Numerical prediction for viscoelasticity of woven carbon fiber reinforced polymers (CFRPs) during curing accounting for variation of yarn angle caused by preforming

To model viscoelasticity of woven composites during curing, existing methods were mostly derived by directly mixing the material models for constituents and neglecting interaction among yarns, causing inaccuracy in numerical simulation. In addition, the preforming effects, which exist for production...

Full description

Saved in:
Bibliographic Details
Published inComposites. Part A, Applied science and manufacturing Vol. 173; p. 107631
Main Authors Feng, Yuncong, Wang, Zhenhan, Liu, Meiyu, Han, Zhibin, Liang, Biao, Zhang, Weizhao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2023
Subjects
Online AccessGet full text
ISSN1359-835X
1878-5840
DOI10.1016/j.compositesa.2023.107631

Cover

Abstract To model viscoelasticity of woven composites during curing, existing methods were mostly derived by directly mixing the material models for constituents and neglecting interaction among yarns, causing inaccuracy in numerical simulation. In addition, the preforming effects, which exist for production of parts with complex geometry, on curing of woven composites were rarely considered. In this paper, a novel geometric modeling method, involving finite element analysis (FEA) and element mapping, was first established to obtain voxel mesh for non-orthogonal representative volume element (RVE) structures. Through integration of the thermoviscoelastic constitutive models and voxel mesh, FEA was conducted to predict stress relaxation of woven CFRPs with varying yarn angles and degrees of curing (DOCs). Experimental validation indicates that the FEA can capture viscoelastic response of woven CFRPs with different yarn angles and DOCs with around 4.96 % average weighed error, meaning the new approach can virtually characterize viscoelasticity of woven composites under complex processing conditions.
AbstractList To model viscoelasticity of woven composites during curing, existing methods were mostly derived by directly mixing the material models for constituents and neglecting interaction among yarns, causing inaccuracy in numerical simulation. In addition, the preforming effects, which exist for production of parts with complex geometry, on curing of woven composites were rarely considered. In this paper, a novel geometric modeling method, involving finite element analysis (FEA) and element mapping, was first established to obtain voxel mesh for non-orthogonal representative volume element (RVE) structures. Through integration of the thermoviscoelastic constitutive models and voxel mesh, FEA was conducted to predict stress relaxation of woven CFRPs with varying yarn angles and degrees of curing (DOCs). Experimental validation indicates that the FEA can capture viscoelastic response of woven CFRPs with different yarn angles and DOCs with around 4.96 % average weighed error, meaning the new approach can virtually characterize viscoelasticity of woven composites under complex processing conditions.
To model viscoelasticity of woven composites during curing, existing methods were mostly derived by directly mixing the material models for constituents and neglecting interaction among yarns, causing inaccuracy in numerical simulation. In addition, the preforming effects, which exist for production of parts with complex geometry, on curing of woven composites were rarely considered. In this paper, a novel geometric modeling method, involving finite element analysis (FEA) and element mapping, was first established to obtain voxel mesh for non-orthogonal representative volume element (RVE) structures. Through integration of the thermoviscoelastic constitutive models and voxel mesh, FEA was conducted to predict stress relaxation of woven CFRPs with varying yarn angles and degrees of curing (DOCs). Experimental validation indicates that the FEA can capture viscoelastic response of woven CFRPs with different yarn angles and DOCs with around 4.96 % average weighed error, meaning the new approach can virtually characterize viscoelasticity of woven composites under complex processing conditions.
ArticleNumber 107631
Author Feng, Yuncong
Han, Zhibin
Zhang, Weizhao
Liu, Meiyu
Wang, Zhenhan
Liang, Biao
Author_xml – sequence: 1
  givenname: Yuncong
  surname: Feng
  fullname: Feng, Yuncong
  organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region
– sequence: 2
  givenname: Zhenhan
  surname: Wang
  fullname: Wang, Zhenhan
  organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region
– sequence: 3
  givenname: Meiyu
  surname: Liu
  fullname: Liu, Meiyu
  organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region
– sequence: 4
  givenname: Zhibin
  surname: Han
  fullname: Han, Zhibin
  organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region
– sequence: 5
  givenname: Biao
  surname: Liang
  fullname: Liang, Biao
  organization: School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, People’s Republic of China
– sequence: 6
  givenname: Weizhao
  surname: Zhang
  fullname: Zhang, Weizhao
  email: weizhaozhang@cuhk.edu.hk
  organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region
BookMark eNqNkcFu1DAURS1UJNrCP5hdWWRqx3HirBAaUahUQVUViZ1lOy-VR4kdbGdQ_ocPrTNhgVh19Z6se4-f7r1AZ847QOg9JTtKaH192Bk_Tj7aBFHtSlKy_N7UjL5C51Q0ouCiImd5Z7wtBOM_36CLGA-EEMZaeo7-fJtHCNaoAU8BOmuS9Q73PuCjjcbDoGKyxqYF-x7_9kdw2KigV43VEHAA67LaQIcnPyyZFfHV_ubhPn7A3Ryse8JmG8oYP7u0rie8CladPsvgRQWHlXsaINPnmGF6We_JwjEb3qLXvRoivPs7L9GPm8-P-6_F3fcvt_tPd4VhvEoFMKEM01rXulKUc2GIgqouGSv7BroWtGoZZIUQTck17yjrW96B6vqeiEqzS3S1cafgf80QkxxzCDAMyoGfoywFq8q64qzJ0naTmuBjzJfKKdhRhUVSItdm5EH-04xcm5FbM9n78T9vDviURQrKDi8i7DcC5DSOFoKMxoLLLdgAJsnO2xdQngHstLqi
CitedBy_id crossref_primary_10_1016_j_indcrop_2024_118160
crossref_primary_10_1016_j_compositesa_2024_108329
crossref_primary_10_1016_j_compositesa_2023_107959
crossref_primary_10_1016_j_compscitech_2024_110616
crossref_primary_10_1016_j_compositesa_2025_108851
crossref_primary_10_1016_j_tws_2024_112211
crossref_primary_10_1016_j_polymdegradstab_2025_111250
crossref_primary_10_1016_j_compositesa_2024_108397
Cites_doi 10.1016/j.compscitech.2005.05.031
10.1016/j.finel.2005.05.001
10.1016/S1359-835X(02)00052-0
10.1016/j.ijthermalsci.2022.107574
10.1016/j.ijfatigue.2020.105593
10.1016/j.compstruct.2020.113369
10.3390/ma12040572
10.1016/j.compscitech.2016.05.002
10.1016/j.compstruct.2022.115698
10.1177/a037323
10.1016/j.compositesb.2015.03.060
10.1016/j.acme.2018.04.008
10.1016/j.compositesa.2019.05.028
10.1115/1.4053731
10.1016/j.ijsolstr.2018.12.018
10.1016/j.compstruct.2022.115379
10.1016/j.compstruct.2019.111701
10.35530/IT.070.06.1659
10.1177/0731684417707263
10.1016/j.compositesa.2021.106718
10.1016/j.cirp.2017.04.112
10.1016/j.compositesa.2018.01.005
10.1016/j.compscitech.2022.109637
10.1016/j.compscitech.2006.10.017
10.1016/j.compscitech.2007.03.035
10.1504/IJVD.2007.013640
10.1016/j.compscitech.2018.11.019
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.compositesa.2023.107631
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-5840
ExternalDocumentID 10_1016_j_compositesa_2023_107631
S1359835X23002075
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSZ
T5K
TN5
ZMT
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c354t-e38ac3bbb6b4a1558c0ae462332f7ed9eba93ec3b88725b5d13f95deadff084b3
IEDL.DBID .~1
ISSN 1359-835X
IngestDate Thu Oct 02 21:44:34 EDT 2025
Wed Oct 29 21:17:18 EDT 2025
Thu Apr 24 22:58:50 EDT 2025
Fri Feb 23 02:36:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stress relaxation
Cure
Polymer-matrix composites (PMCs)
Finite element analysis (FEA)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-e38ac3bbb6b4a1558c0ae462332f7ed9eba93ec3b88725b5d13f95deadff084b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2834264537
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2834264537
crossref_primary_10_1016_j_compositesa_2023_107631
crossref_citationtrail_10_1016_j_compositesa_2023_107631
elsevier_sciencedirect_doi_10_1016_j_compositesa_2023_107631
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle Composites. Part A, Applied science and manufacturing
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mangino, Carruthers, Pitarresi (b0010) 2007; 44
Liang, Zhang, Fenner, Gao, Shi, Zeng (b0075) 2019; 124
Barbero (b0170) 2013
Feng, Han, Li, Zhang (b0020) 2022; 228
Lomov, Ivanov, Verpoest, Zako, Kurashiki, Nakai (b0120) 2007; 67
Xue, Peng, Cao (b0065) 2003; 34
Zhang, Bostanabad, Liang, Su, Zeng, Bessa (b0125) 2019; 170
Li, Zhan, Chang (b0040) 2018; 18
Dai, Xi, Li (b0015) 2019; 12
Le, Nimbalkar, Zobeiry, Malek (b0060) 2022; 292
ASTM D792-20, Standard test methods for density and specific gravity (relative density) of plastics by displacement, ASTM International: West Conshohocken, PA; 2020
González-Estrada, Díaz-Ramírez, Quiroga Mendez (b0100) 2018
ASTM.
International Air Transport Association (IATA). Fact Sheet: Fuel. June, 2022.
Kim, Kim, Lee (b0055) 2022; 287
Courtois, Marcin, Benavente, Ruiz, Lévesque (b0050) 2019; 163
Verpoest, Lomov (b0110) 2005; 65
Feng, Zheng, Zhao, Liang, Ye, Ge (b0025) 2022; 144
Hivet, Boisse (b0115) 2005; 42
Benavente, Marcin, Courtois, Lévesque, Ruiz (b0045) 2018; 107
Bublitz, Colin, Drechsler (b0030) 2022; 153
Zhang, Ren, Liang, Zeng, Su, Dahl (b0070) 2017; 66
Wan, Zhang, Gu, Sun, Wang (b0085) 2015; 77
Cao, Cai, Zhao, Liu, Han, Zhang (b0150) 2020; 234
Freed (b0165) 2016
.
Ye, Cai, Liu, Zhai, Amaechi, Wang (b0095) 2021; 262
Li (b0130) 2008; 68
Liang, Zhao, Cheng, Boisse, Zhang, Luo (b0135) 2022; 177
ASTM D3039/D3039M-17, Standard test method for tensile properties of polymer matrix composite materials. West Conshohohoken, PA: ASTM; 2017
Zhang, Zhang, Li, Pavier, Smith (b0160) 2016; 130
Lomov (b0105) 2021
O'Brien, Mather, White (b0175) 2001; 35
Liliana, Mutlu, Efendioglu, Simona, Garcia, Soler (b0080) 2019; 70
MATLAB version: 9.13.0 (R2022b). Natick, Massachusetts: The MathWorks Inc.; 2022.
Khan, Umer (b0035) 2017; 36
Barbière, Touchard, Chocinski-Arnault, Mellier (b0090) 2020; 136
O'Brien (10.1016/j.compositesa.2023.107631_b0175) 2001; 35
Liliana (10.1016/j.compositesa.2023.107631_b0080) 2019; 70
Cao (10.1016/j.compositesa.2023.107631_b0150) 2020; 234
Freed (10.1016/j.compositesa.2023.107631_b0165) 2016
Liang (10.1016/j.compositesa.2023.107631_b0135) 2022; 177
Feng (10.1016/j.compositesa.2023.107631_b0020) 2022; 228
Kim (10.1016/j.compositesa.2023.107631_b0055) 2022; 287
Li (10.1016/j.compositesa.2023.107631_b0130) 2008; 68
Khan (10.1016/j.compositesa.2023.107631_b0035) 2017; 36
Bublitz (10.1016/j.compositesa.2023.107631_b0030) 2022; 153
Verpoest (10.1016/j.compositesa.2023.107631_b0110) 2005; 65
Ye (10.1016/j.compositesa.2023.107631_b0095) 2021; 262
Barbero (10.1016/j.compositesa.2023.107631_b0170) 2013
Benavente (10.1016/j.compositesa.2023.107631_b0045) 2018; 107
10.1016/j.compositesa.2023.107631_b0155
González-Estrada (10.1016/j.compositesa.2023.107631_b0100) 2018
Wan (10.1016/j.compositesa.2023.107631_b0085) 2015; 77
Feng (10.1016/j.compositesa.2023.107631_b0025) 2022; 144
Barbière (10.1016/j.compositesa.2023.107631_b0090) 2020; 136
Courtois (10.1016/j.compositesa.2023.107631_b0050) 2019; 163
Liang (10.1016/j.compositesa.2023.107631_b0075) 2019; 124
Mangino (10.1016/j.compositesa.2023.107631_b0010) 2007; 44
Zhang (10.1016/j.compositesa.2023.107631_b0070) 2017; 66
Lomov (10.1016/j.compositesa.2023.107631_b0120) 2007; 67
Le (10.1016/j.compositesa.2023.107631_b0060) 2022; 292
Lomov (10.1016/j.compositesa.2023.107631_b0105) 2021
10.1016/j.compositesa.2023.107631_b0005
Li (10.1016/j.compositesa.2023.107631_b0040) 2018; 18
Hivet (10.1016/j.compositesa.2023.107631_b0115) 2005; 42
10.1016/j.compositesa.2023.107631_b0145
Dai (10.1016/j.compositesa.2023.107631_b0015) 2019; 12
Zhang (10.1016/j.compositesa.2023.107631_b0125) 2019; 170
Xue (10.1016/j.compositesa.2023.107631_b0065) 2003; 34
Zhang (10.1016/j.compositesa.2023.107631_b0160) 2016; 130
10.1016/j.compositesa.2023.107631_b0140
References_xml – volume: 67
  start-page: 1870
  year: 2007
  end-page: 1891
  ident: b0120
  article-title: Meso-FE modelling of textile composites: Road map, data flow and algorithms
  publication-title: Compos Sci Technol
– volume: 65
  start-page: 2563
  year: 2005
  end-page: 2574
  ident: b0110
  article-title: Virtual textile composites software WiseTex: Integration with micro-mechanical, permeability and structural analysis
  publication-title: Compos Sci Technol
– reference: ASTM D3039/D3039M-17, Standard test method for tensile properties of polymer matrix composite materials. West Conshohohoken, PA: ASTM; 2017,
– year: 2013
  ident: b0170
  article-title: Finite element analysis of composite materials using AbaqusTM
– volume: 68
  start-page: 1962
  year: 2008
  end-page: 1974
  ident: b0130
  article-title: Boundary conditions for unit cells from periodic microstructures and their implications
  publication-title: Compos Sci Technol
– volume: 12
  start-page: 572
  year: 2019
  ident: b0015
  article-title: Numerical analysis of curing residual stress and deformation in thermosetting composite laminates with comparison between different constitutive models
  publication-title: Materials
– volume: 130
  start-page: 20
  year: 2016
  end-page: 27
  ident: b0160
  article-title: Residual stresses created during curing of a polymer matrix composite using a viscoelastic model
  publication-title: Compos Sci Technol
– volume: 170
  start-page: 15
  year: 2019
  end-page: 24
  ident: b0125
  article-title: A numerical Bayesian-calibrated characterization method for multiscale prepreg preforming simulations with tension-shear coupling
  publication-title: Compos Sci Technol
– volume: 66
  start-page: 257
  year: 2017
  end-page: 260
  ident: b0070
  article-title: A non-orthogonal material model of woven composites in the preforming process
  publication-title: CIRP Ann
– reference: MATLAB version: 9.13.0 (R2022b). Natick, Massachusetts: The MathWorks Inc.; 2022.
– volume: 287
  start-page: 115379
  year: 2022
  ident: b0055
  article-title: Evaluation of curing process-induced deformation in plain woven composite structures based on cure kinetics considering various fabric parameters
  publication-title: Compos Struct
– volume: 44
  start-page: 211
  year: 2007
  ident: b0010
  article-title: The future use of structural composite materials in the automotive industry
  publication-title: Int J Veh Des
– volume: 262
  start-page: 113369
  year: 2021
  ident: b0095
  article-title: Microscale intrinsic properties of hybrid unidirectional/woven composite laminates: Part I experimental tests
  publication-title: Compos Struct
– volume: 234
  start-page: 111701
  year: 2020
  ident: b0150
  article-title: Predicting the tensile and compressive failure behavior of angle-ply spread tow woven composites
  publication-title: Compos Struct
– volume: 107
  start-page: 205
  year: 2018
  end-page: 216
  ident: b0045
  article-title: Numerical analysis of viscoelastic process-induced residual distortions during manufacturing and post-curing
  publication-title: Compos A Appl Sci Manuf
– volume: 77
  start-page: 278
  year: 2015
  end-page: 290
  ident: b0085
  article-title: Predicting dynamic in-plane compressive properties of multi-axial multi-layer warp-knitted composites with a meso-model
  publication-title: Compos B Eng
– volume: 177
  start-page: 107574
  year: 2022
  ident: b0135
  article-title: A combined method for analyzing the effective thermal conductivity evolution of satin weave thermoset prepregs during preforming process
  publication-title: Int J Therm Sci
– volume: 18
  start-page: 1386
  year: 2018
  end-page: 1400
  ident: b0040
  article-title: Numerical simulation and experimental studies of mandrel effect on flow-compaction behavior of CFRP hat-shaped structure during curing process
  publication-title: Arch Civil Mech Eng
– volume: 124
  start-page: 105460
  year: 2019
  ident: b0075
  article-title: Multi-scale modeling of mechanical behavior of cured woven textile composites accounting for the influence of yarn angle variation
  publication-title: Compos A Appl Sci Manuf
– start-page: 199
  year: 2021
  end-page: 236
  ident: b0105
  article-title: Modeling the geometry of textile composite reinforcements: WiseTex
  publication-title: Composite reinforcements for optimum performance
– volume: 36
  start-page: 1299
  year: 2017
  end-page: 1315
  ident: b0035
  article-title: Modeling the viscoelastic compaction response of 3D woven fabrics for liquid composite molding processes
  publication-title: J Reinf Plast Compos
– reference: ASTM D792-20, Standard test methods for density and specific gravity (relative density) of plastics by displacement, ASTM International: West Conshohocken, PA; 2020,
– volume: 153
  start-page: 106718
  year: 2022
  ident: b0030
  article-title: Implementation of a viscoelastic material model to predict the compaction response of dry carbon fiber preforms
  publication-title: Compos A Appl Sci Manuf
– reference: . ASTM.
– volume: 70
  start-page: 557
  year: 2019
  end-page: 563
  ident: b0080
  article-title: Computer aided design of knitted and woven fabrics and virtual garment simulation
  publication-title: Industria Textila
– volume: 163
  start-page: 61
  year: 2019
  end-page: 74
  ident: b0050
  article-title: Numerical multiscale homogenization approach for linearly viscoelastic 3D interlock woven composites
  publication-title: Int J Solids Struct
– reference: .
– volume: 292
  start-page: 115698
  year: 2022
  ident: b0060
  article-title: An efficient multi-scale approach for viscoelastic analysis of woven composites under bending
  publication-title: Compos Struct
– volume: 35
  start-page: 883
  year: 2001
  end-page: 904
  ident: b0175
  article-title: Viscoelastic properties of an epoxy resin during cure
  publication-title: J Compos Mater
– start-page: 143
  year: 2018
  end-page: 148
  ident: b0100
  article-title: Mechanical response and damage of woven composite materials reinforced with fique
  publication-title: Key engineering materials
– volume: 136
  start-page: 105593
  year: 2020
  ident: b0090
  article-title: Influence of moisture and drying on fatigue damage mechanisms in a woven hemp/epoxy composite: Acoustic emission and micro-CT analysis
  publication-title: Int J Fatigue
– volume: 144
  year: 2022
  ident: b0025
  article-title: Characterization and Finite Element Modeling for Thermoset Resin of Carbon Fiber Prepregs During Curing
  publication-title: J Manuf Sci Eng
– reference: International Air Transport Association (IATA). Fact Sheet: Fuel. June, 2022.
– year: 2016
  ident: b0165
  article-title: Soft solids
– volume: 228
  start-page: 109637
  year: 2022
  ident: b0020
  article-title: Numerical modeling for curing of unidirectional carbon fiber reinforced polymer based on micromechanics in Laplace domain
  publication-title: Compos Sci Technol
– volume: 42
  start-page: 25
  year: 2005
  end-page: 49
  ident: b0115
  article-title: Consistent 3D geometrical model of fabric elementary cell. Application to a meshing preprocessor for 3D finite element analysis
  publication-title: Finite Elem Anal Des
– volume: 34
  start-page: 183
  year: 2003
  end-page: 193
  ident: b0065
  article-title: A non-orthogonal constitutive model for characterizing woven composites
  publication-title: Compos A Appl Sci Manuf
– volume: 65
  start-page: 2563
  issue: 15–16
  year: 2005
  ident: 10.1016/j.compositesa.2023.107631_b0110
  article-title: Virtual textile composites software WiseTex: Integration with micro-mechanical, permeability and structural analysis
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2005.05.031
– volume: 42
  start-page: 25
  issue: 1
  year: 2005
  ident: 10.1016/j.compositesa.2023.107631_b0115
  article-title: Consistent 3D geometrical model of fabric elementary cell. Application to a meshing preprocessor for 3D finite element analysis
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2005.05.001
– volume: 34
  start-page: 183
  issue: 2
  year: 2003
  ident: 10.1016/j.compositesa.2023.107631_b0065
  article-title: A non-orthogonal constitutive model for characterizing woven composites
  publication-title: Compos A Appl Sci Manuf
  doi: 10.1016/S1359-835X(02)00052-0
– volume: 177
  start-page: 107574
  year: 2022
  ident: 10.1016/j.compositesa.2023.107631_b0135
  article-title: A combined method for analyzing the effective thermal conductivity evolution of satin weave thermoset prepregs during preforming process
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2022.107574
– volume: 136
  start-page: 105593
  year: 2020
  ident: 10.1016/j.compositesa.2023.107631_b0090
  article-title: Influence of moisture and drying on fatigue damage mechanisms in a woven hemp/epoxy composite: Acoustic emission and micro-CT analysis
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2020.105593
– volume: 262
  start-page: 113369
  year: 2021
  ident: 10.1016/j.compositesa.2023.107631_b0095
  article-title: Microscale intrinsic properties of hybrid unidirectional/woven composite laminates: Part I experimental tests
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2020.113369
– year: 2013
  ident: 10.1016/j.compositesa.2023.107631_b0170
– volume: 12
  start-page: 572
  issue: 4
  year: 2019
  ident: 10.1016/j.compositesa.2023.107631_b0015
  article-title: Numerical analysis of curing residual stress and deformation in thermosetting composite laminates with comparison between different constitutive models
  publication-title: Materials
  doi: 10.3390/ma12040572
– volume: 130
  start-page: 20
  year: 2016
  ident: 10.1016/j.compositesa.2023.107631_b0160
  article-title: Residual stresses created during curing of a polymer matrix composite using a viscoelastic model
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2016.05.002
– volume: 292
  start-page: 115698
  year: 2022
  ident: 10.1016/j.compositesa.2023.107631_b0060
  article-title: An efficient multi-scale approach for viscoelastic analysis of woven composites under bending
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2022.115698
– ident: 10.1016/j.compositesa.2023.107631_b0155
– volume: 35
  start-page: 883
  issue: 10
  year: 2001
  ident: 10.1016/j.compositesa.2023.107631_b0175
  article-title: Viscoelastic properties of an epoxy resin during cure
  publication-title: J Compos Mater
  doi: 10.1177/a037323
– volume: 77
  start-page: 278
  year: 2015
  ident: 10.1016/j.compositesa.2023.107631_b0085
  article-title: Predicting dynamic in-plane compressive properties of multi-axial multi-layer warp-knitted composites with a meso-model
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2015.03.060
– volume: 18
  start-page: 1386
  issue: 4
  year: 2018
  ident: 10.1016/j.compositesa.2023.107631_b0040
  article-title: Numerical simulation and experimental studies of mandrel effect on flow-compaction behavior of CFRP hat-shaped structure during curing process
  publication-title: Arch Civil Mech Eng
  doi: 10.1016/j.acme.2018.04.008
– volume: 124
  start-page: 105460
  year: 2019
  ident: 10.1016/j.compositesa.2023.107631_b0075
  article-title: Multi-scale modeling of mechanical behavior of cured woven textile composites accounting for the influence of yarn angle variation
  publication-title: Compos A Appl Sci Manuf
  doi: 10.1016/j.compositesa.2019.05.028
– volume: 144
  issue: 8
  year: 2022
  ident: 10.1016/j.compositesa.2023.107631_b0025
  article-title: Characterization and Finite Element Modeling for Thermoset Resin of Carbon Fiber Prepregs During Curing
  publication-title: J Manuf Sci Eng
  doi: 10.1115/1.4053731
– start-page: 143
  year: 2018
  ident: 10.1016/j.compositesa.2023.107631_b0100
  article-title: Mechanical response and damage of woven composite materials reinforced with fique
– volume: 163
  start-page: 61
  year: 2019
  ident: 10.1016/j.compositesa.2023.107631_b0050
  article-title: Numerical multiscale homogenization approach for linearly viscoelastic 3D interlock woven composites
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2018.12.018
– volume: 287
  start-page: 115379
  year: 2022
  ident: 10.1016/j.compositesa.2023.107631_b0055
  article-title: Evaluation of curing process-induced deformation in plain woven composite structures based on cure kinetics considering various fabric parameters
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2022.115379
– volume: 234
  start-page: 111701
  year: 2020
  ident: 10.1016/j.compositesa.2023.107631_b0150
  article-title: Predicting the tensile and compressive failure behavior of angle-ply spread tow woven composites
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2019.111701
– ident: 10.1016/j.compositesa.2023.107631_b0145
– year: 2016
  ident: 10.1016/j.compositesa.2023.107631_b0165
– volume: 70
  start-page: 557
  issue: 6
  year: 2019
  ident: 10.1016/j.compositesa.2023.107631_b0080
  article-title: Computer aided design of knitted and woven fabrics and virtual garment simulation
  publication-title: Industria Textila
  doi: 10.35530/IT.070.06.1659
– volume: 36
  start-page: 1299
  issue: 18
  year: 2017
  ident: 10.1016/j.compositesa.2023.107631_b0035
  article-title: Modeling the viscoelastic compaction response of 3D woven fabrics for liquid composite molding processes
  publication-title: J Reinf Plast Compos
  doi: 10.1177/0731684417707263
– ident: 10.1016/j.compositesa.2023.107631_b0005
– volume: 153
  start-page: 106718
  year: 2022
  ident: 10.1016/j.compositesa.2023.107631_b0030
  article-title: Implementation of a viscoelastic material model to predict the compaction response of dry carbon fiber preforms
  publication-title: Compos A Appl Sci Manuf
  doi: 10.1016/j.compositesa.2021.106718
– start-page: 199
  year: 2021
  ident: 10.1016/j.compositesa.2023.107631_b0105
  article-title: Modeling the geometry of textile composite reinforcements: WiseTex
– volume: 66
  start-page: 257
  issue: 1
  year: 2017
  ident: 10.1016/j.compositesa.2023.107631_b0070
  article-title: A non-orthogonal material model of woven composites in the preforming process
  publication-title: CIRP Ann
  doi: 10.1016/j.cirp.2017.04.112
– volume: 107
  start-page: 205
  year: 2018
  ident: 10.1016/j.compositesa.2023.107631_b0045
  article-title: Numerical analysis of viscoelastic process-induced residual distortions during manufacturing and post-curing
  publication-title: Compos A Appl Sci Manuf
  doi: 10.1016/j.compositesa.2018.01.005
– volume: 228
  start-page: 109637
  year: 2022
  ident: 10.1016/j.compositesa.2023.107631_b0020
  article-title: Numerical modeling for curing of unidirectional carbon fiber reinforced polymer based on micromechanics in Laplace domain
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2022.109637
– volume: 67
  start-page: 1870
  issue: 9
  year: 2007
  ident: 10.1016/j.compositesa.2023.107631_b0120
  article-title: Meso-FE modelling of textile composites: Road map, data flow and algorithms
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2006.10.017
– volume: 68
  start-page: 1962
  issue: 9
  year: 2008
  ident: 10.1016/j.compositesa.2023.107631_b0130
  article-title: Boundary conditions for unit cells from periodic microstructures and their implications
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2007.03.035
– volume: 44
  start-page: 211
  issue: 3/4
  year: 2007
  ident: 10.1016/j.compositesa.2023.107631_b0010
  article-title: The future use of structural composite materials in the automotive industry
  publication-title: Int J Veh Des
  doi: 10.1504/IJVD.2007.013640
– volume: 170
  start-page: 15
  year: 2019
  ident: 10.1016/j.compositesa.2023.107631_b0125
  article-title: A numerical Bayesian-calibrated characterization method for multiscale prepreg preforming simulations with tension-shear coupling
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2018.11.019
– ident: 10.1016/j.compositesa.2023.107631_b0140
SSID ssj0003391
Score 2.4726849
Snippet To model viscoelasticity of woven composites during curing, existing methods were mostly derived by directly mixing the material models for constituents and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107631
SubjectTerms carbon fibers
Cure
finite element analysis
Finite element analysis (FEA)
geometry
mathematical models
Polymer-matrix composites (PMCs)
prediction
Stress relaxation
viscoelasticity
Title Numerical prediction for viscoelasticity of woven carbon fiber reinforced polymers (CFRPs) during curing accounting for variation of yarn angle caused by preforming
URI https://dx.doi.org/10.1016/j.compositesa.2023.107631
https://www.proquest.com/docview/2834264537
Volume 173
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-5840
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003391
  issn: 1359-835X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1878-5840
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003391
  issn: 1359-835X
  databaseCode: AIKHN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1878-5840
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003391
  issn: 1359-835X
  databaseCode: ACRLP
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1878-5840
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003391
  issn: 1359-835X
  databaseCode: .~1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBalg9E-lN1K025BgT1sD25iS77BXkJYyDYIpRfom5BkqaQEO9hJS172a_ZDd45lJ9lgEBh-MBaSLHSOjr4jfToi5GNkpbFgBL0kCzOPZ37qJUoaz5c2w_hq6BIg22IaTe749_vw_oCM2rMwSKtsbL-z6bW1blL6TW_2F7NZ_8bH4HMMnC2GmCfGg-acx3iLweXPLc2DsdQ5XbjcBblfkt6W44W0beRGmQpDEAUM0mG8-f-ao_6y1vUUNH5FThrsSIeuea_JgcnfkOOdiIJvya_pym3BzOmixD0Y7HcKwJQ-zSpdGMDKSKNermlh6XMBlo5qWSrMg9QRWpo6kip0C10U8zUuatNPo_H1VfWZuhONVLuX3Fwz4aoHn7sWMla8lmVOZf4wN1D7qoLK1BrbgwAZCrwjd-Ovt6OJ11zE4GkW8qVnWCI1U0pFiksAIIkeSMMBOLHAxiZLjZIpM5ADLFYQqjDzmU3DDJTU2kHCFTslh3mRmzNCQTFSFsWx1irmkYRHp4BorByoDDyfoEOStuuFbqKU42UZc9HS0R7FjtQESk04qXVIsCm6cKE69in0pZWv-EPvBEwp-xTvtTohYFziZovMTbGqBMA2BJshi8__7xcX5Ai_HIHwPTlclivzAYDQUnVrTe-SF8NvPybT3yXYEAE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3faxQxEB5qBbUP0qrFWq0p-KAP691uNvsDfJHD49T2EG2hbyHJJuXKsXvs3lnuxb_GP7Qzm922CkJB9mEhm2RDZjL5JvkyAXiTOGUdGsEgK0QRxEWYB5lWNgiVKyi-GrkExLaYJpPT-MuZONuAUX8WhmiVne33Nr211l3KoOvNwWI2G_wIKfgcR2eLE-ZJxT24H4soJQ_s_a8bngfnufe6aL0Lsz-AwxuSF_G2iRxlG4pBFHFMxwEX_muS-stct3PQeBsed-CRffTt24ENWz6BrVshBZ_C7-nK78HM2aKmTRjqeIbIlP2cNaayCJaJR71cs8qxywpNHTOq1pSHuCOstm0oVewXtqjma1rVZm9H4-_fmnfMH2lkxr_U9T0Tvnp0ulspU8VrVZdMledzi7WvGqxMr6k9hJCxwDM4HX86GU2C7iaGwHARLwPLM2W41jrRsUIEkpmhsjEiJx651Ba51SrnFnOgyYqEFkXIXS4K1FLnhlms-S5sllVpnwNDzch5kqbG6DROFD4mR0jj1FAX6PpEe5D1XS9NF6acbsuYy56PdiFvSU2S1KSX2h5E10UXPlbHXQp96OUr_1A8iXPKXYof9johcWDSbosqbbVqJOI2QpuCpy_-7xev4eHk5PhIHn2eft2HR_TFswlfwuayXtlXiIqW-qDV-itKWBGW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+prediction+for+viscoelasticity+of+woven+carbon+fiber+reinforced+polymers+%28CFRPs%29+during+curing+accounting+for+variation+of+yarn+angle+caused+by+preforming&rft.jtitle=Composites.+Part+A%2C+Applied+science+and+manufacturing&rft.au=Feng%2C+Yuncong&rft.au=Wang%2C+Zhenhan&rft.au=Liu%2C+Meiyu&rft.au=Han%2C+Zhibin&rft.date=2023-10-01&rft.pub=Elsevier+Ltd&rft.issn=1359-835X&rft.eissn=1878-5840&rft.volume=173&rft_id=info:doi/10.1016%2Fj.compositesa.2023.107631&rft.externalDocID=S1359835X23002075
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-835X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-835X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-835X&client=summon