Artificial intelligence–based method for the rapid detection of fish parasites (Ichthyophthirius multifiliis, Gyrodactylus kobayashii, and Argulus japonicus)

Ichthyophthirius (Ichthyophthirius multifiliis), Monogenea (Gyrodactylus kobayashii) and fish lice (Argulus japonicus) are mainly infectious parasites, representative species of Protozoa, Platyhelminthes and Arthropoda, which cause serious economic losses in aquatic industry. In this research, a vis...

Full description

Saved in:
Bibliographic Details
Published inAquaculture Vol. 563; p. 738790
Main Authors Li, Jiadong, Lian, Zirui, Wu, Zhelin, Zeng, Lihua, Mu, Liangliang, Yuan, Ye, Bai, Hao, Guo, Zheng, Mai, Kangsen, Tu, Xiao, Ye, Jianmin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 30.01.2023
Subjects
Online AccessGet full text
ISSN0044-8486
1873-5622
DOI10.1016/j.aquaculture.2022.738790

Cover

Abstract Ichthyophthirius (Ichthyophthirius multifiliis), Monogenea (Gyrodactylus kobayashii) and fish lice (Argulus japonicus) are mainly infectious parasites, representative species of Protozoa, Platyhelminthes and Arthropoda, which cause serious economic losses in aquatic industry. In this research, a visual system that can rapidly detect and count these three kinds of parasites was realized based on a one-stage object detection deep learning algorithm YOLOv4 through python. Firstly, we made a dataset of parasites containing 27,930 images. Secondly, weights of the trained fish lice model were applied as the pre-training weights, and network (backbone indeed) frozen was also applied to obtaining a good performance predicting model with less time and higher accuracy, which showed that Transfer Learning could meet the training requirement for detecting these three fish parasites by using self-made data set. In addition, by comparison of different one-stage algorithms YOLOv4‑tiny, YOLOv3, et al., the best model with a total average accuracy (mAP) of 95.41% was achieved by the YOLOv4. Finally, this model could quickly detect and count mixed infected pictures with a speed of 0.13 s per image measured in GPU time. Further, a visual prediction and counting system equipped with the YOLOv4 was developed by using PyQt which is convenient for real-time video detection. A simple drug-giving system equipped with Praziquantel was also developed based on the thought of the Internet of Things in this study and after using a drug, the number of monogeneans infecting gold fish was reduced. At the same time, we modified YOLOv4 PANet by adding additional detection layers, which achieved greater performance of detecting smaller targets like Monogenea. Together, this Artificial intelligence–based method could realize the rapid detection and diagnosis of fish parasites in images and video. •I. multifilii, G. kobayashii and A. japonicus were suitable for AI research in fish parasite diagnosis.•Data augment and transfer learning were applicable for fish parasite-based deep learning research.•YOLOv4 and modified-YOLOv4 showed great performance in fish parasite detection with a high speed.•A remote drug-given system deliver could reduce the amount and density of parasites when over threshold.
AbstractList Ichthyophthirius (Ichthyophthirius multifiliis), Monogenea (Gyrodactylus kobayashii) and fish lice (Argulus japonicus) are mainly infectious parasites, representative species of Protozoa, Platyhelminthes and Arthropoda, which cause serious economic losses in aquatic industry. In this research, a visual system that can rapidly detect and count these three kinds of parasites was realized based on a one-stage object detection deep learning algorithm YOLOv4 through python. Firstly, we made a dataset of parasites containing 27,930 images. Secondly, weights of the trained fish lice model were applied as the pre-training weights, and network (backbone indeed) frozen was also applied to obtaining a good performance predicting model with less time and higher accuracy, which showed that Transfer Learning could meet the training requirement for detecting these three fish parasites by using self-made data set. In addition, by comparison of different one-stage algorithms YOLOv4‑tiny, YOLOv3, et al., the best model with a total average accuracy (mAP) of 95.41% was achieved by the YOLOv4. Finally, this model could quickly detect and count mixed infected pictures with a speed of 0.13 s per image measured in GPU time. Further, a visual prediction and counting system equipped with the YOLOv4 was developed by using PyQt which is convenient for real-time video detection. A simple drug-giving system equipped with Praziquantel was also developed based on the thought of the Internet of Things in this study and after using a drug, the number of monogeneans infecting gold fish was reduced. At the same time, we modified YOLOv4 PANet by adding additional detection layers, which achieved greater performance of detecting smaller targets like Monogenea. Together, this Artificial intelligence–based method could realize the rapid detection and diagnosis of fish parasites in images and video.
Ichthyophthirius (Ichthyophthirius multifiliis), Monogenea (Gyrodactylus kobayashii) and fish lice (Argulus japonicus) are mainly infectious parasites, representative species of Protozoa, Platyhelminthes and Arthropoda, which cause serious economic losses in aquatic industry. In this research, a visual system that can rapidly detect and count these three kinds of parasites was realized based on a one-stage object detection deep learning algorithm YOLOv4 through python. Firstly, we made a dataset of parasites containing 27,930 images. Secondly, weights of the trained fish lice model were applied as the pre-training weights, and network (backbone indeed) frozen was also applied to obtaining a good performance predicting model with less time and higher accuracy, which showed that Transfer Learning could meet the training requirement for detecting these three fish parasites by using self-made data set. In addition, by comparison of different one-stage algorithms YOLOv4‑tiny, YOLOv3, et al., the best model with a total average accuracy (mAP) of 95.41% was achieved by the YOLOv4. Finally, this model could quickly detect and count mixed infected pictures with a speed of 0.13 s per image measured in GPU time. Further, a visual prediction and counting system equipped with the YOLOv4 was developed by using PyQt which is convenient for real-time video detection. A simple drug-giving system equipped with Praziquantel was also developed based on the thought of the Internet of Things in this study and after using a drug, the number of monogeneans infecting gold fish was reduced. At the same time, we modified YOLOv4 PANet by adding additional detection layers, which achieved greater performance of detecting smaller targets like Monogenea. Together, this Artificial intelligence–based method could realize the rapid detection and diagnosis of fish parasites in images and video. •I. multifilii, G. kobayashii and A. japonicus were suitable for AI research in fish parasite diagnosis.•Data augment and transfer learning were applicable for fish parasite-based deep learning research.•YOLOv4 and modified-YOLOv4 showed great performance in fish parasite detection with a high speed.•A remote drug-given system deliver could reduce the amount and density of parasites when over threshold.
ArticleNumber 738790
Author Zeng, Lihua
Guo, Zheng
Mai, Kangsen
Yuan, Ye
Mu, Liangliang
Li, Jiadong
Wu, Zhelin
Tu, Xiao
Bai, Hao
Ye, Jianmin
Lian, Zirui
Author_xml – sequence: 1
  givenname: Jiadong
  surname: Li
  fullname: Li, Jiadong
  organization: School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, Guangdong, PR China
– sequence: 2
  givenname: Zirui
  surname: Lian
  fullname: Lian, Zirui
  organization: University of Science and Technology of China, School of Computer Science and Technology, Hefei 230027, Anhui, PR China
– sequence: 3
  givenname: Zhelin
  surname: Wu
  fullname: Wu, Zhelin
  organization: School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, Guangdong, PR China
– sequence: 4
  givenname: Lihua
  surname: Zeng
  fullname: Zeng, Lihua
  organization: School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, Guangdong, PR China
– sequence: 5
  givenname: Liangliang
  surname: Mu
  fullname: Mu, Liangliang
  organization: School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, Guangdong, PR China
– sequence: 6
  givenname: Ye
  surname: Yuan
  fullname: Yuan, Ye
  organization: School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, Guangdong, PR China
– sequence: 7
  givenname: Hao
  surname: Bai
  fullname: Bai, Hao
  organization: School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, Guangdong, PR China
– sequence: 8
  givenname: Zheng
  surname: Guo
  fullname: Guo, Zheng
  organization: School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, Guangdong, PR China
– sequence: 9
  givenname: Kangsen
  surname: Mai
  fullname: Mai, Kangsen
  organization: School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, Guangdong, PR China
– sequence: 10
  givenname: Xiao
  surname: Tu
  fullname: Tu, Xiao
  email: tuxiao412@126.com
  organization: School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, Guangdong, PR China
– sequence: 11
  givenname: Jianmin
  surname: Ye
  fullname: Ye, Jianmin
  email: jmye@m.scnu.edu.cn
  organization: School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, Guangdong, PR China
BookMark eNqNkc9u1DAQxiNUJLaFdzC3IjWLnThOckKrFZRKlbjA2Zq1x80s2Ti1HaTc-g48AO_Gk5BoOSBOvcxI8-eb0fe7zC4GP2CWvRV8K7hQ749beJzATH2aAm4LXhTbumzqlr_INqKpy7xSRXGRbTiXMm9ko15llzEeOedKVWKT_dqFRI4MQc9oSNj39ICDwd9PPw8Q0bITps5b5nxgqUMWYCTLLCY0ifzAvGOOYsdGCBApYWTXd6ZL3ezHJVKgKbLT8t1yoyeKN-x2Dt6CSXO_dL77A8wQO6IbBoNlu_AwrfUjjH4gM8V3r7OXDvqIb_7mq-zbp49f95_z-y-3d_vdfW7KSqYcbeNcKcE4pWRtKoWoGtEYELa1FajaoZS8sq1qnDwAtsBdpYxStaitdIfyKrs-647BP04Ykz5RNIsdMKCfoi7qohS8bptyGf1wHjXBxxjQaUMJVjdSAOq14HpFo4_6HzR6RaPPaBaF9j-FMdAJwvys3f15Fxc3fhAGHQ2txCyFhYm2np6h8gcRV7oS
CitedBy_id crossref_primary_10_2903_j_efsa_2024_8719
crossref_primary_10_1016_j_aquaculture_2024_740558
crossref_primary_10_3390_s23177337
crossref_primary_10_1016_j_aquaculture_2023_740418
crossref_primary_10_22363_2313_2299_2024_15_1_195_210
crossref_primary_10_1016_j_fochx_2024_101309
crossref_primary_10_3390_su15020993
crossref_primary_10_1016_j_aquaeng_2025_102533
Cites_doi 10.1007/s11042-020-09371-x
10.1638/2007-0094.1
10.1186/s12859-021-04036-4
10.1002/jbio.201800410
10.3389/fmars.2022.868420
10.1016/j.ijpddr.2022.02.001
10.1016/j.aquaeng.2006.02.004
10.1016/j.aquaculture.2020.736024
10.3389/fvets.2021.665072
10.3390/s21144758
10.1128/CMR.00079-12
10.1017/S0031182017001184
10.3389/fmars.2020.00429
10.1016/j.neunet.2019.01.012
10.1016/j.aquaculture.2021.737214
10.3390/cancers13040738
10.3390/s20154314
10.1038/s41598-018-32293-6
10.1121/10.0001943
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.aquaculture.2022.738790
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1873-5622
ExternalDocumentID 10_1016_j_aquaculture_2022_738790
S0044848622009073
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BKOMP
BLXMC
BNPGV
CBWCG
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LCYCR
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
ROL
RPZ
RSU
SAB
SCC
SDF
SDG
SES
SNL
SPCBC
SSA
SSH
SSZ
T5K
WH7
~G-
~KM
AAHBH
AALCJ
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABXDB
ACIEU
ACLOT
ACMHX
ACVFH
ADCNI
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLV
HVGLF
HZ~
R2-
SEW
WUQ
Y6R
~HD
7S9
L.6
ID FETCH-LOGICAL-c354t-ed8ff34acf6647c56ee6818ca1d9d5a67fe4405d968f4bae9a0f56c66717d4fb3
IEDL.DBID .~1
ISSN 0044-8486
IngestDate Thu Oct 02 10:36:09 EDT 2025
Wed Oct 01 05:14:23 EDT 2025
Thu Apr 24 22:58:42 EDT 2025
Fri Feb 23 02:39:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Rapid diagnosis system
Fish parasites
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-ed8ff34acf6647c56ee6818ca1d9d5a67fe4405d968f4bae9a0f56c66717d4fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2723107983
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2723107983
crossref_citationtrail_10_1016_j_aquaculture_2022_738790
crossref_primary_10_1016_j_aquaculture_2022_738790
elsevier_sciencedirect_doi_10_1016_j_aquaculture_2022_738790
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-30
PublicationDateYYYYMMDD 2023-01-30
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-30
  day: 30
PublicationDecade 2020
PublicationTitle Aquaculture
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Norbury, Shirakashi, Power, Nowak, Bott (bb0190) 2022; 18
Zhou, Dong, Liu, Yang, Xu, Yang, Ai (bb0305) 2021; 8
Pan, Yang (bb0195) 2010; 22
Xu, Liu, Cui, Miao (bb0275) 2006; 35
Ditria, Lopez-Marcano, Sievers, Jinks, Brown, Connolly (bb0055) 2020; 7
Krell, Kim (bb0130) 2017
Conradt, Börner, Lo´ pez-Urrutia, Möllmann, Moyano (bb0050) 2022; 9
Zhu, Zheng, Wang, Cao, Guo (bb0310) 2020; 20
Glenn (bb0080) 2021
Taylor, Kuhlmann, Stone (bb0255) 2008; 18-19
Saleh, Abdel-Baki, Dkhil, El-Matbouli, Al-Quraishy (bb0235) 2017; 144
Abdurahman, Fante, Aliy (bb0005) 2021; 22
Huynh, Drukker, Giger (bb0110) 2016; 43
Ibrahim, Zhuang, Chérubin, Schärer-Umpierre, Nemeth, Erdol, Ali (bb0115) 2020; 148
Liang, Powell, Ersoy, Poostchi, Thoma (bb0150) 2017
Li, Zheng, Wu, Chu, Xu, Sun, Smith (bb0145) 2019; 12
Radford, Metz, Chintala (bb0215) 2015
Peter, Chandrawathani (bb0205) 2005; 22
Cubuk, Zoph, Mane, Vasudevan, Le (bb0045) 2018
Hunglc (bb0105) 2021
Mathur, Vasudev, Sahoo, Jain, Goel (bb0165) 2020; 79
Singh, Daneshvar (bb0135) 2013; 26
Garretson, Hammond, Craig, Holman (bb0075) 2009; 40
Guo, Xiao, Yu (bb0090) 2020; 179
Zhao, Zhang, Liu, Wang, Zhao (bb0295) 2021; 540
Noaman, Chelongar, Shahmoradi (bb0185) 2010; 5
Duan, Ma, Wu, Ding, Ye (bb0065) 2021; 545
Wafer, Whitney, Jensen (bb0265) 2015; 65
Vaughan, Grutter, Hutson (bb0260) 2018; 8
Parisi, Kemker, Part, Kanan, Wermter (bb0200) 2019; 113
Ahmedt-Aristizabal, Armin, Denman, Fookes, Petersson (bb0010) 2021; 21
Ayana, Dese, Choe (bb0020) 2021; 13
Muhaba, Dese, Aga, Zewdu, Simegn (bb0175) 2021; 2
Bochkovskiy, Wang, Liao (bb0035) 2020; 2004
Steckler, Yanong RPE. [Internet]. (bb0245) 2012
Jiang, Li, Liu (bb0120) 2021; 112
Sveen, Johansen, Ytteborg, Timmerhaus (bb0250) 2020; 532
Bakke, Cable, Harris (bb0030) 2007; 64
Liu, Gu, Sun, Li (bb0155) 2022; 194
Zhu, Lyu, Wang, Zhao (bb0315) 2021
Garretson (10.1016/j.aquaculture.2022.738790_bb0075) 2009; 40
Parisi (10.1016/j.aquaculture.2022.738790_bb0200) 2019; 113
Li (10.1016/j.aquaculture.2022.738790_bb0145) 2019; 12
Xu (10.1016/j.aquaculture.2022.738790_bb0275) 2006; 35
Wafer (10.1016/j.aquaculture.2022.738790_bb0265) 2015; 65
Ayana (10.1016/j.aquaculture.2022.738790_bb0020) 2021; 13
Jiang (10.1016/j.aquaculture.2022.738790_bb0120) 2021; 112
Zhou (10.1016/j.aquaculture.2022.738790_bb0305) 2021; 8
Muhaba (10.1016/j.aquaculture.2022.738790_bb0175) 2021; 2
Huynh (10.1016/j.aquaculture.2022.738790_bb0110) 2016; 43
Steckler (10.1016/j.aquaculture.2022.738790_bb0245) 2012
Sveen (10.1016/j.aquaculture.2022.738790_bb0250) 2020; 532
Singh (10.1016/j.aquaculture.2022.738790_bb0135) 2013; 26
Duan (10.1016/j.aquaculture.2022.738790_bb0065) 2021; 545
Mathur (10.1016/j.aquaculture.2022.738790_bb0165) 2020; 79
Guo (10.1016/j.aquaculture.2022.738790_bb0090) 2020; 179
Radford (10.1016/j.aquaculture.2022.738790_bb0215) 2015
Saleh (10.1016/j.aquaculture.2022.738790_bb0235) 2017; 144
Zhao (10.1016/j.aquaculture.2022.738790_bb0295) 2021; 540
Zhu (10.1016/j.aquaculture.2022.738790_bb0315) 2021
Pan (10.1016/j.aquaculture.2022.738790_bb0195) 2010; 22
Peter (10.1016/j.aquaculture.2022.738790_bb0205) 2005; 22
Liu (10.1016/j.aquaculture.2022.738790_bb0155) 2022; 194
Norbury (10.1016/j.aquaculture.2022.738790_bb0190) 2022; 18
Taylor (10.1016/j.aquaculture.2022.738790_bb0255) 2008; 18-19
Cubuk (10.1016/j.aquaculture.2022.738790_bb0045) 2018
Bakke (10.1016/j.aquaculture.2022.738790_bb0030) 2007; 64
Abdurahman (10.1016/j.aquaculture.2022.738790_bb0005) 2021; 22
Vaughan (10.1016/j.aquaculture.2022.738790_bb0260) 2018; 8
Krell (10.1016/j.aquaculture.2022.738790_bb0130) 2017
Glenn (10.1016/j.aquaculture.2022.738790_bb0080)
Liang (10.1016/j.aquaculture.2022.738790_bb0150) 2017
Conradt (10.1016/j.aquaculture.2022.738790_bb0050) 2022; 9
Ibrahim (10.1016/j.aquaculture.2022.738790_bb0115) 2020; 148
Ahmedt-Aristizabal (10.1016/j.aquaculture.2022.738790_bb0010) 2021; 21
Bochkovskiy (10.1016/j.aquaculture.2022.738790_bb0035) 2020; 2004
Hunglc (10.1016/j.aquaculture.2022.738790_bb0105)
Noaman (10.1016/j.aquaculture.2022.738790_bb0185) 2010; 5
Zhu (10.1016/j.aquaculture.2022.738790_bb0310) 2020; 20
Ditria (10.1016/j.aquaculture.2022.738790_bb0055) 2020; 7
References_xml – volume: 7
  start-page: 429
  year: 2020
  ident: bb0055
  article-title: Automating the analysis of fish abundance using object detection: optimizing animal ecology with deep learning
  publication-title: Front. Mar. Sci.
– volume: 2
  start-page: e81
  year: 2021
  ident: bb0175
  article-title: Automatic skin disease diagnosis using deep learning from clinical image and patient information
  publication-title: Skin Health Dis.
– volume: 22
  start-page: 131
  year: 2005
  end-page: 137
  ident: bb0205
  article-title: : parasite problem no. 1 from tropics - polar circle. Problems and prospects for control based on epidemiology
  publication-title: Trop. Biomed.
– volume: 35
  start-page: 207
  year: 2006
  end-page: 217
  ident: bb0275
  article-title: Behavioral responses of tilapia (
  publication-title: Aquac. Eng.
– volume: 26
  start-page: 84
  year: 2013
  end-page: 165
  ident: bb0135
  article-title: Human infections and detection of
  publication-title: Clin. Microbiol. Rev.
– volume: 21
  start-page: 4758
  year: 2021
  ident: bb0010
  article-title: Graph-based deep learning for medical diagnosis and analysis: past, present and future
  publication-title: Sensors
– year: 2021
  ident: bb0105
  article-title: Tensorflow-yolov4-tflite
– volume: 22
  year: 2010
  ident: bb0195
  article-title: A survey on transfer learning
  publication-title: IEEE TKDE
– volume: 65
  start-page: 93
  year: 2015
  end-page: 95
  ident: bb0265
  article-title: Fish lice (
  publication-title: Comp. Med.
– volume: 5
  start-page: 71
  year: 2010
  end-page: 76
  ident: bb0185
  article-title: The first record of
  publication-title: Iran. J. Parasitol.
– volume: 13
  start-page: 738
  year: 2021
  ident: bb0020
  article-title: Transfer learning in breast cancer diagnoses via ultrasound imaging
  publication-title: Cancers (Basel).
– volume: 112
  year: 2021
  ident: bb0120
  article-title: R-CenterNet+: anchor-free detector for ship detection in SAR images
  publication-title: Sensors (Basel).
– volume: 9
  start-page: 868420
  year: 2022
  ident: bb0050
  article-title: Automated plankton classification with a dynamic optimization and adaptation cycle.
  publication-title: Front. Mar. Sci.
– volume: 20
  start-page: 4314
  year: 2020
  ident: bb0310
  article-title: Study on the evaluation method of sound phase cloud maps based on an improved YOLOv4 algorithm
  publication-title: Sensors.
– volume: 64
  start-page: 162
  year: 2007
  end-page: 378
  ident: bb0030
  article-title: The biology of gyrodactylid monogeneans: the “Russian-doll killers”
  publication-title: Adv. Parasitol.
– start-page: 493
  year: 2017
  end-page: 496
  ident: bb0150
  article-title: CNN-based image analysis for malaria diagnosis. inProc
  publication-title: IEEE Int. Conf. Bioinf. Biomed
– volume: 8
  start-page: 13959
  year: 2018
  ident: bb0260
  article-title: Cleaner shrimp are a sustainable option to treat parasitic disease in farmed fish
  publication-title: SCI REP-UK.
– start-page: 2778
  year: 2021
  end-page: 2788
  ident: bb0315
  article-title: TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops
– volume: 113
  start-page: 54
  year: 2019
  end-page: 71
  ident: bb0200
  article-title: Continual lifelong learning with neural networks: a review. Neural Netw
  publication-title: J. Int. Neur. Net. Soci.
– volume: 144
  start-page: 1802
  year: 2017
  end-page: 1810
  ident: bb0235
  article-title: Antiprotozoal effects of metal nanoparticles against
  publication-title: Parasitology
– volume: 12
  year: 2019
  ident: bb0145
  article-title: A low-cost, automated parasite diagnostic system via a portable, robotic microscope and deep learning
  publication-title: J. Biophotonics
– volume: 532
  start-page: 736024
  year: 2020
  ident: bb0250
  article-title: Deep neural network analysis - a paradigm shift for histological examination of health and welfare of farmed fish
  publication-title: Aquaculture
– start-page: 471
  year: 2017
  end-page: 474
  ident: bb0130
  article-title: Rotational data augmentation for electroencephalographic data
  publication-title: In 39
– volume: 8
  year: 2021
  ident: bb0305
  article-title: Antiparasitic efficacy of herbal extracts and active compound against Monogenea in
  publication-title: Front. Vet. Sci.
– volume: 18
  start-page: 87
  year: 2022
  end-page: 102
  ident: bb0190
  article-title: Praziquantel use in aquaculture - current status and emerging issues
  publication-title: Int. J. Parasitol. Drugs Drug Resist.
– year: 2012
  ident: bb0245
  article-title: Argulus (fish louse) infections in fish
  publication-title: UF/IFAS Fisheries and Aquatic Sciences
– volume: 545
  year: 2021
  ident: bb0065
  article-title: Functional characterization of complement factor D on the defense against
  publication-title: Aquaculture
– volume: 179
  start-page: 117
  year: 2020
  end-page: 122
  ident: bb0090
  article-title: Research on deep learning algorithm and application based on convolutional neural network
– volume: 79
  start-page: 31625
  year: 2020
  ident: bb0165
  article-title: Crosspooled FishNet: transfer learning-based fish species classification model
  publication-title: Multimed. Tools Appl.
– volume: 194
  year: 2022
  ident: bb0155
  article-title: Effects of aquaponic system on fish locomotion by image-based YOLO v4 deep learning algorithm
  publication-title: Comput. Electron.
– volume: 18-19
  start-page: 326
  year: 2008
  end-page: 337
  ident: bb0255
  article-title: Transfer learning and intelligence: an argument and approach
  publication-title: In Proceedings of the 2008 Conference on Artificial General Intelligence
– volume: 43
  start-page: 3705
  year: 2016
  ident: bb0110
  article-title: Computer-aided diagnosis of breast ultrasound images using transfer learning from deep convolutional neural networks
  publication-title: Int. J. Med. Phys. Res. Prac.
– volume: 22
  start-page: 112
  year: 2021
  ident: bb0005
  article-title: Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models
  publication-title: BMC Bioinformatics
– volume: 2004
  year: 2020
  ident: bb0035
  article-title: YOLOv4: Optimal speed and accuracy of object detection
  publication-title: arXiv
– year: 2018
  ident: bb0045
  article-title: AutoAugment: learning augmentation policies from data
  publication-title: arXiv: Computer Vision and Pattern Recognition
– volume: 148
  start-page: EL260
  year: 2020
  ident: bb0115
  article-title: Transfer learning for efficient classification of grouper sound
  publication-title: J. Acoust. Soc. Am.
– volume: 40
  start-page: 131
  year: 2009
  ident: bb0075
  article-title: Anthelmintic resistant Haemonchus contortusin a giraffe (
  publication-title: J. Zoo Wild Med.
– volume: 540
  start-page: 724
  year: 2021
  end-page: 736
  ident: bb0295
  article-title: Application of machine learning in intelligent fish aquaculture: a review
  publication-title: Aquaculture.
– year: 2021
  ident: bb0080
  article-title: YOLOv3 in PyTorch
– year: 2015
  ident: bb0215
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: Computer Science
– volume: 65
  start-page: 93
  year: 2015
  ident: 10.1016/j.aquaculture.2022.738790_bb0265
  article-title: Fish lice (fish lice) in goldfish (Carassius auratus)
  publication-title: Comp. Med.
– volume: 79
  start-page: 31625
  year: 2020
  ident: 10.1016/j.aquaculture.2022.738790_bb0165
  article-title: Crosspooled FishNet: transfer learning-based fish species classification model
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09371-x
– start-page: 493
  year: 2017
  ident: 10.1016/j.aquaculture.2022.738790_bb0150
  article-title: CNN-based image analysis for malaria diagnosis. inProc
  publication-title: IEEE Int. Conf. Bioinf. Biomed
– volume: 40
  start-page: 131
  issue: 1
  year: 2009
  ident: 10.1016/j.aquaculture.2022.738790_bb0075
  article-title: Anthelmintic resistant Haemonchus contortusin a giraffe (Giraffa camelopardalis) in Florida
  publication-title: J. Zoo Wild Med.
  doi: 10.1638/2007-0094.1
– volume: 22
  start-page: 112
  year: 2021
  ident: 10.1016/j.aquaculture.2022.738790_bb0005
  article-title: Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-021-04036-4
– volume: 12
  year: 2019
  ident: 10.1016/j.aquaculture.2022.738790_bb0145
  article-title: A low-cost, automated parasite diagnostic system via a portable, robotic microscope and deep learning
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201800410
– volume: 9
  start-page: 868420
  year: 2022
  ident: 10.1016/j.aquaculture.2022.738790_bb0050
  article-title: Automated plankton classification with a dynamic optimization and adaptation cycle.
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2022.868420
– volume: 18
  start-page: 87
  year: 2022
  ident: 10.1016/j.aquaculture.2022.738790_bb0190
  article-title: Praziquantel use in aquaculture - current status and emerging issues
  publication-title: Int. J. Parasitol. Drugs Drug Resist.
  doi: 10.1016/j.ijpddr.2022.02.001
– volume: 35
  start-page: 207
  issue: 3
  year: 2006
  ident: 10.1016/j.aquaculture.2022.738790_bb0275
  article-title: Behavioral responses of tilapia (Oreochromis niloticus) to acute fluctuations in dissolved oxygen levels as monitored by computer vision
  publication-title: Aquac. Eng.
  doi: 10.1016/j.aquaeng.2006.02.004
– year: 2018
  ident: 10.1016/j.aquaculture.2022.738790_bb0045
  article-title: AutoAugment: learning augmentation policies from data
– year: 2012
  ident: 10.1016/j.aquaculture.2022.738790_bb0245
  article-title: Argulus (fish louse) infections in fish
– volume: 532
  start-page: 736024
  year: 2020
  ident: 10.1016/j.aquaculture.2022.738790_bb0250
  article-title: Deep neural network analysis - a paradigm shift for histological examination of health and welfare of farmed fish
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2020.736024
– volume: 8
  year: 2021
  ident: 10.1016/j.aquaculture.2022.738790_bb0305
  article-title: Antiparasitic efficacy of herbal extracts and active compound against Monogenea in Carassius auratus
  publication-title: Front. Vet. Sci.
  doi: 10.3389/fvets.2021.665072
– volume: 21
  start-page: 4758
  issue: 14
  year: 2021
  ident: 10.1016/j.aquaculture.2022.738790_bb0010
  article-title: Graph-based deep learning for medical diagnosis and analysis: past, present and future
  publication-title: Sensors
  doi: 10.3390/s21144758
– volume: 2004
  year: 2020
  ident: 10.1016/j.aquaculture.2022.738790_bb0035
  article-title: YOLOv4: Optimal speed and accuracy of object detection
  publication-title: arXiv
– volume: 26
  start-page: 84
  issue: 2
  year: 2013
  ident: 10.1016/j.aquaculture.2022.738790_bb0135
  article-title: Human infections and detection of Plasmodium knowlesi
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.00079-12
– volume: 144
  start-page: 1802
  issue: 13
  year: 2017
  ident: 10.1016/j.aquaculture.2022.738790_bb0235
  article-title: Antiprotozoal effects of metal nanoparticles against Ichthyophthirius multifiliis
  publication-title: Parasitology
  doi: 10.1017/S0031182017001184
– volume: 7
  start-page: 429
  year: 2020
  ident: 10.1016/j.aquaculture.2022.738790_bb0055
  article-title: Automating the analysis of fish abundance using object detection: optimizing animal ecology with deep learning
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2020.00429
– volume: 2
  start-page: e81
  year: 2021
  ident: 10.1016/j.aquaculture.2022.738790_bb0175
  article-title: Automatic skin disease diagnosis using deep learning from clinical image and patient information
  publication-title: Skin Health Dis.
– year: 2015
  ident: 10.1016/j.aquaculture.2022.738790_bb0215
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
– ident: 10.1016/j.aquaculture.2022.738790_bb0080
– volume: 112
  issue: 7
  year: 2021
  ident: 10.1016/j.aquaculture.2022.738790_bb0120
  article-title: R-CenterNet+: anchor-free detector for ship detection in SAR images
  publication-title: Sensors (Basel).
– volume: 22
  start-page: 131
  issue: 2
  year: 2005
  ident: 10.1016/j.aquaculture.2022.738790_bb0205
  article-title: Haemonchus contortus: parasite problem no. 1 from tropics - polar circle. Problems and prospects for control based on epidemiology
  publication-title: Trop. Biomed.
– volume: 113
  start-page: 54
  year: 2019
  ident: 10.1016/j.aquaculture.2022.738790_bb0200
  article-title: Continual lifelong learning with neural networks: a review. Neural Netw
  publication-title: J. Int. Neur. Net. Soci.
  doi: 10.1016/j.neunet.2019.01.012
– volume: 540
  start-page: 724
  issue: 99–115
  year: 2021
  ident: 10.1016/j.aquaculture.2022.738790_bb0295
  article-title: Application of machine learning in intelligent fish aquaculture: a review
  publication-title: Aquaculture.
– start-page: 2778
  year: 2021
  ident: 10.1016/j.aquaculture.2022.738790_bb0315
  article-title: TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios
– volume: 179
  start-page: 117
  year: 2020
  ident: 10.1016/j.aquaculture.2022.738790_bb0090
– volume: 545
  year: 2021
  ident: 10.1016/j.aquaculture.2022.738790_bb0065
  article-title: Functional characterization of complement factor D on the defense against Gyrodactylus kobayashii (Monogenea) infection in goldfish (Carassius auratus)
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2021.737214
– volume: 18-19
  start-page: 326
  year: 2008
  ident: 10.1016/j.aquaculture.2022.738790_bb0255
  article-title: Transfer learning and intelligence: an argument and approach
– volume: 13
  start-page: 738
  issue: 4
  year: 2021
  ident: 10.1016/j.aquaculture.2022.738790_bb0020
  article-title: Transfer learning in breast cancer diagnoses via ultrasound imaging
  publication-title: Cancers (Basel).
  doi: 10.3390/cancers13040738
– volume: 43
  start-page: 3705
  year: 2016
  ident: 10.1016/j.aquaculture.2022.738790_bb0110
  article-title: Computer-aided diagnosis of breast ultrasound images using transfer learning from deep convolutional neural networks
  publication-title: Int. J. Med. Phys. Res. Prac.
– volume: 20
  start-page: 4314
  issue: 15
  year: 2020
  ident: 10.1016/j.aquaculture.2022.738790_bb0310
  article-title: Study on the evaluation method of sound phase cloud maps based on an improved YOLOv4 algorithm
  publication-title: Sensors.
  doi: 10.3390/s20154314
– volume: 8
  start-page: 13959
  year: 2018
  ident: 10.1016/j.aquaculture.2022.738790_bb0260
  article-title: Cleaner shrimp are a sustainable option to treat parasitic disease in farmed fish
  publication-title: SCI REP-UK.
  doi: 10.1038/s41598-018-32293-6
– volume: 64
  start-page: 162
  year: 2007
  ident: 10.1016/j.aquaculture.2022.738790_bb0030
  article-title: The biology of gyrodactylid monogeneans: the “Russian-doll killers”
  publication-title: Adv. Parasitol.
– start-page: 471
  year: 2017
  ident: 10.1016/j.aquaculture.2022.738790_bb0130
  article-title: Rotational data augmentation for electroencephalographic data
– ident: 10.1016/j.aquaculture.2022.738790_bb0105
– volume: 5
  start-page: 71
  issue: 2
  year: 2010
  ident: 10.1016/j.aquaculture.2022.738790_bb0185
  article-title: The first record of Argulus foliacesus (Crustacea: Branchiura) infestation on Lionhead goldfish (Carassius auratus) in Iran
  publication-title: Iran. J. Parasitol.
– volume: 194
  year: 2022
  ident: 10.1016/j.aquaculture.2022.738790_bb0155
  article-title: Effects of aquaponic system on fish locomotion by image-based YOLO v4 deep learning algorithm
  publication-title: Comput. Electron.
– volume: 22
  issue: 10
  year: 2010
  ident: 10.1016/j.aquaculture.2022.738790_bb0195
  article-title: A survey on transfer learning
  publication-title: IEEE TKDE
– volume: 148
  start-page: EL260
  year: 2020
  ident: 10.1016/j.aquaculture.2022.738790_bb0115
  article-title: Transfer learning for efficient classification of grouper sound
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/10.0001943
SSID ssj0006651
Score 2.4668756
Snippet Ichthyophthirius (Ichthyophthirius multifiliis), Monogenea (Gyrodactylus kobayashii) and fish lice (Argulus japonicus) are mainly infectious parasites,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 738790
SubjectTerms algorithms
aquaculture
aquaculture industry
Argulus japonicus
data collection
Deep learning
Fish parasites
goldfish
Gyrodactylus
Ichthyophthirius multifiliis
Internet
praziquantel
prediction
Protozoa
Rapid diagnosis system
rapid methods
Title Artificial intelligence–based method for the rapid detection of fish parasites (Ichthyophthirius multifiliis, Gyrodactylus kobayashii, and Argulus japonicus)
URI https://dx.doi.org/10.1016/j.aquaculture.2022.738790
https://www.proquest.com/docview/2723107983
Volume 563
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5622
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006651
  issn: 0044-8486
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-5622
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006651
  issn: 0044-8486
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-5622
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006651
  issn: 0044-8486
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-5622
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006651
  issn: 0044-8486
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5622
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006651
  issn: 0044-8486
  databaseCode: AKRWK
  dateStart: 19720501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqVkJwQJQfUaCVK3EAqWk3seMkEpdVRdmC6IlKvVn-bd2usmGTHPaCeIc-AO_GkzCTH1oQh0pccrBjxfJMZj7bM98Q8poBZPBpEUexxhJmTImo8EZHiVWTRGfe6QKTkz-fiNkp_3iWnq2RwzEXBsMqB9vf2_TOWg8tB8NqHlQhYI4vbC04IHI84AdNxQx2nmEVg_1vN2EeQqR91TzOI3z7Htm9ifFSX1vVM1wgY2aS7Gcsz9A8_9tH_WWtOxd09Ig8HLAjnfbT2yRrrnxMHkzPlwN_hntCfmBnTwpBwy22zZ_fr9FfWdpXjKYAVSlAP7pUVbDUuqaLyCrpwlMf6guKjOB4r1zTN8fmAoS5qOAZlqGtaReD6MM8hHqPfliBBVamWc2h5wqMwwqrM4U9qkoLMz1vsf1SVcjA29Zvn5LTo_dfDmfRUIMhMizlTeRs7j3jyngheGZS4ZwAH29UbAubKgHS5ID5bCFyz7VyhQLRCyMEbBMt95o9I-vlonTPCY217tCSZlbzOFa5Vnlq3YQlqc2U9VskH1ddmoGgHOtkzOUYiXYpbwlMosBkL7AtkvweWvUsHXcZ9G4UrfxD5SR4k7sM3x3VQcIvifcsqnSLtpZJhqA5K3L24v8-8ZLcx-r2eOLDJq_IerNs3TZgoEbvdEq-Qzamx59mJ78AYmAPlg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtUwELVKkXgsEK-K8nQlFiA17U3sOInEpqoot9B21UrdWX62Lle54SZZ3A3iH_gA_o0vYSYPWhCLSmyysGPF8kxmju2ZM4S8ZgAZfFrEUayxhBlTIiq80VFi1STRmXe6wOTkwyMxPeEfT9PTFbI75sJgWOVg-3ub3lnroWV7WM3tKgTM8YWtBQdEjgf8oKk3yE2eJhnuwLa-XsZ5CJH2ZfM4j_D1W2TjMshLfWlVT3GBlJlJspWxPEP7_G8n9Ze57nzQ3n1ybwCPdKef3wOy4sqH5O7O2WIg0HCPyA_s7FkhaLhCt_nz23d0WJb2JaMpYFUK2I8uVBUsta7pQrJKOvfUh_qcIiU4XizX9M2-OQdpzit4hkVoa9oFIfowC6HepB-WYIKVaZYz6PkM1mGJ5ZnCJlWlhZmetdh-oSqk4G3rt4_Jyd77491pNBRhiAxLeRM5m3vPuDJeCJ6ZVDgnwMkbFdvCpkqAODmAPluI3HOtXKFA9sIIAftEy71ma2S1nJfuCaGx1h1c0sxqHscq1ypPrZuwJLWZsn6d5OOqSzMwlGOhjJkcQ9Eu5BWBSRSY7AW2TpLfQ6uepuM6g96NopV_6JwEd3Kd4RujOkj4J_GiRZVu3tYyyRA1Z0XOnv7fJ16R29PjwwN5sH_06Rm5g6Xu8fiHTZ6T1WbRuhcAiBr9slP4X4O1ESs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence%E2%80%93based+method+for+the+rapid+detection+of+fish+parasites+%28Ichthyophthirius+multifiliis%2C+Gyrodactylus+kobayashii%2C+and+Argulus+japonicus%29&rft.jtitle=Aquaculture&rft.au=Li%2C+Jiadong&rft.au=Lian%2C+Zirui&rft.au=Wu%2C+Zhelin&rft.au=Zeng%2C+Lihua&rft.date=2023-01-30&rft.issn=0044-8486&rft.volume=563&rft.spage=738790&rft_id=info:doi/10.1016%2Fj.aquaculture.2022.738790&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aquaculture_2022_738790
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8486&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8486&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8486&client=summon