Ultrasound prostate segmentation based on multidirectional deeply supervised V‐Net

Purpose Transrectal ultrasound (TRUS) is a versatile and real‐time imaging modality that is commonly used in image‐guided prostate cancer interventions (e.g., biopsy and brachytherapy). Accurate segmentation of the prostate is key to biopsy needle placement, brachytherapy treatment planning, and mot...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 46; no. 7; pp. 3194 - 3206
Main Authors Lei, Yang, Tian, Sibo, He, Xiuxiu, Wang, Tonghe, Wang, Bo, Patel, Pretesh, Jani, Ashesh B., Mao, Hui, Curran, Walter J., Liu, Tian, Yang, Xiaofeng
Format Journal Article
LanguageEnglish
Published United States 01.07.2019
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
1522-8541
2473-4209
DOI10.1002/mp.13577

Cover

Abstract Purpose Transrectal ultrasound (TRUS) is a versatile and real‐time imaging modality that is commonly used in image‐guided prostate cancer interventions (e.g., biopsy and brachytherapy). Accurate segmentation of the prostate is key to biopsy needle placement, brachytherapy treatment planning, and motion management. Manual segmentation during these interventions is time‐consuming and subject to inter‐ and intraobserver variation. To address these drawbacks, we aimed to develop a deep learning‐based method which integrates deep supervision into a three‐dimensional (3D) patch‐based V‐Net for prostate segmentation. Methods and materials We developed a multidirectional deep‐learning‐based method to automatically segment the prostate for ultrasound‐guided radiation therapy. A 3D supervision mechanism is integrated into the V‐Net stages to deal with the optimization difficulties when training a deep network with limited training data. We combine a binary cross‐entropy (BCE) loss and a batch‐based Dice loss into the stage‐wise hybrid loss function for a deep supervision training. During the segmentation stage, the patches are extracted from the newly acquired ultrasound image as the input of the well‐trained network and the well‐trained network adaptively labels the prostate tissue. The final segmented prostate volume is reconstructed using patch fusion and further refined through a contour refinement processing. Results Forty‐four patients' TRUS images were used to test our segmentation method. Our segmentation results were compared with the manually segmented contours (ground truth). The mean prostate volume Dice similarity coefficient (DSC), Hausdorff distance (HD), mean surface distance (MSD), and residual mean surface distance (RMSD) were 0.92 ± 0.03, 3.94 ± 1.55, 0.60 ± 0.23, and 0.90 ± 0.38 mm, respectively. Conclusion We developed a novel deeply supervised deep learning‐based approach with reliable contour refinement to automatically segment the TRUS prostate, demonstrated its clinical feasibility, and validated its accuracy compared to manual segmentation. The proposed technique could be a useful tool for diagnostic and therapeutic applications in prostate cancer.
AbstractList Purpose Transrectal ultrasound (TRUS) is a versatile and real‐time imaging modality that is commonly used in image‐guided prostate cancer interventions (e.g., biopsy and brachytherapy). Accurate segmentation of the prostate is key to biopsy needle placement, brachytherapy treatment planning, and motion management. Manual segmentation during these interventions is time‐consuming and subject to inter‐ and intraobserver variation. To address these drawbacks, we aimed to develop a deep learning‐based method which integrates deep supervision into a three‐dimensional (3D) patch‐based V‐Net for prostate segmentation. Methods and materials We developed a multidirectional deep‐learning‐based method to automatically segment the prostate for ultrasound‐guided radiation therapy. A 3D supervision mechanism is integrated into the V‐Net stages to deal with the optimization difficulties when training a deep network with limited training data. We combine a binary cross‐entropy (BCE) loss and a batch‐based Dice loss into the stage‐wise hybrid loss function for a deep supervision training. During the segmentation stage, the patches are extracted from the newly acquired ultrasound image as the input of the well‐trained network and the well‐trained network adaptively labels the prostate tissue. The final segmented prostate volume is reconstructed using patch fusion and further refined through a contour refinement processing. Results Forty‐four patients' TRUS images were used to test our segmentation method. Our segmentation results were compared with the manually segmented contours (ground truth). The mean prostate volume Dice similarity coefficient (DSC), Hausdorff distance (HD), mean surface distance (MSD), and residual mean surface distance (RMSD) were 0.92 ± 0.03, 3.94 ± 1.55, 0.60 ± 0.23, and 0.90 ± 0.38 mm, respectively. Conclusion We developed a novel deeply supervised deep learning‐based approach with reliable contour refinement to automatically segment the TRUS prostate, demonstrated its clinical feasibility, and validated its accuracy compared to manual segmentation. The proposed technique could be a useful tool for diagnostic and therapeutic applications in prostate cancer.
Transrectal ultrasound (TRUS) is a versatile and real-time imaging modality that is commonly used in image-guided prostate cancer interventions (e.g., biopsy and brachytherapy). Accurate segmentation of the prostate is key to biopsy needle placement, brachytherapy treatment planning, and motion management. Manual segmentation during these interventions is time-consuming and subject to inter- and intraobserver variation. To address these drawbacks, we aimed to develop a deep learning-based method which integrates deep supervision into a three-dimensional (3D) patch-based V-Net for prostate segmentation.PURPOSETransrectal ultrasound (TRUS) is a versatile and real-time imaging modality that is commonly used in image-guided prostate cancer interventions (e.g., biopsy and brachytherapy). Accurate segmentation of the prostate is key to biopsy needle placement, brachytherapy treatment planning, and motion management. Manual segmentation during these interventions is time-consuming and subject to inter- and intraobserver variation. To address these drawbacks, we aimed to develop a deep learning-based method which integrates deep supervision into a three-dimensional (3D) patch-based V-Net for prostate segmentation.We developed a multidirectional deep-learning-based method to automatically segment the prostate for ultrasound-guided radiation therapy. A 3D supervision mechanism is integrated into the V-Net stages to deal with the optimization difficulties when training a deep network with limited training data. We combine a binary cross-entropy (BCE) loss and a batch-based Dice loss into the stage-wise hybrid loss function for a deep supervision training. During the segmentation stage, the patches are extracted from the newly acquired ultrasound image as the input of the well-trained network and the well-trained network adaptively labels the prostate tissue. The final segmented prostate volume is reconstructed using patch fusion and further refined through a contour refinement processing.METHODS AND MATERIALSWe developed a multidirectional deep-learning-based method to automatically segment the prostate for ultrasound-guided radiation therapy. A 3D supervision mechanism is integrated into the V-Net stages to deal with the optimization difficulties when training a deep network with limited training data. We combine a binary cross-entropy (BCE) loss and a batch-based Dice loss into the stage-wise hybrid loss function for a deep supervision training. During the segmentation stage, the patches are extracted from the newly acquired ultrasound image as the input of the well-trained network and the well-trained network adaptively labels the prostate tissue. The final segmented prostate volume is reconstructed using patch fusion and further refined through a contour refinement processing.Forty-four patients' TRUS images were used to test our segmentation method. Our segmentation results were compared with the manually segmented contours (ground truth). The mean prostate volume Dice similarity coefficient (DSC), Hausdorff distance (HD), mean surface distance (MSD), and residual mean surface distance (RMSD) were 0.92 ± 0.03, 3.94 ± 1.55, 0.60 ± 0.23, and 0.90 ± 0.38 mm, respectively.RESULTSForty-four patients' TRUS images were used to test our segmentation method. Our segmentation results were compared with the manually segmented contours (ground truth). The mean prostate volume Dice similarity coefficient (DSC), Hausdorff distance (HD), mean surface distance (MSD), and residual mean surface distance (RMSD) were 0.92 ± 0.03, 3.94 ± 1.55, 0.60 ± 0.23, and 0.90 ± 0.38 mm, respectively.We developed a novel deeply supervised deep learning-based approach with reliable contour refinement to automatically segment the TRUS prostate, demonstrated its clinical feasibility, and validated its accuracy compared to manual segmentation. The proposed technique could be a useful tool for diagnostic and therapeutic applications in prostate cancer.CONCLUSIONWe developed a novel deeply supervised deep learning-based approach with reliable contour refinement to automatically segment the TRUS prostate, demonstrated its clinical feasibility, and validated its accuracy compared to manual segmentation. The proposed technique could be a useful tool for diagnostic and therapeutic applications in prostate cancer.
Transrectal ultrasound (TRUS) is a versatile and real-time imaging modality that is commonly used in image-guided prostate cancer interventions (e.g., biopsy and brachytherapy). Accurate segmentation of the prostate is key to biopsy needle placement, brachytherapy treatment planning, and motion management. Manual segmentation during these interventions is time-consuming and subject to inter- and intraobserver variation. To address these drawbacks, we aimed to develop a deep learning-based method which integrates deep supervision into a three-dimensional (3D) patch-based V-Net for prostate segmentation. We developed a multidirectional deep-learning-based method to automatically segment the prostate for ultrasound-guided radiation therapy. A 3D supervision mechanism is integrated into the V-Net stages to deal with the optimization difficulties when training a deep network with limited training data. We combine a binary cross-entropy (BCE) loss and a batch-based Dice loss into the stage-wise hybrid loss function for a deep supervision training. During the segmentation stage, the patches are extracted from the newly acquired ultrasound image as the input of the well-trained network and the well-trained network adaptively labels the prostate tissue. The final segmented prostate volume is reconstructed using patch fusion and further refined through a contour refinement processing. Forty-four patients' TRUS images were used to test our segmentation method. Our segmentation results were compared with the manually segmented contours (ground truth). The mean prostate volume Dice similarity coefficient (DSC), Hausdorff distance (HD), mean surface distance (MSD), and residual mean surface distance (RMSD) were 0.92 ± 0.03, 3.94 ± 1.55, 0.60 ± 0.23, and 0.90 ± 0.38 mm, respectively. We developed a novel deeply supervised deep learning-based approach with reliable contour refinement to automatically segment the TRUS prostate, demonstrated its clinical feasibility, and validated its accuracy compared to manual segmentation. The proposed technique could be a useful tool for diagnostic and therapeutic applications in prostate cancer.
Author Tian, Sibo
Mao, Hui
Yang, Xiaofeng
Wang, Bo
Wang, Tonghe
Curran, Walter J.
Patel, Pretesh
He, Xiuxiu
Jani, Ashesh B.
Liu, Tian
Lei, Yang
Author_xml – sequence: 1
  givenname: Yang
  surname: Lei
  fullname: Lei, Yang
  organization: Emory University
– sequence: 2
  givenname: Sibo
  surname: Tian
  fullname: Tian, Sibo
  organization: Emory University
– sequence: 3
  givenname: Xiuxiu
  surname: He
  fullname: He, Xiuxiu
  organization: Emory University
– sequence: 4
  givenname: Tonghe
  surname: Wang
  fullname: Wang, Tonghe
  organization: Emory University
– sequence: 5
  givenname: Bo
  surname: Wang
  fullname: Wang, Bo
  organization: Emory University
– sequence: 6
  givenname: Pretesh
  surname: Patel
  fullname: Patel, Pretesh
  organization: Emory University
– sequence: 7
  givenname: Ashesh B.
  surname: Jani
  fullname: Jani, Ashesh B.
  organization: Emory University
– sequence: 8
  givenname: Hui
  surname: Mao
  fullname: Mao, Hui
  organization: Emory University
– sequence: 9
  givenname: Walter J.
  surname: Curran
  fullname: Curran, Walter J.
  organization: Emory University
– sequence: 10
  givenname: Tian
  surname: Liu
  fullname: Liu, Tian
  organization: Emory University
– sequence: 11
  givenname: Xiaofeng
  surname: Yang
  fullname: Yang, Xiaofeng
  email: xyang43@emory.edu
  organization: Emory University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31074513$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtKxDAUhoMoOqOCTyBd6qJjLk0zWYp4A28Lx21I01OJpBeb1qE7H8Fn9EnM2NGdQiA_hy_nnHxTtFnVFSB0QPCMYExPymZGGBdiA01oIlicUCw30QRjmcQ0wXwHTb1_wRinjONttMMIFgknbIIeF65rta_7Ko-atvad7iDy8FxCFaKtqyjTHvIohLJ3nc1tC2ZV1y7KARo3RL5voH2zK-rp8_3jDro9tFVo52F_fe-ixcX549lVfHN_eX12ehMbxrmI00xLaYhIC2IyKTNKUjqHIuOZLAg3IDmm88xgwqXUAgqYAxgKIAqRcpEC20XHY9--avSw1M6pprWlbgdFsFqZUWWjvs0E9mhkwy9fe_CdKq034JyuoO69opQRSWQ4AT1co31WQv7b88daAGYjYIIx30KhjB1tBZfW_TP898E_e8YjurQOhj85dfsw8l8zFJvw
CitedBy_id crossref_primary_10_1016_j_media_2022_102418
crossref_primary_10_1016_j_media_2020_101845
crossref_primary_10_1109_TMI_2021_3139999
crossref_primary_10_3390_rs13132460
crossref_primary_10_1109_TMI_2024_3400899
crossref_primary_10_1002_mp_15264
crossref_primary_10_1002_mp_14134
crossref_primary_10_1016_j_isprsjprs_2022_12_023
crossref_primary_10_1002_mp_14895
crossref_primary_10_1016_j_ultrasmedbio_2024_10_016
crossref_primary_10_1088_1361_6560_ac5a93
crossref_primary_10_1088_1361_6560_ab8077
crossref_primary_10_1002_acm2_13337
crossref_primary_10_1016_j_patcog_2022_108890
crossref_primary_10_1007_s10278_023_00783_3
crossref_primary_10_1016_j_zemedi_2022_10_005
crossref_primary_10_1016_j_eswa_2023_122128
crossref_primary_10_1088_1361_6560_ac344d
crossref_primary_10_1088_1361_6560_aba410
crossref_primary_10_1088_1361_6560_acf5c5
crossref_primary_10_1088_1361_6560_ab63bb
crossref_primary_10_1016_j_compmedimag_2023_102241
crossref_primary_10_1016_j_eswa_2025_126978
crossref_primary_10_1088_1361_6560_ab8cd6
crossref_primary_10_1016_j_brachy_2023_04_003
crossref_primary_10_1038_s41391_023_00684_0
crossref_primary_10_1259_bjr_20210644
crossref_primary_10_1088_1361_6560_abf2f9
crossref_primary_10_1002_mp_14128
crossref_primary_10_1016_j_semradonc_2022_06_008
crossref_primary_10_1007_s10489_023_04676_4
crossref_primary_10_1016_j_crad_2020_08_027
crossref_primary_10_14366_usg_20085
crossref_primary_10_1088_1361_6560_ac3c13
crossref_primary_10_1007_s10462_022_10179_4
crossref_primary_10_1016_j_ejmp_2020_07_028
crossref_primary_10_3390_app14156550
crossref_primary_10_1088_1361_6560_abd953
crossref_primary_10_1088_1361_6560_ad0d45
crossref_primary_10_3390_app12031390
crossref_primary_10_3390_diagnostics11020354
crossref_primary_10_3390_app11020844
crossref_primary_10_3390_electronics11111800
crossref_primary_10_1016_j_compbiomed_2024_109531
crossref_primary_10_1109_TPAMI_2023_3289667
crossref_primary_10_1007_s00330_020_07482_5
crossref_primary_10_1088_1361_6560_ac3b34
crossref_primary_10_1016_j_cmpb_2022_106752
crossref_primary_10_1016_j_radonc_2019_09_028
crossref_primary_10_1088_1361_6560_abc5a6
crossref_primary_10_1002_mp_16378
crossref_primary_10_1002_mp_15522
crossref_primary_10_1007_s10489_023_05143_w
crossref_primary_10_1177_17562872221128791
crossref_primary_10_1002_mp_15206
crossref_primary_10_1016_j_brachy_2024_10_009
crossref_primary_10_1002_mp_16811
crossref_primary_10_1007_s10278_023_00839_4
crossref_primary_10_1002_mp_13933
crossref_primary_10_1002_mp_14307
crossref_primary_10_1002_mp_14901
crossref_primary_10_1002_mp_14508
crossref_primary_10_1016_j_ijmedinf_2023_105279
crossref_primary_10_1590_1809_4430_eng_agric_v44e20230097_2024
crossref_primary_10_3389_fphys_2023_1177351
crossref_primary_10_1016_j_ejmp_2021_05_003
crossref_primary_10_1016_j_ejrad_2021_109717
crossref_primary_10_1002_mp_15032
crossref_primary_10_1002_mp_14066
crossref_primary_10_1109_TUFFC_2023_3255843
crossref_primary_10_1002_mp_14386
crossref_primary_10_1002_mp_13970
crossref_primary_10_1016_j_bspc_2023_105337
crossref_primary_10_1016_j_ultrasmedbio_2024_10_005
crossref_primary_10_1117_1_JEI_33_1_013048
crossref_primary_10_1002_mp_13966
crossref_primary_10_14366_usg_20102
crossref_primary_10_55007_dufed_1181996
crossref_primary_10_1002_mp_14818
crossref_primary_10_1088_1361_6560_ab843e
crossref_primary_10_1016_j_asoc_2021_107386
crossref_primary_10_1088_1361_6560_abfce2
crossref_primary_10_1002_acm2_70034
crossref_primary_10_1016_j_compmedimag_2024_102326
crossref_primary_10_1016_j_media_2022_102620
crossref_primary_10_3389_fphy_2024_1398393
crossref_primary_10_1109_TUFFC_2022_3169684
Cites_doi 10.1007/s00345-015-1523-6
10.1609/aaai.v31i1.10761
10.1016/j.media.2017.05.001
10.1007/s11548-018-1742-6
10.1109/TMI.2015.2502540
10.1007/s12350-019-01594-2
10.1109/TMI.2014.2371823
10.1109/CRV.2008.15
10.1016/j.cmpb.2012.04.006
10.1109/ISSPIT.2006.270795
10.1016/j.media.2010.10.002
10.1016/j.ijrobp.2014.08.350
10.1117/12.912188
10.1002/mp.13416
10.1109/3DV.2016.79
10.1371/journal.pone.0076645
10.1007/978-3-642-33140-4_17
10.1002/mp.13458
10.1016/j.compbiomed.2016.05.002
10.1117/12.878072
10.1002/mp.13560
10.1016/j.compmedimag.2004.07.007
10.1117/12.594403
10.1016/0895-6111(96)00048-1
10.1109/TBME.2009.2037491
10.1016/j.media.2018.05.010
10.1007/s11548-008-0247-0
10.1109/BioCAS.2014.6981659
10.1117/12.877888
10.1118/1.4906129
10.1109/IJCNN.2017.7965852
10.1118/1.2777005
10.1109/TMI.2006.884630
ContentType Journal Article
Copyright 2019 American Association of Physicists in Medicine
2019 American Association of Physicists in Medicine.
Copyright_xml – notice: 2019 American Association of Physicists in Medicine
– notice: 2019 American Association of Physicists in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1002/mp.13577
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 3206
ExternalDocumentID oai:pubmedcentral.nih.gov:6625925
31074513
10_1002_mp_13577
MP13577
Genre article
Journal Article
GrantInformation_xml – fundername: Dunwoody Golf Club Prostate Cancer Research Award
– fundername: National Institutes of Health
  funderid: R01CA215718
– fundername: Department of Defense (DoD) Prostate Cancer Research Program
  funderid: W81XWH‐13‐1‐0269; W81XWH‐17‐1‐0438; W81XWH‐17‐1‐0439
– fundername: Winship Cancer Institute of Emory University
– fundername: NVIDIA Corporation
– fundername: National Institutes of Health
  grantid: R01CA215718
– fundername: Department of Defense (DoD) Prostate Cancer Research Program
  grantid: W81XWH-17-1-0438
– fundername: NCI NIH HHS
  grantid: R01 CA215718
– fundername: Department of Defense (DoD) Prostate Cancer Research Program
  grantid: W81XWH-13-1-0269
– fundername: Department of Defense (DoD) Prostate Cancer Research Program
  grantid: W81XWH-17-1-0439
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ABUFD
ADTOC
UNPAY
ID FETCH-LOGICAL-c3557-6ba99c176f1cb99b21628efb5b9f15ce95028bc01599a7efe8eec2ee7f76576e3
IEDL.DBID UNPAY
ISSN 0094-2405
2473-4209
1522-8541
IngestDate Sun Oct 26 03:44:25 EDT 2025
Fri Sep 05 13:39:46 EDT 2025
Wed Feb 19 02:31:22 EST 2025
Thu Apr 24 23:08:57 EDT 2025
Wed Oct 01 04:33:01 EDT 2025
Wed Jan 22 16:39:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords deep learning
deeply supervised network
prostate segmentation
transrectal ultrasound (TRUS)
Language English
License 2019 American Association of Physicists in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3557-6ba99c176f1cb99b21628efb5b9f15ce95028bc01599a7efe8eec2ee7f76576e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6625925
PMID 31074513
PQID 2231919919
PQPubID 23479
PageCount 13
ParticipantIDs unpaywall_primary_10_1002_mp_13577
proquest_miscellaneous_2231919919
pubmed_primary_31074513
crossref_citationtrail_10_1002_mp_13577
crossref_primary_10_1002_mp_13577
wiley_primary_10_1002_mp_13577_MP13577
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2019
2019-07-00
2019-Jul
20190701
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2019
References 2015; 34
2017; 41
2014; 90
2010; 57
2012
2011
2012; 8316
2015; 33
2008
2016; 74
2006
2018; 10576
2008; 3
2011; 15
2018; 10574
2013; 8
2005; 29
2007; 34
2012; 108
2016; 35
2018; 48
2016; 9784
2011; 7964
2015; 9351
2016; 7
2011; 7962
2015; 42
2019; 46
1979; 6
2019
2017
2005; 5747
2016
2014
1996; 20
2007; 25
2018; 13
e_1_2_8_28_1
e_1_2_8_29_1
Sarkar S (e_1_2_8_3_1) 2016; 7
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_27_1
Khellaf F (e_1_2_8_26_1) 2018; 10574
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
Ghavami N (e_1_2_8_33_1) 2018; 10576
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
Yang X (e_1_2_8_23_1) 2016; 9784
e_1_2_8_21_1
e_1_2_8_22_1
Holm S (e_1_2_8_41_1) 1979; 6
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
Ronneberger O (e_1_2_8_37_1) 2015; 9351
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 3
  start-page: 485
  year: 2008
  end-page: 492
  article-title: Atlas‐based prostate segmentation using an hybrid registration
  publication-title: Int J Comput Assist Radiol Surg
– volume: 33
  start-page: 1651
  year: 2015
  end-page: 1659
  article-title: Multiparametric ultrasound in the detection of prostate cancer: a systematic review
  publication-title: World J Urol
– year: 2019
  article-title: A learning‐based automatic segmentation and quantification method on left ventricle in gated myocardial perfusion SPECT imaging: a feasibility
  publication-title: J Nucl Cardiol
– volume: 90
  start-page: 1225
  year: 2014
  end-page: 1233
  article-title: Automated segmentation of the parotid gland based on atlas registration and machine learning: a longitudinal MRI study in head‐and‐neck radiation therapy
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 10574
  start-page: 105740J
  year: 2018
  article-title: Left ventricle segmentation in 3D ultrasound by combining structured random forests with active shape models
  publication-title: Proc SPIE
– volume: 34
  start-page: 950
  year: 2015
  end-page: 961
  article-title: A multi‐atlas‐based segmentation framework for prostate brachytherapy
  publication-title: IEEE Trans Med Imaging
– volume: 48
  start-page: 107
  year: 2018
  end-page: 116
  article-title: A deep learning approach for real time prostate segmentation in freehand ultrasound guided biopsy
  publication-title: Med Image Anal
– start-page: 689
  year: 2011
  end-page: 696
– volume: 6
  start-page: 65
  year: 1979
  end-page: 70
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scand J Stat
– year: 2019
  article-title: Learning‐based automatic segmentation of arteriovenous malformations on contrast CT images in brain stereotactic radiosurgery
  publication-title: Med Phys
– volume: 108
  start-page: 262
  year: 2012
  end-page: 287
  article-title: A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images
  publication-title: Comput Meth Prog Bio
– volume: 8316
  start-page: 83162O
  year: 2012
  article-title: 3D prostate segmentation of ultrasound images combining longitudinal image registration and machine learning
  publication-title: Proc SPIE
– volume: 9351
  start-page: 234
  year: 2015
  end-page: 241
  article-title: U‐Net: convolutional networks for biomedical image segmentation
  publication-title: Proc MICCAI
– year: 2016
– volume: 10576
  start-page: 1057603
  year: 2018
  article-title: Automatic slice segmentation of intraoperative transrectal ultrasound images using convolutional neural networks
  publication-title: Proc SPIE
– volume: 29
  start-page: 43
  year: 2005
  end-page: 51
  article-title: Segmentation of abdominal ultrasound images of the prostate using a priori information and an adapted noise filter
  publication-title: Comput Med Imag Grap
– volume: 8
  start-page: e76645
  year: 2013
  article-title: PCG‐Cut: graph driven segmentation of the prostate central gland
  publication-title: PLoS ONE
– volume: 42
  start-page: 877
  year: 2015
  end-page: 891
  article-title: Rotationally resliced 3D prostate TRUS segmentation using convex optimization with shape priors
  publication-title: Med Phys
– year: 2012
– volume: 13
  start-page: 749
  year: 2018
  end-page: 757
  article-title: Prostate segmentation in transrectal ultrasound using magnetic resonance imaging priors
  publication-title: Int J Comput Assist Radiol Surg
– volume: 34
  start-page: 4109
  year: 2007
  end-page: 4125
  article-title: Fast prostate segmentation in 3D TRUS images based on continuity constraint using an autoregressive model
  publication-title: Med Phys
– volume: 7964
  start-page: 796432
  year: 2011
  article-title: Automatic 3D segmentation of ultrasound images using atlas registration and statistical texture prior
  publication-title: Proc SPIE
– volume: 15
  start-page: 226
  year: 2011
  end-page: 237
  article-title: Semi‐automatic segmentation for prostate interventions
  publication-title: Med Image Anal
– start-page: 178
  year: 2017
  end-page: 184
– volume: 7
  start-page: 1
  year: 2016
  end-page: 15
  article-title: A review of imaging methods for prostate cancer detection
  publication-title: Biomed Eng Comput Biol
– volume: 74
  start-page: 74
  year: 2016
  end-page: 90
  article-title: Fully automatic prostate segmentation from transrectal ultrasound images based on radial bas‐relief initialization and slice‐based propagation
  publication-title: Comput Biol Med
– volume: 20
  start-page: 131
  year: 1996
  end-page: 140
  article-title: Automated texture‐based segmentation of ultrasound images of the prostate
  publication-title: Comput Med Imag Grap
– year: 2008
– volume: 46
  start-page: 1707
  year: 2019
  end-page: 1718
  article-title: Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation
  publication-title: Med Phys
– year: 2006
– volume: 5747
  start-page: 1648
  year: 2005
  end-page: 1657
  article-title: Prostate ultrasound image segmentation using level set‐based region flow with shape guidance
  publication-title: Proc SPIE
– volume: 9784
  start-page: 97842F
  year: 2016
  article-title: 3D transrectal ultrasound (TRUS) prostate segmentation based on optimal feature learning framework
  publication-title: Proc SPIE
– start-page: 117
  year: 2014
  end-page: 120
– volume: 57
  start-page: 1158
  year: 2010
  end-page: 1166
  article-title: Discrete deformable model guided by partial active shape model for TRUS image segmentation
  publication-title: IEEE Trans Biomed Eng
– volume: 25
  start-page: 1645
  year: 2007
  end-page: 1654
  article-title: Semiautomatic 3‐D prostate segmentation from TRUS images using spherical harmonics
  publication-title: IEEE Trans Med Imaging
– year: 2017
– volume: 41
  start-page: 40
  year: 2017
  end-page: 54
  article-title: 3D deeply supervised network for automated segmentation of volumetric medical images
  publication-title: Med Image Anal
– volume: 35
  start-page: 921
  year: 2016
  end-page: 932
  article-title: Learning‐based multi‐label segmentation of transrectal ultrasound images for prostate brachytherapy
  publication-title: IEEE Trans Med Imaging
– volume: 7962
  start-page: 79622K
  year: 2011
  article-title: 3D segmentation of prostate ultrasound images using wavelet transform
  publication-title: Proc SPIE
– volume: 46
  start-page: 2157
  year: 2019
  end-page: 2168
  article-title: Automatic multiorgan segmentation in thorax CT images using U‐net‐GAN
  publication-title: Med Phys
– ident: e_1_2_8_38_1
  doi: 10.1007/s00345-015-1523-6
– ident: e_1_2_8_32_1
  doi: 10.1609/aaai.v31i1.10761
– ident: e_1_2_8_39_1
  doi: 10.1016/j.media.2017.05.001
– volume: 10576
  start-page: 1057603
  year: 2018
  ident: e_1_2_8_33_1
  article-title: Automatic slice segmentation of intraoperative transrectal ultrasound images using convolutional neural networks
  publication-title: Proc SPIE
– ident: e_1_2_8_35_1
  doi: 10.1007/s11548-018-1742-6
– ident: e_1_2_8_19_1
  doi: 10.1109/TMI.2015.2502540
– ident: e_1_2_8_30_1
  doi: 10.1007/s12350-019-01594-2
– volume: 7
  start-page: 1
  year: 2016
  ident: e_1_2_8_3_1
  article-title: A review of imaging methods for prostate cancer detection
  publication-title: Biomed Eng Comput Biol
– ident: e_1_2_8_10_1
  doi: 10.1109/TMI.2014.2371823
– ident: e_1_2_8_12_1
  doi: 10.1109/CRV.2008.15
– volume: 9351
  start-page: 234
  year: 2015
  ident: e_1_2_8_37_1
  article-title: U‐Net: convolutional networks for biomedical image segmentation
  publication-title: Proc MICCAI
– volume: 6
  start-page: 65
  year: 1979
  ident: e_1_2_8_41_1
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scand J Stat
– ident: e_1_2_8_6_1
  doi: 10.1016/j.cmpb.2012.04.006
– ident: e_1_2_8_9_1
  doi: 10.1109/ISSPIT.2006.270795
– ident: e_1_2_8_5_1
  doi: 10.1016/j.media.2010.10.002
– ident: e_1_2_8_11_1
  doi: 10.1016/j.ijrobp.2014.08.350
– ident: e_1_2_8_21_1
  doi: 10.1117/12.912188
– ident: e_1_2_8_29_1
  doi: 10.1002/mp.13416
– ident: e_1_2_8_36_1
– ident: e_1_2_8_27_1
  doi: 10.1109/3DV.2016.79
– ident: e_1_2_8_13_1
  doi: 10.1371/journal.pone.0076645
– ident: e_1_2_8_25_1
  doi: 10.1007/978-3-642-33140-4_17
– ident: e_1_2_8_28_1
  doi: 10.1002/mp.13458
– ident: e_1_2_8_4_1
  doi: 10.1016/j.compbiomed.2016.05.002
– ident: e_1_2_8_24_1
  doi: 10.1117/12.878072
– volume: 9784
  start-page: 97842F
  year: 2016
  ident: e_1_2_8_23_1
  article-title: 3D transrectal ultrasound (TRUS) prostate segmentation based on optimal feature learning framework
  publication-title: Proc SPIE
– ident: e_1_2_8_31_1
  doi: 10.1002/mp.13560
– ident: e_1_2_8_8_1
  doi: 10.1016/j.compmedimag.2004.07.007
– ident: e_1_2_8_14_1
  doi: 10.1117/12.594403
– ident: e_1_2_8_16_1
  doi: 10.1016/0895-6111(96)00048-1
– ident: e_1_2_8_7_1
  doi: 10.1109/TBME.2009.2037491
– volume: 10574
  start-page: 105740J
  year: 2018
  ident: e_1_2_8_26_1
  article-title: Left ventricle segmentation in 3D ultrasound by combining structured random forests with active shape models
  publication-title: Proc SPIE
– ident: e_1_2_8_20_1
  doi: 10.1016/j.media.2018.05.010
– ident: e_1_2_8_2_1
  doi: 10.1007/s11548-008-0247-0
– ident: e_1_2_8_15_1
  doi: 10.1109/BioCAS.2014.6981659
– ident: e_1_2_8_22_1
  doi: 10.1117/12.877888
– ident: e_1_2_8_18_1
  doi: 10.1118/1.4906129
– ident: e_1_2_8_34_1
  doi: 10.1109/IJCNN.2017.7965852
– ident: e_1_2_8_40_1
  doi: 10.1118/1.2777005
– ident: e_1_2_8_17_1
  doi: 10.1109/TMI.2006.884630
SSID ssj0006350
Score 2.6341093
Snippet Purpose Transrectal ultrasound (TRUS) is a versatile and real‐time imaging modality that is commonly used in image‐guided prostate cancer interventions (e.g.,...
Transrectal ultrasound (TRUS) is a versatile and real-time imaging modality that is commonly used in image-guided prostate cancer interventions (e.g., biopsy...
SourceID unpaywall
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3194
SubjectTerms Deep Learning
deeply supervised network
Humans
Image Processing, Computer-Assisted - methods
Male
Observer Variation
Prostate - diagnostic imaging
prostate segmentation
Supervised Machine Learning
transrectal ultrasound (TRUS)
Ultrasonography
Title Ultrasound prostate segmentation based on multidirectional deeply supervised V‐Net
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.13577
https://www.ncbi.nlm.nih.gov/pubmed/31074513
https://www.proquest.com/docview/2231919919
https://www.ncbi.nlm.nih.gov/pmc/articles/6625925
UnpaywallVersion submittedVersion
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VXQHiUKAU2AqqgBCcsts4sR0fV0BVIXZVQReVU2Q7E6hI0qhJhMqJn8Bv7C-p7SQrlS_BKZEychyN43n2PL8BeIZcySALtR-olPgRUXajCZUveBqHjBmE7bQ7F0t2sIreHNPjDQiGszCOtK_VybTMi2l58tlxK6tCzwae2IxZxE7oNRgzauD3CMar5eH8Y6c2GdlsAXUaqWaRFVNXuZJEPDTd2BOD-OwemRWVrfjA-dVw9AvGvAU327KS519lnl-Fry7-7N-Gd0PPO9rJl2nbqKn-9pOo43992h3Y7NGoN-8e3YUNLLfgxqLPt2_BdUcQ1fU9OFrlzZmsbREmr7InRQxG9Wr8VPRnl0rPxsPUMzeOo9iFSrfP6KWIVX7u1W1lJyZr9eHi-48lNtuw2n999PLA7ysy-NrgEu4zJYXQAWdZoJUQigSMxJgpqkQWUI2CGriitIEYQkiOGcaImiDyjDOzsMHwPozK0xIfgmcsCTMzsbBFAbVKZRSlMk7TVCgdII0m8GJwTKJ7uXJbNSNPOqFlkhRV4lw4gSdry6qT6PidzeDbxPw_NikiSzxt68TAI7NkNShZTOBB5_R1K6Flq9IgnMDT9Sj4yyueu-HxR4NkceiuO__S2iMYNWctPjaIp1G7MJ6_Wrx9v9uP9UvsPQGe
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VrQBxKFC-tgIUEIJTdmsntuNjhagqpF1VqIvKKYrtSalI0qhJhMqpP6G_kV-C7SQrlS_BKZEychyN43n2PL8BeIVCZSSPdEiUoWFMldtoQhVKYZKIc4uwvXbnYskPVvH7Y3a8AWQ8C-NJ-1qdzqqinFWnnz23si71fOSJzblD7JTdgE3OLPyewOZqebj3qVebjF22gHmNVLvISpivXEljEdlu7MpRfHaXzsvaVXwQ4no4-gVj3oHbXVVnF1-zorgOX3382b8LH8ae97STL7OuVTP97SdRx__6tHuwNaDRYK9_dB82sNqGW4sh374NNz1BVDcP4GhVtOdZ44owBbU7KWIxatDgSTmcXaoCFw9NYG88R7EPlX6fMTCIdXERNF3tJiZn9fH75dUS24ew2n939PYgHCoyhNriEhFylUmpieA50UpKRQmnCeaKKZkTplEyC1eUthBDykxgjgmipogiF9wubDB6BJPqrMInEFhLyu1MLF1RQK1MFscmS4wxUmmCLJ7Cm9ExqR7kyl3VjCLthZZpWtapd-EUXqwt616i43c2o29T-_-4pEhW4VnXpBYe2SWrRclyCo97p69biRxblZFoCi_Xo-Avr3jth8cfDdLFob_u_EtrT2HSnnf4zCKeVj0fxvgP55gACg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrasound+prostate+segmentation+based+on+multidirectional+deeply+supervised+V-Net&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Lei%2C+Yang&rft.au=Tian%2C+Sibo&rft.au=He%2C+Xiuxiu&rft.au=Wang%2C+Tonghe&rft.date=2019-07-01&rft.eissn=2473-4209&rft.volume=46&rft.issue=7&rft.spage=3194&rft_id=info:doi/10.1002%2Fmp.13577&rft_id=info%3Apmid%2F31074513&rft.externalDocID=31074513
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon