Numerical prediction for viscoelasticity of woven carbon fiber reinforced polymers (CFRPs) during curing accounting for variation of yarn angle caused by preforming
To model viscoelasticity of woven composites during curing, existing methods were mostly derived by directly mixing the material models for constituents and neglecting interaction among yarns, causing inaccuracy in numerical simulation. In addition, the preforming effects, which exist for production...
Saved in:
| Published in | Composites. Part A, Applied science and manufacturing Vol. 173; p. 107631 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.10.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1359-835X 1878-5840 |
| DOI | 10.1016/j.compositesa.2023.107631 |
Cover
| Abstract | To model viscoelasticity of woven composites during curing, existing methods were mostly derived by directly mixing the material models for constituents and neglecting interaction among yarns, causing inaccuracy in numerical simulation. In addition, the preforming effects, which exist for production of parts with complex geometry, on curing of woven composites were rarely considered. In this paper, a novel geometric modeling method, involving finite element analysis (FEA) and element mapping, was first established to obtain voxel mesh for non-orthogonal representative volume element (RVE) structures. Through integration of the thermoviscoelastic constitutive models and voxel mesh, FEA was conducted to predict stress relaxation of woven CFRPs with varying yarn angles and degrees of curing (DOCs). Experimental validation indicates that the FEA can capture viscoelastic response of woven CFRPs with different yarn angles and DOCs with around 4.96 % average weighed error, meaning the new approach can virtually characterize viscoelasticity of woven composites under complex processing conditions. |
|---|---|
| AbstractList | To model viscoelasticity of woven composites during curing, existing methods were mostly derived by directly mixing the material models for constituents and neglecting interaction among yarns, causing inaccuracy in numerical simulation. In addition, the preforming effects, which exist for production of parts with complex geometry, on curing of woven composites were rarely considered. In this paper, a novel geometric modeling method, involving finite element analysis (FEA) and element mapping, was first established to obtain voxel mesh for non-orthogonal representative volume element (RVE) structures. Through integration of the thermoviscoelastic constitutive models and voxel mesh, FEA was conducted to predict stress relaxation of woven CFRPs with varying yarn angles and degrees of curing (DOCs). Experimental validation indicates that the FEA can capture viscoelastic response of woven CFRPs with different yarn angles and DOCs with around 4.96 % average weighed error, meaning the new approach can virtually characterize viscoelasticity of woven composites under complex processing conditions. To model viscoelasticity of woven composites during curing, existing methods were mostly derived by directly mixing the material models for constituents and neglecting interaction among yarns, causing inaccuracy in numerical simulation. In addition, the preforming effects, which exist for production of parts with complex geometry, on curing of woven composites were rarely considered. In this paper, a novel geometric modeling method, involving finite element analysis (FEA) and element mapping, was first established to obtain voxel mesh for non-orthogonal representative volume element (RVE) structures. Through integration of the thermoviscoelastic constitutive models and voxel mesh, FEA was conducted to predict stress relaxation of woven CFRPs with varying yarn angles and degrees of curing (DOCs). Experimental validation indicates that the FEA can capture viscoelastic response of woven CFRPs with different yarn angles and DOCs with around 4.96 % average weighed error, meaning the new approach can virtually characterize viscoelasticity of woven composites under complex processing conditions. |
| ArticleNumber | 107631 |
| Author | Feng, Yuncong Han, Zhibin Zhang, Weizhao Liu, Meiyu Wang, Zhenhan Liang, Biao |
| Author_xml | – sequence: 1 givenname: Yuncong surname: Feng fullname: Feng, Yuncong organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region – sequence: 2 givenname: Zhenhan surname: Wang fullname: Wang, Zhenhan organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region – sequence: 3 givenname: Meiyu surname: Liu fullname: Liu, Meiyu organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region – sequence: 4 givenname: Zhibin surname: Han fullname: Han, Zhibin organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region – sequence: 5 givenname: Biao surname: Liang fullname: Liang, Biao organization: School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, People’s Republic of China – sequence: 6 givenname: Weizhao surname: Zhang fullname: Zhang, Weizhao email: weizhaozhang@cuhk.edu.hk organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region |
| BookMark | eNqNkcFu1DAURS1UJNrCP5hdWWRqx3HirBAaUahUQVUViZ1lOy-VR4kdbGdQ_ocPrTNhgVh19Z6se4-f7r1AZ847QOg9JTtKaH192Bk_Tj7aBFHtSlKy_N7UjL5C51Q0ouCiImd5Z7wtBOM_36CLGA-EEMZaeo7-fJtHCNaoAU8BOmuS9Q73PuCjjcbDoGKyxqYF-x7_9kdw2KigV43VEHAA67LaQIcnPyyZFfHV_ubhPn7A3Ryse8JmG8oYP7u0rie8CladPsvgRQWHlXsaINPnmGF6We_JwjEb3qLXvRoivPs7L9GPm8-P-6_F3fcvt_tPd4VhvEoFMKEM01rXulKUc2GIgqouGSv7BroWtGoZZIUQTck17yjrW96B6vqeiEqzS3S1cafgf80QkxxzCDAMyoGfoywFq8q64qzJ0naTmuBjzJfKKdhRhUVSItdm5EH-04xcm5FbM9n78T9vDviURQrKDi8i7DcC5DSOFoKMxoLLLdgAJsnO2xdQngHstLqi |
| CitedBy_id | crossref_primary_10_1016_j_indcrop_2024_118160 crossref_primary_10_1016_j_compositesa_2024_108329 crossref_primary_10_1016_j_compositesa_2023_107959 crossref_primary_10_1016_j_compscitech_2024_110616 crossref_primary_10_1016_j_compositesa_2025_108851 crossref_primary_10_1016_j_tws_2024_112211 crossref_primary_10_1016_j_polymdegradstab_2025_111250 crossref_primary_10_1016_j_compositesa_2024_108397 |
| Cites_doi | 10.1016/j.compscitech.2005.05.031 10.1016/j.finel.2005.05.001 10.1016/S1359-835X(02)00052-0 10.1016/j.ijthermalsci.2022.107574 10.1016/j.ijfatigue.2020.105593 10.1016/j.compstruct.2020.113369 10.3390/ma12040572 10.1016/j.compscitech.2016.05.002 10.1016/j.compstruct.2022.115698 10.1177/a037323 10.1016/j.compositesb.2015.03.060 10.1016/j.acme.2018.04.008 10.1016/j.compositesa.2019.05.028 10.1115/1.4053731 10.1016/j.ijsolstr.2018.12.018 10.1016/j.compstruct.2022.115379 10.1016/j.compstruct.2019.111701 10.35530/IT.070.06.1659 10.1177/0731684417707263 10.1016/j.compositesa.2021.106718 10.1016/j.cirp.2017.04.112 10.1016/j.compositesa.2018.01.005 10.1016/j.compscitech.2022.109637 10.1016/j.compscitech.2006.10.017 10.1016/j.compscitech.2007.03.035 10.1504/IJVD.2007.013640 10.1016/j.compscitech.2018.11.019 |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.compositesa.2023.107631 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1878-5840 |
| ExternalDocumentID | 10_1016_j_compositesa_2023_107631 S1359835X23002075 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSM SSZ T5K TN5 ZMT ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c354t-e38ac3bbb6b4a1558c0ae462332f7ed9eba93ec3b88725b5d13f95deadff084b3 |
| IEDL.DBID | .~1 |
| ISSN | 1359-835X |
| IngestDate | Thu Oct 02 21:44:34 EDT 2025 Wed Oct 29 21:17:18 EDT 2025 Thu Apr 24 22:58:50 EDT 2025 Fri Feb 23 02:36:48 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Stress relaxation Cure Polymer-matrix composites (PMCs) Finite element analysis (FEA) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c354t-e38ac3bbb6b4a1558c0ae462332f7ed9eba93ec3b88725b5d13f95deadff084b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2834264537 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2834264537 crossref_primary_10_1016_j_compositesa_2023_107631 crossref_citationtrail_10_1016_j_compositesa_2023_107631 elsevier_sciencedirect_doi_10_1016_j_compositesa_2023_107631 |
| PublicationCentury | 2000 |
| PublicationDate | October 2023 2023-10-00 20231001 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Composites. Part A, Applied science and manufacturing |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Mangino, Carruthers, Pitarresi (b0010) 2007; 44 Liang, Zhang, Fenner, Gao, Shi, Zeng (b0075) 2019; 124 Barbero (b0170) 2013 Feng, Han, Li, Zhang (b0020) 2022; 228 Lomov, Ivanov, Verpoest, Zako, Kurashiki, Nakai (b0120) 2007; 67 Xue, Peng, Cao (b0065) 2003; 34 Zhang, Bostanabad, Liang, Su, Zeng, Bessa (b0125) 2019; 170 Li, Zhan, Chang (b0040) 2018; 18 Dai, Xi, Li (b0015) 2019; 12 Le, Nimbalkar, Zobeiry, Malek (b0060) 2022; 292 ASTM D792-20, Standard test methods for density and specific gravity (relative density) of plastics by displacement, ASTM International: West Conshohocken, PA; 2020 González-Estrada, Díaz-Ramírez, Quiroga Mendez (b0100) 2018 ASTM. International Air Transport Association (IATA). Fact Sheet: Fuel. June, 2022. Kim, Kim, Lee (b0055) 2022; 287 Courtois, Marcin, Benavente, Ruiz, Lévesque (b0050) 2019; 163 Verpoest, Lomov (b0110) 2005; 65 Feng, Zheng, Zhao, Liang, Ye, Ge (b0025) 2022; 144 Hivet, Boisse (b0115) 2005; 42 Benavente, Marcin, Courtois, Lévesque, Ruiz (b0045) 2018; 107 Bublitz, Colin, Drechsler (b0030) 2022; 153 Zhang, Ren, Liang, Zeng, Su, Dahl (b0070) 2017; 66 Wan, Zhang, Gu, Sun, Wang (b0085) 2015; 77 Cao, Cai, Zhao, Liu, Han, Zhang (b0150) 2020; 234 Freed (b0165) 2016 . Ye, Cai, Liu, Zhai, Amaechi, Wang (b0095) 2021; 262 Li (b0130) 2008; 68 Liang, Zhao, Cheng, Boisse, Zhang, Luo (b0135) 2022; 177 ASTM D3039/D3039M-17, Standard test method for tensile properties of polymer matrix composite materials. West Conshohohoken, PA: ASTM; 2017 Zhang, Zhang, Li, Pavier, Smith (b0160) 2016; 130 Lomov (b0105) 2021 O'Brien, Mather, White (b0175) 2001; 35 Liliana, Mutlu, Efendioglu, Simona, Garcia, Soler (b0080) 2019; 70 MATLAB version: 9.13.0 (R2022b). Natick, Massachusetts: The MathWorks Inc.; 2022. Khan, Umer (b0035) 2017; 36 Barbière, Touchard, Chocinski-Arnault, Mellier (b0090) 2020; 136 O'Brien (10.1016/j.compositesa.2023.107631_b0175) 2001; 35 Liliana (10.1016/j.compositesa.2023.107631_b0080) 2019; 70 Cao (10.1016/j.compositesa.2023.107631_b0150) 2020; 234 Freed (10.1016/j.compositesa.2023.107631_b0165) 2016 Liang (10.1016/j.compositesa.2023.107631_b0135) 2022; 177 Feng (10.1016/j.compositesa.2023.107631_b0020) 2022; 228 Kim (10.1016/j.compositesa.2023.107631_b0055) 2022; 287 Li (10.1016/j.compositesa.2023.107631_b0130) 2008; 68 Khan (10.1016/j.compositesa.2023.107631_b0035) 2017; 36 Bublitz (10.1016/j.compositesa.2023.107631_b0030) 2022; 153 Verpoest (10.1016/j.compositesa.2023.107631_b0110) 2005; 65 Ye (10.1016/j.compositesa.2023.107631_b0095) 2021; 262 Barbero (10.1016/j.compositesa.2023.107631_b0170) 2013 Benavente (10.1016/j.compositesa.2023.107631_b0045) 2018; 107 10.1016/j.compositesa.2023.107631_b0155 González-Estrada (10.1016/j.compositesa.2023.107631_b0100) 2018 Wan (10.1016/j.compositesa.2023.107631_b0085) 2015; 77 Feng (10.1016/j.compositesa.2023.107631_b0025) 2022; 144 Barbière (10.1016/j.compositesa.2023.107631_b0090) 2020; 136 Courtois (10.1016/j.compositesa.2023.107631_b0050) 2019; 163 Liang (10.1016/j.compositesa.2023.107631_b0075) 2019; 124 Mangino (10.1016/j.compositesa.2023.107631_b0010) 2007; 44 Zhang (10.1016/j.compositesa.2023.107631_b0070) 2017; 66 Lomov (10.1016/j.compositesa.2023.107631_b0120) 2007; 67 Le (10.1016/j.compositesa.2023.107631_b0060) 2022; 292 Lomov (10.1016/j.compositesa.2023.107631_b0105) 2021 10.1016/j.compositesa.2023.107631_b0005 Li (10.1016/j.compositesa.2023.107631_b0040) 2018; 18 Hivet (10.1016/j.compositesa.2023.107631_b0115) 2005; 42 10.1016/j.compositesa.2023.107631_b0145 Dai (10.1016/j.compositesa.2023.107631_b0015) 2019; 12 Zhang (10.1016/j.compositesa.2023.107631_b0125) 2019; 170 Xue (10.1016/j.compositesa.2023.107631_b0065) 2003; 34 Zhang (10.1016/j.compositesa.2023.107631_b0160) 2016; 130 10.1016/j.compositesa.2023.107631_b0140 |
| References_xml | – volume: 67 start-page: 1870 year: 2007 end-page: 1891 ident: b0120 article-title: Meso-FE modelling of textile composites: Road map, data flow and algorithms publication-title: Compos Sci Technol – volume: 65 start-page: 2563 year: 2005 end-page: 2574 ident: b0110 article-title: Virtual textile composites software WiseTex: Integration with micro-mechanical, permeability and structural analysis publication-title: Compos Sci Technol – reference: ASTM D3039/D3039M-17, Standard test method for tensile properties of polymer matrix composite materials. West Conshohohoken, PA: ASTM; 2017, – year: 2013 ident: b0170 article-title: Finite element analysis of composite materials using AbaqusTM – volume: 68 start-page: 1962 year: 2008 end-page: 1974 ident: b0130 article-title: Boundary conditions for unit cells from periodic microstructures and their implications publication-title: Compos Sci Technol – volume: 12 start-page: 572 year: 2019 ident: b0015 article-title: Numerical analysis of curing residual stress and deformation in thermosetting composite laminates with comparison between different constitutive models publication-title: Materials – volume: 130 start-page: 20 year: 2016 end-page: 27 ident: b0160 article-title: Residual stresses created during curing of a polymer matrix composite using a viscoelastic model publication-title: Compos Sci Technol – volume: 170 start-page: 15 year: 2019 end-page: 24 ident: b0125 article-title: A numerical Bayesian-calibrated characterization method for multiscale prepreg preforming simulations with tension-shear coupling publication-title: Compos Sci Technol – volume: 66 start-page: 257 year: 2017 end-page: 260 ident: b0070 article-title: A non-orthogonal material model of woven composites in the preforming process publication-title: CIRP Ann – reference: MATLAB version: 9.13.0 (R2022b). Natick, Massachusetts: The MathWorks Inc.; 2022. – volume: 287 start-page: 115379 year: 2022 ident: b0055 article-title: Evaluation of curing process-induced deformation in plain woven composite structures based on cure kinetics considering various fabric parameters publication-title: Compos Struct – volume: 44 start-page: 211 year: 2007 ident: b0010 article-title: The future use of structural composite materials in the automotive industry publication-title: Int J Veh Des – volume: 262 start-page: 113369 year: 2021 ident: b0095 article-title: Microscale intrinsic properties of hybrid unidirectional/woven composite laminates: Part I experimental tests publication-title: Compos Struct – volume: 234 start-page: 111701 year: 2020 ident: b0150 article-title: Predicting the tensile and compressive failure behavior of angle-ply spread tow woven composites publication-title: Compos Struct – volume: 107 start-page: 205 year: 2018 end-page: 216 ident: b0045 article-title: Numerical analysis of viscoelastic process-induced residual distortions during manufacturing and post-curing publication-title: Compos A Appl Sci Manuf – volume: 77 start-page: 278 year: 2015 end-page: 290 ident: b0085 article-title: Predicting dynamic in-plane compressive properties of multi-axial multi-layer warp-knitted composites with a meso-model publication-title: Compos B Eng – volume: 177 start-page: 107574 year: 2022 ident: b0135 article-title: A combined method for analyzing the effective thermal conductivity evolution of satin weave thermoset prepregs during preforming process publication-title: Int J Therm Sci – volume: 18 start-page: 1386 year: 2018 end-page: 1400 ident: b0040 article-title: Numerical simulation and experimental studies of mandrel effect on flow-compaction behavior of CFRP hat-shaped structure during curing process publication-title: Arch Civil Mech Eng – volume: 124 start-page: 105460 year: 2019 ident: b0075 article-title: Multi-scale modeling of mechanical behavior of cured woven textile composites accounting for the influence of yarn angle variation publication-title: Compos A Appl Sci Manuf – start-page: 199 year: 2021 end-page: 236 ident: b0105 article-title: Modeling the geometry of textile composite reinforcements: WiseTex publication-title: Composite reinforcements for optimum performance – volume: 36 start-page: 1299 year: 2017 end-page: 1315 ident: b0035 article-title: Modeling the viscoelastic compaction response of 3D woven fabrics for liquid composite molding processes publication-title: J Reinf Plast Compos – reference: ASTM D792-20, Standard test methods for density and specific gravity (relative density) of plastics by displacement, ASTM International: West Conshohocken, PA; 2020, – volume: 153 start-page: 106718 year: 2022 ident: b0030 article-title: Implementation of a viscoelastic material model to predict the compaction response of dry carbon fiber preforms publication-title: Compos A Appl Sci Manuf – reference: . ASTM. – volume: 70 start-page: 557 year: 2019 end-page: 563 ident: b0080 article-title: Computer aided design of knitted and woven fabrics and virtual garment simulation publication-title: Industria Textila – volume: 163 start-page: 61 year: 2019 end-page: 74 ident: b0050 article-title: Numerical multiscale homogenization approach for linearly viscoelastic 3D interlock woven composites publication-title: Int J Solids Struct – reference: . – volume: 292 start-page: 115698 year: 2022 ident: b0060 article-title: An efficient multi-scale approach for viscoelastic analysis of woven composites under bending publication-title: Compos Struct – volume: 35 start-page: 883 year: 2001 end-page: 904 ident: b0175 article-title: Viscoelastic properties of an epoxy resin during cure publication-title: J Compos Mater – start-page: 143 year: 2018 end-page: 148 ident: b0100 article-title: Mechanical response and damage of woven composite materials reinforced with fique publication-title: Key engineering materials – volume: 136 start-page: 105593 year: 2020 ident: b0090 article-title: Influence of moisture and drying on fatigue damage mechanisms in a woven hemp/epoxy composite: Acoustic emission and micro-CT analysis publication-title: Int J Fatigue – volume: 144 year: 2022 ident: b0025 article-title: Characterization and Finite Element Modeling for Thermoset Resin of Carbon Fiber Prepregs During Curing publication-title: J Manuf Sci Eng – reference: International Air Transport Association (IATA). Fact Sheet: Fuel. June, 2022. – year: 2016 ident: b0165 article-title: Soft solids – volume: 228 start-page: 109637 year: 2022 ident: b0020 article-title: Numerical modeling for curing of unidirectional carbon fiber reinforced polymer based on micromechanics in Laplace domain publication-title: Compos Sci Technol – volume: 42 start-page: 25 year: 2005 end-page: 49 ident: b0115 article-title: Consistent 3D geometrical model of fabric elementary cell. Application to a meshing preprocessor for 3D finite element analysis publication-title: Finite Elem Anal Des – volume: 34 start-page: 183 year: 2003 end-page: 193 ident: b0065 article-title: A non-orthogonal constitutive model for characterizing woven composites publication-title: Compos A Appl Sci Manuf – volume: 65 start-page: 2563 issue: 15–16 year: 2005 ident: 10.1016/j.compositesa.2023.107631_b0110 article-title: Virtual textile composites software WiseTex: Integration with micro-mechanical, permeability and structural analysis publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2005.05.031 – volume: 42 start-page: 25 issue: 1 year: 2005 ident: 10.1016/j.compositesa.2023.107631_b0115 article-title: Consistent 3D geometrical model of fabric elementary cell. Application to a meshing preprocessor for 3D finite element analysis publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2005.05.001 – volume: 34 start-page: 183 issue: 2 year: 2003 ident: 10.1016/j.compositesa.2023.107631_b0065 article-title: A non-orthogonal constitutive model for characterizing woven composites publication-title: Compos A Appl Sci Manuf doi: 10.1016/S1359-835X(02)00052-0 – volume: 177 start-page: 107574 year: 2022 ident: 10.1016/j.compositesa.2023.107631_b0135 article-title: A combined method for analyzing the effective thermal conductivity evolution of satin weave thermoset prepregs during preforming process publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2022.107574 – volume: 136 start-page: 105593 year: 2020 ident: 10.1016/j.compositesa.2023.107631_b0090 article-title: Influence of moisture and drying on fatigue damage mechanisms in a woven hemp/epoxy composite: Acoustic emission and micro-CT analysis publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2020.105593 – volume: 262 start-page: 113369 year: 2021 ident: 10.1016/j.compositesa.2023.107631_b0095 article-title: Microscale intrinsic properties of hybrid unidirectional/woven composite laminates: Part I experimental tests publication-title: Compos Struct doi: 10.1016/j.compstruct.2020.113369 – year: 2013 ident: 10.1016/j.compositesa.2023.107631_b0170 – volume: 12 start-page: 572 issue: 4 year: 2019 ident: 10.1016/j.compositesa.2023.107631_b0015 article-title: Numerical analysis of curing residual stress and deformation in thermosetting composite laminates with comparison between different constitutive models publication-title: Materials doi: 10.3390/ma12040572 – volume: 130 start-page: 20 year: 2016 ident: 10.1016/j.compositesa.2023.107631_b0160 article-title: Residual stresses created during curing of a polymer matrix composite using a viscoelastic model publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2016.05.002 – volume: 292 start-page: 115698 year: 2022 ident: 10.1016/j.compositesa.2023.107631_b0060 article-title: An efficient multi-scale approach for viscoelastic analysis of woven composites under bending publication-title: Compos Struct doi: 10.1016/j.compstruct.2022.115698 – ident: 10.1016/j.compositesa.2023.107631_b0155 – volume: 35 start-page: 883 issue: 10 year: 2001 ident: 10.1016/j.compositesa.2023.107631_b0175 article-title: Viscoelastic properties of an epoxy resin during cure publication-title: J Compos Mater doi: 10.1177/a037323 – volume: 77 start-page: 278 year: 2015 ident: 10.1016/j.compositesa.2023.107631_b0085 article-title: Predicting dynamic in-plane compressive properties of multi-axial multi-layer warp-knitted composites with a meso-model publication-title: Compos B Eng doi: 10.1016/j.compositesb.2015.03.060 – volume: 18 start-page: 1386 issue: 4 year: 2018 ident: 10.1016/j.compositesa.2023.107631_b0040 article-title: Numerical simulation and experimental studies of mandrel effect on flow-compaction behavior of CFRP hat-shaped structure during curing process publication-title: Arch Civil Mech Eng doi: 10.1016/j.acme.2018.04.008 – volume: 124 start-page: 105460 year: 2019 ident: 10.1016/j.compositesa.2023.107631_b0075 article-title: Multi-scale modeling of mechanical behavior of cured woven textile composites accounting for the influence of yarn angle variation publication-title: Compos A Appl Sci Manuf doi: 10.1016/j.compositesa.2019.05.028 – volume: 144 issue: 8 year: 2022 ident: 10.1016/j.compositesa.2023.107631_b0025 article-title: Characterization and Finite Element Modeling for Thermoset Resin of Carbon Fiber Prepregs During Curing publication-title: J Manuf Sci Eng doi: 10.1115/1.4053731 – start-page: 143 year: 2018 ident: 10.1016/j.compositesa.2023.107631_b0100 article-title: Mechanical response and damage of woven composite materials reinforced with fique – volume: 163 start-page: 61 year: 2019 ident: 10.1016/j.compositesa.2023.107631_b0050 article-title: Numerical multiscale homogenization approach for linearly viscoelastic 3D interlock woven composites publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2018.12.018 – volume: 287 start-page: 115379 year: 2022 ident: 10.1016/j.compositesa.2023.107631_b0055 article-title: Evaluation of curing process-induced deformation in plain woven composite structures based on cure kinetics considering various fabric parameters publication-title: Compos Struct doi: 10.1016/j.compstruct.2022.115379 – volume: 234 start-page: 111701 year: 2020 ident: 10.1016/j.compositesa.2023.107631_b0150 article-title: Predicting the tensile and compressive failure behavior of angle-ply spread tow woven composites publication-title: Compos Struct doi: 10.1016/j.compstruct.2019.111701 – ident: 10.1016/j.compositesa.2023.107631_b0145 – year: 2016 ident: 10.1016/j.compositesa.2023.107631_b0165 – volume: 70 start-page: 557 issue: 6 year: 2019 ident: 10.1016/j.compositesa.2023.107631_b0080 article-title: Computer aided design of knitted and woven fabrics and virtual garment simulation publication-title: Industria Textila doi: 10.35530/IT.070.06.1659 – volume: 36 start-page: 1299 issue: 18 year: 2017 ident: 10.1016/j.compositesa.2023.107631_b0035 article-title: Modeling the viscoelastic compaction response of 3D woven fabrics for liquid composite molding processes publication-title: J Reinf Plast Compos doi: 10.1177/0731684417707263 – ident: 10.1016/j.compositesa.2023.107631_b0005 – volume: 153 start-page: 106718 year: 2022 ident: 10.1016/j.compositesa.2023.107631_b0030 article-title: Implementation of a viscoelastic material model to predict the compaction response of dry carbon fiber preforms publication-title: Compos A Appl Sci Manuf doi: 10.1016/j.compositesa.2021.106718 – start-page: 199 year: 2021 ident: 10.1016/j.compositesa.2023.107631_b0105 article-title: Modeling the geometry of textile composite reinforcements: WiseTex – volume: 66 start-page: 257 issue: 1 year: 2017 ident: 10.1016/j.compositesa.2023.107631_b0070 article-title: A non-orthogonal material model of woven composites in the preforming process publication-title: CIRP Ann doi: 10.1016/j.cirp.2017.04.112 – volume: 107 start-page: 205 year: 2018 ident: 10.1016/j.compositesa.2023.107631_b0045 article-title: Numerical analysis of viscoelastic process-induced residual distortions during manufacturing and post-curing publication-title: Compos A Appl Sci Manuf doi: 10.1016/j.compositesa.2018.01.005 – volume: 228 start-page: 109637 year: 2022 ident: 10.1016/j.compositesa.2023.107631_b0020 article-title: Numerical modeling for curing of unidirectional carbon fiber reinforced polymer based on micromechanics in Laplace domain publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2022.109637 – volume: 67 start-page: 1870 issue: 9 year: 2007 ident: 10.1016/j.compositesa.2023.107631_b0120 article-title: Meso-FE modelling of textile composites: Road map, data flow and algorithms publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2006.10.017 – volume: 68 start-page: 1962 issue: 9 year: 2008 ident: 10.1016/j.compositesa.2023.107631_b0130 article-title: Boundary conditions for unit cells from periodic microstructures and their implications publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2007.03.035 – volume: 44 start-page: 211 issue: 3/4 year: 2007 ident: 10.1016/j.compositesa.2023.107631_b0010 article-title: The future use of structural composite materials in the automotive industry publication-title: Int J Veh Des doi: 10.1504/IJVD.2007.013640 – volume: 170 start-page: 15 year: 2019 ident: 10.1016/j.compositesa.2023.107631_b0125 article-title: A numerical Bayesian-calibrated characterization method for multiscale prepreg preforming simulations with tension-shear coupling publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2018.11.019 – ident: 10.1016/j.compositesa.2023.107631_b0140 |
| SSID | ssj0003391 |
| Score | 2.4726849 |
| Snippet | To model viscoelasticity of woven composites during curing, existing methods were mostly derived by directly mixing the material models for constituents and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107631 |
| SubjectTerms | carbon fibers Cure finite element analysis Finite element analysis (FEA) geometry mathematical models Polymer-matrix composites (PMCs) prediction Stress relaxation viscoelasticity |
| Title | Numerical prediction for viscoelasticity of woven carbon fiber reinforced polymers (CFRPs) during curing accounting for variation of yarn angle caused by preforming |
| URI | https://dx.doi.org/10.1016/j.compositesa.2023.107631 https://www.proquest.com/docview/2834264537 |
| Volume | 173 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1878-5840 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003391 issn: 1359-835X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Journals customDbUrl: eissn: 1878-5840 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003391 issn: 1359-835X databaseCode: AIKHN dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1878-5840 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003391 issn: 1359-835X databaseCode: ACRLP dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1878-5840 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003391 issn: 1359-835X databaseCode: .~1 dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBalg9E-lN1K025BgT1sD25iS77BXkJYyDYIpRfom5BkqaQEO9hJS172a_ZDd45lJ9lgEBh-MBaSLHSOjr4jfToi5GNkpbFgBL0kCzOPZ37qJUoaz5c2w_hq6BIg22IaTe749_vw_oCM2rMwSKtsbL-z6bW1blL6TW_2F7NZ_8bH4HMMnC2GmCfGg-acx3iLweXPLc2DsdQ5XbjcBblfkt6W44W0beRGmQpDEAUM0mG8-f-ao_6y1vUUNH5FThrsSIeuea_JgcnfkOOdiIJvya_pym3BzOmixD0Y7HcKwJQ-zSpdGMDKSKNermlh6XMBlo5qWSrMg9QRWpo6kip0C10U8zUuatNPo_H1VfWZuhONVLuX3Fwz4aoHn7sWMla8lmVOZf4wN1D7qoLK1BrbgwAZCrwjd-Ovt6OJ11zE4GkW8qVnWCI1U0pFiksAIIkeSMMBOLHAxiZLjZIpM5ADLFYQqjDzmU3DDJTU2kHCFTslh3mRmzNCQTFSFsWx1irmkYRHp4BorByoDDyfoEOStuuFbqKU42UZc9HS0R7FjtQESk04qXVIsCm6cKE69in0pZWv-EPvBEwp-xTvtTohYFziZovMTbGqBMA2BJshi8__7xcX5Ai_HIHwPTlclivzAYDQUnVrTe-SF8NvPybT3yXYEAE |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3faxQxEB5qBbUP0qrFWq0p-KAP691uNvsDfJHD49T2EG2hbyHJJuXKsXvs3lnuxb_GP7Qzm922CkJB9mEhm2RDZjL5JvkyAXiTOGUdGsEgK0QRxEWYB5lWNgiVKyi-GrkExLaYJpPT-MuZONuAUX8WhmiVne33Nr211l3KoOvNwWI2G_wIKfgcR2eLE-ZJxT24H4soJQ_s_a8bngfnufe6aL0Lsz-AwxuSF_G2iRxlG4pBFHFMxwEX_muS-stct3PQeBsed-CRffTt24ENWz6BrVshBZ_C7-nK78HM2aKmTRjqeIbIlP2cNaayCJaJR71cs8qxywpNHTOq1pSHuCOstm0oVewXtqjma1rVZm9H4-_fmnfMH2lkxr_U9T0Tvnp0ulspU8VrVZdMledzi7WvGqxMr6k9hJCxwDM4HX86GU2C7iaGwHARLwPLM2W41jrRsUIEkpmhsjEiJx651Ba51SrnFnOgyYqEFkXIXS4K1FLnhlms-S5sllVpnwNDzch5kqbG6DROFD4mR0jj1FAX6PpEe5D1XS9NF6acbsuYy56PdiFvSU2S1KSX2h5E10UXPlbHXQp96OUr_1A8iXPKXYof9johcWDSbosqbbVqJOI2QpuCpy_-7xev4eHk5PhIHn2eft2HR_TFswlfwuayXtlXiIqW-qDV-itKWBGW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+prediction+for+viscoelasticity+of+woven+carbon+fiber+reinforced+polymers+%28CFRPs%29+during+curing+accounting+for+variation+of+yarn+angle+caused+by+preforming&rft.jtitle=Composites.+Part+A%2C+Applied+science+and+manufacturing&rft.au=Feng%2C+Yuncong&rft.au=Wang%2C+Zhenhan&rft.au=Liu%2C+Meiyu&rft.au=Han%2C+Zhibin&rft.date=2023-10-01&rft.pub=Elsevier+Ltd&rft.issn=1359-835X&rft.eissn=1878-5840&rft.volume=173&rft_id=info:doi/10.1016%2Fj.compositesa.2023.107631&rft.externalDocID=S1359835X23002075 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-835X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-835X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-835X&client=summon |