Evaluation of commercial AI algorithms for the detection of fractures, effusions, and dislocations on real-world clinical data: A prospective registry study

To prospectively evaluate and directly compare the performance of three commercial AI algorithms (Gleamer, AZmed, and Radiobotics) for detecting fractures, dislocations, and joint effusions across multiple anatomical regions in real-world adult clinical radiography. In this single-center, prospectiv...

Full description

Saved in:
Bibliographic Details
Published inRadiography (London, England. 1995) Vol. 31; no. 6; p. 103189
Main Authors Luiken, I., Lemke, T., Komenda, A., Marka, A.W., Kim, S.H., Graf, M.M., Ziegelmayer, S., Weller, D., Mertens, C.J., Bressem, K.K., Makowski, M.R., Adams, L.C., Prucker, P., Busch, F.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.10.2025
Subjects
Online AccessGet full text
ISSN1078-8174
1532-2831
1532-2831
DOI10.1016/j.radi.2025.103189

Cover

Abstract To prospectively evaluate and directly compare the performance of three commercial AI algorithms (Gleamer, AZmed, and Radiobotics) for detecting fractures, dislocations, and joint effusions across multiple anatomical regions in real-world adult clinical radiography. In this single-center, prospective technical performance evaluation study, we assessed these algorithms on radiographs from adult patients (n = 1037; 2926 radiographs; 22 anatomical regions) at the Technical University of Munich (January–March 2025). Radiologists’ reports served as the reference standard, with CT adjudication when available. Sensitivity, specificity, accuracy, and AUC were calculated; AUCs were compared using Bonferroni-corrected DeLong tests. Fractures were identified in 29.60 % of patients; 13.69 % had acute fractures and 6.65 % had multiple fractures. For all fractures, Gleamer (AUC 83.95 %, sensitivity 75.57 %, specificity 92.33 %) and AZmed (AUC 84.88 %, sensitivity 79.48 %, specificity 90.27 %) outperformed Radiobotics (AUC 77.24 %, sensitivity 60.91 %, specificity 93.56 %). For acute fractures, AUCs were comparable (range: 84.81–87.78 %). For multiple fractures, performance was limited (AUCs 64.17–73.40 %). AZmed had higher AUC for dislocation (61.85 % vs. 54.48 % for Gleamer), while Gleamer and Radiobotics outperformed AZmed for effusion (AUC 69.59 % and 73.63 % vs. 57.99 %). No algorithm exceeded 91 % accuracy for acute fractures. In this real-world, single-center study, commercial AI algorithms showed moderate to high performance for straightforward fracture detection but limited accuracy for complex scenarios such as multiple fractures and dislocations. Current tools should be used as adjuncts rather than replacements for radiologists and reporting radiographers. Multicenter validation and more diverse training data are necessary to improve generalizability and robustness.
AbstractList To prospectively evaluate and directly compare the performance of three commercial AI algorithms (Gleamer, AZmed, and Radiobotics) for detecting fractures, dislocations, and joint effusions across multiple anatomical regions in real-world adult clinical radiography. In this single-center, prospective technical performance evaluation study, we assessed these algorithms on radiographs from adult patients (n = 1037; 2926 radiographs; 22 anatomical regions) at the Technical University of Munich (January–March 2025). Radiologists’ reports served as the reference standard, with CT adjudication when available. Sensitivity, specificity, accuracy, and AUC were calculated; AUCs were compared using Bonferroni-corrected DeLong tests. Fractures were identified in 29.60 % of patients; 13.69 % had acute fractures and 6.65 % had multiple fractures. For all fractures, Gleamer (AUC 83.95 %, sensitivity 75.57 %, specificity 92.33 %) and AZmed (AUC 84.88 %, sensitivity 79.48 %, specificity 90.27 %) outperformed Radiobotics (AUC 77.24 %, sensitivity 60.91 %, specificity 93.56 %). For acute fractures, AUCs were comparable (range: 84.81–87.78 %). For multiple fractures, performance was limited (AUCs 64.17–73.40 %). AZmed had higher AUC for dislocation (61.85 % vs. 54.48 % for Gleamer), while Gleamer and Radiobotics outperformed AZmed for effusion (AUC 69.59 % and 73.63 % vs. 57.99 %). No algorithm exceeded 91 % accuracy for acute fractures. In this real-world, single-center study, commercial AI algorithms showed moderate to high performance for straightforward fracture detection but limited accuracy for complex scenarios such as multiple fractures and dislocations. Current tools should be used as adjuncts rather than replacements for radiologists and reporting radiographers. Multicenter validation and more diverse training data are necessary to improve generalizability and robustness.
To prospectively evaluate and directly compare the performance of three commercial AI algorithms (Gleamer, AZmed, and Radiobotics) for detecting fractures, dislocations, and joint effusions across multiple anatomical regions in real-world adult clinical radiography. In this single-center, prospective technical performance evaluation study, we assessed these algorithms on radiographs from adult patients (n = 1037; 2926 radiographs; 22 anatomical regions) at [anonymized] (January-March 2025). Radiologists' reports served as the reference standard, with CT adjudication when available. Sensitivity, specificity, accuracy, and AUC were calculated; AUCs were compared using Bonferroni-corrected DeLong tests. Fractures were identified in 29.60 % of patients; 13.69 % had acute fractures and 6.65 % had multiple fractures. For all fractures, Gleamer (AUC 83.95 %, sensitivity 75.57 %, specificity 92.33 %) and AZmed (AUC 84.88 %, sensitivity 79.48 %, specificity 90.27 %) outperformed Radiobotics (AUC 77.24 %, sensitivity 60.91 %, specificity 93.56 %). For acute fractures, AUCs were comparable (range: 84.81-87.78 %). For multiple fractures, performance was limited (AUCs 64.17-73.40 %). AZmed had higher AUC for dislocation (61.85 % vs. 54.48 % for Gleamer), while Gleamer and Radiobotics outperformed AZmed for effusion (AUC 69.59 % and 73.63 % vs. 57.99 %). No algorithm exceeded 91 % accuracy for acute fractures. In this real-world, single-center study, commercial AI algorithms showed moderate to high performance for straightforward fracture detection but limited accuracy for complex scenarios such as multiple fractures and dislocations. Current tools should be used as adjuncts rather than replacements for radiologists and reporting radiographers. Multicenter validation and more diverse training data are necessary to improve generalizability and robustness.
To prospectively evaluate and directly compare the performance of three commercial AI algorithms (Gleamer, AZmed, and Radiobotics) for detecting fractures, dislocations, and joint effusions across multiple anatomical regions in real-world adult clinical radiography.PURPOSETo prospectively evaluate and directly compare the performance of three commercial AI algorithms (Gleamer, AZmed, and Radiobotics) for detecting fractures, dislocations, and joint effusions across multiple anatomical regions in real-world adult clinical radiography.In this single-center, prospective technical performance evaluation study, we assessed these algorithms on radiographs from adult patients (n = 1037; 2926 radiographs; 22 anatomical regions) at [anonymized] (January-March 2025). Radiologists' reports served as the reference standard, with CT adjudication when available. Sensitivity, specificity, accuracy, and AUC were calculated; AUCs were compared using Bonferroni-corrected DeLong tests.MATERIAL AND METHODSIn this single-center, prospective technical performance evaluation study, we assessed these algorithms on radiographs from adult patients (n = 1037; 2926 radiographs; 22 anatomical regions) at [anonymized] (January-March 2025). Radiologists' reports served as the reference standard, with CT adjudication when available. Sensitivity, specificity, accuracy, and AUC were calculated; AUCs were compared using Bonferroni-corrected DeLong tests.Fractures were identified in 29.60 % of patients; 13.69 % had acute fractures and 6.65 % had multiple fractures. For all fractures, Gleamer (AUC 83.95 %, sensitivity 75.57 %, specificity 92.33 %) and AZmed (AUC 84.88 %, sensitivity 79.48 %, specificity 90.27 %) outperformed Radiobotics (AUC 77.24 %, sensitivity 60.91 %, specificity 93.56 %). For acute fractures, AUCs were comparable (range: 84.81-87.78 %). For multiple fractures, performance was limited (AUCs 64.17-73.40 %). AZmed had higher AUC for dislocation (61.85 % vs. 54.48 % for Gleamer), while Gleamer and Radiobotics outperformed AZmed for effusion (AUC 69.59 % and 73.63 % vs. 57.99 %). No algorithm exceeded 91 % accuracy for acute fractures.RESULTSFractures were identified in 29.60 % of patients; 13.69 % had acute fractures and 6.65 % had multiple fractures. For all fractures, Gleamer (AUC 83.95 %, sensitivity 75.57 %, specificity 92.33 %) and AZmed (AUC 84.88 %, sensitivity 79.48 %, specificity 90.27 %) outperformed Radiobotics (AUC 77.24 %, sensitivity 60.91 %, specificity 93.56 %). For acute fractures, AUCs were comparable (range: 84.81-87.78 %). For multiple fractures, performance was limited (AUCs 64.17-73.40 %). AZmed had higher AUC for dislocation (61.85 % vs. 54.48 % for Gleamer), while Gleamer and Radiobotics outperformed AZmed for effusion (AUC 69.59 % and 73.63 % vs. 57.99 %). No algorithm exceeded 91 % accuracy for acute fractures.In this real-world, single-center study, commercial AI algorithms showed moderate to high performance for straightforward fracture detection but limited accuracy for complex scenarios such as multiple fractures and dislocations.CONCLUSIONIn this real-world, single-center study, commercial AI algorithms showed moderate to high performance for straightforward fracture detection but limited accuracy for complex scenarios such as multiple fractures and dislocations.Current tools should be used as adjuncts rather than replacements for radiologists and reporting radiographers. Multicenter validation and more diverse training data are necessary to improve generalizability and robustness.IMPLICATIONS FOR PRACTICECurrent tools should be used as adjuncts rather than replacements for radiologists and reporting radiographers. Multicenter validation and more diverse training data are necessary to improve generalizability and robustness.
ArticleNumber 103189
Author Bressem, K.K.
Graf, M.M.
Kim, S.H.
Luiken, I.
Marka, A.W.
Prucker, P.
Makowski, M.R.
Weller, D.
Mertens, C.J.
Ziegelmayer, S.
Adams, L.C.
Lemke, T.
Busch, F.
Komenda, A.
Author_xml – sequence: 1
  givenname: I.
  orcidid: 0000-0002-5961-4002
  surname: Luiken
  fullname: Luiken, I.
  organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany
– sequence: 2
  givenname: T.
  orcidid: 0009-0006-4269-142X
  surname: Lemke
  fullname: Lemke, T.
  organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany
– sequence: 3
  givenname: A.
  surname: Komenda
  fullname: Komenda, A.
  organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany
– sequence: 4
  givenname: A.W.
  orcidid: 0000-0002-2111-8177
  surname: Marka
  fullname: Marka, A.W.
  organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany
– sequence: 5
  givenname: S.H.
  orcidid: 0000-0002-5383-2041
  surname: Kim
  fullname: Kim, S.H.
  organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany
– sequence: 6
  givenname: M.M.
  surname: Graf
  fullname: Graf, M.M.
  organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany
– sequence: 7
  givenname: S.
  surname: Ziegelmayer
  fullname: Ziegelmayer, S.
  organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany
– sequence: 8
  givenname: D.
  surname: Weller
  fullname: Weller, D.
  organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany
– sequence: 9
  givenname: C.J.
  orcidid: 0000-0001-7303-2650
  surname: Mertens
  fullname: Mertens, C.J.
  organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany
– sequence: 10
  givenname: K.K.
  surname: Bressem
  fullname: Bressem, K.K.
  organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany
– sequence: 11
  givenname: M.R.
  surname: Makowski
  fullname: Makowski, M.R.
  organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany
– sequence: 12
  givenname: L.C.
  orcidid: 0000-0001-5836-4542
  surname: Adams
  fullname: Adams, L.C.
  organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany
– sequence: 13
  givenname: P.
  orcidid: 0000-0002-6968-2156
  surname: Prucker
  fullname: Prucker, P.
  organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany
– sequence: 14
  givenname: F.
  orcidid: 0000-0001-9770-8555
  surname: Busch
  fullname: Busch, F.
  email: felix.busch@tum.de
  organization: Institute for Diagnostic and Interventional Radiology, TUM School of Medicine and Health, TUM University Hospital Rechts der Isar, Munich, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41066829$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9u1DAQhy1URP_AC3BAPnJoFtuJE6fisqoKVKrEpT1bjj1uvTjxYidb5V14WLyky4FDy8mj0fcb29-coqMhDIDQe0pWlND602YVlXErRhjPjZKK9hU6obxkBRMlPco1aUQhaFMdo9OUNoQQVjHxBh1XlNS1YO0J-nW1U35SowsDDhbr0PcQtVMer6-x8vchuvGhT9iGiMcHwAZG0AfaRqXHKUI6x2DtlHI7l2ow2Ljkg_4zNuEMR1C-eAzRG6y9G5zOFxg1qgu8xtsY0nY_dAeZu3dpjDNO42Tmt-i1VT7Bu6fzDN19ubq9_FbcfP96fbm-KXTJOS0aa-q2taJlYFrDua2I6iqoeaPrjkLdNawTJdfaWt3RuiOtpl3JKbOcC6FZeYbKZe40bNX8qLyX2-h6FWdJidy7lhu5dy33ruXiOqc-Lqn8gZ8TpFH2LmnwXg0QpiRLxlvBOeFNRj88oVPXg_k7_bCHDLAF0FlGimD_7wGflxBkNzsHUSbtYNBgXMw-pQnu-fjFP_HDan7A_FL4Nw1YxuM
Cites_doi 10.3348/kjr.2019.0025
10.2214/AJR.22.27873
10.1007/s00330-023-10380-1
10.1016/j.ejrad.2024.111460
10.1016/j.spinee.2021.10.020
10.1016/j.jhsa.2024.01.020
10.1007/s00256-022-04077-7
10.1016/j.ejrad.2022.110447
10.4103/singaporemedj.SMJ-2023-170
10.1016/j.acra.2023.06.016
10.1016/j.ejrad.2024.111593
10.1038/s41598-024-73058-8
10.1001/jamanetworkopen.2021.6096
10.1016/j.ijom.2022.03.056
10.1038/s41598-022-16154-x
10.3390/jimaging7070105
10.1148/radiol.210937
10.1136/bmjopen-2023-076954
10.1016/j.diii.2022.06.004
10.1007/s00256-021-03802-y
10.1148/radiol.211785
10.1016/j.acra.2023.10.042
10.1007/s00330-024-10676-w
10.1007/s00330-020-06672-5
10.1007/s00330-022-09349-3
10.1097/RLI.0000000000000907
10.1038/s41598-020-59175-0
10.1016/j.crad.2024.04.009
10.17725/j.rensit.2024.16.767
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright © 2025 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2025 The Author(s)
– notice: Copyright © 2025 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.radi.2025.103189
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1532-2831
ExternalDocumentID 10.1016/j.radi.2025.103189
41066829
10_1016_j_radi_2025_103189
S1078817425003335
Genre Journal Article
GroupedDBID ---
--K
--M
-RU
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACJTP
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXBA
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SEL
SES
SEW
SNG
SPCBC
SSH
SSZ
T5K
TWZ
UHS
Z5R
~G-
~HD
6I.
AAFTH
AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c3551-7fd699f892ed9d55f40ab4e657c6b1e6b72b835ccffcb16b09c1b3512f5588c23
IEDL.DBID UNPAY
ISSN 1078-8174
1532-2831
IngestDate Sat Oct 11 07:06:18 EDT 2025
Sat Oct 11 06:38:09 EDT 2025
Sat Oct 11 06:59:35 EDT 2025
Thu Oct 16 04:44:49 EDT 2025
Sat Oct 25 17:22:24 EDT 2025
Sat Oct 25 11:10:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Deep learning
Musculoskeletal diseases
Radiography
Computer-assisted
Diagnosis
Artificial intelligence
Prospective study
Language English
License This is an open access article under the CC BY license.
Copyright © 2025 The Author(s). Published by Elsevier Ltd.. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3551-7fd699f892ed9d55f40ab4e657c6b1e6b72b835ccffcb16b09c1b3512f5588c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6968-2156
0000-0001-9770-8555
0000-0001-7303-2650
0000-0001-5836-4542
0000-0002-5961-4002
0000-0002-2111-8177
0000-0002-5383-2041
0009-0006-4269-142X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.radi.2025.103189
PMID 41066829
PQID 3259855057
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1016_j_radi_2025_103189
proquest_miscellaneous_3259855057
pubmed_primary_41066829
crossref_primary_10_1016_j_radi_2025_103189
elsevier_sciencedirect_doi_10_1016_j_radi_2025_103189
elsevier_clinicalkey_doi_10_1016_j_radi_2025_103189
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Radiography (London, England. 1995)
PublicationTitleAlternate Radiography (Lond)
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chou, Jou, Wu, Yao, Lin, Chang (bib17) 2022; 22
Guermazi, Tannoury, Kompel, Murakami, Ducarouge, Gillibert (bib29) 2022; 302
Oeding, Kunze, Messer, Pareek, Fufa, Pulos (bib21) 2024; 49
Huhtanen, Nyman, Doncenco, Hamedian, Kawalya, Salminen (bib12) 2022; 12
Jacques, Cardot, Ventre, Demondion, Cotten (bib27) 2024; 34
Husarek, Hess, Razaeian, Ruder, Sehmisch, Müller (bib31) 2024; 14
Bachmann, Gunes, Hangaard, Nexmann, Lisouski, Boesen (bib30) 2024; 6
Kim, Jang, Kim, Shin, Park (bib18) 2019; 20
Regnard, Lanseur, Ventre, Ducarouge, Clovis, Lassalle (bib13) 2022; 154
Quek, Nickalls, Wong, Tan (bib32) 2025; 66
Russe, Rebmann, Tran, Kellner, Reisert, Bamberg (bib8) 2024; 14
Wei, Li, Sing, Yang, Beeram, Puvanesarajah (bib14) 2022; 51
AbdelRahman, Shaker, Hussein, Mahmood, Maktof (bib34) 2024; 16
Pauling, Kanber, Arthurs, Shelmerdine (bib24) 2024; 6
Kuo, Harrison, Curran, Jones, Freethy, Cussons (bib7) 2022; 304
Zeman, Ritchie, Bracci, Beeck (bib1) 2020; 10
Fritz, Yi, Kijowski, Fritz (bib5) 2023; 58
Zech, Santomartino, Yi (bib33) 2022; 219
Cohen, Puntonet, Sanchez, Kierszbaum, Crema, Soyer (bib26) 2023; 33
Recht, Dewey, Dreyer, Langlotz, Niessen, Prainsack (bib20) 2020; 30
Fu, Viswanathan, Attia, Zerbib-Attal, Kosaraju, Barger (bib28) 2024; 31
Bousson, Attané, Benoist, Perronne, Diallo, Hadid-Beurrier (bib10) 2023; 30
Oppenheimer, Lüken, Hamm, Niehues (bib9) 2023; 13
Reichert, Bellamine, Fontaine, Naipeanu, Altar, Mejean (bib23) 2021; 7
Cohen, Sorin, Lekach, Raskin, Segev, Klang (bib11) 2024; 175
Tieu, Kroen, Kadish, Liu, Patel, Zhou (bib19) 2024; 11
Yoon, Lee, Kane, Kuo, Lin, Chung (bib2) 2021; 4
Nowroozi, Salehi, Shobeiri, Agahi, Momtazmanesh, Kaviani (bib6) 2024; 79
(bib25) 2025
Fritz, Kijowski, Recht (bib4) 2022; 51
Canoni-Meynet, Verdot, Danner, Calame, Aubry (bib15) 2022; 103
Suen, Zhang, Kutaiba (bib22) 2024; 178
Warin, Limprasert, Suebnukarn, Inglam, Jantana, Vicharueang (bib3) 2022; 51
Topff, Steltenpool, Ranschaert, Ramanauskas, Menezes, Visser (bib16) 2024; 34
Bousson (10.1016/j.radi.2025.103189_bib10) 2023; 30
Fritz (10.1016/j.radi.2025.103189_bib4) 2022; 51
Fu (10.1016/j.radi.2025.103189_bib28) 2024; 31
AbdelRahman (10.1016/j.radi.2025.103189_bib34) 2024; 16
Zech (10.1016/j.radi.2025.103189_bib33) 2022; 219
Canoni-Meynet (10.1016/j.radi.2025.103189_bib15) 2022; 103
Kim (10.1016/j.radi.2025.103189_bib18) 2019; 20
Topff (10.1016/j.radi.2025.103189_bib16) 2024; 34
Fritz (10.1016/j.radi.2025.103189_bib5) 2023; 58
Guermazi (10.1016/j.radi.2025.103189_bib29) 2022; 302
Russe (10.1016/j.radi.2025.103189_bib8) 2024; 14
Chou (10.1016/j.radi.2025.103189_bib17) 2022; 22
Jacques (10.1016/j.radi.2025.103189_bib27) 2024; 34
Recht (10.1016/j.radi.2025.103189_bib20) 2020; 30
Zeman (10.1016/j.radi.2025.103189_bib1) 2020; 10
Bachmann (10.1016/j.radi.2025.103189_bib30) 2024; 6
Kuo (10.1016/j.radi.2025.103189_bib7) 2022; 304
Cohen (10.1016/j.radi.2025.103189_bib26) 2023; 33
Husarek (10.1016/j.radi.2025.103189_bib31) 2024; 14
Warin (10.1016/j.radi.2025.103189_bib3) 2022; 51
Suen (10.1016/j.radi.2025.103189_bib22) 2024; 178
Oeding (10.1016/j.radi.2025.103189_bib21) 2024; 49
Reichert (10.1016/j.radi.2025.103189_bib23) 2021; 7
Huhtanen (10.1016/j.radi.2025.103189_bib12) 2022; 12
Cohen (10.1016/j.radi.2025.103189_bib11) 2024; 175
Wei (10.1016/j.radi.2025.103189_bib14) 2022; 51
Tieu (10.1016/j.radi.2025.103189_bib19) 2024; 11
Yoon (10.1016/j.radi.2025.103189_bib2) 2021; 4
Regnard (10.1016/j.radi.2025.103189_bib13) 2022; 154
Nowroozi (10.1016/j.radi.2025.103189_bib6) 2024; 79
Pauling (10.1016/j.radi.2025.103189_bib24) 2024; 6
Quek (10.1016/j.radi.2025.103189_bib32) 2025; 66
Oppenheimer (10.1016/j.radi.2025.103189_bib9) 2023; 13
References_xml – volume: 51
  start-page: 239
  year: 2022
  end-page: 243
  ident: bib4
  article-title: Artificial intelligence in musculoskeletal imaging: a perspective on value propositions, clinical use, and obstacles
  publication-title: Skelet Radiol
– volume: 103
  start-page: 594
  year: 2022
  end-page: 600
  ident: bib15
  article-title: Added value of an artificial intelligence solution for fracture detection in the radiologist's daily trauma emergencies workflow
  publication-title: Diagn Interv Imaging
– volume: 58
  start-page: 3
  year: 2023
  end-page: 13
  ident: bib5
  article-title: Radiomics and deep learning for disease detection in musculoskeletal radiology: an overview of novel MRI- and CT-based approaches
  publication-title: Investig Radiol
– volume: 30
  start-page: 2118
  year: 2023
  end-page: 2139
  ident: bib10
  article-title: Artificial intelligence for detecting acute fractures in patients admitted to an emergency department: real-life performance of three commercial algorithms
  publication-title: Acad Radiol
– volume: 51
  start-page: 2121
  year: 2022
  end-page: 2128
  ident: bib14
  article-title: Can images crowdsourced from the internet be used to train generalizable joint dislocation deep learning algorithms?
  publication-title: Skelet Radiol
– volume: 175
  start-page: 1
  year: 2024
  end-page: 6
  ident: bib11
  article-title: Artificial intelligence for detection of effusion and lipo-hemarthrosis in X-rays and CT of the knee
  publication-title: Eur J Radiol
– volume: 154
  start-page: 1
  year: 2022
  end-page: 10
  ident: bib13
  article-title: Assessment of performances of a deep learning algorithm for the detection of limbs and pelvic fractures, dislocations, focal bone lesions, and elbow effusions on trauma X-rays
  publication-title: Eur J Radiol
– volume: 34
  start-page: 5876
  year: 2024
  end-page: 5885
  ident: bib16
  article-title: Artificial intelligence-assisted double reading of chest radiographs to detect clinically relevant missed findings: a two-centre evaluation
  publication-title: Eur Radiol
– volume: 33
  start-page: 3974
  year: 2023
  end-page: 3983
  ident: bib26
  article-title: Artificial intelligence vs. radiologist: accuracy of wrist fracture detection on radiographs
  publication-title: Eur Radiol
– volume: 304
  start-page: 50
  year: 2022
  end-page: 62
  ident: bib7
  article-title: Artificial intelligence in fracture detection: a systematic review and meta-analysis
  publication-title: Radiology
– volume: 6
  start-page: 1
  year: 2024
  end-page: 11
  ident: bib30
  article-title: Improving traumatic fracture detection on radiographs with artificial intelligence support: a multi-reader study
  publication-title: BJR Open
– volume: 6
  year: 2024
  ident: bib24
  article-title: Commercially available artificial intelligence tools for fracture detection: the evidence
  publication-title: BJR Open
– volume: 14
  year: 2024
  ident: bib31
  article-title: Artificial intelligence in commercial fracture detection products: a systematic review and meta-analysis of diagnostic test accuracy
  publication-title: Sci Rep
– volume: 79
  start-page: 579
  year: 2024
  end-page: 588
  ident: bib6
  article-title: Artificial intelligence diagnostic accuracy in fracture detection from plain radiographs and comparing it with clinicians: a systematic review and meta-analysis
  publication-title: Clin Radiol
– volume: 302
  start-page: 627
  year: 2022
  end-page: 636
  ident: bib29
  article-title: Improving radiographic fracture recognition performance and efficiency using artificial intelligence
  publication-title: Radiology
– volume: 34
  start-page: 2885
  year: 2024
  end-page: 2894
  ident: bib27
  article-title: Commercially-available AI algorithm improves radiologists' sensitivity for wrist and hand fracture detection on X-ray, compared to a CT-based ground truth
  publication-title: Eur Radiol
– volume: 20
  start-page: 405
  year: 2019
  end-page: 410
  ident: bib18
  article-title: Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers
  publication-title: Korean J Radiol
– volume: 4
  year: 2021
  ident: bib2
  article-title: Development and validation of a deep learning model using convolutional neural networks to identify scaphoid fractures in radiographs
  publication-title: JAMA Netw Open
– year: 2025
  ident: bib25
  article-title: Early value assessment (EVA) guidance on artificial intelligence technologies to help detect fractures on X-rays in urgent care
– volume: 22
  start-page: 511
  year: 2022
  end-page: 523
  ident: bib17
  article-title: Ground truth generalizability affects performance of the artificial intelligence model in automated vertebral fracture detection on plain lateral radiographs of the spine
  publication-title: Spine J
– volume: 13
  year: 2023
  ident: bib9
  article-title: A prospective approach to integration of AI fracture detection software in radiographs into clinical workflow
  publication-title: Life (Basel)
– volume: 16
  start-page: 767
  year: 2024
  end-page: 778
  ident: bib34
  article-title: Advancements in medical physics for pediatric radiology: challenges and solutions
  publication-title: RENSIT
– volume: 12
  start-page: 11803. 1
  year: 2022
  end-page: 11803.11
  ident: bib12
  article-title: Deep learning accurately classifies elbow joint effusion in adult and pediatric radiographs
  publication-title: Sci Rep
– volume: 31
  start-page: 1989
  year: 2024
  end-page: 1999
  ident: bib28
  article-title: Assessing the potential of a deep learning tool to improve fracture detection by radiologists and emergency physicians on extremity radiographs
  publication-title: Acad Radiol
– volume: 219
  start-page: 869
  year: 2022
  end-page: 878
  ident: bib33
  article-title: Artificial intelligence (AI) for fracture diagnosis: an overview of current products and considerations for clinical adoption, from the AJR special series on AI applications
  publication-title: AJR Am J Roentgenol
– volume: 14
  year: 2024
  ident: bib8
  article-title: AI-based X-ray fracture analysis of the distal radius: accuracy between representative classification, detection and segmentation deep learning models for clinical practice
  publication-title: BMJ Open
– volume: 178
  year: 2024
  ident: bib22
  article-title: Accuracy of wrist fracture detection on radiographs by artificial intelligence compared to human clinicians. A systematic review and meta-analysis
  publication-title: Eur J Radiol
– volume: 51
  start-page: 1488
  year: 2022
  end-page: 1494
  ident: bib3
  article-title: Assessment of deep convolutional neural network models for mandibular fracture detection in panoramic radiographs
  publication-title: Int J Oral Maxillofac Surg
– volume: 30
  start-page: 3576
  year: 2020
  end-page: 3584
  ident: bib20
  article-title: Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations
  publication-title: Eur Radiol
– volume: 10
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib1
  article-title: Orthogonal representations of object shape and category in deep convolutional neural networks and human visual cortex
  publication-title: Sci Rep
– volume: 11
  year: 2024
  ident: bib19
  article-title: The role of artificial intelligence in the identification and evaluation of bone fractures
  publication-title: Bioengineering (Basel)
– volume: 49
  start-page: 411
  year: 2024
  end-page: 422
  ident: bib21
  article-title: Diagnostic performance of artificial intelligence for detection of scaphoid and distal radius fractures: a systematic review
  publication-title: J Hand Surg Am
– volume: 7
  year: 2021
  ident: bib23
  article-title: How can a deep learning algorithm improve fracture detection on X-rays in the emergency room?
  publication-title: J Imaging
– volume: 66
  start-page: 202
  year: 2025
  end-page: 207
  ident: bib32
  article-title: Deploying artificial intelligence in the detection of adult appendicular and pelvic fractures in the Singapore emergency department after hours: efficacy, cost savings and non-monetary benefits
  publication-title: Singap Med J
– volume: 20
  start-page: 405
  issue: 3
  year: 2019
  ident: 10.1016/j.radi.2025.103189_bib18
  article-title: Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers
  publication-title: Korean J Radiol
  doi: 10.3348/kjr.2019.0025
– volume: 219
  start-page: 869
  issue: 6
  year: 2022
  ident: 10.1016/j.radi.2025.103189_bib33
  article-title: Artificial intelligence (AI) for fracture diagnosis: an overview of current products and considerations for clinical adoption, from the AJR special series on AI applications
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.22.27873
– volume: 6
  issue: 1
  year: 2024
  ident: 10.1016/j.radi.2025.103189_bib24
  article-title: Commercially available artificial intelligence tools for fracture detection: the evidence
  publication-title: BJR Open
– volume: 34
  start-page: 2885
  issue: 5
  year: 2024
  ident: 10.1016/j.radi.2025.103189_bib27
  article-title: Commercially-available AI algorithm improves radiologists' sensitivity for wrist and hand fracture detection on X-ray, compared to a CT-based ground truth
  publication-title: Eur Radiol
  doi: 10.1007/s00330-023-10380-1
– volume: 175
  start-page: 1
  year: 2024
  ident: 10.1016/j.radi.2025.103189_bib11
  article-title: Artificial intelligence for detection of effusion and lipo-hemarthrosis in X-rays and CT of the knee
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2024.111460
– volume: 13
  issue: 1
  year: 2023
  ident: 10.1016/j.radi.2025.103189_bib9
  article-title: A prospective approach to integration of AI fracture detection software in radiographs into clinical workflow
  publication-title: Life (Basel)
– volume: 22
  start-page: 511
  issue: 4
  year: 2022
  ident: 10.1016/j.radi.2025.103189_bib17
  article-title: Ground truth generalizability affects performance of the artificial intelligence model in automated vertebral fracture detection on plain lateral radiographs of the spine
  publication-title: Spine J
  doi: 10.1016/j.spinee.2021.10.020
– volume: 49
  start-page: 411
  issue: 5
  year: 2024
  ident: 10.1016/j.radi.2025.103189_bib21
  article-title: Diagnostic performance of artificial intelligence for detection of scaphoid and distal radius fractures: a systematic review
  publication-title: J Hand Surg Am
  doi: 10.1016/j.jhsa.2024.01.020
– volume: 51
  start-page: 2121
  issue: 11
  year: 2022
  ident: 10.1016/j.radi.2025.103189_bib14
  article-title: Can images crowdsourced from the internet be used to train generalizable joint dislocation deep learning algorithms?
  publication-title: Skelet Radiol
  doi: 10.1007/s00256-022-04077-7
– volume: 154
  start-page: 1
  year: 2022
  ident: 10.1016/j.radi.2025.103189_bib13
  article-title: Assessment of performances of a deep learning algorithm for the detection of limbs and pelvic fractures, dislocations, focal bone lesions, and elbow effusions on trauma X-rays
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2022.110447
– volume: 66
  start-page: 202
  issue: 4
  year: 2025
  ident: 10.1016/j.radi.2025.103189_bib32
  article-title: Deploying artificial intelligence in the detection of adult appendicular and pelvic fractures in the Singapore emergency department after hours: efficacy, cost savings and non-monetary benefits
  publication-title: Singap Med J
  doi: 10.4103/singaporemedj.SMJ-2023-170
– volume: 30
  start-page: 2118
  issue: 10
  year: 2023
  ident: 10.1016/j.radi.2025.103189_bib10
  article-title: Artificial intelligence for detecting acute fractures in patients admitted to an emergency department: real-life performance of three commercial algorithms
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2023.06.016
– volume: 178
  year: 2024
  ident: 10.1016/j.radi.2025.103189_bib22
  article-title: Accuracy of wrist fracture detection on radiographs by artificial intelligence compared to human clinicians. A systematic review and meta-analysis
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2024.111593
– volume: 14
  issue: 1
  year: 2024
  ident: 10.1016/j.radi.2025.103189_bib31
  article-title: Artificial intelligence in commercial fracture detection products: a systematic review and meta-analysis of diagnostic test accuracy
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-73058-8
– volume: 4
  issue: 5
  year: 2021
  ident: 10.1016/j.radi.2025.103189_bib2
  article-title: Development and validation of a deep learning model using convolutional neural networks to identify scaphoid fractures in radiographs
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2021.6096
– volume: 51
  start-page: 1488
  issue: 11
  year: 2022
  ident: 10.1016/j.radi.2025.103189_bib3
  article-title: Assessment of deep convolutional neural network models for mandibular fracture detection in panoramic radiographs
  publication-title: Int J Oral Maxillofac Surg
  doi: 10.1016/j.ijom.2022.03.056
– volume: 12
  start-page: 11803. 1
  issue: 1
  year: 2022
  ident: 10.1016/j.radi.2025.103189_bib12
  article-title: Deep learning accurately classifies elbow joint effusion in adult and pediatric radiographs
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-16154-x
– volume: 7
  issue: 7
  year: 2021
  ident: 10.1016/j.radi.2025.103189_bib23
  article-title: How can a deep learning algorithm improve fracture detection on X-rays in the emergency room?
  publication-title: J Imaging
  doi: 10.3390/jimaging7070105
– volume: 302
  start-page: 627
  issue: 3
  year: 2022
  ident: 10.1016/j.radi.2025.103189_bib29
  article-title: Improving radiographic fracture recognition performance and efficiency using artificial intelligence
  publication-title: Radiology
  doi: 10.1148/radiol.210937
– volume: 14
  issue: 1
  year: 2024
  ident: 10.1016/j.radi.2025.103189_bib8
  article-title: AI-based X-ray fracture analysis of the distal radius: accuracy between representative classification, detection and segmentation deep learning models for clinical practice
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2023-076954
– volume: 103
  start-page: 594
  issue: 12
  year: 2022
  ident: 10.1016/j.radi.2025.103189_bib15
  article-title: Added value of an artificial intelligence solution for fracture detection in the radiologist's daily trauma emergencies workflow
  publication-title: Diagn Interv Imaging
  doi: 10.1016/j.diii.2022.06.004
– volume: 51
  start-page: 239
  issue: 2
  year: 2022
  ident: 10.1016/j.radi.2025.103189_bib4
  article-title: Artificial intelligence in musculoskeletal imaging: a perspective on value propositions, clinical use, and obstacles
  publication-title: Skelet Radiol
  doi: 10.1007/s00256-021-03802-y
– volume: 304
  start-page: 50
  issue: 1
  year: 2022
  ident: 10.1016/j.radi.2025.103189_bib7
  article-title: Artificial intelligence in fracture detection: a systematic review and meta-analysis
  publication-title: Radiology
  doi: 10.1148/radiol.211785
– volume: 31
  start-page: 1989
  issue: 5
  year: 2024
  ident: 10.1016/j.radi.2025.103189_bib28
  article-title: Assessing the potential of a deep learning tool to improve fracture detection by radiologists and emergency physicians on extremity radiographs
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2023.10.042
– volume: 34
  start-page: 5876
  issue: 9
  year: 2024
  ident: 10.1016/j.radi.2025.103189_bib16
  article-title: Artificial intelligence-assisted double reading of chest radiographs to detect clinically relevant missed findings: a two-centre evaluation
  publication-title: Eur Radiol
  doi: 10.1007/s00330-024-10676-w
– volume: 30
  start-page: 3576
  issue: 6
  year: 2020
  ident: 10.1016/j.radi.2025.103189_bib20
  article-title: Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06672-5
– volume: 33
  start-page: 3974
  issue: 6
  year: 2023
  ident: 10.1016/j.radi.2025.103189_bib26
  article-title: Artificial intelligence vs. radiologist: accuracy of wrist fracture detection on radiographs
  publication-title: Eur Radiol
  doi: 10.1007/s00330-022-09349-3
– volume: 58
  start-page: 3
  issue: 1
  year: 2023
  ident: 10.1016/j.radi.2025.103189_bib5
  article-title: Radiomics and deep learning for disease detection in musculoskeletal radiology: an overview of novel MRI- and CT-based approaches
  publication-title: Investig Radiol
  doi: 10.1097/RLI.0000000000000907
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.radi.2025.103189_bib1
  article-title: Orthogonal representations of object shape and category in deep convolutional neural networks and human visual cortex
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-59175-0
– volume: 79
  start-page: 579
  issue: 8
  year: 2024
  ident: 10.1016/j.radi.2025.103189_bib6
  article-title: Artificial intelligence diagnostic accuracy in fracture detection from plain radiographs and comparing it with clinicians: a systematic review and meta-analysis
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2024.04.009
– volume: 11
  issue: 4
  year: 2024
  ident: 10.1016/j.radi.2025.103189_bib19
  article-title: The role of artificial intelligence in the identification and evaluation of bone fractures
  publication-title: Bioengineering (Basel)
– volume: 6
  start-page: 1
  issue: 1
  year: 2024
  ident: 10.1016/j.radi.2025.103189_bib30
  article-title: Improving traumatic fracture detection on radiographs with artificial intelligence support: a multi-reader study
  publication-title: BJR Open
– volume: 16
  start-page: 767
  issue: 6
  year: 2024
  ident: 10.1016/j.radi.2025.103189_bib34
  article-title: Advancements in medical physics for pediatric radiology: challenges and solutions
  publication-title: RENSIT
  doi: 10.17725/j.rensit.2024.16.767
SSID ssj0002428
Score 2.3572948
Snippet To prospectively evaluate and directly compare the performance of three commercial AI algorithms (Gleamer, AZmed, and Radiobotics) for detecting fractures,...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 103189
SubjectTerms Artificial intelligence
Computer-assisted
Deep learning
Diagnosis
Musculoskeletal diseases
Prospective study
Radiography
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9QwDI5We-BxQLwZXjISN7ZM2zyacFutdrUgwQVW2luUtAkUzXZGM1MhLvwSfix22g4gECBubRVLSe3a39fYMWNPA0fHqHKXIUcWGSLwKvNGx6wSkbsqd9KElOX7Rp2eiVfn8nyPHU21MJRWOfr-wacnbz0-mY9vc75q2_lbJC5aI6DGIJ5zzqnQXIiKuhg8__I9zQND0FAOh2yJRo-FM0OO19o1LXLEUlLteUGt3n8fnH4Fn1fZ5b5buc-f3GLxQ0A6uc6ujUgSDofJ3mB7obvJLr0e98pvsa_Hu4O8YRkBF3hB3ZVI5CW4xfvlut1-uNgAolZAFAhN2Ka0rDQ6UvFUj1T8AEKMPf1Sw0vXNdC0G4p_yVwBByPoXGTp3FWYqiyB0k5fwCHgeqZKTqAOENRYDtKBtrfZ2cnxu6PTbOzFkNWISIqsio0yJmpThsY0UkaROy-CklWtfBGUr0qPYK6uY6x9oXxu6sJzRBNRSq3rkt9h-92yC_cYCClq2eRVRDQkVG58qbQJSHu4R_QozIw9m5RgV8ORG3bKRftoSWWWVGYHlc0Yn_Rkp2Wi-7MYEf4oJXdSP5nbX-WeTKZg8TukzRXXhWW_sRx5pE50b8buDjaym71A3q10idIHO6P5h6Xd_89JPmBX6G5IOXzI9rfrPjxC6LT1j9O38Q0oJBVt
  priority: 102
  providerName: Elsevier
Title Evaluation of commercial AI algorithms for the detection of fractures, effusions, and dislocations on real-world clinical data: A prospective registry study
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1078817425003335
https://dx.doi.org/10.1016/j.radi.2025.103189
https://www.ncbi.nlm.nih.gov/pubmed/41066829
https://www.proquest.com/docview/3259855057
https://doi.org/10.1016/j.radi.2025.103189
UnpaywallVersion publishedVersion
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1532-2831
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002428
  issn: 1532-2831
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1532-2831
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002428
  issn: 1532-2831
  databaseCode: ACRLP
  dateStart: 19950601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1532-2831
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002428
  issn: 1532-2831
  databaseCode: AIKHN
  dateStart: 19950601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1532-2831
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002428
  issn: 1532-2831
  databaseCode: .~1
  dateStart: 19950601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1532-2831
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002428
  issn: 1532-2831
  databaseCode: AKRWK
  dateStart: 19950601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RXQnogWeB5bEyEjeaVR62Y_e2qlpteawqxErlFNmJDQvbbLWbqIIDv4Qf23GcrHhTTkkkT5Sxx_Y38cw3AM9MggsjD1WAPjINEIGngZbCBim1iUpDxaRponynfDKjL07YSUuT43Jhfji_b-KwVqqYox8XM5cfHgm5BX3OEHf3oD-bHo_f-aBCEQhPuYwz2OUbJ1GbIfP7l_xpF_oVZW7Dtbo8U5_P1WLx3c5zeNOXMFo3hIUu4OTTqK70KP_yE53j5ZS6BTdaAErG3mJuwxVT3oGrr9sj9rvw7WDD_02WlqBBnrqiTE7kiKjF--VqXn04XRMEuwTBIylM1URzNa2ty7mq0YPfJcba2v2Jw1tVFqSYr9222Vg5wcaIVRdBQ9dKuuRM4qJV98iYoKZdAihxhSNcPTrS8ODuwOzw4O3-JGhLOAQ5ApkoSG3BpbRCxqaQBWOWhkpTw1macx0ZrtNYIwbMc2tzHXEdyjzSCYIQy5gQeZzcg165LM0DIJTRnBVhahFEUR5KHXMhDXpLiUbQSeUAnndDmp15po6sC2H7mLkOz1yHZ77DB5B0o551auKqmeFQ_VWKbaRahOKRxz_lnnaGleH0dWcyqjTLep0l6H6KxkscwH1vcZuvp-iucxGj9O7GBC-h2sP_a_4IrrsnH6D4GHrVqjZPEGhVeghbo6_REPrj_Tevjt316OVkOmzn3QW0BCRw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VItFyQDzL8jQSN5puEj9ic6uqVltoe6GVerPsxIagbXa1uxHiwi_hxzJ2kgUEAsQtSjySnZnMfF884wF46Sg6RpGaBDkySxCBF4lV0icF89QUqeHKxSzfMzG5YG8u-eUGHAy1MCGtsvf9nU-P3rq_M-7f5nhe1-N3SFykRECNQTyllPJrcJ3xvAgMbO_L9zwPjEFdPRzSpTC8r5zpkrwWpqqRJOY8FJ9nodf776PTr-jzJmy1zdx8_mSm0x8i0tFtuNVDSbLfzfYObLjmLtw47TfL78HXw_VJ3mTmCa7wKrRXCiLHxEzfzxb16sPVkiBsJQgDSeVWMS8rjvaheqpFLr5LnPdt-KeGl6apSFUvQwCM9kpwMKLOaRIPXiVDmSUJeaevyT7B9QylnCS0gAid5Ug80fY-XBwdnh9Mkr4ZQ1IiJMmSwldCKS9V7ipVce5ZaixzghelsJkTtsgtormy9L60mbCpKjNLEU54zqUsc_oANptZ4x4CYZyVvEoLj3CIiVTZXEjlkPdQi_CRqRG8GpSg592ZG3pIRvuog8p0UJnuVDYCOuhJD8tE_6cxJPxRiq-lfrK3v8q9GExB44cYdldM42btUlMkkjLyvRHsdDaynj1D4i1kjtK7a6P5h6U9-s9JPoetyfnpiT45Pnv7GLbDky7_8Alsrhate4o4amWfxe_kGyMfGJA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgK_E4lDdsW5CRuFFXediOzW1VtWqRqDiwUjlZtmPDwjZb7SZC8Fv4sYztZMWjlHJLJE8U2-P4m_ibbxB64Ur4MPJME4iRKQEEXhEjhScV9aWuMs2kiyzfE340pa9P2WkvkxNyYX45v488rKWuZxDHFSzkh-dCXkcbnAHuHqGN6cnbyftEKhREJMllWMEh37jM-wyZix_yt13oT5R5G93smnP99Yuez3_aeQ7vpBJGqyhYGAgnn_e61uzZb7_JOV6tU3fRZg9A8SR5zD10zTX30Y03_RH7A_T9YK3_jRceg0OehaJMweQY6_mHxXLWfjxbYQC7GMAjrl0b2VyxtQ85Vx1E8LvYed-FP3FwqZsa17NV2Dajl2NoDFh1TqJcKx6SM3Fgq77CEww9HRJAcSgcEerR4aiD-xBNDw_e7R-RvoQDsQBkclL5mkvphSxcLWvGPM20oY6zynKTO26qwgAGtNZ7a3JuMmlzUwII8YwJYYvyERo1i8Y9QZgyalmdVR5AFOWZNAUX0kG0VBoAnVSO0cthStV5UupQA4XtkwoDrsKAqzTgY1QOs66GbsJXU8FUXWrF1lY9QknI4592zwfHUrB8w5mMbtyiW6kSwk8Ro8Qxepw8bv32FMJ1Lgqw3l274BW6tvV_zbfRrXCXCIo7aNQuO_cUgFZrnvUr7AfHsyBP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+commercial+AI+algorithms+for+the+detection+of+fractures%2C+effusions%2C+and+dislocations+on+real-world+clinical+data%3A+A+prospective+registry+study&rft.jtitle=Radiography+%28London%2C+England.+1995%29&rft.au=Luiken%2C+I.&rft.au=Lemke%2C+T.&rft.au=Komenda%2C+A.&rft.au=Marka%2C+A.W.&rft.date=2025-10-01&rft.issn=1078-8174&rft.volume=31&rft.issue=6&rft.spage=103189&rft_id=info:doi/10.1016%2Fj.radi.2025.103189&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_radi_2025_103189
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8174&client=summon