Introducing statistical consistency for infinite chance constraints
In this paper, we propose a novel notion of statistical consistency for single-stage Stochastic Constraint Satisfaction Problems (SCSPs) in which some of the random variables’ support set is infinite. The essence of this novel notion of local consistency is to be able to make an inference in the pre...
Saved in:
| Published in | Annals of mathematics and artificial intelligence Vol. 83; no. 2; pp. 165 - 181 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.06.2018
Springer Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1012-2443 1573-7470 |
| DOI | 10.1007/s10472-018-9572-3 |
Cover
| Abstract | In this paper, we propose a novel notion of
statistical consistency
for single-stage Stochastic Constraint Satisfaction Problems (SCSPs) in which some of the random variables’ support set is infinite. The essence of this novel notion of local consistency is to be able to make an inference in the presence of infinite scenarios in an uncertain environment. This inference would be based on a restricted finite subset of scenarios with a certain confidence level and a threshold tolerance error. The confidence level is the probability that characterizes the extend to which our inference — based on a subset of scenarios — is correct. The threshold tolerance error is the error range that we can tolerate while making such an inference. We propose a novel statistical consistency enforcing algorithm that is based on sound statistical inference; and experimentally show how to prune inconsistent values in the presence of an infinite set of scenarios. |
|---|---|
| AbstractList | In this paper, we propose a novel notion of statistical consistency for single-stage Stochastic Constraint Satisfaction Problems (SCSPs) in which some of the random variables’ support set is infinite. The essence of this novel notion of local consistency is to be able to make an inference in the presence of infinite scenarios in an uncertain environment. This inference would be based on a restricted finite subset of scenarios with a certain confidence level and a threshold tolerance error. The confidence level is the probability that characterizes the extend to which our inference — based on a subset of scenarios — is correct. The threshold tolerance error is the error range that we can tolerate while making such an inference. We propose a novel statistical consistency enforcing algorithm that is based on sound statistical inference; and experimentally show how to prune inconsistent values in the presence of an infinite set of scenarios. In this paper, we propose a novel notion of statistical consistency for single-stage Stochastic Constraint Satisfaction Problems (SCSPs) in which some of the random variables’ support set is infinite. The essence of this novel notion of local consistency is to be able to make an inference in the presence of infinite scenarios in an uncertain environment. This inference would be based on a restricted finite subset of scenarios with a certain confidence level and a threshold tolerance error. The confidence level is the probability that characterizes the extend to which our inference — based on a subset of scenarios — is correct. The threshold tolerance error is the error range that we can tolerate while making such an inference. We propose a novel statistical consistency enforcing algorithm that is based on sound statistical inference; and experimentally show how to prune inconsistent values in the presence of an infinite set of scenarios. In this paper, we propose a novel notion of statistical consistency for single-stage Stochastic Constraint Satisfaction Problems (SCSPs) in which some of the random variables' support set is infinite. The essence of this novel notion of local consistency is to be able to make an inference in the presence of infinite scenarios in an uncertain environment. This inference would be based on a restricted finite subset of scenarios with a certain confidence level and a threshold tolerance error. The confidence level is the probability that characterizes the extend to which our inference--based on a subset of scenarios--is correct. The threshold tolerance error is the error range that we can tolerate while making such an inference. We propose a novel statistical consistency enforcing algorithm that is based on sound statistical inference; and experimentally show how to prune inconsistent values in the presence of an infinite set of scenarios. Keywords Infinite chance constraints * Statistical consistency * Constraint propagation Mathematics Subject Classification (2010) 62F25 |
| Audience | Academic |
| Author | Hnich, Brahim Zghidi, Imen Rebai, Abdelwaheb |
| Author_xml | – sequence: 1 givenname: Imen surname: Zghidi fullname: Zghidi, Imen email: zghidi.imen@gmail.com organization: Modils Research Lab, FSEG, University of Sfax – sequence: 2 givenname: Brahim surname: Hnich fullname: Hnich, Brahim organization: CES, ENIS, University of Sfax, Department of CS, Monastir University – sequence: 3 givenname: Abdelwaheb surname: Rebai fullname: Rebai, Abdelwaheb organization: Modils Research Lab, FSEG, University of Sfax |
| BookMark | eNp9kMtqAyEUhqWk0CTtA3Q30PWkXsbbMoReAoFu2rUYo6kh0VTNIm9fp1MoFFpceNDzeX6_CRiFGCwAtwjOEIT8PiPYcdxCJFpJa0EuwBhRTlrecTiqNUS4xV1HrsAk5x2EUDLBxmCxDCXFzcn4sG1y0cXn4o3eNyaGXGsbzLlxMTU-OB98sY1518HYr_uStA8lX4NLp_fZ3nzvU_D2-PC6eG5XL0_LxXzVGkJpaQleE0blesOMXnPjBNYUd5QLLrVjTK-d2AhkGTaOWGyklMhKyhxEnWZWEDIFd8O7xxQ_TjYXtYunFOpIhSUSmFNIRO2aDV1bvbeqxo41pqlrYw--prbO1_M5Rwwj3mFYATQAJsWck3XqmPxBp7NCUPVy1SBXVbmql6v6KPwXY3wvL4beyf5fEg9krlPC1qafT_wNfQJedJAW |
| CitedBy_id | crossref_primary_10_1007_s11042_023_17199_4 |
| Cites_doi | 10.1002/sim.4780120902 10.1017/CBO9780511615320 10.1137/S1052623499363220 10.1007/s10601-006-6849-7 10.1016/j.artint.2015.07.004 10.1093/biomet/26.4.404 10.1207/s15327906mbr3201_2 10.1016/j.artint.2012.05.001 10.1613/jair.2080 10.1007/11757375_18 10.1016/j.ejor.2014.06.007 10.1007/3-540-45578-7_5 |
| ContentType | Journal Article |
| Copyright | Springer International Publishing AG, part of Springer Nature 2018. corrected publication April/2018 COPYRIGHT 2018 Springer Springer International Publishing AG, part of Springer Nature 2018. corrected publication April/2018. |
| Copyright_xml | – notice: Springer International Publishing AG, part of Springer Nature 2018. corrected publication April/2018 – notice: COPYRIGHT 2018 Springer – notice: Springer International Publishing AG, part of Springer Nature 2018. corrected publication April/2018. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.1007/s10472-018-9572-3 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1573-7470 |
| EndPage | 181 |
| ExternalDocumentID | A716217420 10_1007_s10472_018_9572_3 |
| GrantInformation_xml | – fundername: FSEGS |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 Z92 ZMTXR ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c355t-32b3659bd6cab7cf82a52457879af66abf8d81e62cf3e2c9991e956f014a6e833 |
| IEDL.DBID | U2A |
| ISSN | 1012-2443 |
| IngestDate | Sun Jul 13 04:57:42 EDT 2025 Mon Oct 20 16:49:05 EDT 2025 Thu Apr 24 22:51:16 EDT 2025 Wed Oct 01 03:59:00 EDT 2025 Fri Feb 21 02:26:57 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Statistical consistency Constraint propagation 62F25 Infinite chance constraints |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c355t-32b3659bd6cab7cf82a52457879af66abf8d81e62cf3e2c9991e956f014a6e833 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2918275038 |
| PQPubID | 2043872 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2918275038 gale_infotracacademiconefile_A716217420 crossref_primary_10_1007_s10472_018_9572_3 crossref_citationtrail_10_1007_s10472_018_9572_3 springer_journals_10_1007_s10472_018_9572_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20180600 2018-6-00 20180601 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 6 year: 2018 text: 20180600 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Dordrecht |
| PublicationTitle | Annals of mathematics and artificial intelligence |
| PublicationTitleAbbrev | Ann Math Artif Intell |
| PublicationYear | 2018 |
| Publisher | Springer International Publishing Springer Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
| References | Tarim, Manandhar, Walsh (CR15) 2006; 11 Vollset (CR16) 1993; 12 Beck, Wilson (CR3) 2007; 28 CR4 CR7 Agresti, Coull (CR1) 1998; 52 Apt (CR2) 2003 Green, Babyak (CR6) 1997; 32 CR17 Clopper, Pearson (CR5) 1934; 26 CR14 CR13 Kleywegt, Shapiro, Homem-De-Mello (CR9) 2001; 12 Rossi, Hnich, Armagan Tarim, Prestwich (CR12) 2015; 228 CR11 Papoulis (CR10) 1984 Hnich, Rossi, Armagan, Prestwich (CR8) 2012; 189 K Apt (9572_CR2) 2003 9572_CR17 SB Green (9572_CR6) 1997; 32 9572_CR14 SE Vollset (9572_CR16) 1993; 12 R Rossi (9572_CR12) 2015; 228 JC Beck (9572_CR3) 2007; 28 9572_CR13 9572_CR4 9572_CR11 A Papoulis (9572_CR10) 1984 SA Tarim (9572_CR15) 2006; 11 B Hnich (9572_CR8) 2012; 189 A Agresti (9572_CR1) 1998; 52 9572_CR7 AJ Kleywegt (9572_CR9) 2001; 12 C Clopper (9572_CR5) 1934; 26 |
| References_xml | – volume: 12 start-page: 809 issue: 9 year: 1993 end-page: 824 ident: CR16 article-title: Confidence intervals for a binomial proportion publication-title: Stat. Med. doi: 10.1002/sim.4780120902 – year: 2003 ident: CR2 publication-title: Principles of Constraint Programming doi: 10.1017/CBO9780511615320 – volume: 12 start-page: 479 issue: 2 year: 2001 end-page: 502 ident: CR9 article-title: The sample average approximation method for stochastic discrete optimization publication-title: SIAM J. Optim. doi: 10.1137/S1052623499363220 – volume: 28 start-page: 183 year: 2007 end-page: 232 ident: CR3 article-title: Proactive algorithms for job shop scheduling with probabilistic durations publication-title: J. Artif Intell. Res. (JAIR) – ident: CR4 – ident: CR14 – volume: 11 start-page: 53 issue: 1 year: 2006 end-page: 80 ident: CR15 article-title: Stochastic constraint programming: a scenario-based approach publication-title: Constraints doi: 10.1007/s10601-006-6849-7 – ident: CR17 – volume: 228 start-page: 129 year: 2015 end-page: 152 ident: CR12 article-title: Confidence-based reasoning in stochastic constraint programming publication-title: Artif. Intell. doi: 10.1016/j.artint.2015.07.004 – ident: CR13 – ident: CR11 – year: 1984 ident: CR10 publication-title: Probability, Random Variables and Stochastic Processes – ident: CR7 – volume: 26 start-page: 404 issue: 4 year: 1934 end-page: 413 ident: CR5 article-title: The use of confidence or fiducial limits illustrated in the case of the binomial publication-title: Biometrika doi: 10.1093/biomet/26.4.404 – volume: 32 start-page: 39 issue: 1 year: 1997 end-page: 51 ident: CR6 article-title: Control of type i errors with multiple tests of constraints in structural equation modeling publication-title: Multivar. Behav. Res. doi: 10.1207/s15327906mbr3201_2 – volume: 52 start-page: 119 issue: 2 year: 1998 end-page: 126 ident: CR1 article-title: Approximate is better than “exact” for interval estimation of binomial proportions publication-title: Am. Stat. – volume: 189 start-page: 69 year: 2012 end-page: 94 ident: CR8 article-title: Filtering algorithms for global chance constraints publication-title: Artif. Intell. doi: 10.1016/j.artint.2012.05.001 – volume: 28 start-page: 183 year: 2007 ident: 9572_CR3 publication-title: J. Artif Intell. Res. (JAIR) doi: 10.1613/jair.2080 – volume: 32 start-page: 39 issue: 1 year: 1997 ident: 9572_CR6 publication-title: Multivar. Behav. Res. doi: 10.1207/s15327906mbr3201_2 – ident: 9572_CR7 doi: 10.1007/11757375_18 – ident: 9572_CR17 – volume: 52 start-page: 119 issue: 2 year: 1998 ident: 9572_CR1 publication-title: Am. Stat. – volume: 12 start-page: 809 issue: 9 year: 1993 ident: 9572_CR16 publication-title: Stat. Med. doi: 10.1002/sim.4780120902 – volume: 228 start-page: 129 year: 2015 ident: 9572_CR12 publication-title: Artif. Intell. doi: 10.1016/j.artint.2015.07.004 – ident: 9572_CR13 – ident: 9572_CR14 doi: 10.1016/j.ejor.2014.06.007 – ident: 9572_CR11 – volume: 11 start-page: 53 issue: 1 year: 2006 ident: 9572_CR15 publication-title: Constraints doi: 10.1007/s10601-006-6849-7 – volume: 12 start-page: 479 issue: 2 year: 2001 ident: 9572_CR9 publication-title: SIAM J. Optim. doi: 10.1137/S1052623499363220 – volume-title: Probability, Random Variables and Stochastic Processes year: 1984 ident: 9572_CR10 – volume: 26 start-page: 404 issue: 4 year: 1934 ident: 9572_CR5 publication-title: Biometrika doi: 10.1093/biomet/26.4.404 – volume: 189 start-page: 69 year: 2012 ident: 9572_CR8 publication-title: Artif. Intell. doi: 10.1016/j.artint.2012.05.001 – ident: 9572_CR4 doi: 10.1007/3-540-45578-7_5 – volume-title: Principles of Constraint Programming year: 2003 ident: 9572_CR2 doi: 10.1017/CBO9780511615320 |
| SSID | ssj0009686 |
| Score | 2.1369185 |
| Snippet | In this paper, we propose a novel notion of
statistical consistency
for single-stage Stochastic Constraint Satisfaction Problems (SCSPs) in which some of the... In this paper, we propose a novel notion of statistical consistency for single-stage Stochastic Constraint Satisfaction Problems (SCSPs) in which some of the... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 165 |
| SubjectTerms | Algorithms Artificial Intelligence Complex Systems Computer Science Confidence intervals Consistency Error correction Mathematics Random variables Statistical analysis Statistical inference |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7ovOjBH1NxOqUHQVCCXdJm6UFEx0QFh4gDbyFNExBkm247-N_7XtY6VNyhUGibhryXvC8_3vcBHHuMCobHbSZTIxni_4zluY8ZXkksCmFV0CF76MnbfnL_kr4sQa_KhaFjldWYGAbqYmhpjfycZ4iEadNNXY7eGalG0e5qJaFhSmmF4iJQjC3DCidmrBqsXHd7j09zGl4ZtB-J1IphYBPVPucsmS5p0zEFHABSvBE_ItXv8frPxmmIRzebsF4CyehqZvktWHKDOmxUIg1R2WfrsPbwTcw63obOHZ1ML6YWy4womSjwNGM5lg7KjglAf0aIYyN0vFeCoxFlBlsXngc5icl4B_o33efOLSt1FJhFNDFhgudCplleSGvytvWKm5Qn1FUz46U0uVeFajnJrReOW4KMDqdNHmdPRjolxC7UBsOB24NI-SR1JJje8kWiPOIH6xEQ8XZmVYLhtgFx1WbaliTjVLk3PadHpmbW2MyamlmLBpx-fzKaMWwsevmEDKGp92G51pRJBFg74rHSV0SIhZMsHjegWdlKl91yrOdO1ICzyn7zx__-dn9xYQewyslvwuJME2qTj6k7RKwyyY9KB_wCCejkCQ priority: 102 providerName: ProQuest |
| Title | Introducing statistical consistency for infinite chance constraints |
| URI | https://link.springer.com/article/10.1007/s10472-018-9572-3 https://www.proquest.com/docview/2918275038 |
| Volume | 83 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7470 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009686 issn: 1012-2443 databaseCode: AFBBN dateStart: 19900301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7470 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009686 issn: 1012-2443 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7470 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009686 issn: 1012-2443 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7470 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009686 issn: 1012-2443 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_c9qIPfovTOfogCEqhS9osfdzGPlQ2RBzoU2jTBASZYueD_713sd38Bh9KCknTcJfr_dLkfgdwbNErJCxo-yJKhI_4P_bT1AY-XmHAM66ly0M2nojRNLy4jW6LOO68PO1ebkm6L_WHYLewTccI0EAjvOEVqEXE5oWTeMo6S6Zd4dI7Em-Vj76Ll1uZP3XxyRl9_SR_2xt1LmewCesFVvQ678rdghUz24aNMg-DV5jlNqyNF9yr-Q70zunwefaisU-P4oUcFTP2o-ksbE4Y-dVDqOrh3LonxOlR8K82rt5ljJjnuzAd9G96I79IleBrBAxzn7OUiyhOM6GTtK2tZEnEQrLGOLFCJKmVmWwZwbTlhmlChQZXRhYXSIkwkvM9qM4eZ2YfPGnDyFBO9JbNQmkRImiLmIe1Yy1D9Kh1CEqZKV3wiNPgHtSSAZnErFDMisSseB1OF488vZNo_NX4hBShyMCwX50UcQI4OqKqUh3ivMJ1FAvq0Ch1pQrLyxWLccVEm7OyDmel_pbVv7724F-tD2GV0TRyv2MaUJ0_v5gjRCfztAkVORg2odYZdLsTKod3l30su_3J1XXTzdU3ztXfnQ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbhMxEB1V7QE4lFJApJSyBxASyGJrex3voUJtSZTQJkKolXozXq8tIVVJyqZC_bl-W2ccbyOK6K2HSCtt4qzGszNvbM97AO8CZgXL8y5ThVUM8X_JqirkDD8yF7VwOuqQjcZqcCq_nRVnK3Dd9sLQsco2JsZAXU8drZF_5iUiYdp0019mF4xUo2h3tZXQsElaod6LFGOpsePIX_3BEq7ZG37F-X7Peb93cjhgSWWAOcy1cyZ4JVRRVrVytuq6oLktuCRHLm1QylZB13rXK-6C8NwRoPJYVASsLazymhZEMQWsSSFLLP7WDnrj7z-WtL8qak0SiRbDRCrafdVF857s0rEIDDgFXoi_MuPd_PDPRm3Mf_0NWE_ANdtfeNozWPGTTXjaikJkKUZswpPRLRFs8xwOh3QSvr50OGZGzUuRFxrHcXQwtyHAfpUhbs7Q0X8R_M2oE9n5eD_KV8ybF3D6IBZ9CauT6cS_gkwHWXgSaN8NtdQB8YoLCMB4t3RaYnrvQN7azLhEak4Pd26WdMxkZoNmNmRmIzrw8fYnswWjx31f_kATYehtx3GdTU0L-HTEm2X2iYALizqed2C7nSuTwkBjlk7bgU_t_C1v__dvt-4f7C08GpyMjs3xcHz0Gh5z8qG4MLQNq_Pfl_4N4qR5tZOcMYOfD-3_N66RIRg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90guiDH1NxOrUPgqCUdUmbpY9jOjZ1wwcHewttmoAgc9juwf_eu67d_AYfCoWkacjd9X5p7n4HcG7RK0TMa7kiiISL-D9049h6Ll6-xxOuZV6HbDAUvZF_Ow7GRZ3TtIx2L48k5zkNxNI0yRrTxDY-JL75LQopQGMN8IavwppPPAmo0CPWXrLuirzUI3FYuejHeHms-dMQnxzT18_zt3PS3P10d2CrwI1Oey7oXVgxkypslzUZnMJEq7A5WPCwpnvQ6VMgejLTOKZDuUM5LTOOoykuNiW8_OYgbHVQz54IfTqUCKxN3p5Xj8jSfRh1bx47Pbcom-BqBA-Zy1nMRRDGidBR3NJWsihgPllmGFkhotjKRDaNYNpywzQhRIO7JIubpUgYyfkBVCYvE3MIjrR-YKg-etMmvrQIF7RF_MNaoZY-etcaeOWaKV1witPkntWSDZmWWeEyK1pmxWtwuXhkOifU-KvzBQlCkbHhuDoqcgZwdkRbpdrEf4V7KubVoF7KShVWmCoW4u6JDmplDa5K-S2bf33t0b96n8H6w3VX3feHd8ewwUij8r80dahkrzNzgqAli09zxXwHN5zhNQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Introducing+statistical+consistency+for+infinite+chance+constraints&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Zghidi%2C+Imen&rft.au=Hnich%2C+Brahim&rft.au=Rebai%2C+Abdelwaheb&rft.date=2018-06-01&rft.pub=Springer+International+Publishing&rft.issn=1012-2443&rft.eissn=1573-7470&rft.volume=83&rft.issue=2&rft.spage=165&rft.epage=181&rft_id=info:doi/10.1007%2Fs10472-018-9572-3&rft.externalDocID=10_1007_s10472_018_9572_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon |