Evaluation of commercial AI algorithms for the detection of fractures, effusions, and dislocations on real-world clinical data: A prospective registry study
To prospectively evaluate and directly compare the performance of three commercial AI algorithms (Gleamer, AZmed, and Radiobotics) for detecting fractures, dislocations, and joint effusions across multiple anatomical regions in real-world adult clinical radiography. In this single-center, prospectiv...
Saved in:
| Published in | Radiography (London, England. 1995) Vol. 31; no. 6; p. 103189 |
|---|---|
| Main Authors | , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier Ltd
01.10.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1078-8174 1532-2831 1532-2831 |
| DOI | 10.1016/j.radi.2025.103189 |
Cover
| Abstract | To prospectively evaluate and directly compare the performance of three commercial AI algorithms (Gleamer, AZmed, and Radiobotics) for detecting fractures, dislocations, and joint effusions across multiple anatomical regions in real-world adult clinical radiography.
In this single-center, prospective technical performance evaluation study, we assessed these algorithms on radiographs from adult patients (n = 1037; 2926 radiographs; 22 anatomical regions) at the Technical University of Munich (January–March 2025). Radiologists’ reports served as the reference standard, with CT adjudication when available. Sensitivity, specificity, accuracy, and AUC were calculated; AUCs were compared using Bonferroni-corrected DeLong tests.
Fractures were identified in 29.60 % of patients; 13.69 % had acute fractures and 6.65 % had multiple fractures. For all fractures, Gleamer (AUC 83.95 %, sensitivity 75.57 %, specificity 92.33 %) and AZmed (AUC 84.88 %, sensitivity 79.48 %, specificity 90.27 %) outperformed Radiobotics (AUC 77.24 %, sensitivity 60.91 %, specificity 93.56 %). For acute fractures, AUCs were comparable (range: 84.81–87.78 %). For multiple fractures, performance was limited (AUCs 64.17–73.40 %). AZmed had higher AUC for dislocation (61.85 % vs. 54.48 % for Gleamer), while Gleamer and Radiobotics outperformed AZmed for effusion (AUC 69.59 % and 73.63 % vs. 57.99 %). No algorithm exceeded 91 % accuracy for acute fractures.
In this real-world, single-center study, commercial AI algorithms showed moderate to high performance for straightforward fracture detection but limited accuracy for complex scenarios such as multiple fractures and dislocations.
Current tools should be used as adjuncts rather than replacements for radiologists and reporting radiographers. Multicenter validation and more diverse training data are necessary to improve generalizability and robustness. |
|---|---|
| AbstractList | To prospectively evaluate and directly compare the performance of three commercial AI algorithms (Gleamer, AZmed, and Radiobotics) for detecting fractures, dislocations, and joint effusions across multiple anatomical regions in real-world adult clinical radiography.
In this single-center, prospective technical performance evaluation study, we assessed these algorithms on radiographs from adult patients (n = 1037; 2926 radiographs; 22 anatomical regions) at the Technical University of Munich (January–March 2025). Radiologists’ reports served as the reference standard, with CT adjudication when available. Sensitivity, specificity, accuracy, and AUC were calculated; AUCs were compared using Bonferroni-corrected DeLong tests.
Fractures were identified in 29.60 % of patients; 13.69 % had acute fractures and 6.65 % had multiple fractures. For all fractures, Gleamer (AUC 83.95 %, sensitivity 75.57 %, specificity 92.33 %) and AZmed (AUC 84.88 %, sensitivity 79.48 %, specificity 90.27 %) outperformed Radiobotics (AUC 77.24 %, sensitivity 60.91 %, specificity 93.56 %). For acute fractures, AUCs were comparable (range: 84.81–87.78 %). For multiple fractures, performance was limited (AUCs 64.17–73.40 %). AZmed had higher AUC for dislocation (61.85 % vs. 54.48 % for Gleamer), while Gleamer and Radiobotics outperformed AZmed for effusion (AUC 69.59 % and 73.63 % vs. 57.99 %). No algorithm exceeded 91 % accuracy for acute fractures.
In this real-world, single-center study, commercial AI algorithms showed moderate to high performance for straightforward fracture detection but limited accuracy for complex scenarios such as multiple fractures and dislocations.
Current tools should be used as adjuncts rather than replacements for radiologists and reporting radiographers. Multicenter validation and more diverse training data are necessary to improve generalizability and robustness. To prospectively evaluate and directly compare the performance of three commercial AI algorithms (Gleamer, AZmed, and Radiobotics) for detecting fractures, dislocations, and joint effusions across multiple anatomical regions in real-world adult clinical radiography. In this single-center, prospective technical performance evaluation study, we assessed these algorithms on radiographs from adult patients (n = 1037; 2926 radiographs; 22 anatomical regions) at [anonymized] (January-March 2025). Radiologists' reports served as the reference standard, with CT adjudication when available. Sensitivity, specificity, accuracy, and AUC were calculated; AUCs were compared using Bonferroni-corrected DeLong tests. Fractures were identified in 29.60 % of patients; 13.69 % had acute fractures and 6.65 % had multiple fractures. For all fractures, Gleamer (AUC 83.95 %, sensitivity 75.57 %, specificity 92.33 %) and AZmed (AUC 84.88 %, sensitivity 79.48 %, specificity 90.27 %) outperformed Radiobotics (AUC 77.24 %, sensitivity 60.91 %, specificity 93.56 %). For acute fractures, AUCs were comparable (range: 84.81-87.78 %). For multiple fractures, performance was limited (AUCs 64.17-73.40 %). AZmed had higher AUC for dislocation (61.85 % vs. 54.48 % for Gleamer), while Gleamer and Radiobotics outperformed AZmed for effusion (AUC 69.59 % and 73.63 % vs. 57.99 %). No algorithm exceeded 91 % accuracy for acute fractures. In this real-world, single-center study, commercial AI algorithms showed moderate to high performance for straightforward fracture detection but limited accuracy for complex scenarios such as multiple fractures and dislocations. Current tools should be used as adjuncts rather than replacements for radiologists and reporting radiographers. Multicenter validation and more diverse training data are necessary to improve generalizability and robustness. To prospectively evaluate and directly compare the performance of three commercial AI algorithms (Gleamer, AZmed, and Radiobotics) for detecting fractures, dislocations, and joint effusions across multiple anatomical regions in real-world adult clinical radiography.PURPOSETo prospectively evaluate and directly compare the performance of three commercial AI algorithms (Gleamer, AZmed, and Radiobotics) for detecting fractures, dislocations, and joint effusions across multiple anatomical regions in real-world adult clinical radiography.In this single-center, prospective technical performance evaluation study, we assessed these algorithms on radiographs from adult patients (n = 1037; 2926 radiographs; 22 anatomical regions) at [anonymized] (January-March 2025). Radiologists' reports served as the reference standard, with CT adjudication when available. Sensitivity, specificity, accuracy, and AUC were calculated; AUCs were compared using Bonferroni-corrected DeLong tests.MATERIAL AND METHODSIn this single-center, prospective technical performance evaluation study, we assessed these algorithms on radiographs from adult patients (n = 1037; 2926 radiographs; 22 anatomical regions) at [anonymized] (January-March 2025). Radiologists' reports served as the reference standard, with CT adjudication when available. Sensitivity, specificity, accuracy, and AUC were calculated; AUCs were compared using Bonferroni-corrected DeLong tests.Fractures were identified in 29.60 % of patients; 13.69 % had acute fractures and 6.65 % had multiple fractures. For all fractures, Gleamer (AUC 83.95 %, sensitivity 75.57 %, specificity 92.33 %) and AZmed (AUC 84.88 %, sensitivity 79.48 %, specificity 90.27 %) outperformed Radiobotics (AUC 77.24 %, sensitivity 60.91 %, specificity 93.56 %). For acute fractures, AUCs were comparable (range: 84.81-87.78 %). For multiple fractures, performance was limited (AUCs 64.17-73.40 %). AZmed had higher AUC for dislocation (61.85 % vs. 54.48 % for Gleamer), while Gleamer and Radiobotics outperformed AZmed for effusion (AUC 69.59 % and 73.63 % vs. 57.99 %). No algorithm exceeded 91 % accuracy for acute fractures.RESULTSFractures were identified in 29.60 % of patients; 13.69 % had acute fractures and 6.65 % had multiple fractures. For all fractures, Gleamer (AUC 83.95 %, sensitivity 75.57 %, specificity 92.33 %) and AZmed (AUC 84.88 %, sensitivity 79.48 %, specificity 90.27 %) outperformed Radiobotics (AUC 77.24 %, sensitivity 60.91 %, specificity 93.56 %). For acute fractures, AUCs were comparable (range: 84.81-87.78 %). For multiple fractures, performance was limited (AUCs 64.17-73.40 %). AZmed had higher AUC for dislocation (61.85 % vs. 54.48 % for Gleamer), while Gleamer and Radiobotics outperformed AZmed for effusion (AUC 69.59 % and 73.63 % vs. 57.99 %). No algorithm exceeded 91 % accuracy for acute fractures.In this real-world, single-center study, commercial AI algorithms showed moderate to high performance for straightforward fracture detection but limited accuracy for complex scenarios such as multiple fractures and dislocations.CONCLUSIONIn this real-world, single-center study, commercial AI algorithms showed moderate to high performance for straightforward fracture detection but limited accuracy for complex scenarios such as multiple fractures and dislocations.Current tools should be used as adjuncts rather than replacements for radiologists and reporting radiographers. Multicenter validation and more diverse training data are necessary to improve generalizability and robustness.IMPLICATIONS FOR PRACTICECurrent tools should be used as adjuncts rather than replacements for radiologists and reporting radiographers. Multicenter validation and more diverse training data are necessary to improve generalizability and robustness. |
| ArticleNumber | 103189 |
| Author | Bressem, K.K. Graf, M.M. Kim, S.H. Luiken, I. Marka, A.W. Prucker, P. Makowski, M.R. Weller, D. Mertens, C.J. Ziegelmayer, S. Adams, L.C. Lemke, T. Busch, F. Komenda, A. |
| Author_xml | – sequence: 1 givenname: I. orcidid: 0000-0002-5961-4002 surname: Luiken fullname: Luiken, I. organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany – sequence: 2 givenname: T. orcidid: 0009-0006-4269-142X surname: Lemke fullname: Lemke, T. organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany – sequence: 3 givenname: A. surname: Komenda fullname: Komenda, A. organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany – sequence: 4 givenname: A.W. orcidid: 0000-0002-2111-8177 surname: Marka fullname: Marka, A.W. organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany – sequence: 5 givenname: S.H. orcidid: 0000-0002-5383-2041 surname: Kim fullname: Kim, S.H. organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany – sequence: 6 givenname: M.M. surname: Graf fullname: Graf, M.M. organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany – sequence: 7 givenname: S. surname: Ziegelmayer fullname: Ziegelmayer, S. organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany – sequence: 8 givenname: D. surname: Weller fullname: Weller, D. organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany – sequence: 9 givenname: C.J. orcidid: 0000-0001-7303-2650 surname: Mertens fullname: Mertens, C.J. organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany – sequence: 10 givenname: K.K. surname: Bressem fullname: Bressem, K.K. organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany – sequence: 11 givenname: M.R. surname: Makowski fullname: Makowski, M.R. organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany – sequence: 12 givenname: L.C. orcidid: 0000-0001-5836-4542 surname: Adams fullname: Adams, L.C. organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany – sequence: 13 givenname: P. orcidid: 0000-0002-6968-2156 surname: Prucker fullname: Prucker, P. organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany – sequence: 14 givenname: F. orcidid: 0000-0001-9770-8555 surname: Busch fullname: Busch, F. email: felix.busch@tum.de organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41066829$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc9u1DAQhy1URP_AC3BAPnJoFtuJE6fisqoKVKrEpT1bjj1uvTjxYidb5V14WLyky4FDy8mj0fcb29-coqMhDIDQe0pWlND602YVlXErRhjPjZKK9hU6obxkBRMlPco1aUQhaFMdo9OUNoQQVjHxBh1XlNS1YO0J-nW1U35SowsDDhbr0PcQtVMer6-x8vchuvGhT9iGiMcHwAZG0AfaRqXHKUI6x2DtlHI7l2ow2Ljkg_4zNuEMR1C-eAzRG6y9G5zOFxg1qgu8xtsY0nY_dAeZu3dpjDNO42Tmt-i1VT7Bu6fzDN19ubq9_FbcfP96fbm-KXTJOS0aa-q2taJlYFrDua2I6iqoeaPrjkLdNawTJdfaWt3RuiOtpl3JKbOcC6FZeYbKZe40bNX8qLyX2-h6FWdJidy7lhu5dy33ruXiOqc-Lqn8gZ8TpFH2LmnwXg0QpiRLxlvBOeFNRj88oVPXg_k7_bCHDLAF0FlGimD_7wGflxBkNzsHUSbtYNBgXMw-pQnu-fjFP_HDan7A_FL4Nw1YxuM |
| Cites_doi | 10.3348/kjr.2019.0025 10.2214/AJR.22.27873 10.1007/s00330-023-10380-1 10.1016/j.ejrad.2024.111460 10.1016/j.spinee.2021.10.020 10.1016/j.jhsa.2024.01.020 10.1007/s00256-022-04077-7 10.1016/j.ejrad.2022.110447 10.4103/singaporemedj.SMJ-2023-170 10.1016/j.acra.2023.06.016 10.1016/j.ejrad.2024.111593 10.1038/s41598-024-73058-8 10.1001/jamanetworkopen.2021.6096 10.1016/j.ijom.2022.03.056 10.1038/s41598-022-16154-x 10.3390/jimaging7070105 10.1148/radiol.210937 10.1136/bmjopen-2023-076954 10.1016/j.diii.2022.06.004 10.1007/s00256-021-03802-y 10.1148/radiol.211785 10.1016/j.acra.2023.10.042 10.1007/s00330-024-10676-w 10.1007/s00330-020-06672-5 10.1007/s00330-022-09349-3 10.1097/RLI.0000000000000907 10.1038/s41598-020-59175-0 10.1016/j.crad.2024.04.009 10.17725/j.rensit.2024.16.767 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s) Copyright © 2025 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
| Copyright_xml | – notice: 2025 The Author(s) – notice: Copyright © 2025 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.radi.2025.103189 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1532-2831 |
| ExternalDocumentID | 10.1016/j.radi.2025.103189 41066829 10_1016_j_radi_2025_103189 S1078817425003335 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -RU .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACJTP ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXBA AFXIZ AGHFR AGQPQ AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SEL SES SEW SNG SPCBC SSH SSZ T5K TWZ UHS Z5R ~G- ~HD 6I. AAFTH AAYXX CITATION NPM 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3551-7fd699f892ed9d55f40ab4e657c6b1e6b72b835ccffcb16b09c1b3512f5588c23 |
| IEDL.DBID | UNPAY |
| ISSN | 1078-8174 1532-2831 |
| IngestDate | Sat Oct 11 07:06:18 EDT 2025 Sat Oct 11 06:38:09 EDT 2025 Sat Oct 11 06:59:35 EDT 2025 Thu Oct 16 04:44:49 EDT 2025 Sat Oct 25 17:22:24 EDT 2025 Sat Oct 25 11:10:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Deep learning Musculoskeletal diseases Radiography Computer-assisted Diagnosis Artificial intelligence Prospective study |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2025 The Author(s). Published by Elsevier Ltd.. All rights reserved. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3551-7fd699f892ed9d55f40ab4e657c6b1e6b72b835ccffcb16b09c1b3512f5588c23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-6968-2156 0000-0001-9770-8555 0000-0001-7303-2650 0000-0001-5836-4542 0000-0002-5961-4002 0000-0002-2111-8177 0000-0002-5383-2041 0009-0006-4269-142X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.radi.2025.103189 |
| PMID | 41066829 |
| PQID | 3259855057 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1016_j_radi_2025_103189 proquest_miscellaneous_3259855057 pubmed_primary_41066829 crossref_primary_10_1016_j_radi_2025_103189 elsevier_sciencedirect_doi_10_1016_j_radi_2025_103189 elsevier_clinicalkey_doi_10_1016_j_radi_2025_103189 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Radiography (London, England. 1995) |
| PublicationTitleAlternate | Radiography (Lond) |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Chou, Jou, Wu, Yao, Lin, Chang (bib17) 2022; 22 Guermazi, Tannoury, Kompel, Murakami, Ducarouge, Gillibert (bib29) 2022; 302 Oeding, Kunze, Messer, Pareek, Fufa, Pulos (bib21) 2024; 49 Huhtanen, Nyman, Doncenco, Hamedian, Kawalya, Salminen (bib12) 2022; 12 Jacques, Cardot, Ventre, Demondion, Cotten (bib27) 2024; 34 Husarek, Hess, Razaeian, Ruder, Sehmisch, Müller (bib31) 2024; 14 Bachmann, Gunes, Hangaard, Nexmann, Lisouski, Boesen (bib30) 2024; 6 Kim, Jang, Kim, Shin, Park (bib18) 2019; 20 Regnard, Lanseur, Ventre, Ducarouge, Clovis, Lassalle (bib13) 2022; 154 Quek, Nickalls, Wong, Tan (bib32) 2025; 66 Russe, Rebmann, Tran, Kellner, Reisert, Bamberg (bib8) 2024; 14 Wei, Li, Sing, Yang, Beeram, Puvanesarajah (bib14) 2022; 51 AbdelRahman, Shaker, Hussein, Mahmood, Maktof (bib34) 2024; 16 Pauling, Kanber, Arthurs, Shelmerdine (bib24) 2024; 6 Kuo, Harrison, Curran, Jones, Freethy, Cussons (bib7) 2022; 304 Zeman, Ritchie, Bracci, Beeck (bib1) 2020; 10 Fritz, Yi, Kijowski, Fritz (bib5) 2023; 58 Zech, Santomartino, Yi (bib33) 2022; 219 Cohen, Puntonet, Sanchez, Kierszbaum, Crema, Soyer (bib26) 2023; 33 Recht, Dewey, Dreyer, Langlotz, Niessen, Prainsack (bib20) 2020; 30 Fu, Viswanathan, Attia, Zerbib-Attal, Kosaraju, Barger (bib28) 2024; 31 Bousson, Attané, Benoist, Perronne, Diallo, Hadid-Beurrier (bib10) 2023; 30 Oppenheimer, Lüken, Hamm, Niehues (bib9) 2023; 13 Reichert, Bellamine, Fontaine, Naipeanu, Altar, Mejean (bib23) 2021; 7 Cohen, Sorin, Lekach, Raskin, Segev, Klang (bib11) 2024; 175 Tieu, Kroen, Kadish, Liu, Patel, Zhou (bib19) 2024; 11 Yoon, Lee, Kane, Kuo, Lin, Chung (bib2) 2021; 4 Nowroozi, Salehi, Shobeiri, Agahi, Momtazmanesh, Kaviani (bib6) 2024; 79 (bib25) 2025 Fritz, Kijowski, Recht (bib4) 2022; 51 Canoni-Meynet, Verdot, Danner, Calame, Aubry (bib15) 2022; 103 Suen, Zhang, Kutaiba (bib22) 2024; 178 Warin, Limprasert, Suebnukarn, Inglam, Jantana, Vicharueang (bib3) 2022; 51 Topff, Steltenpool, Ranschaert, Ramanauskas, Menezes, Visser (bib16) 2024; 34 Bousson (10.1016/j.radi.2025.103189_bib10) 2023; 30 Fritz (10.1016/j.radi.2025.103189_bib4) 2022; 51 Fu (10.1016/j.radi.2025.103189_bib28) 2024; 31 AbdelRahman (10.1016/j.radi.2025.103189_bib34) 2024; 16 Zech (10.1016/j.radi.2025.103189_bib33) 2022; 219 Canoni-Meynet (10.1016/j.radi.2025.103189_bib15) 2022; 103 Kim (10.1016/j.radi.2025.103189_bib18) 2019; 20 Topff (10.1016/j.radi.2025.103189_bib16) 2024; 34 Fritz (10.1016/j.radi.2025.103189_bib5) 2023; 58 Guermazi (10.1016/j.radi.2025.103189_bib29) 2022; 302 Russe (10.1016/j.radi.2025.103189_bib8) 2024; 14 Chou (10.1016/j.radi.2025.103189_bib17) 2022; 22 Jacques (10.1016/j.radi.2025.103189_bib27) 2024; 34 Recht (10.1016/j.radi.2025.103189_bib20) 2020; 30 Zeman (10.1016/j.radi.2025.103189_bib1) 2020; 10 Bachmann (10.1016/j.radi.2025.103189_bib30) 2024; 6 Kuo (10.1016/j.radi.2025.103189_bib7) 2022; 304 Cohen (10.1016/j.radi.2025.103189_bib26) 2023; 33 Husarek (10.1016/j.radi.2025.103189_bib31) 2024; 14 Warin (10.1016/j.radi.2025.103189_bib3) 2022; 51 Suen (10.1016/j.radi.2025.103189_bib22) 2024; 178 Oeding (10.1016/j.radi.2025.103189_bib21) 2024; 49 Reichert (10.1016/j.radi.2025.103189_bib23) 2021; 7 Huhtanen (10.1016/j.radi.2025.103189_bib12) 2022; 12 Cohen (10.1016/j.radi.2025.103189_bib11) 2024; 175 Wei (10.1016/j.radi.2025.103189_bib14) 2022; 51 Tieu (10.1016/j.radi.2025.103189_bib19) 2024; 11 Yoon (10.1016/j.radi.2025.103189_bib2) 2021; 4 Regnard (10.1016/j.radi.2025.103189_bib13) 2022; 154 Nowroozi (10.1016/j.radi.2025.103189_bib6) 2024; 79 Pauling (10.1016/j.radi.2025.103189_bib24) 2024; 6 Quek (10.1016/j.radi.2025.103189_bib32) 2025; 66 Oppenheimer (10.1016/j.radi.2025.103189_bib9) 2023; 13 |
| References_xml | – volume: 51 start-page: 239 year: 2022 end-page: 243 ident: bib4 article-title: Artificial intelligence in musculoskeletal imaging: a perspective on value propositions, clinical use, and obstacles publication-title: Skelet Radiol – volume: 103 start-page: 594 year: 2022 end-page: 600 ident: bib15 article-title: Added value of an artificial intelligence solution for fracture detection in the radiologist's daily trauma emergencies workflow publication-title: Diagn Interv Imaging – volume: 58 start-page: 3 year: 2023 end-page: 13 ident: bib5 article-title: Radiomics and deep learning for disease detection in musculoskeletal radiology: an overview of novel MRI- and CT-based approaches publication-title: Investig Radiol – volume: 30 start-page: 2118 year: 2023 end-page: 2139 ident: bib10 article-title: Artificial intelligence for detecting acute fractures in patients admitted to an emergency department: real-life performance of three commercial algorithms publication-title: Acad Radiol – volume: 51 start-page: 2121 year: 2022 end-page: 2128 ident: bib14 article-title: Can images crowdsourced from the internet be used to train generalizable joint dislocation deep learning algorithms? publication-title: Skelet Radiol – volume: 175 start-page: 1 year: 2024 end-page: 6 ident: bib11 article-title: Artificial intelligence for detection of effusion and lipo-hemarthrosis in X-rays and CT of the knee publication-title: Eur J Radiol – volume: 154 start-page: 1 year: 2022 end-page: 10 ident: bib13 article-title: Assessment of performances of a deep learning algorithm for the detection of limbs and pelvic fractures, dislocations, focal bone lesions, and elbow effusions on trauma X-rays publication-title: Eur J Radiol – volume: 34 start-page: 5876 year: 2024 end-page: 5885 ident: bib16 article-title: Artificial intelligence-assisted double reading of chest radiographs to detect clinically relevant missed findings: a two-centre evaluation publication-title: Eur Radiol – volume: 33 start-page: 3974 year: 2023 end-page: 3983 ident: bib26 article-title: Artificial intelligence vs. radiologist: accuracy of wrist fracture detection on radiographs publication-title: Eur Radiol – volume: 304 start-page: 50 year: 2022 end-page: 62 ident: bib7 article-title: Artificial intelligence in fracture detection: a systematic review and meta-analysis publication-title: Radiology – volume: 6 start-page: 1 year: 2024 end-page: 11 ident: bib30 article-title: Improving traumatic fracture detection on radiographs with artificial intelligence support: a multi-reader study publication-title: BJR Open – volume: 6 year: 2024 ident: bib24 article-title: Commercially available artificial intelligence tools for fracture detection: the evidence publication-title: BJR Open – volume: 14 year: 2024 ident: bib31 article-title: Artificial intelligence in commercial fracture detection products: a systematic review and meta-analysis of diagnostic test accuracy publication-title: Sci Rep – volume: 79 start-page: 579 year: 2024 end-page: 588 ident: bib6 article-title: Artificial intelligence diagnostic accuracy in fracture detection from plain radiographs and comparing it with clinicians: a systematic review and meta-analysis publication-title: Clin Radiol – volume: 302 start-page: 627 year: 2022 end-page: 636 ident: bib29 article-title: Improving radiographic fracture recognition performance and efficiency using artificial intelligence publication-title: Radiology – volume: 34 start-page: 2885 year: 2024 end-page: 2894 ident: bib27 article-title: Commercially-available AI algorithm improves radiologists' sensitivity for wrist and hand fracture detection on X-ray, compared to a CT-based ground truth publication-title: Eur Radiol – volume: 20 start-page: 405 year: 2019 end-page: 410 ident: bib18 article-title: Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers publication-title: Korean J Radiol – volume: 4 year: 2021 ident: bib2 article-title: Development and validation of a deep learning model using convolutional neural networks to identify scaphoid fractures in radiographs publication-title: JAMA Netw Open – year: 2025 ident: bib25 article-title: Early value assessment (EVA) guidance on artificial intelligence technologies to help detect fractures on X-rays in urgent care – volume: 22 start-page: 511 year: 2022 end-page: 523 ident: bib17 article-title: Ground truth generalizability affects performance of the artificial intelligence model in automated vertebral fracture detection on plain lateral radiographs of the spine publication-title: Spine J – volume: 13 year: 2023 ident: bib9 article-title: A prospective approach to integration of AI fracture detection software in radiographs into clinical workflow publication-title: Life (Basel) – volume: 16 start-page: 767 year: 2024 end-page: 778 ident: bib34 article-title: Advancements in medical physics for pediatric radiology: challenges and solutions publication-title: RENSIT – volume: 12 start-page: 11803. 1 year: 2022 end-page: 11803.11 ident: bib12 article-title: Deep learning accurately classifies elbow joint effusion in adult and pediatric radiographs publication-title: Sci Rep – volume: 31 start-page: 1989 year: 2024 end-page: 1999 ident: bib28 article-title: Assessing the potential of a deep learning tool to improve fracture detection by radiologists and emergency physicians on extremity radiographs publication-title: Acad Radiol – volume: 219 start-page: 869 year: 2022 end-page: 878 ident: bib33 article-title: Artificial intelligence (AI) for fracture diagnosis: an overview of current products and considerations for clinical adoption, from the AJR special series on AI applications publication-title: AJR Am J Roentgenol – volume: 14 year: 2024 ident: bib8 article-title: AI-based X-ray fracture analysis of the distal radius: accuracy between representative classification, detection and segmentation deep learning models for clinical practice publication-title: BMJ Open – volume: 178 year: 2024 ident: bib22 article-title: Accuracy of wrist fracture detection on radiographs by artificial intelligence compared to human clinicians. A systematic review and meta-analysis publication-title: Eur J Radiol – volume: 51 start-page: 1488 year: 2022 end-page: 1494 ident: bib3 article-title: Assessment of deep convolutional neural network models for mandibular fracture detection in panoramic radiographs publication-title: Int J Oral Maxillofac Surg – volume: 30 start-page: 3576 year: 2020 end-page: 3584 ident: bib20 article-title: Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations publication-title: Eur Radiol – volume: 10 start-page: 1 year: 2020 end-page: 12 ident: bib1 article-title: Orthogonal representations of object shape and category in deep convolutional neural networks and human visual cortex publication-title: Sci Rep – volume: 11 year: 2024 ident: bib19 article-title: The role of artificial intelligence in the identification and evaluation of bone fractures publication-title: Bioengineering (Basel) – volume: 49 start-page: 411 year: 2024 end-page: 422 ident: bib21 article-title: Diagnostic performance of artificial intelligence for detection of scaphoid and distal radius fractures: a systematic review publication-title: J Hand Surg Am – volume: 7 year: 2021 ident: bib23 article-title: How can a deep learning algorithm improve fracture detection on X-rays in the emergency room? publication-title: J Imaging – volume: 66 start-page: 202 year: 2025 end-page: 207 ident: bib32 article-title: Deploying artificial intelligence in the detection of adult appendicular and pelvic fractures in the Singapore emergency department after hours: efficacy, cost savings and non-monetary benefits publication-title: Singap Med J – volume: 20 start-page: 405 issue: 3 year: 2019 ident: 10.1016/j.radi.2025.103189_bib18 article-title: Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers publication-title: Korean J Radiol doi: 10.3348/kjr.2019.0025 – volume: 219 start-page: 869 issue: 6 year: 2022 ident: 10.1016/j.radi.2025.103189_bib33 article-title: Artificial intelligence (AI) for fracture diagnosis: an overview of current products and considerations for clinical adoption, from the AJR special series on AI applications publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.22.27873 – volume: 6 issue: 1 year: 2024 ident: 10.1016/j.radi.2025.103189_bib24 article-title: Commercially available artificial intelligence tools for fracture detection: the evidence publication-title: BJR Open – volume: 34 start-page: 2885 issue: 5 year: 2024 ident: 10.1016/j.radi.2025.103189_bib27 article-title: Commercially-available AI algorithm improves radiologists' sensitivity for wrist and hand fracture detection on X-ray, compared to a CT-based ground truth publication-title: Eur Radiol doi: 10.1007/s00330-023-10380-1 – volume: 175 start-page: 1 year: 2024 ident: 10.1016/j.radi.2025.103189_bib11 article-title: Artificial intelligence for detection of effusion and lipo-hemarthrosis in X-rays and CT of the knee publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2024.111460 – volume: 13 issue: 1 year: 2023 ident: 10.1016/j.radi.2025.103189_bib9 article-title: A prospective approach to integration of AI fracture detection software in radiographs into clinical workflow publication-title: Life (Basel) – volume: 22 start-page: 511 issue: 4 year: 2022 ident: 10.1016/j.radi.2025.103189_bib17 article-title: Ground truth generalizability affects performance of the artificial intelligence model in automated vertebral fracture detection on plain lateral radiographs of the spine publication-title: Spine J doi: 10.1016/j.spinee.2021.10.020 – volume: 49 start-page: 411 issue: 5 year: 2024 ident: 10.1016/j.radi.2025.103189_bib21 article-title: Diagnostic performance of artificial intelligence for detection of scaphoid and distal radius fractures: a systematic review publication-title: J Hand Surg Am doi: 10.1016/j.jhsa.2024.01.020 – volume: 51 start-page: 2121 issue: 11 year: 2022 ident: 10.1016/j.radi.2025.103189_bib14 article-title: Can images crowdsourced from the internet be used to train generalizable joint dislocation deep learning algorithms? publication-title: Skelet Radiol doi: 10.1007/s00256-022-04077-7 – volume: 154 start-page: 1 year: 2022 ident: 10.1016/j.radi.2025.103189_bib13 article-title: Assessment of performances of a deep learning algorithm for the detection of limbs and pelvic fractures, dislocations, focal bone lesions, and elbow effusions on trauma X-rays publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2022.110447 – volume: 66 start-page: 202 issue: 4 year: 2025 ident: 10.1016/j.radi.2025.103189_bib32 article-title: Deploying artificial intelligence in the detection of adult appendicular and pelvic fractures in the Singapore emergency department after hours: efficacy, cost savings and non-monetary benefits publication-title: Singap Med J doi: 10.4103/singaporemedj.SMJ-2023-170 – volume: 30 start-page: 2118 issue: 10 year: 2023 ident: 10.1016/j.radi.2025.103189_bib10 article-title: Artificial intelligence for detecting acute fractures in patients admitted to an emergency department: real-life performance of three commercial algorithms publication-title: Acad Radiol doi: 10.1016/j.acra.2023.06.016 – volume: 178 year: 2024 ident: 10.1016/j.radi.2025.103189_bib22 article-title: Accuracy of wrist fracture detection on radiographs by artificial intelligence compared to human clinicians. A systematic review and meta-analysis publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2024.111593 – volume: 14 issue: 1 year: 2024 ident: 10.1016/j.radi.2025.103189_bib31 article-title: Artificial intelligence in commercial fracture detection products: a systematic review and meta-analysis of diagnostic test accuracy publication-title: Sci Rep doi: 10.1038/s41598-024-73058-8 – volume: 4 issue: 5 year: 2021 ident: 10.1016/j.radi.2025.103189_bib2 article-title: Development and validation of a deep learning model using convolutional neural networks to identify scaphoid fractures in radiographs publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2021.6096 – volume: 51 start-page: 1488 issue: 11 year: 2022 ident: 10.1016/j.radi.2025.103189_bib3 article-title: Assessment of deep convolutional neural network models for mandibular fracture detection in panoramic radiographs publication-title: Int J Oral Maxillofac Surg doi: 10.1016/j.ijom.2022.03.056 – volume: 12 start-page: 11803. 1 issue: 1 year: 2022 ident: 10.1016/j.radi.2025.103189_bib12 article-title: Deep learning accurately classifies elbow joint effusion in adult and pediatric radiographs publication-title: Sci Rep doi: 10.1038/s41598-022-16154-x – volume: 7 issue: 7 year: 2021 ident: 10.1016/j.radi.2025.103189_bib23 article-title: How can a deep learning algorithm improve fracture detection on X-rays in the emergency room? publication-title: J Imaging doi: 10.3390/jimaging7070105 – volume: 302 start-page: 627 issue: 3 year: 2022 ident: 10.1016/j.radi.2025.103189_bib29 article-title: Improving radiographic fracture recognition performance and efficiency using artificial intelligence publication-title: Radiology doi: 10.1148/radiol.210937 – volume: 14 issue: 1 year: 2024 ident: 10.1016/j.radi.2025.103189_bib8 article-title: AI-based X-ray fracture analysis of the distal radius: accuracy between representative classification, detection and segmentation deep learning models for clinical practice publication-title: BMJ Open doi: 10.1136/bmjopen-2023-076954 – volume: 103 start-page: 594 issue: 12 year: 2022 ident: 10.1016/j.radi.2025.103189_bib15 article-title: Added value of an artificial intelligence solution for fracture detection in the radiologist's daily trauma emergencies workflow publication-title: Diagn Interv Imaging doi: 10.1016/j.diii.2022.06.004 – volume: 51 start-page: 239 issue: 2 year: 2022 ident: 10.1016/j.radi.2025.103189_bib4 article-title: Artificial intelligence in musculoskeletal imaging: a perspective on value propositions, clinical use, and obstacles publication-title: Skelet Radiol doi: 10.1007/s00256-021-03802-y – volume: 304 start-page: 50 issue: 1 year: 2022 ident: 10.1016/j.radi.2025.103189_bib7 article-title: Artificial intelligence in fracture detection: a systematic review and meta-analysis publication-title: Radiology doi: 10.1148/radiol.211785 – volume: 31 start-page: 1989 issue: 5 year: 2024 ident: 10.1016/j.radi.2025.103189_bib28 article-title: Assessing the potential of a deep learning tool to improve fracture detection by radiologists and emergency physicians on extremity radiographs publication-title: Acad Radiol doi: 10.1016/j.acra.2023.10.042 – volume: 34 start-page: 5876 issue: 9 year: 2024 ident: 10.1016/j.radi.2025.103189_bib16 article-title: Artificial intelligence-assisted double reading of chest radiographs to detect clinically relevant missed findings: a two-centre evaluation publication-title: Eur Radiol doi: 10.1007/s00330-024-10676-w – volume: 30 start-page: 3576 issue: 6 year: 2020 ident: 10.1016/j.radi.2025.103189_bib20 article-title: Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations publication-title: Eur Radiol doi: 10.1007/s00330-020-06672-5 – volume: 33 start-page: 3974 issue: 6 year: 2023 ident: 10.1016/j.radi.2025.103189_bib26 article-title: Artificial intelligence vs. radiologist: accuracy of wrist fracture detection on radiographs publication-title: Eur Radiol doi: 10.1007/s00330-022-09349-3 – volume: 58 start-page: 3 issue: 1 year: 2023 ident: 10.1016/j.radi.2025.103189_bib5 article-title: Radiomics and deep learning for disease detection in musculoskeletal radiology: an overview of novel MRI- and CT-based approaches publication-title: Investig Radiol doi: 10.1097/RLI.0000000000000907 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.radi.2025.103189_bib1 article-title: Orthogonal representations of object shape and category in deep convolutional neural networks and human visual cortex publication-title: Sci Rep doi: 10.1038/s41598-020-59175-0 – volume: 79 start-page: 579 issue: 8 year: 2024 ident: 10.1016/j.radi.2025.103189_bib6 article-title: Artificial intelligence diagnostic accuracy in fracture detection from plain radiographs and comparing it with clinicians: a systematic review and meta-analysis publication-title: Clin Radiol doi: 10.1016/j.crad.2024.04.009 – volume: 11 issue: 4 year: 2024 ident: 10.1016/j.radi.2025.103189_bib19 article-title: The role of artificial intelligence in the identification and evaluation of bone fractures publication-title: Bioengineering (Basel) – volume: 6 start-page: 1 issue: 1 year: 2024 ident: 10.1016/j.radi.2025.103189_bib30 article-title: Improving traumatic fracture detection on radiographs with artificial intelligence support: a multi-reader study publication-title: BJR Open – volume: 16 start-page: 767 issue: 6 year: 2024 ident: 10.1016/j.radi.2025.103189_bib34 article-title: Advancements in medical physics for pediatric radiology: challenges and solutions publication-title: RENSIT doi: 10.17725/j.rensit.2024.16.767 |
| SSID | ssj0002428 |
| Score | 2.3572948 |
| Snippet | To prospectively evaluate and directly compare the performance of three commercial AI algorithms (Gleamer, AZmed, and Radiobotics) for detecting fractures,... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 103189 |
| SubjectTerms | Artificial intelligence Computer-assisted Deep learning Diagnosis Musculoskeletal diseases Prospective study Radiography |
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9QwDI5We-BxQLwZXjISN7ZM2zyacFutdrUgwQVW2luUtAkUzXZGM1MhLvwSfix22g4gECBubRVLSe3a39fYMWNPA0fHqHKXIUcWGSLwKvNGx6wSkbsqd9KElOX7Rp2eiVfn8nyPHU21MJRWOfr-wacnbz0-mY9vc75q2_lbJC5aI6DGIJ5zzqnQXIiKuhg8__I9zQND0FAOh2yJRo-FM0OO19o1LXLEUlLteUGt3n8fnH4Fn1fZ5b5buc-f3GLxQ0A6uc6ujUgSDofJ3mB7obvJLr0e98pvsa_Hu4O8YRkBF3hB3ZVI5CW4xfvlut1-uNgAolZAFAhN2Ka0rDQ6UvFUj1T8AEKMPf1Sw0vXNdC0G4p_yVwBByPoXGTp3FWYqiyB0k5fwCHgeqZKTqAOENRYDtKBtrfZ2cnxu6PTbOzFkNWISIqsio0yJmpThsY0UkaROy-CklWtfBGUr0qPYK6uY6x9oXxu6sJzRBNRSq3rkt9h-92yC_cYCClq2eRVRDQkVG58qbQJSHu4R_QozIw9m5RgV8ORG3bKRftoSWWWVGYHlc0Yn_Rkp2Wi-7MYEf4oJXdSP5nbX-WeTKZg8TukzRXXhWW_sRx5pE50b8buDjaym71A3q10idIHO6P5h6Xd_89JPmBX6G5IOXzI9rfrPjxC6LT1j9O38Q0oJBVt priority: 102 providerName: Elsevier |
| Title | Evaluation of commercial AI algorithms for the detection of fractures, effusions, and dislocations on real-world clinical data: A prospective registry study |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1078817425003335 https://dx.doi.org/10.1016/j.radi.2025.103189 https://www.ncbi.nlm.nih.gov/pubmed/41066829 https://www.proquest.com/docview/3259855057 https://doi.org/10.1016/j.radi.2025.103189 |
| UnpaywallVersion | publishedVersion |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1532-2831 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002428 issn: 1532-2831 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1532-2831 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002428 issn: 1532-2831 databaseCode: ACRLP dateStart: 19950601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1532-2831 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002428 issn: 1532-2831 databaseCode: AIKHN dateStart: 19950601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1532-2831 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002428 issn: 1532-2831 databaseCode: .~1 dateStart: 19950601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1532-2831 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002428 issn: 1532-2831 databaseCode: AKRWK dateStart: 19950601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RXQnogWeB5bEyEjeaVR62Y_e2qlpteawqxErlFNmJDQvbbLWbqIIDv4Qf23GcrHhTTkkkT5Sxx_Y38cw3AM9MggsjD1WAPjINEIGngZbCBim1iUpDxaRponynfDKjL07YSUuT43Jhfji_b-KwVqqYox8XM5cfHgm5BX3OEHf3oD-bHo_f-aBCEQhPuYwz2OUbJ1GbIfP7l_xpF_oVZW7Dtbo8U5_P1WLx3c5zeNOXMFo3hIUu4OTTqK70KP_yE53j5ZS6BTdaAErG3mJuwxVT3oGrr9sj9rvw7WDD_02WlqBBnrqiTE7kiKjF--VqXn04XRMEuwTBIylM1URzNa2ty7mq0YPfJcba2v2Jw1tVFqSYr9222Vg5wcaIVRdBQ9dKuuRM4qJV98iYoKZdAihxhSNcPTrS8ODuwOzw4O3-JGhLOAQ5ApkoSG3BpbRCxqaQBWOWhkpTw1macx0ZrtNYIwbMc2tzHXEdyjzSCYIQy5gQeZzcg165LM0DIJTRnBVhahFEUR5KHXMhDXpLiUbQSeUAnndDmp15po6sC2H7mLkOz1yHZ77DB5B0o551auKqmeFQ_VWKbaRahOKRxz_lnnaGleH0dWcyqjTLep0l6H6KxkscwH1vcZuvp-iucxGj9O7GBC-h2sP_a_4IrrsnH6D4GHrVqjZPEGhVeghbo6_REPrj_Tevjt316OVkOmzn3QW0BCRw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VItFyQDzL8jQSN5puEj9ic6uqVltoe6GVerPsxIagbXa1uxHiwi_hxzJ2kgUEAsQtSjySnZnMfF884wF46Sg6RpGaBDkySxCBF4lV0icF89QUqeHKxSzfMzG5YG8u-eUGHAy1MCGtsvf9nU-P3rq_M-7f5nhe1-N3SFykRECNQTyllPJrcJ3xvAgMbO_L9zwPjEFdPRzSpTC8r5zpkrwWpqqRJOY8FJ9nodf776PTr-jzJmy1zdx8_mSm0x8i0tFtuNVDSbLfzfYObLjmLtw47TfL78HXw_VJ3mTmCa7wKrRXCiLHxEzfzxb16sPVkiBsJQgDSeVWMS8rjvaheqpFLr5LnPdt-KeGl6apSFUvQwCM9kpwMKLOaRIPXiVDmSUJeaevyT7B9QylnCS0gAid5Ug80fY-XBwdnh9Mkr4ZQ1IiJMmSwldCKS9V7ipVce5ZaixzghelsJkTtsgtormy9L60mbCpKjNLEU54zqUsc_oANptZ4x4CYZyVvEoLj3CIiVTZXEjlkPdQi_CRqRG8GpSg592ZG3pIRvuog8p0UJnuVDYCOuhJD8tE_6cxJPxRiq-lfrK3v8q9GExB44cYdldM42btUlMkkjLyvRHsdDaynj1D4i1kjtK7a6P5h6U9-s9JPoetyfnpiT45Pnv7GLbDky7_8Alsrhate4o4amWfxe_kGyMfGJA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgK_E4lDdsW5CRuFFXediOzW1VtWqRqDiwUjlZtmPDwjZb7SZC8Fv4sYztZMWjlHJLJE8U2-P4m_ibbxB64Ur4MPJME4iRKQEEXhEjhScV9aWuMs2kiyzfE340pa9P2WkvkxNyYX45v488rKWuZxDHFSzkh-dCXkcbnAHuHqGN6cnbyftEKhREJMllWMEh37jM-wyZix_yt13oT5R5G93smnP99Yuez3_aeQ7vpBJGqyhYGAgnn_e61uzZb7_JOV6tU3fRZg9A8SR5zD10zTX30Y03_RH7A_T9YK3_jRceg0OehaJMweQY6_mHxXLWfjxbYQC7GMAjrl0b2VyxtQ85Vx1E8LvYed-FP3FwqZsa17NV2Dajl2NoDFh1TqJcKx6SM3Fgq77CEww9HRJAcSgcEerR4aiD-xBNDw_e7R-RvoQDsQBkclL5mkvphSxcLWvGPM20oY6zynKTO26qwgAGtNZ7a3JuMmlzUwII8YwJYYvyERo1i8Y9QZgyalmdVR5AFOWZNAUX0kG0VBoAnVSO0cthStV5UupQA4XtkwoDrsKAqzTgY1QOs66GbsJXU8FUXWrF1lY9QknI4592zwfHUrB8w5mMbtyiW6kSwk8Ro8Qxepw8bv32FMJ1Lgqw3l274BW6tvV_zbfRrXCXCIo7aNQuO_cUgFZrnvUr7AfHsyBP |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+commercial+AI+algorithms+for+the+detection+of+fractures%2C+effusions%2C+and+dislocations+on+real-world+clinical+data%3A+A+prospective+registry+study&rft.jtitle=Radiography+%28London%2C+England.+1995%29&rft.au=Luiken%2C+I.&rft.au=Lemke%2C+T.&rft.au=Komenda%2C+A.&rft.au=Marka%2C+A.W.&rft.date=2025-10-01&rft.issn=1078-8174&rft.volume=31&rft.issue=6&rft.spage=103189&rft_id=info:doi/10.1016%2Fj.radi.2025.103189&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_radi_2025_103189 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8174&client=summon |