020-0310-z 10.1016/j.gie.2021.08.027 10.1136/gutjnl-2017-314547 10.14309/01.ajg.0000771984.13549.fa 10.1136/bmjopen-2020-048008 10.1038/s41551-018-0301-3 10.1016/j.gie.2015.08.004 10.1109/JBHI.2019.2907434 10.1007/s10120-018-0793-2 |
| ContentType | Journal Article |
| Copyright | 2025 American Society for Gastrointestinal Endoscopy Copyright © 2025 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved. Copyright © 2024 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2025 American Society for Gastrointestinal Endoscopy – notice: Copyright © 2025 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved. – notice: Copyright © 2024 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.gie.2024.09.001 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1097-6779 |
| EndPage | 842.e2 |
| ExternalDocumentID | 39265745 10_1016_j_gie_2024_09_001 S0016510724034795 |
| Genre | Video-Audio Media Journal Article |
| GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 EX3 F5P FD8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDZ HMK HMO HVGLF HZ~ IHE J1W K-O KOM L7B LZ1 M28 M41 MO0 N4W N9A O-L O9- OAUVE OC. ON0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SEL SES SEW SJN SPCBC SSH SSZ T5K UNMZH UV1 WH7 WOW X7M Z5R ZGI ZXP ~G- ~HD 6I. AAFTH AFCTW AGCQF AGRNS RIG AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c355t-34932adb3750a0a0b11f9e7df177a783b1567fc9259b1f476b0c3bc159a358393 |
| IEDL.DBID | .~1 |
| ISSN | 0016-5107 1097-6779 |
| IngestDate | Sat Sep 27 22:17:27 EDT 2025 Mon Jul 21 05:55:33 EDT 2025 Wed Oct 01 06:03:56 EDT 2025 Sat Jun 21 16:51:56 EDT 2025 Tue Oct 14 19:39:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | BTC CADe UMAP PSC CNN NPV PPV DL CADx dSOC AUC |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2025 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c355t-34932adb3750a0a0b11f9e7df177a783b1567fc9259b1f476b0c3bc159a358393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0016510724034795 |
| PMID | 39265745 |
| PQID | 3104039251 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3104039251 pubmed_primary_39265745 crossref_primary_10_1016_j_gie_2024_09_001 elsevier_sciencedirect_doi_10_1016_j_gie_2024_09_001 elsevier_clinicalkey_doi_10_1016_j_gie_2024_09_001 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Gastrointestinal endoscopy |
| PublicationTitleAlternate | Gastrointest Endosc |
| PublicationYear | 2025 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Calderisi, Galatolo, Ceppa (bib20) 2019 Byrne, Chapados, Soudan (bib7) 2019; 68 Collins, Dhiman, Andaur Navarro (bib15) 2021; 11 Ogawa, Kanno, Koshita (bib1) 2021; 35 Wang, Xiao, Glissen Brown (bib30) 2018; 2 Wang, Berzin, Brown (bib10) 2019; 68 Pereira, Mascarenhas, Ribeiro (bib27) 2022; 10 Ribeiro, Saraiva, Afonso (bib29) 2021; 12 Subhash, Abadir, Iskander (bib6) 2021; 17 Robles-Medranda, Baquerizo-Burgos, Alcívar-Vásquez (bib13) 2023; 55 Jheng, Wang, Lin (bib18) 2022; 36 Saraiva, Ribeiro, Ferreira (bib14) 2022; 95 Hirasawa, Aoyama, Tanimoto (bib9) 2018; 21 Zhang, Zheng, Mak (bib8) 2017; 21 Kominami, Yoshida, Tanaka (bib11) 2016; 83 Marya, Powers, Petersen (bib12) 2023; 97 McInnes, Healy, Melville (bib25) 2020 Stassen, Goodchild, de Jonge (bib5) 2021; 94 Ningrum, Yuan, Kung (bib21) 2021; 14 Li, Zhuang, Wang (bib24) 2020 Thomas (bib22) 2021; 2021 Ghandour, Hsieh, Akshintala (bib28) 2021; 116 Guo, Xiao, Wu (bib31) 2020; 91 Valle, Kelley, Nervi (bib2) 2021; 397 He, Zhang, Ren (bib19) Tang, Yan, Nan (bib23) 2022; 76 Qadir, Balasingham, Solhusvik (bib17) 2020; 24 Banales, Marin, Lamarca (bib3) 2020; 17 Gerges, Beyna, Tang (bib4) 2020; 91 Pacal, Karaboga (bib16) 2021; 134 Chattopadhyay, Sarkar, Howlader (bib26) 2018 Valle (10.1016/j.gie.2024.09.001_bib2) 2021; 397 Stassen (10.1016/j.gie.2024.09.001_bib5) 2021; 94 McInnes (10.1016/j.gie.2024.09.001_bib25) 2020 Qadir (10.1016/j.gie.2024.09.001_bib17) 2020; 24 Pereira (10.1016/j.gie.2024.09.001_bib27) 2022; 10 Ribeiro (10.1016/j.gie.2024.09.001_bib29) 2021; 12 Zhang (10.1016/j.gie.2024.09.001_bib8) 2017; 21 Thomas (10.1016/j.gie.2024.09.001_bib22) 2021; 2021 Ningrum (10.1016/j.gie.2024.09.001_bib21) 2021; 14 Robles-Medranda (10.1016/j.gie.2024.09.001_bib13) 2023; 55 Chattopadhyay (10.1016/j.gie.2024.09.001_bib26) 2018 Collins (10.1016/j.gie.2024.09.001_bib15) 2021; 11 Ghandour (10.1016/j.gie.2024.09.001_bib28) 2021; 116 Ogawa (10.1016/j.gie.2024.09.001_bib1) 2021; 35 Byrne (10.1016/j.gie.2024.09.001_bib7) 2019; 68 Calderisi (10.1016/j.gie.2024.09.001_bib20) 2019 Saraiva (10.1016/j.gie.2024.09.001_bib14) 2022; 95 Jheng (10.1016/j.gie.2024.09.001_bib18) 2022; 36 Wang (10.1016/j.gie.2024.09.001_bib10) 2019; 68 Subhash (10.1016/j.gie.2024.09.001_bib6) 2021; 17 Banales (10.1016/j.gie.2024.09.001_bib3) 2020; 17 Marya (10.1016/j.gie.2024.09.001_bib12) 2023; 97 He (10.1016/j.gie.2024.09.001_bib19) Gerges (10.1016/j.gie.2024.09.001_bib4) 2020; 91 Pacal (10.1016/j.gie.2024.09.001_bib16) 2021; 134 Kominami (10.1016/j.gie.2024.09.001_bib11) 2016; 83 Guo (10.1016/j.gie.2024.09.001_bib31) 2020; 91 Tang (10.1016/j.gie.2024.09.001_bib23) 2022; 76 Li (10.1016/j.gie.2024.09.001_bib24) 2020 Hirasawa (10.1016/j.gie.2024.09.001_bib9) 2018; 21 Wang (10.1016/j.gie.2024.09.001_bib30) 2018; 2 |
| References_xml | – volume: 17 start-page: 110 year: 2021 end-page: 120 ident: bib6 article-title: applications, limitations, and expansion of cholangioscopy in clinical practice publication-title: Gastroenterol Hepatol – volume: 2021 start-page: 2660 year: 2021 end-page: 2663 ident: bib22 article-title: Combining image features and patient metadata to enhance transfer learning publication-title: Annu Int Conf IEEE Eng Med Biol Soc – volume: 10 start-page: E262 year: 2022 end-page: E268 ident: bib27 article-title: Automatic detection of tumor vessels in indeterminate biliary strictures in digital single-operator cholangioscopy publication-title: Endosc Int Open – volume: 97 start-page: 268 year: 2023 end-page: 278 ident: bib12 article-title: Identification of patients with malignant biliary strictures using a cholangioscopy-based deep learning artificial intelligence (with video) publication-title: Gastrointest Endosc – volume: 76 year: 2022 ident: bib23 article-title: FusionM4Net: a multi-stage multi-modal learning algorithm for multi-label skin lesion classification publication-title: Med Image Anal – volume: 17 start-page: 557 year: 2020 end-page: 588 ident: bib3 article-title: Cholangiocarcinoma 2020: the next horizon in mechanisms and management publication-title: Nat Rev Gastroenterol Hepatol – volume: 55 start-page: 719 year: 2023 end-page: 727 ident: bib13 article-title: Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicentric validation of a convolutional neural network model publication-title: Endoscopy – volume: 35 start-page: 6481 year: 2021 end-page: 6488 ident: bib1 article-title: Cholangioscopy- versus fluoroscopy-guided transpapillary mapping biopsy for preoperative evaluation of extrahepatic cholangiocarcinoma: a prospective randomized crossover study publication-title: Surg Endosc – volume: 24 start-page: 180 year: 2020 end-page: 193 ident: bib17 article-title: Improving automatic polyp detection using CNN by exploiting temporal dependency in colonoscopy video publication-title: IEEE J Biomed Health Inform – volume: 397 start-page: 428 year: 2021 end-page: 444 ident: bib2 article-title: Biliary tract cancer publication-title: Lancet – volume: 36 start-page: 640 year: 2022 end-page: 650 ident: bib18 article-title: A novel machine learning-based algorithm to identify and classify lesions and anatomical landmarks in colonoscopy images publication-title: Surg Endosc – volume: 95 start-page: 339 year: 2022 end-page: 348 ident: bib14 article-title: Artificial intelligence for automatic diagnosis of biliary stricture malignancy status in single-operator cholangioscopy: a pilot study publication-title: Gastrointest Endosc – ident: bib19 article-title: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 11 year: 2021 ident: bib15 article-title: Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence publication-title: BMJ Open – start-page: 223 year: 2019 end-page: 230 ident: bib20 article-title: Improve image classification tasks using simple convolutional architectures with processed metadata injection publication-title: 2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE) – volume: 68 start-page: 94 year: 2019 end-page: 100 ident: bib7 article-title: Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model publication-title: Gut – volume: 134 year: 2021 ident: bib16 article-title: A robust real-time deep learning based automatic polyp detection system publication-title: Comput Biol Med – volume: 2 start-page: 741 year: 2018 end-page: 748 ident: bib30 article-title: Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy publication-title: Nat Biomed Eng – volume: 91 start-page: 1105 year: 2020 end-page: 1113 ident: bib4 article-title: Digital single-operator peroral cholangioscopy-guided biopsy sampling versus ERCP-guided brushing for indeterminate biliary strictures: a prospective, randomized, multicenter trial (with video) publication-title: Gastrointest Endosc – volume: 21 start-page: 41 year: 2017 end-page: 47 ident: bib8 article-title: Automatic detection and classification of colorectal polyps by transferring low-level CNN Features from nonmedical domain publication-title: IEEE J Biomed Health Inform – year: 2020 ident: bib25 article-title: UMAP: uniform manifold approximation and projection for dimension reduction publication-title: arXiv – volume: 116 start-page: S1 year: 2021 ident: bib28 article-title: s1 machine learning for classification of indeterminate biliary strictures during cholangioscopy publication-title: Am J Gastroenterol – volume: 12 year: 2021 ident: bib29 article-title: Automatic identification of papillary projections in Indeterminate biliary strictures using digital single-operator cholangioscopy publication-title: Clin Transl Gastroenterol – volume: 91 start-page: 41 year: 2020 end-page: 51 ident: bib31 article-title: Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos) publication-title: Gastrointest Endosc – volume: 21 start-page: 653 year: 2018 end-page: 660 ident: bib9 article-title: Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images publication-title: Gastric Cancer – start-page: 1996 year: 2020 end-page: 2000 ident: bib24 article-title: Fusing metadata and dermoscopy images for skin disease diagnosis publication-title: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) – start-page: 839 year: 2018 end-page: 847 ident: bib26 article-title: Grad-CAM++: improved visual explanations for deep convolutional networks publication-title: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) – volume: 83 start-page: 643 year: 2016 end-page: 649 ident: bib11 article-title: Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy publication-title: Gastrointest Endosc – volume: 14 start-page: 877 year: 2021 end-page: 885 ident: bib21 article-title: Deep learning classifier with patient’s metadata of dermoscopic images in malignant melanoma detection publication-title: J Multidiscip Healthc – volume: 94 start-page: 1059 year: 2021 end-page: 1068 ident: bib5 article-title: Diagnostic accuracy and interobserver agreement of digital single-operator cholangioscopy for indeterminate biliary strictures publication-title: Gastrointest Endosc – volume: 68 start-page: 1813 year: 2019 end-page: 1819 ident: bib10 article-title: Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study publication-title: Gut – volume: 397 start-page: 428 year: 2021 ident: 10.1016/j.gie.2024.09.001_bib2 article-title: Biliary tract cancer publication-title: Lancet doi: 10.1016/S0140-6736(21)00153-7 – volume: 55 start-page: 719 year: 2023 ident: 10.1016/j.gie.2024.09.001_bib13 article-title: Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicentric validation of a convolutional neural network model publication-title: Endoscopy doi: 10.1055/a-2034-3803 – start-page: 223 year: 2019 ident: 10.1016/j.gie.2024.09.001_bib20 article-title: Improve image classification tasks using simple convolutional architectures with processed metadata injection – ident: 10.1016/j.gie.2024.09.001_bib19 – volume: 10 start-page: E262 year: 2022 ident: 10.1016/j.gie.2024.09.001_bib27 article-title: Automatic detection of tumor vessels in indeterminate biliary strictures in digital single-operator cholangioscopy publication-title: Endosc Int Open doi: 10.1055/a-1723-3369 – volume: 134 year: 2021 ident: 10.1016/j.gie.2024.09.001_bib16 article-title: A robust real-time deep learning based automatic polyp detection system publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104519 – volume: 36 start-page: 640 year: 2022 ident: 10.1016/j.gie.2024.09.001_bib18 article-title: A novel machine learning-based algorithm to identify and classify lesions and anatomical landmarks in colonoscopy images publication-title: Surg Endosc doi: 10.1007/s00464-021-08331-2 – volume: 14 start-page: 877 year: 2021 ident: 10.1016/j.gie.2024.09.001_bib21 article-title: Deep learning classifier with patient’s metadata of dermoscopic images in malignant melanoma detection publication-title: J Multidiscip Healthc doi: 10.2147/JMDH.S306284 – volume: 2021 start-page: 2660 year: 2021 ident: 10.1016/j.gie.2024.09.001_bib22 article-title: Combining image features and patient metadata to enhance transfer learning publication-title: Annu Int Conf IEEE Eng Med Biol Soc – volume: 12 year: 2021 ident: 10.1016/j.gie.2024.09.001_bib29 article-title: Automatic identification of papillary projections in Indeterminate biliary strictures using digital single-operator cholangioscopy publication-title: Clin Transl Gastroenterol doi: 10.14309/ctg.0000000000000418 – volume: 35 start-page: 6481 year: 2021 ident: 10.1016/j.gie.2024.09.001_bib1 article-title: Cholangioscopy- versus fluoroscopy-guided transpapillary mapping biopsy for preoperative evaluation of extrahepatic cholangiocarcinoma: a prospective randomized crossover study publication-title: Surg Endosc doi: 10.1007/s00464-020-08141-y – volume: 76 year: 2022 ident: 10.1016/j.gie.2024.09.001_bib23 article-title: FusionM4Net: a multi-stage multi-modal learning algorithm for multi-label skin lesion classification publication-title: Med Image Anal doi: 10.1016/j.media.2021.102307 – volume: 91 start-page: 41 year: 2020 ident: 10.1016/j.gie.2024.09.001_bib31 article-title: Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos) publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2019.08.018 – volume: 17 start-page: 110 year: 2021 ident: 10.1016/j.gie.2024.09.001_bib6 article-title: applications, limitations, and expansion of cholangioscopy in clinical practice publication-title: Gastroenterol Hepatol – volume: 21 start-page: 41 year: 2017 ident: 10.1016/j.gie.2024.09.001_bib8 article-title: Automatic detection and classification of colorectal polyps by transferring low-level CNN Features from nonmedical domain publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2016.2635662 – volume: 97 start-page: 268 year: 2023 ident: 10.1016/j.gie.2024.09.001_bib12 article-title: Identification of patients with malignant biliary strictures using a cholangioscopy-based deep learning artificial intelligence (with video) publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2022.08.021 – volume: 91 start-page: 1105 year: 2020 ident: 10.1016/j.gie.2024.09.001_bib4 article-title: Digital single-operator peroral cholangioscopy-guided biopsy sampling versus ERCP-guided brushing for indeterminate biliary strictures: a prospective, randomized, multicenter trial (with video) publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2019.11.025 – start-page: 839 year: 2018 ident: 10.1016/j.gie.2024.09.001_bib26 article-title: Grad-CAM++: improved visual explanations for deep convolutional networks – volume: 68 start-page: 1813 year: 2019 ident: 10.1016/j.gie.2024.09.001_bib10 article-title: Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study publication-title: Gut doi: 10.1136/gutjnl-2018-317500 – volume: 94 start-page: 1059 year: 2021 ident: 10.1016/j.gie.2024.09.001_bib5 article-title: Diagnostic accuracy and interobserver agreement of digital single-operator cholangioscopy for indeterminate biliary strictures publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2021.06.027 – volume: 17 start-page: 557 year: 2020 ident: 10.1016/j.gie.2024.09.001_bib3 article-title: Cholangiocarcinoma 2020: the next horizon in mechanisms and management publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/s41575-020-0310-z – volume: 95 start-page: 339 year: 2022 ident: 10.1016/j.gie.2024.09.001_bib14 article-title: Artificial intelligence for automatic diagnosis of biliary stricture malignancy status in single-operator cholangioscopy: a pilot study publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2021.08.027 – volume: 68 start-page: 94 year: 2019 ident: 10.1016/j.gie.2024.09.001_bib7 article-title: Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model publication-title: Gut doi: 10.1136/gutjnl-2017-314547 – volume: 116 start-page: S1 year: 2021 ident: 10.1016/j.gie.2024.09.001_bib28 article-title: s1 machine learning for classification of indeterminate biliary strictures during cholangioscopy publication-title: Am J Gastroenterol doi: 10.14309/01.ajg.0000771984.13549.fa – volume: 11 year: 2021 ident: 10.1016/j.gie.2024.09.001_bib15 article-title: Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence publication-title: BMJ Open doi: 10.1136/bmjopen-2020-048008 – year: 2020 ident: 10.1016/j.gie.2024.09.001_bib25 article-title: UMAP: uniform manifold approximation and projection for dimension reduction publication-title: arXiv – volume: 2 start-page: 741 year: 2018 ident: 10.1016/j.gie.2024.09.001_bib30 article-title: Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy publication-title: Nat Biomed Eng doi: 10.1038/s41551-018-0301-3 – volume: 83 start-page: 643 year: 2016 ident: 10.1016/j.gie.2024.09.001_bib11 article-title: Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2015.08.004 – volume: 24 start-page: 180 year: 2020 ident: 10.1016/j.gie.2024.09.001_bib17 article-title: Improving automatic polyp detection using CNN by exploiting temporal dependency in colonoscopy video publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2907434 – start-page: 1996 year: 2020 ident: 10.1016/j.gie.2024.09.001_bib24 article-title: Fusing metadata and dermoscopy images for skin disease diagnosis – volume: 21 start-page: 653 year: 2018 ident: 10.1016/j.gie.2024.09.001_bib9 article-title: Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images publication-title: Gastric Cancer doi: 10.1007/s10120-018-0793-2 |
| SSID | ssj0008231 |
| Score | 2.4837503 |
| Snippet | Deep learning algorithms gained attention for detection (computer-aided detection [CADe]) of biliary tract cancer in digital single-operator cholangioscopy... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 830 |
| SubjectTerms | Aged Algorithms Bile Duct Neoplasms - complications Bile Duct Neoplasms - diagnosis Bile Duct Neoplasms - diagnostic imaging Biliary Tract Neoplasms - complications Biliary Tract Neoplasms - diagnosis Biliary Tract Neoplasms - diagnostic imaging Cholangiocarcinoma - diagnosis Cholangitis - diagnosis Cholangitis - diagnostic imaging Cholestasis - diagnostic imaging Cholestasis - etiology Constriction, Pathologic - diagnostic imaging Convolutional Neural Networks Deep Learning Diagnosis, Computer-Assisted - methods Diagnosis, Differential Endoscopy, Digestive System - methods Female Humans Male Middle Aged Neural Networks, Computer Proof of Concept Study ROC Curve Sensitivity and Specificity |
| Title | Multimodal convolutional neural network–based algorithm for real-time detection and differentiation of malignant and inflammatory biliary strictures in cholangioscopy: a proof-of-concept study (with video) |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0016510724034795 https://dx.doi.org/10.1016/j.gie.2024.09.001 https://www.ncbi.nlm.nih.gov/pubmed/39265745 https://www.proquest.com/docview/3104039251 |
| Volume | 101 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1097-6779 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008231 issn: 0016-5107 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL] customDbUrl: eissn: 1097-6779 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008231 issn: 0016-5107 databaseCode: ACRLP dateStart: 20200601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1097-6779 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008231 issn: 0016-5107 databaseCode: AIKHN dateStart: 20200601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1097-6779 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008231 issn: 0016-5107 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1097-6779 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008231 issn: 0016-5107 databaseCode: AKRWK dateStart: 19710801 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fSxwxEA-iUHwp2lprtTIFH1SI3m6ym9u-yVG5tipSFHwLyW5ybvF2RdcHX8Tv0A_W79BP0pnsrkWoFsothNtL2D8zmfxy85sZxjaMMYmSueB-YC1uUBLBbW49p2TiufNCiBBIe3iUjk_ll7PkbIaN-lgYolV2tr-16cFad2d2u7e5e1mWFOMbpahRijLKSZVRoLmUiqoY7Nz9oXmQm6u1ximn3r1nM3C8JiVlyozbVKddXZi_rE1PYc-wBu0vsJcdeIS99v4W2YyrXrEXh517_DX7GcJpp3WBnYhO3qkVfqO0laEJpO9f9z9o9SrAXEzqq7I5nwJiV0D8eMGp2DwUrgkUrQpMVUBfRKVpxQi1hynC9wlxaEIH1FJUrGlw2AOxbQ22VBAk-Ceu8XcIe-hqUtYUBnP7EQzg09ae45G3kZMQMt3CJv0zDBQdWG8tsdP9TyejMe8qNvAccUvDhUQ4aAorEIcY_Ngo8plThY-UMmooLO4Wlc8z3HPZyEuV2kEubI6QyogEoZp4w2arunJvGaRe2FRGmStiIQthhhlhkTQ2kVRuKLMVtt3LSl-2iTl0z1j7rlGwmgSrBxmx9lZY3EtT9xGnaCM1LhvPDZIPgx6p5L-GfejVReNUJf-LqVx9c60RSaOq4sNjn-VWjx5uHU-nOGmSd_930VU2H1Nh4kApWmOzzdWNe49oqbHrYTqss7m90beDY2o_fx0f_QbKMxol |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwELUolVouiEJboNAOEodSyWUTO_GGG0JF28JyAombZSf2NhWbIAgHLqj_0A_rP_AlzDgJCKm0UrUrRZu1lWRnPH6z82aGsU1jTKJkLrgfWIsOSiK4za3nVEw8d14IERJpx0fp6ER-O01OZ9henwtDtMrO9rc2PVjr7sx292tun5cl5fhGKWqUoopyUmXJM_ZcJrEiD-zzzQPPg-JcrTlOOQ3vQ5uB5DUpqVRm3NY67RrD_GFzegp8hk1of4HNd-gRdtsbfMVmXLXIXoy7-PgS-x3yaad1gYOIT97pFX6iupXhEFjftz9_0fZVgDmb1Bdl830KCF4BAeQZp27zULgmcLQqMFUBfReVppUj1B6miN8nRKIJA1BNUbOmIWIPRLc1eKSOICFAcYnfQ3Ciq0lZUx7M9Q4YwKetPcd33qZOQih1Cx_pr2Gg9MB66zU72f9yvDfiXcsGniNwabiQiAdNYQUCEYMvG0U-c6rwkVJGDYVFd1H5PEOny0ZeqtQOcmFzxFRGJIjVxBs2W9WVW2aQemFTGWWuiIUshBlmBEbS2ERSuaHMVtinXlb6vK3MoXvK2g-NgtUkWD3IiLa3wuJemrpPOUUjqXHf-NskeT_pkU7-a9pGry4a1yoFYEzl6qtLjVAadRUfHse8bfXo_tbxdIqrJln9v4t-YC9Hx-NDffj16OAdm4upS3HgF62x2ebiyq0jdGrs-7A07gBOzRol |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+convolutional+neural+network%E2%80%93based+algorithm+for+real-time+detection+and+differentiation+of+malignant+and+inflammatory+biliary+strictures+in+cholangioscopy%3A+a+proof-of-concept+study+%28with+video%29&rft.jtitle=Gastrointestinal+endoscopy&rft.au=Ziegler%2C+Joceline&rft.au=Dobsch%2C+Philipp&rft.au=Rozema%2C+Marten&rft.au=Zuber-Jerger%2C+Ina&rft.date=2025-04-01&rft.issn=0016-5107&rft.volume=101&rft.issue=4&rft.spage=830&rft.epage=842.e2&rft_id=info:doi/10.1016%2Fj.gie.2024.09.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_gie_2024_09_001 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-5107&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-5107&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-5107&client=summon |