Prediction of Ischemic Stroke Recurrence Based on COX Proportional Risk Regression Model and Evaluation of the Effectiveness of Patient Intensive Care Interventions

With the continuous improvement of medical technology and the aging of the population, the death rate of stroke is gradually decreasing, but the recurrence rate is still high, and the number of recurrences is increasing, resulting in disability and other symptoms, which brings great burden and distr...

Full description

Saved in:
Bibliographic Details
Published inComputational and mathematical methods in medicine Vol. 2022; pp. 1 - 9
Main Authors Wang, Yun, Lu, Ting
Format Journal Article
LanguageEnglish
Published Hindawi 20.06.2022
Online AccessGet full text
ISSN1748-670X
1748-6718
1748-6718
DOI10.1155/2022/8392854

Cover

Abstract With the continuous improvement of medical technology and the aging of the population, the death rate of stroke is gradually decreasing, but the recurrence rate is still high, and the number of recurrences is increasing, resulting in disability and other symptoms, which brings great burden and distress to patients and their families. As the number of strokes increases, neurological impairment becomes more and more severe, affecting patients’ ability to live, socialize, and work, and seriously reducing their quality of life. Clustered care is a combination of evidence-based linked interventions and a multidisciplinary team providing the best possible care through evidence-based research and highly operational practice, and it can improve outcomes for ischemic stroke patients more than implementation alone. This paper presents a Cox proportional risk regression-based model, using it to build the most used semi-parametric model for multifactorial survival analysis, due to its advantages of both parametric and nonparametric models, and to analyze the factors influencing survival time in study subjects with incomplete data. The proposed strategy has been found to be useful in predicting ischemic stroke recurrence and cluster care interventions for patients.
AbstractList With the continuous improvement of medical technology and the aging of the population, the death rate of stroke is gradually decreasing, but the recurrence rate is still high, and the number of recurrences is increasing, resulting in disability and other symptoms, which brings great burden and distress to patients and their families. As the number of strokes increases, neurological impairment becomes more and more severe, affecting patients’ ability to live, socialize, and work, and seriously reducing their quality of life. Clustered care is a combination of evidence-based linked interventions and a multidisciplinary team providing the best possible care through evidence-based research and highly operational practice, and it can improve outcomes for ischemic stroke patients more than implementation alone. This paper presents a Cox proportional risk regression-based model, using it to build the most used semi-parametric model for multifactorial survival analysis, due to its advantages of both parametric and nonparametric models, and to analyze the factors influencing survival time in study subjects with incomplete data. The proposed strategy has been found to be useful in predicting ischemic stroke recurrence and cluster care interventions for patients.
With the continuous improvement of medical technology and the aging of the population, the death rate of stroke is gradually decreasing, but the recurrence rate is still high, and the number of recurrences is increasing, resulting in disability and other symptoms, which brings great burden and distress to patients and their families. As the number of strokes increases, neurological impairment becomes more and more severe, affecting patients' ability to live, socialize, and work, and seriously reducing their quality of life. Clustered care is a combination of evidence-based linked interventions and a multidisciplinary team providing the best possible care through evidence-based research and highly operational practice, and it can improve outcomes for ischemic stroke patients more than implementation alone. This paper presents a Cox proportional risk regression-based model, using it to build the most used semi-parametric model for multifactorial survival analysis, due to its advantages of both parametric and nonparametric models, and to analyze the factors influencing survival time in study subjects with incomplete data. The proposed strategy has been found to be useful in predicting ischemic stroke recurrence and cluster care interventions for patients.With the continuous improvement of medical technology and the aging of the population, the death rate of stroke is gradually decreasing, but the recurrence rate is still high, and the number of recurrences is increasing, resulting in disability and other symptoms, which brings great burden and distress to patients and their families. As the number of strokes increases, neurological impairment becomes more and more severe, affecting patients' ability to live, socialize, and work, and seriously reducing their quality of life. Clustered care is a combination of evidence-based linked interventions and a multidisciplinary team providing the best possible care through evidence-based research and highly operational practice, and it can improve outcomes for ischemic stroke patients more than implementation alone. This paper presents a Cox proportional risk regression-based model, using it to build the most used semi-parametric model for multifactorial survival analysis, due to its advantages of both parametric and nonparametric models, and to analyze the factors influencing survival time in study subjects with incomplete data. The proposed strategy has been found to be useful in predicting ischemic stroke recurrence and cluster care interventions for patients.
Author Lu, Ting
Wang, Yun
AuthorAffiliation Department of Neurology Nursing, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan 610072, China
AuthorAffiliation_xml – name: Department of Neurology Nursing, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan 610072, China
Author_xml – sequence: 1
  givenname: Yun
  orcidid: 0000-0003-4558-1964
  surname: Wang
  fullname: Wang, Yun
  organization: Department of Neurology NursingSichuan Provincial People’s HospitalUniversity of Electronic Science and Technology of ChinaChinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengduSichuan 610072Chinauestc.edu.cn
– sequence: 2
  givenname: Ting
  orcidid: 0000-0001-5165-3691
  surname: Lu
  fullname: Lu, Ting
  organization: Department of Neurology NursingSichuan Provincial People’s HospitalUniversity of Electronic Science and Technology of ChinaChinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengduSichuan 610072Chinauestc.edu.cn
BookMark eNqFkM1u1DAUhS1URH9gxwN4iQShdhInzgYJRgOMVNRRAak764593THN2FM7marvw4PiMAOIDUiW_HO-c3x1TsmRDx4Jec7Za86FOC9ZWZ7LqiulqB-RE97WsmhaLo9-n9n1MTlN6RtjgreCPyHHlWhbxnlzQr4vIxqnBxc8DZYukl7jxmn6eYjhFukV6jFG9BrpO0hoaMZml9d0GcM2xMkFPb1y6TaTNxFTmnI-BYM9BW_ofAf9CL_ChzXSubWYf9uhz_D0uMwy-oEu_IA-ZYHOIOLPa8zU5E1PyWMLfcJnh_2MfH0__zL7WFxcfljM3l4UuhL1UGBT885qqJGtLK9MpSUyoVnXGi2MqBpYacs61sim4cBB2mnp0khWMVxBdUaKfe7ot_BwD32vttFtID4oztTUtpraVoe2M_9mz2_H1QaNzuNG-OMJ4NTfindrdRN2qiurpu14DnhxCIjhbsQ0qI1LGvsePIYxqbKRZStrJlhGX-1RHUNKEe3_Rnu5x9fOG7h3_6Z_ALP-tfo
Cites_doi 10.1177/10760296221090503
10.1007/s00380-019-01445-7
10.1016/j.jstrokecerebrovasdis.2019.104415
10.2147/JIR.S328383
10.1161/STROKEAHA.120.029740
10.1186/s12883-022-02588-3
10.1007/s11011-021-00725-4
10.1161/STROKEAHA.120.032424
10.1111/jth.15448
10.1109/tetc.2020.2971831
10.1002/brb3.1369
10.1111/jth.14714
10.1109/TVT.2020.2989297
10.2147/RMHP.S289761
10.1161/STROKEAHA.120.032634
10.12122/j.issn.1673-4254.2022.01.16
10.3390/nu14071337
10.1109/TCSS.2019.2917335
10.5551/jat.52373
10.1007/s00234-020-02418-8
10.1007/s12031-021-01889-5
ContentType Journal Article
Copyright Copyright © 2022 Yun Wang and Ting Lu.
Copyright © 2022 Yun Wang and Ting Lu. 2022
Copyright_xml – notice: Copyright © 2022 Yun Wang and Ting Lu.
– notice: Copyright © 2022 Yun Wang and Ting Lu. 2022
DBID RHU
RHW
RHX
AAYXX
CITATION
7X8
5PM
ADTOC
UNPAY
DOI 10.1155/2022/8392854
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1748-6718
Editor Jan, Naeem
Editor_xml – sequence: 1
  givenname: Naeem
  surname: Jan
  fullname: Jan, Naeem
EndPage 9
ExternalDocumentID 10.1155/2022/8392854
PMC9236791
10_1155_2022_8392854
GroupedDBID ---
29F
2DF
3YN
4.4
53G
5GY
5VS
6J9
AAFWJ
AAJEY
ABDBF
ACGFO
ACIPV
ACIWK
ADBBV
ADRAZ
AENEX
AFKVX
AHMBA
AIAGR
AJWEG
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CAG
CS3
DIK
EAD
EAP
EAS
EBC
EBD
EBS
EMK
EMOBN
EPL
EST
ESX
F5P
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IHR
INH
INR
ITC
J.P
J9A
KQ8
M48
M4Z
ML~
O5R
OK1
P2P
REM
RHU
RHW
RHX
RNS
RPM
SV3
TFW
TUS
TWF
0R~
24P
AAMMB
AAYXX
ACCMX
ACUHS
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
H13
PGMZT
7X8
5PM
7X7
88E
8FE
8FG
8FI
8FJ
ABJCF
ABUWG
ADTOC
AFKRA
AWYRJ
BENPR
BGLVJ
BPHCQ
BVXVI
CCPQU
COF
EJD
FYUFA
HCIFZ
HF~
HMCUK
IPNFZ
L6V
M1P
M7S
O5S
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
RIG
UKHRP
UNPAY
ID FETCH-LOGICAL-c354t-e6419fca4e0bf13d3c8e05c097dc5d536abcf09068661a1a8fa8fac2d8030eba3
IEDL.DBID UNPAY
ISSN 1748-670X
1748-6718
IngestDate Sun Oct 26 03:51:08 EDT 2025
Thu Aug 21 18:20:55 EDT 2025
Fri Sep 05 10:55:16 EDT 2025
Wed Oct 01 00:53:35 EDT 2025
Sun Jun 02 18:52:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-e6419fca4e0bf13d3c8e05c097dc5d536abcf09068661a1a8fa8fac2d8030eba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Academic Editor: Naeem Jan
ORCID 0000-0001-5165-3691
0000-0003-4558-1964
OpenAccessLink https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/cmmm/2022/8392854.pdf
PMID 35770116
PQID 2682784050
PQPubID 23479
PageCount 9
ParticipantIDs unpaywall_primary_10_1155_2022_8392854
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9236791
proquest_miscellaneous_2682784050
crossref_primary_10_1155_2022_8392854
hindawi_primary_10_1155_2022_8392854
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-20
PublicationDateYYYYMMDD 2022-06-20
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-20
  day: 20
PublicationDecade 2020
PublicationTitle Computational and mathematical methods in medicine
PublicationYear 2022
Publisher Hindawi
Publisher_xml – name: Hindawi
References 11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – ident: 8
  doi: 10.1177/10760296221090503
– ident: 11
  doi: 10.1007/s00380-019-01445-7
– ident: 20
  doi: 10.1016/j.jstrokecerebrovasdis.2019.104415
– ident: 7
  doi: 10.2147/JIR.S328383
– ident: 4
  doi: 10.1161/STROKEAHA.120.029740
– ident: 13
  doi: 10.1186/s12883-022-02588-3
– ident: 18
  doi: 10.1007/s11011-021-00725-4
– ident: 21
  doi: 10.1161/STROKEAHA.120.032424
– ident: 17
  doi: 10.1111/jth.15448
– ident: 2
  doi: 10.1109/tetc.2020.2971831
– ident: 10
  doi: 10.1002/brb3.1369
– ident: 19
  doi: 10.1111/jth.14714
– ident: 1
  doi: 10.1109/TVT.2020.2989297
– ident: 9
  doi: 10.2147/RMHP.S289761
– ident: 15
  doi: 10.1161/STROKEAHA.120.032634
– ident: 5
  doi: 10.12122/j.issn.1673-4254.2022.01.16
– ident: 12
  doi: 10.3390/nu14071337
– ident: 3
  doi: 10.1109/TCSS.2019.2917335
– ident: 14
  doi: 10.5551/jat.52373
– ident: 6
  doi: 10.1007/s00234-020-02418-8
– ident: 16
  doi: 10.1007/s12031-021-01889-5
SSID ssj0051751
Score 2.247579
Snippet With the continuous improvement of medical technology and the aging of the population, the death rate of stroke is gradually decreasing, but the recurrence...
SourceID unpaywall
pubmedcentral
proquest
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA4quFzEFceNCOqtmLRJmh5VlFFQh1Ght5KmiQ4OnWEWBv-PP9S8LoOjoEIPXdIQ-qVvyXvvC0LHSqTSt4p4xDLfYxHlnkyBdV-YQIdasVBBvfPdvWg-s9uYxxVJ0vBnCN9pO3DP_TPQ45KzeTQvBWRutZtxLXC504C0rHuUnghJXOe3f3t3RvMsvoLLO-nMGJbf0yKXx3lfvU9Ut_tF51yvodXKWMTnJbrraM7kG2jprgqHb6KP1gDO4dvinsU3zlOFXHf8OBr03gxuw1p6Uc2HL5yyyrBrdvkQ4xbsjDAoFwFxuzN8cy1fynzYHMPmaF2s8gxfTYnAoXNnKOKS6riSj3CzVbKy4mkiPIZ6puKyTqQcbqHn66uny6ZXbbvg6YCzkWcEo5F1MBmSWhpkgZaGcE2iMNM844FQqbYkgtoSQRVV0sKh_Uw6gWFSFWyjhbyXmx2EiYqi0DqZSi1zlqFxxjGjqRSZkZJqFTbQSQ1J0i_ZNZLCK-E8AeiSCroGOq7w-qPZUQ1m4v4SCH2o3PTGw8QXEiKshJMGCmdQnnYIPNuzT_LOa8G3HQHLXUQb6HQ6H34dxu7_RruHVuAS8s58so8WRoOxOXAWzig9LOb3J36W9zc
  priority: 102
  providerName: Hindawi Publishing
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwEB6VIo4XxCmWS0YqvAXsxHacB4SgalWQFlaFlfYtchybrrrKluyuSv8PP5SZXGIrBEh5iBPHcvzZnhnPBbBndWHiYHnEg4wjmQkVmYKi7mufuNRZmVrydx5_0kdT-XGmZjvQZxvtBnD1R9GO8klN68WrH98v3uKCf9MseKVIfo9fE6E3Sl6Bq0ijMkriMJaDPkEhkRSta6SJdMpnvQn8pa-3iNO1E5KKz-dbvOdly8kbm-rMXpzbxeI3snR4G251_CR7106AO7Djq7twfdxpzO_Bz0lN9zT8bBnYB_xjModnX9b18tSzYzpubxz-2HukZyXDavufZ2xCyRPq9pyQHc9Xp1jzW2syWzHKn7ZgtirZwRArnBpHXpK10ZC7LZQeTtrArWywlWfk8tQUe1vL1X2YHh583T-KuswMkUuUXEdeS5EFRNLzIoikTJzxXDmepaVTpUq0LVxAFLRB8m-FNYEuF5cG9xRf2OQB7FbLyj8Exm2WpQG3XREkMo8e-WcpCqNLb4xwNh3Bix6S_KwNwJE3gotSOUGXd9CNYK_D6x_Vnvdg5riQSDtiK7_crPJYG1LCcsVHkG6hPDRIobi331TzkyYkd0aB8DIxgpfDfPhrNx79X28fw00qkmlazJ_A7rre-KfIBK2LZ838_gU5CgS1
  priority: 102
  providerName: Scholars Portal
Title Prediction of Ischemic Stroke Recurrence Based on COX Proportional Risk Regression Model and Evaluation of the Effectiveness of Patient Intensive Care Interventions
URI https://dx.doi.org/10.1155/2022/8392854
https://www.proquest.com/docview/2682784050
https://pubmed.ncbi.nlm.nih.gov/PMC9236791
https://downloads.hindawi.com/journals/cmmm/2022/8392854.pdf
UnpaywallVersion publishedVersion
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: KQ8
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1748-6718
  dateEnd: 20230629
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: ABDBF
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals at publisher websites
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: GX1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 20250531
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: M48
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: 24P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2TjBeuA6tXCYjDd7S2UmcOBIvY9ooSB1VoVJ4QJHjC6vaJlWTaoLfww_FJ5dC9gAIKbLsxHJi--Rc7HM-I3QsgpS7RhCHGN91_Igyh6eAuh9oT4ZS-KGAeOfRZTCc-u9jFu-g120sjAKI-FyoYnAFNun1rOLWzbgWJ3K5XIK97p6AYOfMH6yU2UV7AbOaeA_tTS_Hp5_rGEjuBCGJf-Upb_3eGes00ZFIt5rXdhTOm-6S-5tsJb5di8XiN1l0cQ99aXtRu6DMB5syHcjvNwAe_7eb99HdRknFpzVVPUA7OnuIbo-abfhH6Md4DXmYU5wb_M5ayOBjjz-W63yu8QTW8KsoQvzGCkmFbbWzDzEew4kM63rxEU9mxdzW_Fr74WYYDmVbYJEpfL4FIIfGrYKKa4jlhi_DzXGNBou3DvgY4qiqYuvAWRyg6cX5p7Oh0xz34EiP-aWjA59GxpKHJqmhnvIk14RJEoVKMsW8QKTSkAhiWgIqqOAGLukqbhmVToX3GPWyPNOHCBMRRaGxvJwa32qk2irlPk15oDTnVIqwj162U56salSPpLKGGEtg2JNm2PvouJmfv1R70RJLYv9O2HIRmc43ReIGHHZ2CSN9FHaoaNsg4Ht3n2SzqwrnOwJ0vYj20astvf3xM578a8Wn6A4UwePNJc9Qr1xv9HOrW5XpEdp9G1Objnxu08kwPmp-qp8K1ycW
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZGJy4v3BHlJiMN3tLZie04Ei9j2jSQNqpBpfKAIscXVrVNqibVBL-HH4pPLoXsARBSHpzkyInt43Oxz_mM0J4SmQydIgFxLAxYQnkgM0DdFzbSsVYsVpDvfHomTibs_ZRPd9CbLhfGAER8oUw5ugCf9HJWS-u2X8t9vVwuwV8P90GxS85GK-OuoV3BvSU-QLuTs_HB5yYHUgYiJtNfZSq7uHfOe1X0NNL19rM9g_NquOTNTb5S3y7VYvGbLjq-g750rWhCUOajTZWN9PcrAI__28y76HZrpOKDhqvuoR2b30c3Tttt-Afox3gNZRhTXDj8znvIEGOPP1brYm7xOazh11mE-K1XkgZ7ssMPUzyGExnWzeIjPp-Vc0_5tYnDzTEcyrbAKjf4aAtADpV7AxU3EMutXIaH4wYNFm8D8DHkUdW3XQBn-RBNjo8-HZ4E7XEPgY44qwIrGE2cZw9LMkcjE2lpCdckiY3mhkdCZdqRBHJaBFVUSQeXDo30gspmKnqEBnmR28cIE5UksfOynDrmLVLrjXJGMymMlZJqFQ_Rq27I01WD6pHW3hDnKXR72nb7EO214_MXspcds6R-dsKWi8ptsSnTUEjY2SWcDFHc46JthYDv3X-Tzy5qnO8E0PUSOkSvt_z2x9948q-ET9EtuIWIt5A8Q4NqvbHPvW1VZS_aKfQTbmckOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Ischemic+Stroke+Recurrence+Based+on+COX+Proportional+Risk+Regression+Model+and+Evaluation+of+the+Effectiveness+of+Patient+Intensive+Care+Interventions&rft.jtitle=Computational+and+mathematical+methods+in+medicine&rft.au=Wang%2C+Yun&rft.au=Lu%2C+Ting&rft.date=2022-06-20&rft.pub=Hindawi&rft.issn=1748-670X&rft.eissn=1748-6718&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F8392854&rft.externalDocID=10_1155_2022_8392854
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-670X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-670X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-670X&client=summon