Intelligent Selection of Instances for Prediction Functions in Lazy Learning Algorithms
Lazy learning methods for function prediction use different prediction functions. Given a set of stored instances, a similarity measure, and a novel instance, a prediction function determines the value of the novel instance. A prediction function consists of three components: a positive integer k sp...
        Saved in:
      
    
          | Published in | The Artificial intelligence review Vol. 11; no. 1-5; pp. 175 - 191 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Dordrecht
          Springer Nature B.V
    
        01.02.1997
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0269-2821 1573-7462  | 
| DOI | 10.1023/A:1006500703083 | 
Cover
| Abstract | Lazy learning methods for function prediction use different prediction functions. Given a set of stored instances, a similarity measure, and a novel instance, a prediction function determines the value of the novel instance. A prediction function consists of three components: a positive integer k specifying the number of instances to be selected, a method for selecting the k instances, and a method for calculating the value of the novel instance given the k selected instances. This paper introduces a novel method called k surrounding neighbor (k-SN) for intelligently selecting instances and describes a simple k-SN algorithm. Unlike k nearest neighbor (k-NN), k-SN selects k instances that surround the novel instance. We empirically compared k-SN with k-NN using the linearly weighted average and local weighted regression methods. The experimental results show that k-SN outperforms k-NN with linearly weighted average and performs slightly better than k-NN with local weighted regression for the selected datasets. | 
    
|---|---|
| AbstractList | Contribution to a special issue devoted to learning algorithms that display lazy behaviours. Lazy learning methods for function prediction use different prediction functions. Given a set of stored instances, a similarity measures, and a novel instances, a prediction function determines the value of the novel instance. A prediction function consists of 3 components: a positive integer specifying the number of instances to be selected, a method for selecting the instances and a method for calculating the value of the novel instances given the selected instances. Original abstract-amended. Lazy learning methods for function prediction use different prediction functions. Given a set of stored instances, a similarity measure, and a novel instance, a prediction function determines the value of the novel instance. A prediction function consists of three components: a positive integer k specifying the number of instances to be selected, a method for selecting the k instances, and a method for calculating the value of the novel instance given the k selected instances. This paper introduces a novel method called k surrounding neighbor (k-SN) for intelligently selecting instances and describes a simple k-SN algorithm. Unlike k nearest neighbor (k-NN), k-SN selects k instances that surround the novel instance. We empirically compared k-SN with k-NN using the linearly weighted average and local weighted regression methods. The experimental results show that k-SN outperforms k-NN with linearly weighted average and performs slightly better than k-NN with local weighted regression for the selected datasets.  | 
    
| Author | Zhang, Jianping Yang, Jumming Yim, Yee-Sat  | 
    
| Author_xml | – sequence: 1 givenname: Jianping surname: Zhang fullname: Zhang, Jianping – sequence: 2 givenname: Yee-Sat surname: Yim fullname: Yim, Yee-Sat – sequence: 3 givenname: Jumming surname: Yang fullname: Yang, Jumming  | 
    
| BookMark | eNp9kc1LJDEQxYMoOH6cvYZdWE-9VqeSTnpvg6g7MKDgLh6bdJKejfQkbpI5uH-9PY6XFfRUBfV7Rb16R2Q_xOAIOavhew0ML-Y_aoBGAEhAULhHZrWQWEnesH0yA9a0FVOsPiRHOT8CgGAcZ-RhEYobR79yodB7NzpTfAw0DnQRctHBuEyHmOhdctbvZteb8Npk6gNd6n_PdOl0Cj6s6HxcxeTLn3U-IQeDHrM7favH5Pf11a_Ln9Xy9mZxOV9WBoUoFTPKDuAETrfzHpD1CNZZ26AVfdOawUoDjPVcWcM1l7IHrYUd2r41vZESj8n5bu9Tin83Lpdu7bOZHOng4iZ3kiNyjopP5LdPSSE5Q0AxgV_fgY9xk8LkosO6FUoJVO1EffmIqlsFTLZiC13sIJNizskN3VPya52euxq6bWrdvPsvtUkh3imML3r77pK0Hz_UvQA40JuV | 
    
| CitedBy_id | crossref_primary_10_1109_TIP_2008_922429 crossref_primary_10_2355_tetsutohagane1955_90_11_917 crossref_primary_10_1016_j_neucom_2014_03_006 crossref_primary_10_20965_jrm_2016_p0730 crossref_primary_10_1007_s13748_012_0027_5 crossref_primary_10_1016_j_eswa_2021_115884 crossref_primary_10_1016_j_jprocont_2012_06_007 crossref_primary_10_1016_S0950_7051_98_00066_5 crossref_primary_10_3182_20070606_3_MX_2915_00113 crossref_primary_10_1002_asjc_36 crossref_primary_10_1016_j_ecolmodel_2004_03_004 crossref_primary_10_1021_acs_iecr_8b01270 crossref_primary_10_3182_20050703_6_CZ_1902_01619 crossref_primary_10_1016_j_rser_2016_01_114 crossref_primary_10_3182_20110828_6_IT_1002_00811 crossref_primary_10_1016_j_chemolab_2020_104043 crossref_primary_10_1021_acs_iecr_9b00704 crossref_primary_10_1016_S1474_6670_17_31516_1 crossref_primary_10_1007_s10044_018_0706_3 crossref_primary_10_1016_S0165_232X_03_00072_7 crossref_primary_10_1016_j_neucom_2009_11_031 crossref_primary_10_1016_S0004_3702_03_00019_5 crossref_primary_10_1016_j_cjche_2015_11_012 crossref_primary_10_1109_TCST_2008_921808 crossref_primary_10_1111_j_1934_6093_2001_tb00040_x crossref_primary_10_1556_ComEc_5_2004_2_9 crossref_primary_10_1541_ieejeiss_125_442 crossref_primary_10_1002_asjc_1009 crossref_primary_10_1007_s00500_015_1690_9  | 
    
| Cites_doi | 10.1007/BF00993481 10.1111/j.1467-8640.1989.tb00315.x 10.2307/2289282 10.1007/BF00114779  | 
    
| ContentType | Journal Article | 
    
| Copyright | Kluwer Academic Publishers 1997 Copyright Springer Nature B.V. Feb 1997  | 
    
| Copyright_xml | – notice: Kluwer Academic Publishers 1997 – notice: Copyright Springer Nature B.V. Feb 1997  | 
    
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO E3H F2A FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRQQA PSYQQ Q9U PRINS F28 FR3  | 
    
| DOI | 10.1023/A:1006500703083 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College Library & Information Science Collection ProQuest Central Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Proquest Library Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic ProQuest Central China ANTE: Abstracts in New Technology & Engineering Engineering Research Database  | 
    
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest Central China Engineering Research Database ANTE: Abstracts in New Technology & Engineering  | 
    
| DatabaseTitleList | Library and Information Science Abstracts (LISA) ProQuest Business Collection (Alumni Edition) Technology Research Database ProQuest Business Collection (Alumni Edition)  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1573-7462 | 
    
| EndPage | 191 | 
    
| ExternalDocumentID | 978121091 10_1023_A_1006500703083  | 
    
| GroupedDBID | -Y2 .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 2J2 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6J9 6NX 77I 77K 7WY 8AO 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFWJ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABBBX ABBXA ABDBE ABDZT ABECU ABEEZ ABFSG ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACSTC ACULB ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFEXP AFFNX AFGCZ AFGXO AFHIU AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU CITATION CNYFK COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO ICD IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M1O M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PRQQA PSYQQ PT5 PUEGO Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 ZMTXR ~A9 ~EX 3V. 7SC 7XB 8AL 8FD 8FK E3H F2A JQ2 L.- L7M L~C L~D M0N PKEHL PQEST PQUKI Q9U PRINS F28 FR3  | 
    
| ID | FETCH-LOGICAL-c355t-2c8df0e531004b032b30dedd63d5b69cfd7c022b48dc4a477b0aa5df9b9cbc773 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0269-2821 | 
    
| IngestDate | Wed Oct 01 13:01:29 EDT 2025 Fri Sep 05 07:56:53 EDT 2025 Sat Oct 25 06:56:25 EDT 2025 Sat Oct 25 06:56:12 EDT 2025 Thu Apr 24 23:00:24 EDT 2025 Wed Oct 01 06:04:11 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1-5 | 
    
| Language | English | 
    
| License | https://www.springernature.com/gp/researchers/text-and-data-mining | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c355t-2c8df0e531004b032b30dedd63d5b69cfd7c022b48dc4a477b0aa5df9b9cbc773 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1  | 
    
| PQID | 198027959 | 
    
| PQPubID | 36790 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | proquest_miscellaneous_743344384 proquest_miscellaneous_57423035 proquest_journals_3195885389 proquest_journals_198027959 crossref_primary_10_1023_A_1006500703083 crossref_citationtrail_10_1023_A_1006500703083  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 1900 | 
    
| PublicationDate | 1997-02-00 19970201  | 
    
| PublicationDateYYYYMMDD | 1997-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 1997 text: 1997-02-00  | 
    
| PublicationDecade | 1990 | 
    
| PublicationPlace | Dordrecht | 
    
| PublicationPlace_xml | – name: Dordrecht | 
    
| PublicationTitle | The Artificial intelligence review | 
    
| PublicationYear | 1997 | 
    
| Publisher | Springer Nature B.V | 
    
| Publisher_xml | – name: Springer Nature B.V | 
    
| References | L. Breiman (116060_CR3) 1984 D. W. Aha (116060_CR2) 1991; 6 T. Townsend-Weber (116060_CR15) 1994 R. Duda (116060_CR7) 1973 116060_CR14 P. Murphy (116060_CR11) 1995 S. M. Weiss (116060_CR16) 1993 J. R. Quinlan (116060_CR12) 1992 116060_CR4 116060_CR6 116060_CR8 116060_CR9 T. Mohri (116060_CR10) 1994 116060_CR1 M. E. Connell (116060_CR5) 1987 J. R. Quinlan (116060_CR13) 1993  | 
    
| References_xml | – volume-title: Proceedings of the Fifth Australian Joint Conference on Artificial Intelligence year: 1992 ident: 116060_CR12 – volume-title: Pattern Classification and Scene Analysis year: 1973 ident: 116060_CR7 – volume-title: Working Notes of the AAAI94 Workshop on Case-Based Reasoning year: 1994 ident: 116060_CR10 – ident: 116060_CR1 – start-page: 456 volume-title: Proceedings of the Sixth National Conference on Artificial Intelligence year: 1987 ident: 116060_CR5 – volume-title: UCI Repository of machine learning databases year: 1995 ident: 116060_CR11 – ident: 116060_CR9 – ident: 116060_CR6 doi: 10.1007/BF00993481 – ident: 116060_CR8 doi: 10.1111/j.1467-8640.1989.tb00315.x – ident: 116060_CR4 doi: 10.2307/2289282 – volume-title: Classification and Regression Trees year: 1984 ident: 116060_CR3 – volume: 6 start-page: 37 year: 1991 ident: 116060_CR2 publication-title: Machine Learning – ident: 116060_CR14 doi: 10.1007/BF00114779 – start-page: 1072 volume-title: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence year: 1993 ident: 116060_CR16 – start-page: 236 volume-title: Proceedings of the Tenth International Machine Learning Conference year: 1993 ident: 116060_CR13 – volume-title: Instance-based prediction of continuous values year: 1994 ident: 116060_CR15  | 
    
| SSID | ssj0005243 | 
    
| Score | 1.6436181 | 
    
| Snippet | Lazy learning methods for function prediction use different prediction functions. Given a set of stored instances, a similarity measure, and a novel instance,... Contribution to a special issue devoted to learning algorithms that display lazy behaviours. Lazy learning methods for function prediction use different...  | 
    
| SourceID | proquest crossref  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 175 | 
    
| SubjectTerms | Accuracy Algorithms Artificial intelligence Lazy learning Locally weighted learning Machine learning Prediction Regression analysis Similarity measures  | 
    
| Title | Intelligent Selection of Instances for Prediction Functions in Lazy Learning Algorithms | 
    
| URI | https://www.proquest.com/docview/198027959 https://www.proquest.com/docview/3195885389 https://www.proquest.com/docview/57423035 https://www.proquest.com/docview/743344384  | 
    
| Volume | 11 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7462 dateEnd: 20111231 omitProxy: true ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Library Science Database customDbUrl: eissn: 1573-7462 dateEnd: 20111231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: M1O dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/libraryscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7462 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: AAJSJ dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB3B7qWXUmirBujWhx56cZvE9iY-VNVuRfhQ2aK2qNwif4VWgiyw4VB-PWNvsnRBcI0dRRp7Zp49k_cA3jsplbHaUm24plzYmOZGJNSleMDOTFJV1t93HE6Ge8f84EScrMCk-xfGt1V2MTEEajs1_o78E_OsKJhbcvnl4pJ61ShfXe0kNFQrrWA_B4qxVeinnhmrB_3xzuTox39NH_M-unQoKR42kntkPx6vBB_I2XKeWg7TIfcUL-B5CxrJaL7K67Di6g1Y6wQZSOufL-H3_oJgsyE_g8INmp1MK7IfUCDGBIIglRxd-fJMGCswr4WtR_7W5Ju6-UdaxtVTMjo7RQM0f85nr-C42Pn1dY-2ygnUIH5oaGpyW8VO-Nt7rmOWahZbZ-2QWaGH0uACGEzemufWcMWzTMdKCVtJLY02WcZeQ6-e1u4NkFhmQjHEZc6gs1fovlZzphAFaeP1yyL42NmpNC2tuFe3OCtDeTtl5ahcMmwEHxYvXMwZNR6futUZvmxda1YmMsejtBQygu2Ho3fbJIJ3i2F0GV8HUbWbXs9K4avTMRMRkEdmIKxinLOcbz79jS14Nqez9e0t29Brrq7dWwQpjR7Aal7sDqA_KsbjyaDdh_j0MPl-C7d46Dc | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gCXUl5iaaE-gMTFsFnb2fWhQgEaJTSNKmhFb4tf21ZqN6XZCpUfx2_r2PEGAiq3nu19aDyeh2f8fQAvnZTKWG2pNlxTLmxKCyM61GWYYOemU1XWn3fsjruDA_7pUBwuwa_2Loxvq2xtYjDUdmL8Gflb5lFR0LcU8t35d-pZo3x1taXQUJFawW4FiLF4sWPHXf3AFG66NfyI6_0qy_rb-x8GNLIMUIO-tqGZKWyVOuFPurlOWaZZap21XWaF7kqDP2vQ0WleWMMVz3OdKiVsJbU02uQ5w_fegRXOuMTkb-X99njv8x9NJrO-vawrKSY3nb_AhXx8FPZcwRb94qJbCL6uvwarMUglvZlWPYAlVz-E-y0BBIn24BF8Hc4BPRvyJTDq4DKTSUWGIepEG0QwKCZ7F74cFMb66EeDqpOTmozUzysSEV6PSO_0CAXeHJ9NH8PBrcjwCSzXk9o9BZLKXCiGcaAzaFwqNBdWc6Yw6tLG86Ul8KaVU2kijLln0zgtQzk9Y2WvXBBsAq_nD5zPEDxunrreCr6MW3ladmSBqbsUMoGNf0d_q2UCm_Nh3KK-7qJqN7mclsJXw1MmEiA3zMAwjnHOCv7s_9_YhLuD_d1RORqOd9bh3gxK17fWbMByc3HpnmOA1OgXUQsJfLttxb8GkzwjZg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9RAFD5BSIwv3NRQAZkHSHyZpe3MbDsPxmzEDSsIJErkrXYuBSN2ke3GwE_jr_BnPDNtVxeDbzz4PNPLTM_lO3O-ngOwaaXMtVGGKs0V5cKENNUiojbGADvRUVEYd97x4aC7e8zfn4iTGbhp_4VxtMrWJnpDbYbanZFvM1cVBX1LKreLhhZxtNN_c_GDug5SLtPattOoRWTPXv3E8G30erCD33orjvvvPr3dpU2HAarRz1Y01qkpQivcKTdXIYsVC401psuMUF2p8UU1OjnFU6N5zpNEhXkuTCGV1EonCcP7PoK5xIURjjYYHf5BL6kZe3FXUgxrojtlhRwy8tqWsmmPOO0QvJfrL8Btuz81ueVbZ1ypjr6-Uzry_9zARZhvwDfp1dqyBDO2XIaFtrEFaezcU_g8mBQqrchH3ykIxZcMCzLwaBptK0GwT44uXZrLj_URH3gVJl9Lsp9fX5Gmcu0p6Z2f4tqrs--jZ3D8IMt7DrPlsLQrQEKZiJwhvrUajWaBZtAoznJEk0q7PnABdFopyHRTnt11CTnPPE0gZlkvmxKbAF5NLrioK5PcP3W1FYmsMVGjLJJpGLtO8wGs_T36W1oC2JgMo-lx-aS8tMPxKBMuyx8yEQC5ZwbCU8Y5S_mLfz9jAx6jLGb7g4O9VXhSVwh2jKE1mK0ux3YdcV-lXnoFI_DloQXyF6LKaVg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Selection+of+Instances+for+Prediction+Functions+in+Lazy+Learning+Algorithms&rft.jtitle=The+Artificial+intelligence+review&rft.au=Zhang%2C+Jianping&rft.au=Yim%2C+Yee-Sat&rft.au=Yang%2C+Jumming&rft.date=1997-02-01&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=11&rft.issue=1-5&rft.spage=175&rft.epage=191&rft_id=info:doi/10.1023%2FA%3A1006500703083&rft.externalDBID=n%2Fa&rft.externalDocID=10_1023_A_1006500703083 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon |