Recent Developments in Near-Infrared-II Luminescence Imaging Using Inorganic Nanoparticles: Semiconductor Quantum Dots and Lanthanide Nanoparticles
Fluorescence imaging finds extensive application in cellular and small animal studies due to its superior temporal and spatial resolution. However, fluorescence imaging using visible light faces limitations such as shallow tissue penetration, phototoxicity from excitation sources, and compromised de...
Saved in:
Published in | The Korean journal of chemical engineering Vol. 41; no. 13; pp. 3603 - 3619 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2024
Springer Nature B.V 한국화학공학회 |
Subjects | |
Online Access | Get full text |
ISSN | 0256-1115 1975-7220 |
DOI | 10.1007/s11814-024-00300-4 |
Cover
Abstract | Fluorescence imaging finds extensive application in cellular and small animal studies due to its superior temporal and spatial resolution. However, fluorescence imaging using visible light faces limitations such as shallow tissue penetration, phototoxicity from excitation sources, and compromised detection sensitivity owing to background autofluorescence interference. To address these issues, researchers have explored longer wavelength light, particularly near-infrared-I (NIR-I) in the 700–900 nm range. Moreover, there is growing interest in exploiting NIR-II light, which spans the 1000–1700 nm range, to enhance the detection sensitivity, resolution, and tissue-penetration depth. In the NIR-II region, light scattering is minimized, thus enabling deeper tissue penetration of up to ~ 10 mm, along with reduced tissue autofluorescence. This facilitates high-sensitivity and high-resolution fluorescence imaging. The present review highlights inorganic nanoparticle-based imaging probes characterized by exceptional photostability and easily tunable emission wavelengths, including quantum dots and lanthanide nanoparticles. Specifically, recent advancements in improving the luminescence efficiency of NIR-II quantum dots and lanthanide nanoparticles, tuning the emission wavelengths to longer ranges, and designing stimuli-responsive mechanisms for precise targeted imaging are discussed. |
---|---|
AbstractList | Fluorescence imaging fi nds extensive application in cellular and small animal studies due to its superior temporal and spatial resolution. However, fl uorescence imaging using visible light faces limitations such as shallow tissue penetration, phototoxicity from excitation sources, and compromised detection sensitivity owing to background autofl uorescence interference. To address these issues, researchers have explored longer wavelength light, particularly near-infrared-I (NIRI) in the 700–900 nm range. Moreover, there is growing interest in exploiting NIR-II light, which spans the 1000–1700 nm range, to enhance the detection sensitivity, resolution, and tissue-penetration depth. In the NIR-II region, light scattering is minimized, thus enabling deeper tissue penetration of up to ~ 10 mm, along with reduced tissue autofl uorescence. This facilitates high-sensitivity and high-resolution fl uorescence imaging. The present review highlights inorganic nanoparticlebased imaging probes characterized by exceptional photostability and easily tunable emission wavelengths, including quantum dots and lanthanide nanoparticles. Specifi cally, recent advancements in improving the luminescence effi ciency of NIR-II quantum dots and lanthanide nanoparticles, tuning the emission wavelengths to longer ranges, and designing stimuliresponsive mechanisms for precise targeted imaging are discussed. KCI Citation Count: 0 Fluorescence imaging finds extensive application in cellular and small animal studies due to its superior temporal and spatial resolution. However, fluorescence imaging using visible light faces limitations such as shallow tissue penetration, phototoxicity from excitation sources, and compromised detection sensitivity owing to background autofluorescence interference. To address these issues, researchers have explored longer wavelength light, particularly near-infrared-I (NIR-I) in the 700–900 nm range. Moreover, there is growing interest in exploiting NIR-II light, which spans the 1000–1700 nm range, to enhance the detection sensitivity, resolution, and tissue-penetration depth. In the NIR-II region, light scattering is minimized, thus enabling deeper tissue penetration of up to ~ 10 mm, along with reduced tissue autofluorescence. This facilitates high-sensitivity and high-resolution fluorescence imaging. The present review highlights inorganic nanoparticle-based imaging probes characterized by exceptional photostability and easily tunable emission wavelengths, including quantum dots and lanthanide nanoparticles. Specifically, recent advancements in improving the luminescence efficiency of NIR-II quantum dots and lanthanide nanoparticles, tuning the emission wavelengths to longer ranges, and designing stimuli-responsive mechanisms for precise targeted imaging are discussed. Fluorescence imaging finds extensive application in cellular and small animal studies due to its superior temporal and spatial resolution. However, fluorescence imaging using visible light faces limitations such as shallow tissue penetration, phototoxicity from excitation sources, and compromised detection sensitivity owing to background autofluorescence interference. To address these issues, researchers have explored longer wavelength light, particularly near-infrared-I (NIR-I) in the 700–900 nm range. Moreover, there is growing interest in exploiting NIR-II light, which spans the 1000–1700 nm range, to enhance the detection sensitivity, resolution, and tissue-penetration depth. In the NIR-II region, light scattering is minimized, thus enabling deeper tissue penetration of up to ~ 10 mm, along with reduced tissue autofluorescence. This facilitates high-sensitivity and high-resolution fluorescence imaging. The present review highlights inorganic nanoparticle-based imaging probes characterized by exceptional photostability and easily tunable emission wavelengths, including quantum dots and lanthanide nanoparticles. Specifically, recent advancements in improving the luminescence efficiency of NIR-II quantum dots and lanthanide nanoparticles, tuning the emission wavelengths to longer ranges, and designing stimuli-responsive mechanisms for precise targeted imaging are discussed. |
Author | Yu, Hyeon Jung Park, Yong Il Lee, Ruda Kim, Jeong Geun |
Author_xml | – sequence: 1 givenname: Jeong Geun surname: Kim fullname: Kim, Jeong Geun organization: School of Chemical Engineering, Chonnam National University – sequence: 2 givenname: Hyeon Jung surname: Yu fullname: Yu, Hyeon Jung organization: School of Chemical Engineering, Chonnam National University – sequence: 3 givenname: Ruda surname: Lee fullname: Lee, Ruda email: aeju-lee@kumamoto-u.ac.jp organization: Institute of Industrial Nanomaterials (IINa), Kumamoto University, International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Faculty of Advanced Science and Technology (FAST), Kumamoto University – sequence: 4 givenname: Yong Il orcidid: 0000-0003-3167-4908 surname: Park fullname: Park, Yong Il email: ypark@jnu.ac.kr organization: School of Chemical Engineering, Chonnam National University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003146631$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kd9qFTEQxoNU8LT6Al4FvBOi-Z893pW26sKhYm2vQ8zOrmnPJsckK_gcvrBpVxC96EXyzcD3mxn4jtFRTBEQesnoG0apeVsY65gklLdHBaVEPkEbtjWKGM7pEdpQrjRhjKln6LiUW0qV0pxu0K8r8BArPocfsE-HudUFh4gvwWXSxzG7DAPpe7xb5hChNLMH3M9uCnHCN-X-72PKk4vB40sX08HlGvweyjv8BebgUxwWX1PGnxcX6zLj89RWuDjgXeu_NW6Af8Hn6Ono9gVe_NETdPP-4vrsI9l9-tCfne6IF0pW4qUDaRRQumWcaWGMMEoP_GsT6jrPBeXMaD9qJWBk3WCMF6PTHKgUnTTiBL1e58Y82jsfbHLhQadk77I9vbruLaNaSc1VM79azYecvi9Qqr1NS47tPisY77TZqo41F19dPqdSMoz2kMPs8s82yN4nZdekbEvKPiRlZYO6_yAfqqshxZpd2D-OihUtbU-cIP-96hHqNwhjqfs |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2024_162196 crossref_primary_10_1016_j_cej_2024_159195 |
Cites_doi | 10.1016/j.spmi.2020.106714 10.1016/j.jphotobiol.2023.112731 10.1021/acs.analchem.2c04873 10.1021/acsnano.2c12840 10.3390/ma15134543 10.1016/j.tsf.2013.10.060 10.1021/acs.chemmater.3c02983 10.1007/s12274-014-0629-2 10.1002/adma.201606086 10.1002/smll.202001003 10.1002/adma.202006902 10.1021/acs.nanolett.0c03939 10.1002/cyto.a.23963 10.1021/acs.chemmater.3c00538 10.1021/ar200084x 10.1021/acs.nanolett.3c05086 10.1007/s11814-019-0243-9 10.1021/acssensors.2c00683 10.1016/j.cej.2022.139133 10.1016/j.jnoncrysol.2015.05.006 10.1021/acsnano.3c05178 10.1021/acsanm.1c04005 10.1016/j.nantod.2022.101439 10.1021/acs.nanolett.1c04531 10.1038/s41427-023-00477-w 10.1002/smtd.202201706 10.1038/ncomms6093 10.1021/acscentsci.7b00574 10.1039/C8SC00206A 10.1021/acs.nanolett.5b02830 10.1002/adhm.202200521 10.1007/s11814-022-1374-y 10.1039/C4NR04258A 10.1021/accountsmr.2c00117 10.1038/nm.2995 10.1021/acssuschemeng.6b00490 10.1002/anie.202209378 10.3390/nano12244478 10.1056/NEJMoa022749 10.1002/adfm.202212523 10.1016/j.cej.2023.143827 10.1002/adom.202200694 10.1002/adma.201808166 10.1021/acsami.3c00861 10.1002/anie.201510609 10.1002/adma.202203820 10.1007/s11814-021-0956-4 10.1002/anie.201507473 10.3390/pharmaceutics14010214 10.1002/adom.201900045 10.1039/D2TB00626J 10.1002/adhm.201900260 10.1002/cnma.202200570 10.1088/0957-4484/17/23/013 10.1016/j.molstruc.2012.10.016 10.1021/acs.chemmater.6b00208 10.1016/j.jcis.2010.07.025 10.1039/c3cc44000a 10.1016/j.biomaterials.2017.04.046 10.1002/smll.202202035 10.1038/s41377-022-00794-9 10.1021/acs.nanolett.6b05087 10.1038/ncomms3199 10.1002/adma.201705980 10.1021/acs.nanolett.3c03698 10.1021/acsnano.2c05152 10.1021/acs.nanolett.9b05259 10.1021/acs.analchem.3c01967 10.1021/acsnano.2c01153 10.1007/s00216-022-03999-4 10.1002/chem.201804800 10.1021/la800568k 10.1007/s11814-024-00071-y 10.1016/j.nantod.2020.100893 10.1002/advs.202206579 10.1186/s12951-018-0367-9 10.1002/smll.202300392 10.1021/acsnano.2c12319 10.1002/advs.202104728 10.1073/pnas.1014501108 10.1039/D2NR01680J 10.1002/adtp.201800153 10.1021/acs.analchem.1c05154 10.1021/acsanm.3c02256 10.1039/D2BM00550F 10.1038/s41467-023-42001-2 10.1039/C9NR00552H 10.1002/anie.202203851 10.1016/j.mtener.2017.12.008 10.1016/j.actbio.2022.04.013 10.1002/VIW.20200128 10.1016/j.biomaterials.2022.121636 10.1016/j.snb.2023.133669 10.1016/j.cej.2023.145685 10.1021/acsbiomaterials.2c00886 10.1021/ja8036349 10.1002/adma.201200431 10.1007/s11814-020-0507-4 10.1002/anie.202116983 10.1021/acsanm.2c01670 10.1038/s41598-019-50332-8 10.1126/science.271.5251.933 10.1002/advs.202104561 10.1021/nn505051d 10.1039/c3ra41153b 10.1007/s11814-023-00006-z 10.1039/C8SC01153B 10.1002/anie.202316562 10.1039/C9CC04196F 10.1016/j.jphotochem.2019.112131 10.1002/adfm.201303263 10.7150/thno.21557 10.1002/ppsc.201800175 10.1073/pnas.1521175113 10.1016/j.snb.2023.133457 10.1007/s11468-020-01171-1 10.1021/ja800868a 10.1002/adfm.202316646 10.1021/acsami.3c18282 10.1021/acs.nanolett.1c04909 10.1021/acsanm.2c04944 10.1038/nprot.2014.111 10.1002/adom.202200173 10.1016/j.cej.2022.138584 10.1016/j.biomaterials.2021.121319 10.1021/acsnano.0c01174 10.1021/ja00072a025 10.1007/s10895-022-03048-4 10.1007/s11814-024-00144-y 10.1002/smll.202000708 10.1021/acs.bioconjchem.6b00654 10.1016/j.biomaterials.2022.121873 10.1016/j.scib.2024.02.008 10.1002/adfm.201906483 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Korean Institute of Chemical Engineers, Seoul, Korea 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Korean Institute of Chemical Engineers, Seoul, Korea 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s11814-024-00300-4 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1975-7220 |
EndPage | 3619 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10654625 10_1007_s11814_024_00300_4 |
GrantInformation_xml | – fundername: Ministry of Education grantid: 2021R1I1A3047374 funderid: http://dx.doi.org/10.13039/501100002701 – fundername: Chonnam National University grantid: 2021-3997 funderid: http://dx.doi.org/10.13039/501100002456 – fundername: Ministry of Science and ICT, South Korea grantid: 2022H1D3A2A01096503 funderid: http://dx.doi.org/10.13039/501100014188 – fundername: Japan Society for the Promotion of Science grantid: 22K12822 funderid: http://dx.doi.org/10.13039/501100001691 |
GroupedDBID | -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZB HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- MZR N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 ZMTXR ZZE ~A9 ~EX 85H AAYXX CITATION ACYCR |
ID | FETCH-LOGICAL-c354t-c4ae475e00912163773756d2b3750a8c2302176cf653ef18d77c3fa62e0438473 |
IEDL.DBID | AGYKE |
ISSN | 0256-1115 |
IngestDate | Sun Jul 06 03:13:48 EDT 2025 Thu Sep 25 00:47:23 EDT 2025 Thu Apr 24 23:11:53 EDT 2025 Wed Oct 01 04:07:33 EDT 2025 Mon Jul 21 06:23:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Near-infrared-II Lanthanide Short-wave infrared Quantum dots Biomedical imaging |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-c4ae475e00912163773756d2b3750a8c2302176cf653ef18d77c3fa62e0438473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3167-4908 |
PQID | 3128679581 |
PQPubID | 2044390 |
PageCount | 17 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10654625 proquest_journals_3128679581 crossref_primary_10_1007_s11814_024_00300_4 crossref_citationtrail_10_1007_s11814_024_00300_4 springer_journals_10_1007_s11814_024_00300_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Korean journal of chemical engineering |
PublicationTitleAbbrev | Korean J. Chem. Eng |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V 한국화학공학회 |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: 한국화학공학회 |
References | Sun (CR32) 2022; 280 Sun (CR133) 2023; 384 Du (CR78) 2022; 145 Alvear-Jimenez (CR76) 2022; 14 Maity (CR91) 2020; 388 Wang (CR82) 2024; 63 Huang (CR81) 2023; 381 Zhuang (CR39) 2023; 17 Chen (CR33) 2021; 33 Chen (CR67) 2016; 4 Xu (CR124) 2023; 23 Xu (CR36) 2023; 33 Tassa (CR2) 2011; 44 Li (CR130) 2022; 16 Welsher, Sherlock, Dai (CR16) 2011; 108 Lv (CR83) 2022; 10 Cui (CR94) 2023; 6 Li (CR85) 2023; 33 Allen, Bawendi (CR58) 2008; 130 Jia (CR89) 2015; 8 Wu (CR100) 2024; 69 Wang (CR125) 2024; 24 Huang (CR117) 2023; 95 Lv (CR38) 2022; 11 Kim (CR9) 2017; 28 Shou (CR29) 2018; 9 Guo (CR122) 2023; 19 Ren (CR3) 2021; 2 Huang (CR121) 2020; 16 Ding (CR4) 2018; 9 Meng (CR53) 2023; 10 Wang, Deng, Liu (CR104) 2014; 9 Shi (CR65) 2024; 36 Chen (CR87) 2022; 5 Tsang (CR129) 2022; 14 Lin (CR114) 2023; 245 Kim (CR73) 2023; 15 Wang (CR112) 2022; 43 Dang (CR22) 2016; 113 Cha, Kim, Kim (CR14) 2024; 41 Diao (CR21) 2015; 54 Chen (CR105) 2015; 15 Le (CR47) 2020; 37 Francés-Soriano (CR99) 2022; 414 Chen (CR113) 2016; 11 Giansante (CR66) 2014; 560 Zhu (CR96) 2022; 61 Tang (CR31) 2022; 34 Dong (CR103) 2012; 24 Li (CR134) 2022; 22 Feng (CR61) 2023; 451 Sun (CR119) 2022; 7 Kim (CR1) 2018; 4 Rajapriya, Sangubotla, Kim (CR45) 2024; 41 Wang (CR131) 2022; 12 Chen (CR62) 2014; 5 Jiang (CR35) 2018; 30 Li (CR118) 2017; 29 Zhang (CR60) 2022; 61 Zhang (CR77) 2023; 474 Kong (CR12) 2016; 28 Qi (CR34) 2020; 34 Yang (CR27) 2019; 11 Wang, Han (CR88) 2010; 351 Wang (CR97) 2022; 11 Coste (CR7) 2020; 97 Wu (CR107) 2023; 468 Ding (CR11) 2019; 8 Bora (CR41) 2023; 35 Rees, Darwish, Algar (CR63) 2023; 15 Zhu, Zhang, Zhang (CR109) 2023; 4 Yang (CR40) 2022; 9 Yang (CR98) 2022; 61 Ashrafmansouri, Nasr Esfahany, Ashrafmansouri (CR5) 2024; 41 Liu (CR25) 2017; 7 Mallem (CR44) 2023; 40 Lv (CR128) 2022; 5 Wang (CR51) 2023; 6 Li (CR111) 2022; 94 Zhang (CR28) 2019; 55 Yang (CR52) 2023; 7 Wijaya (CR75) 2020; 30 Mi (CR127) 2022; 22 Wang, Liu (CR102) 2008; 130 Dong (CR18) 2019; 9 Le, Ahn, Park (CR46) 2022; 39 Dai (CR126) 2023; 452 Kumar (CR71) 2020; 148 Dolatyari (CR79) 2020; 15 Murray, Norris, Bawendi (CR42) 1993; 115 Li (CR49) 2023; 17 Bao (CR64) 2024; 34 Sun (CR106) 2014; 6 Zhang (CR8) 2020; 16 Cao (CR57) 2016; 431 Li (CR74) 2022; 16 Wang (CR69) 2022; 287 Li (CR93) 2023; 9 Nakane (CR55) 2013; 49 Debellis (CR68) 2017; 17 Alivisatos (CR19) 1996; 271 Wang (CR123) 2022; 10 Jiang (CR30) 2019; 31 Tao (CR24) 2017; 134 Li (CR120) 2016; 55 Zhang (CR80) 2018; 16 Liang (CR115) 2022; 9 Naczynski (CR6) 2013; 4 Bao (CR132) 2023; 9 Wang (CR101) 2006; 17 Punjabi (CR108) 2014; 8 Lin (CR54) 2008; 24 Law (CR90) 2013; 3 Elibol (CR48) 2019; 36 Yang (CR50) 2023; 95 Huang (CR95) 2023; 17 Yu, Zhang, Sun (CR56) 2013; 1031 Harisinghani Mukesh (CR17) 2003; 348 Zhao (CR116) 2022; 291 Huang (CR86) 2022; 10 Hong (CR15) 2012; 18 Yu (CR26) 2020; 14 Mi (CR135) 2023; 14 Zhang (CR70) 2024; 16 He (CR23) 2019; 7 Di (CR59) 2018; 24 Chen (CR13) 2013; 24 Yang (CR43) 2021; 21 Meng (CR10) 2022; 18 Lozac’h (CR92) 2018; 7 Feng (CR84) 2022; 15 Jiang (CR110) 2019; 2 Kays (CR20) 2020; 20 Tietze (CR72) 2018; 35 Wang (CR37) 2022; 10 F Ding (300_CR4) 2018; 9 TH Le (300_CR46) 2022; 39 TH Cao (300_CR57) 2016; 431 S Chen (300_CR87) 2022; 5 A Coste (300_CR7) 2020; 97 Q Di (300_CR59) 2018; 24 G Harisinghani Mukesh (300_CR17) 2003; 348 LL Yang (300_CR50) 2023; 95 J Qi (300_CR34) 2020; 34 Y Yang (300_CR98) 2022; 61 L Francés-Soriano (300_CR99) 2022; 414 N Lv (300_CR83) 2022; 10 TH Le (300_CR47) 2020; 37 C Mi (300_CR135) 2023; 14 Y Yang (300_CR27) 2019; 11 H Wijaya (300_CR75) 2020; 30 S Kim (300_CR73) 2023; 15 K Welsher (300_CR16) 2011; 108 Y Li (300_CR74) 2022; 16 J Chen (300_CR67) 2016; 4 G Chen (300_CR105) 2015; 15 Y Zhang (300_CR8) 2020; 16 J Wang (300_CR88) 2010; 351 H Chen (300_CR33) 2021; 33 O Chen (300_CR62) 2014; 5 T Du (300_CR78) 2022; 145 L Sun (300_CR133) 2023; 384 GD Cha (300_CR14) 2024; 41 W Lin (300_CR54) 2008; 24 X Li (300_CR120) 2016; 55 M Dai (300_CR126) 2023; 452 J Bao (300_CR64) 2024; 34 J Zhuang (300_CR39) 2023; 17 Y Yu (300_CR56) 2013; 1031 CB Murray (300_CR42) 1993; 115 YC Dong (300_CR18) 2019; 9 C Tassa (300_CR2) 2011; 44 B Li (300_CR93) 2023; 9 JC Kays (300_CR20) 2020; 20 X Meng (300_CR10) 2022; 18 Y Li (300_CR134) 2022; 22 Z Lv (300_CR38) 2022; 11 R Xu (300_CR124) 2023; 23 S He (300_CR23) 2019; 7 GZ Jia (300_CR89) 2015; 8 D Debellis (300_CR68) 2017; 17 W Zhang (300_CR28) 2019; 55 Y Nakane (300_CR55) 2013; 49 Y Bao (300_CR132) 2023; 9 X Wu (300_CR100) 2024; 69 X-H Shi (300_CR65) 2024; 36 W Lv (300_CR128) 2022; 5 Y Liu (300_CR25) 2017; 7 PM Allen (300_CR58) 2008; 130 A Alvear-Jimenez (300_CR76) 2022; 14 Y Huang (300_CR81) 2023; 381 DJ Naczynski (300_CR6) 2013; 4 P Zhang (300_CR70) 2024; 16 C Mi (300_CR127) 2022; 22 Y Zhang (300_CR77) 2023; 474 X Feng (300_CR84) 2022; 15 C Li (300_CR130) 2022; 16 R Kumar (300_CR71) 2020; 148 Z Wang (300_CR97) 2022; 11 A Bora (300_CR41) 2023; 35 R-Q Yang (300_CR40) 2022; 9 B Lin (300_CR114) 2023; 245 Q Wang (300_CR131) 2022; 12 S Feng (300_CR61) 2023; 451 F Wu (300_CR107) 2023; 468 J Wang (300_CR37) 2022; 10 L Chen (300_CR113) 2016; 11 W-C Law (300_CR90) 2013; 3 X Zhu (300_CR109) 2023; 4 K Wang (300_CR51) 2023; 6 R Tietze (300_CR72) 2018; 35 H Li (300_CR85) 2023; 33 Q-X Wang (300_CR112) 2022; 43 Y Kong (300_CR12) 2016; 28 K Shou (300_CR29) 2018; 9 M Jiang (300_CR110) 2019; 2 G Rajapriya (300_CR45) 2024; 41 MY Tsang (300_CR129) 2022; 14 F Wang (300_CR102) 2008; 130 L Sun (300_CR119) 2022; 7 X-S Zhang (300_CR80) 2018; 16 D Tang (300_CR31) 2022; 34 D Kim (300_CR9) 2017; 28 T Liang (300_CR115) 2022; 9 Z Tao (300_CR24) 2017; 134 AP Alivisatos (300_CR19) 1996; 271 D Huang (300_CR95) 2023; 17 Y Xu (300_CR36) 2023; 33 Z Wang (300_CR82) 2024; 63 Q Wang (300_CR123) 2022; 10 Q Wang (300_CR125) 2024; 24 H Zhang (300_CR60) 2022; 61 F Wang (300_CR104) 2014; 9 J Yang (300_CR43) 2021; 21 Z Yu (300_CR26) 2020; 14 P Maity (300_CR91) 2020; 388 Y Jiang (300_CR30) 2019; 31 F Ren (300_CR3) 2021; 2 X Meng (300_CR53) 2023; 10 L Sun (300_CR106) 2014; 6 S Li (300_CR49) 2023; 17 A Punjabi (300_CR108) 2014; 8 F Ding (300_CR11) 2019; 8 S-S Ashrafmansouri (300_CR5) 2024; 41 G Chen (300_CR13) 2013; 24 Y Huang (300_CR86) 2022; 10 D Cui (300_CR94) 2023; 6 M Dolatyari (300_CR79) 2020; 15 H Zhao (300_CR116) 2022; 291 P Wang (300_CR69) 2022; 287 S Li (300_CR111) 2022; 94 F Wang (300_CR101) 2006; 17 Y Guo (300_CR122) 2023; 19 J Huang (300_CR117) 2023; 95 P Sun (300_CR32) 2022; 280 S Li (300_CR118) 2017; 29 SPR Mallem (300_CR44) 2023; 40 Y Jiang (300_CR35) 2018; 30 X Dang (300_CR22) 2016; 113 X Zhu (300_CR96) 2022; 61 E Elibol (300_CR48) 2019; 36 C Giansante (300_CR66) 2014; 560 M Lozac’h (300_CR92) 2018; 7 B Dong (300_CR103) 2012; 24 H Huang (300_CR121) 2020; 16 G Hong (300_CR15) 2012; 18 L Yang (300_CR52) 2023; 7 K Rees (300_CR63) 2023; 15 D Kim (300_CR1) 2018; 4 S Diao (300_CR21) 2015; 54 |
References_xml | – volume: 148 year: 2020 ident: CR71 article-title: Short-wave infrared (SWIR) photodetection by InAs/GaAs quantum dot heterostructures grown on Ge (100) substrate without migration enhanced epitaxy layer publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2020.106714 – volume: 245 year: 2023 ident: CR114 article-title: Dual-targeting lanthanide-ICG-MOF nanoplatform for cancer theranostics: NIR II luminescence imaging guided sentinel lymph nodes surgical navigation publication-title: J. Photochem. Photobiol. B. doi: 10.1016/j.jphotobiol.2023.112731 – volume: 95 start-page: 3761 issue: 7 year: 2023 end-page: 3768 ident: CR117 article-title: Activatable lanthanide nanoprobes with dye-sensitized second near-infrared luminescence for in vivo inflammation imaging publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c04873 – volume: 17 start-page: 5033 issue: 5 year: 2023 end-page: 5046 ident: CR95 article-title: Multiscale NIR-II imaging-guided brain-targeted drug delivery using engineered cell membrane nanoformulation for Alzheimer’s disease therapy publication-title: ACS Nano doi: 10.1021/acsnano.2c12840 – volume: 15 start-page: 4543 issue: 13 year: 2022 ident: CR84 article-title: MXene quantum dot/zeolitic imidazolate framework nanocarriers for dual stimulus triggered tumor chemo-phototherapy publication-title: Materials doi: 10.3390/ma15134543 – volume: 560 start-page: 2 year: 2014 end-page: 9 ident: CR66 article-title: Surface chemistry of arenethiolate-capped PbS quantum dots and application as colloidally stable photovoltaic ink publication-title: Thin Solid Films doi: 10.1016/j.tsf.2013.10.060 – volume: 36 start-page: 2776 issue: 6 year: 2024 end-page: 2789 ident: CR65 article-title: Plasmonic-fluorescent janus Au-PbS nanoparticles with bright near-infrared-IIb fluorescence and photothermal effect for computed tomography imaging-guided combination cancer therapy publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.3c02983 – volume: 8 start-page: 1443 issue: 5 year: 2015 end-page: 1453 ident: CR89 article-title: Excellent photothermal conversion of core/shell CdSe/Bi Se quantum dots publication-title: Nano Res. doi: 10.1007/s12274-014-0629-2 – volume: 29 start-page: 1606086 issue: 19 year: 2017 ident: CR118 article-title: Hybrid nanoparticle pyramids for intracellular dual microRNAs biosensing and bioimaging publication-title: Adv. Mater. doi: 10.1002/adma.201606086 – volume: 16 start-page: 2001003 issue: 14 year: 2020 ident: CR8 article-title: Controlled synthesis of Ag Te@Ag S core-shell quantum dots with enhanced and tunable fluorescence in the second near-infrared window publication-title: Small doi: 10.1002/smll.202001003 – volume: 33 start-page: 2006902 issue: 16 year: 2021 ident: CR33 article-title: Smart self-assembly amphiphilic cyclopeptide-dye for near-infrared window-II imaging publication-title: Adv. Mater. doi: 10.1002/adma.202006902 – volume: 21 start-page: 26 issue: 1 year: 2021 end-page: 33 ident: CR43 article-title: Toward full-color electroluminescent quantum dot displays publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c03939 – volume: 97 start-page: 448 issue: 5 year: 2020 end-page: 457 ident: CR7 article-title: Intravital imaging techniques for biomedical and clinical research publication-title: Cytometry A doi: 10.1002/cyto.a.23963 – volume: 35 start-page: 4068 issue: 10 year: 2023 end-page: 4077 ident: CR41 article-title: Composition-dependent optical properties of Cu–Zn–In–Se colloidal nanocrystals synthesized via cation exchange publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.3c00538 – volume: 44 start-page: 842 issue: 10 year: 2011 end-page: 852 ident: CR2 article-title: Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy publication-title: Acc. Chem. Res. doi: 10.1021/ar200084x – volume: 24 start-page: 2876 issue: 9 year: 2024 end-page: 2884 ident: CR125 article-title: Fluorinated hafnium and zirconium coenable the tunable biodegradability of core-multishell heterogeneous nanocrystals for bioimaging publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c05086 – volume: 36 start-page: 625 issue: 4 year: 2019 end-page: 634 ident: CR48 article-title: Improved photoluminescence and monodisperse performance of colloidal CdTe quantum dots with Cannula method publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-019-0243-9 – volume: 7 start-page: 2235 issue: 8 year: 2022 end-page: 2242 ident: CR119 article-title: Lanthanide/Cu Se nanoparticles for bacteria-activated NIR-II fluorescence imaging of infection publication-title: ACS Sensors doi: 10.1021/acssensors.2c00683 – volume: 452 year: 2023 ident: CR126 article-title: Sc -induced double optimization strategies for boosting NIR-II luminescence and improving thermometer performance in CaF : Nd , Nd /Yb @NaYF nanocrystals publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139133 – volume: 431 start-page: 76 year: 2016 end-page: 78 ident: CR57 article-title: Photoluminescence from PbS quantum dots and PbS/CdS core/shell quantum dots mixed with As S glass publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2015.05.006 – volume: 17 start-page: 20013 issue: 20 year: 2023 end-page: 20023 ident: CR49 article-title: Ultrathin self-powered heavy-metal-free Cu–In–Se quantum dot photodetectors for wearable health monitoring publication-title: ACS Nano doi: 10.1021/acsnano.3c05178 – volume: 5 start-page: 3415 issue: 3 year: 2022 end-page: 3421 ident: CR87 article-title: Thiolate etching route for the ripening of uniform Ag Te quantum dots emitting in the second near-infrared window: implication for noninvasive in vivo imaging publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c04005 – volume: 43 year: 2022 ident: CR112 article-title: Upconverted/downshifted NaLnF and metal-organic framework heterostructures boosting NIR-II imaging-guided photodynamic immunotherapy toward tumors publication-title: Nano Today doi: 10.1016/j.nantod.2022.101439 – volume: 22 start-page: 2691 issue: 7 year: 2022 end-page: 2701 ident: CR134 article-title: In vivo high-resolution bioimaging of bone marrow and fracture diagnosis using lanthanide nanoprobes with 1525 nm emission publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04531 – volume: 15 start-page: 30 year: 2023 ident: CR73 article-title: Chemically and electronically active metal ions on InAs quantum dots for infrared detectors publication-title: NPG Asia Mater. doi: 10.1038/s41427-023-00477-w – volume: 7 start-page: 2201706 issue: 7 year: 2023 ident: CR52 article-title: Assembling AgAuSe quantum dots with peptidoglycan and neutrophils to realize enhanced tumor targeting, NIR (II) imaging, and sonodynamic therapy publication-title: Small Methods doi: 10.1002/smtd.202201706 – volume: 5 start-page: 5093 issue: 1 year: 2014 ident: CR62 article-title: Magneto-fluorescent core-shell supernanoparticles publication-title: Nat. Commun. doi: 10.1038/ncomms6093 – volume: 4 start-page: 324 issue: 3 year: 2018 end-page: 336 ident: CR1 article-title: Recent development of inorganic nanoparticles for biomedical imaging publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00574 – volume: 9 start-page: 3105 issue: 12 year: 2018 end-page: 3110 ident: CR29 article-title: Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for in vivo second near-infrared window imaging and image-guided tumor surgery publication-title: Chem. Sci. doi: 10.1039/C8SC00206A – volume: 15 start-page: 7400 issue: 11 year: 2015 end-page: 7407 ident: CR105 article-title: Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02830 – volume: 11 start-page: 2200521 issue: 16 year: 2022 ident: CR97 article-title: Brain tumor cell membrane-coated lanthanide-doped nanoparticles for NIR-IIb luminescence imaging and surgical navigation of glioma publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.202200521 – volume: 40 start-page: 722 issue: 4 year: 2023 end-page: 726 ident: CR44 article-title: Dopant-induced red emission, paramagnetism, and hydrogen evolution of diluted magnetic semiconductor ZnS: Eu nanoparticles publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-022-1374-y – volume: 6 start-page: 13242 issue: 21 year: 2014 end-page: 13252 ident: CR106 article-title: Multifunctional nanomesoporous materials with upconversion (in vivo) and downconversion (in vitro) luminescence imaging based on mesoporous capping UCNPs and linking lanthanide complexes publication-title: Nanoscale doi: 10.1039/C4NR04258A – volume: 4 start-page: 536 issue: 6 year: 2023 end-page: 547 ident: CR109 article-title: Expanding NIR-II lanthanide toolboxes for improved biomedical imaging and detection publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.2c00117 – volume: 18 start-page: 1841 issue: 12 year: 2012 end-page: 1846 ident: CR15 article-title: Multifunctional in vivo vascular imaging using near-infrared II fluorescence publication-title: Nat. Med. doi: 10.1038/nm.2995 – volume: 4 start-page: 2932 issue: 6 year: 2016 end-page: 2938 ident: CR67 article-title: Recycled synthesis of whey-protein-capped lead sulfide quantum dots as the second near-infrared reporter for bioimaging application publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b00490 – volume: 61 issue: 42 year: 2022 ident: CR96 article-title: Luminescence lifetime imaging based on lanthanide nanoparticles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202209378 – volume: 12 start-page: 4478 issue: 24 year: 2022 ident: CR131 article-title: LnNP@ZIF8 Smart System for In Situ NIR-II Ratiometric Imaging-Based Tumor Drug Resistance Evaluation publication-title: Nanomaterials doi: 10.3390/nano12244478 – volume: 348 start-page: 2491 issue: 25 year: 2003 end-page: 2499 ident: CR17 article-title: Noninvasive detection of clinically occult lymph-node metastases in prostate cancer publication-title: New England J Med doi: 10.1056/NEJMoa022749 – volume: 33 start-page: 2212523 issue: 11 year: 2023 ident: CR36 article-title: Chalcogenide-based narrowband photodetectors for imaging and light communication publication-title: Adv. Func. Mater. doi: 10.1002/adfm.202212523 – volume: 468 year: 2023 ident: CR107 article-title: Amplifying oxidative stress utilizing multiband luminescence of lanthanide nanoparticles for eliciting systemic antitumor immunity publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.143827 – volume: 10 start-page: 2200694 issue: 17 year: 2022 ident: CR83 article-title: Stimuli-responsive hybrid vesicle for tumor dual-model NIR-II photoacoustic and fluorescence imaging and precise Radiotherapy publication-title: Adv. Opt. Mater doi: 10.1002/adom.202200694 – volume: 31 start-page: 1808166 issue: 11 year: 2019 ident: CR30 article-title: Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging publication-title: Adv. Mater. doi: 10.1002/adma.201808166 – volume: 15 start-page: 18672 issue: 15 year: 2023 end-page: 18684 ident: CR63 article-title: Dextran-functionalized super-nanoparticle assemblies of quantum dots for enhanced cellular immunolabeling and imaging publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c00861 – volume: 55 start-page: 2464 issue: 7 year: 2016 end-page: 2469 ident: CR120 article-title: Filtration shell mediated power density independent orthogonal excitations-emissions upconversion luminescence publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201510609 – volume: 34 start-page: 2203820 issue: 34 year: 2022 ident: CR31 article-title: Self-sacrificially degradable pseudo-semiconducting polymer nanoparticles that integrate NIR-II fluorescence bioimaging, photodynamic immunotherapy, and photo-activated chemotherapy publication-title: Adv. Mater. doi: 10.1002/adma.202203820 – volume: 39 start-page: 1065 issue: 4 year: 2022 end-page: 1071 ident: CR46 article-title: An effective method for cysteine determination based on fluorescence resonance energy system between co-doped graphene quantum dots and silver nanoparticles publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-021-0956-4 – volume: 54 start-page: 14758 issue: 49 year: 2015 end-page: 14762 ident: CR21 article-title: Fluorescence Imaging In Vivo at Wavelengths beyond 1500 nm publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201507473 – volume: 14 start-page: 214 issue: 1 year: 2022 ident: CR76 article-title: Electrospraying as a technique for the controlled synthesis of biocompatible PLGA@Ag S and PLGA@Ag S@SPION nanocarriers with drug release capability publication-title: Pharmaceutics doi: 10.3390/pharmaceutics14010214 – volume: 7 start-page: 1900045 issue: 12 year: 2019 ident: CR23 article-title: Enhancing photoacoustic intensity of upconversion nanoparticles by photoswitchable azobenzene-containing polymers for dual NIR-II and photoacoustic imaging in vivo publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900045 – volume: 10 start-page: 3824 issue: 20 year: 2022 end-page: 3833 ident: CR123 article-title: Tumor-responsive nanomedicine based on Ce -modulated up-/downconversion dual-mode emission for NIR-II imaging-guided dynamic therapy publication-title: J. Mater. Chem. B doi: 10.1039/D2TB00626J – volume: 8 start-page: 1900260 issue: 14 year: 2019 ident: CR11 article-title: Beyond 1000 nm emission wavelength: recent advances in organic and inorganic emitters for deep-tissue molecular imaging publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201900260 – volume: 9 issue: 6 year: 2023 ident: CR132 article-title: Synthesis of NIR-II Fluorescent Hybrid Ag S/ZnPc Nanoparticles for in vitro Photodynamic Therapy publication-title: ChemNanoMat doi: 10.1002/cnma.202200570 – volume: 17 start-page: 5786 issue: 23 year: 2006 ident: CR101 article-title: Synthesis of polyethylenimine/NaYF nanoparticles with upconversion fluorescence publication-title: Nanotechnology doi: 10.1088/0957-4484/17/23/013 – volume: 1031 start-page: 194 year: 2013 end-page: 200 ident: CR56 article-title: Effect of ligands on the photoluminescence properties of water-soluble PbS quantum dots publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2012.10.016 – volume: 28 start-page: 3041 issue: 9 year: 2016 end-page: 3050 ident: CR12 article-title: Highly fluorescent ribonuclease-A-encapsulated lead sulfide quantum dots for ultrasensitive fluorescence in vivo imaging in the second near-infrared window publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00208 – volume: 351 start-page: 83 issue: 1 year: 2010 end-page: 87 ident: CR88 article-title: Hydrothermal synthesis of high-quality type-II CdTe/CdSe quantum dots with near-infrared fluorescence publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2010.07.025 – volume: 49 start-page: 7584 issue: 69 year: 2013 end-page: 7586 ident: CR55 article-title: Aqueous synthesis of glutathione-coated PbS quantum dots with tunable emission for non-invasive fluorescence imaging in the second near-infrared biological window (1000–1400 nm) publication-title: Chem. Commun. doi: 10.1039/c3cc44000a – volume: 134 start-page: 202 year: 2017 end-page: 215 ident: CR24 article-title: Early tumor detection afforded by in vivo imaging of near-infrared II fluorescence publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.04.046 – volume: 18 start-page: 2202035 issue: 31 year: 2022 ident: CR10 article-title: Recent advances in near-infrared-II fluorescence imaging for deep-tissue molecular analysis and cancer diagnosis publication-title: Small doi: 10.1002/smll.202202035 – volume: 11 start-page: 116 issue: 1 year: 2022 ident: CR38 article-title: A nanotheranostic agent based on Nd -doped YVO with blood-brain-barrier permeability for NIR-II fluorescence imaging/magnetic resonance imaging and boosted sonodynamic therapy of orthotopic glioma publication-title: Light Sci. Appl. doi: 10.1038/s41377-022-00794-9 – volume: 17 start-page: 1248 issue: 2 year: 2017 end-page: 1254 ident: CR68 article-title: Quantum-confined and enhanced optical absorption of colloidal PbS quantum dots at wavelengths with expected bulk behavior publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05087 – volume: 4 start-page: 2199 issue: 1 year: 2013 ident: CR6 article-title: Rare-earth-doped biological composites as in vivo shortwave infrared reporters publication-title: Nat. Commun. doi: 10.1038/ncomms3199 – volume: 30 start-page: 1705980 issue: 14 year: 2018 ident: CR35 article-title: Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: a comparative study publication-title: Adv. Mater. doi: 10.1002/adma.201705980 – volume: 11 start-page: 1765 issue: 12 year: 2016 end-page: 1769 ident: CR113 article-title: An efficient visible and near-infrared (NIR) emitting smiii metal-organic framework (Sm-MOF) sensitized by excited-state intramolecular proton transfer (ESIPT) ligand publication-title: Chemistry – volume: 23 start-page: 11203 issue: 23 year: 2023 end-page: 11210 ident: CR124 article-title: In vivo high-contrast biomedical imaging in the second near-infrared window using ultrabright rare-earth nanoparticles publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c03698 – volume: 16 start-page: 18143 issue: 11 year: 2022 end-page: 18156 ident: CR130 article-title: Fe/Mn bimetal-doped ZIF-8-coated luminescent nanoparticles with up/downconversion dual-mode emission for tumor self-enhanced NIR-II imaging and catalytic therapy publication-title: ACS Nano doi: 10.1021/acsnano.2c05152 – volume: 20 start-page: 1980 issue: 3 year: 2020 end-page: 1991 ident: CR20 article-title: Shell-free copper indium sulfide quantum dots induce toxicity in vitro and in vivo publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b05259 – volume: 95 start-page: 15540 issue: 42 year: 2023 end-page: 15548 ident: CR50 article-title: Acid-resistant near-infrared II Ag Se quantum dots for gastrointestinal imaging publication-title: Anal. Chem. doi: 10.1021/acs.analchem.3c01967 – volume: 16 start-page: 8076 issue: 5 year: 2022 end-page: 8094 ident: CR74 article-title: Bright, magnetic NIR-II Quantum dot probe for sensitive dual-modality imaging and intensive combination therapy of cancer publication-title: ACS Nano doi: 10.1021/acsnano.2c01153 – volume: 414 start-page: 4291 issue: 15 year: 2022 end-page: 4310 ident: CR99 article-title: Near-infrared excitation/emission microscopy with lanthanide-based nanoparticles publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-022-03999-4 – volume: 24 start-page: 18643 issue: 70 year: 2018 end-page: 18647 ident: CR59 article-title: Near-infrared luminescent ternary Ag3SbS3 quantum dots by in situ conversion of Ag nanocrystals with Sb(C9H19COOS)3 publication-title: Chemistry doi: 10.1002/chem.201804800 – volume: 24 start-page: 8215 issue: 15 year: 2008 end-page: 8219 ident: CR54 article-title: Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid) publication-title: Langmuir doi: 10.1021/la800568k – volume: 41 start-page: 1273 issue: 5 year: 2024 end-page: 1305 ident: CR5 article-title: Mathematical modeling of micro-/nanoparticles transport in blood vessels: a review publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-024-00071-y – volume: 34 year: 2020 ident: CR34 article-title: Highly stable and bright AIE dots for NIR-II deciphering of living rats publication-title: Nano Today doi: 10.1016/j.nantod.2020.100893 – volume: 10 start-page: 2206579 issue: 7 year: 2023 ident: CR53 article-title: In vivo precision evaluation of lymphatic function by SWIR luminescence imaging with PbS quantum dots publication-title: Adv. Sci. doi: 10.1002/advs.202206579 – volume: 16 start-page: 42 issue: 1 year: 2018 ident: CR80 article-title: A multifunctional targeting probe with dual-mode imaging and photothermal therapy used in vivo publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-018-0367-9 – volume: 19 start-page: 2300392 issue: 35 year: 2023 ident: CR122 article-title: In vivo NIR-II fluorescence lifetime imaging of whole-body vascular using high quantum yield lanthanide-doped nanoparticles publication-title: Small doi: 10.1002/smll.202300392 – volume: 17 start-page: 9110 issue: 10 year: 2023 end-page: 9125 ident: CR39 article-title: Efficient NIR-II type-I AIE photosensitizer for mitochondria-targeted photodynamic therapy through synergistic apoptosis-ferroptosis publication-title: ACS Nano doi: 10.1021/acsnano.2c12319 – volume: 9 start-page: 2104728 issue: 12 year: 2022 ident: CR40 article-title: Biodegradable nanoprobe for NIR-II fluorescence image-guided surgery and enhanced breast cancer radiotherapy efficacy publication-title: Adv. Sci. doi: 10.1002/advs.202104728 – volume: 108 start-page: 8943 issue: 22 year: 2011 end-page: 8948 ident: CR16 article-title: Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1014501108 – volume: 14 start-page: 14770 issue: 39 year: 2022 end-page: 14778 ident: CR129 article-title: Pr doped NaYF and LiYF nanocrystals combining visible-to-UVC upconversion and NIR-to-NIR-II downconversion luminescence emissions for biomedical applications publication-title: Nanoscale doi: 10.1039/D2NR01680J – volume: 2 start-page: 1800153 issue: 6 year: 2019 ident: CR110 article-title: A general in situ growth strategy of designing theranostic NaLnF @Cu S nanoplatform for in vivo NIR-II optical imaging beyond 1500 nm and photothermal therapy publication-title: Adv. Therap. doi: 10.1002/adtp.201800153 – volume: 94 start-page: 2641 issue: 5 year: 2022 end-page: 2647 ident: CR111 article-title: Near-infrared II gold nanocluster assemblies with improved luminescence and biofate for in vivo ratiometric imaging of H S publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c05154 – volume: 6 start-page: 14289 issue: 15 year: 2023 end-page: 14299 ident: CR51 article-title: Core/Shell-structured Ag Te/Ag Se quantum dots for high-resolution in vivo fluorescence imaging in the near infrared IIb region publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.3c02256 – volume: 10 start-page: 3972 issue: 14 year: 2022 end-page: 3980 ident: CR86 article-title: An Ag S@ZIF-Van nanosystem for NIR-II imaging of bacterial-induced inflammation and treatment of wound bacterial infection publication-title: Biomater. Sci. doi: 10.1039/D2BM00550F – volume: 14 start-page: 6287 issue: 1 year: 2023 ident: CR135 article-title: Bone disease imaging through the near-infrared-II window publication-title: Nat. Commun. doi: 10.1038/s41467-023-42001-2 – volume: 11 start-page: 7754 issue: 16 year: 2019 end-page: 7760 ident: CR27 article-title: A 1064 nm excitable semiconducting polymer nanoparticle for photoacoustic imaging of gliomas publication-title: Nanoscale doi: 10.1039/C9NR00552H – volume: 61 issue: 37 year: 2022 ident: CR60 article-title: Stable monodisperse Pb Cd S quantum dots for NIR-II bioimaging by aqueous coprecipitation of bimetallic clusters publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202203851 – volume: 7 start-page: 87 year: 2018 end-page: 97 ident: CR92 article-title: Semiconducting silicon-tin alloy nanocrystals with direct bandgap behavior for photovoltaic devices publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2017.12.008 – volume: 145 start-page: 88 year: 2022 end-page: 105 ident: CR78 article-title: NIR-activated multi-hit therapeutic Ag S quantum dot-based hydrogel for healing of bacteria-infected wounds publication-title: Acta Biomater. doi: 10.1016/j.actbio.2022.04.013 – volume: 2 start-page: 20200128 issue: 6 year: 2021 ident: CR3 article-title: NIR-II fluorescence imaging for cerebrovascular diseases publication-title: View doi: 10.1002/VIW.20200128 – volume: 287 year: 2022 ident: CR69 article-title: Tumor-microenvironment triggered signal-to-noise boosting nanoprobes for NIR-IIb fluorescence imaging guided tumor surgery and NIR-II photothermal therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121636 – volume: 384 year: 2023 ident: CR133 article-title: NIR-II multiplexed fluorescence imaging of bacteria based on excitation-selective lanthanide-doped core-shell nanoparticles publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2023.133669 – volume: 474 year: 2023 ident: CR77 article-title: Harnessing Ag S quantum dots with immune adjuvant for NIR-II fluorescence imaging-guided sonodynamic immunotherapy of colon cancer publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.145685 – volume: 9 start-page: 449 issue: 1 year: 2023 end-page: 457 ident: CR93 article-title: Noninvasive gastrointestinal tract imaging using BSA-Ag Te quantum dots as a CT/NIR-II fluorescence dual-modal imaging probe in vivo publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.2c00886 – volume: 130 start-page: 9240 issue: 29 year: 2008 end-page: 9241 ident: CR58 article-title: Ternary I−III−VI quantum dots luminescent in the red to near-infrared publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8036349 – volume: 24 start-page: 1987 issue: 15 year: 2012 end-page: 1993 ident: CR103 article-title: Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides publication-title: Adv. Mater. doi: 10.1002/adma.201200431 – volume: 37 start-page: 1000 issue: 6 year: 2020 end-page: 1007 ident: CR47 article-title: Synthesis of enhanced fluorescent graphene quantum dots for catecholamine neurotransmitter sensing publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-020-0507-4 – volume: 61 issue: 14 year: 2022 ident: CR98 article-title: Tumor-microenvironment-responsive biodegradable nanoagents based on lanthanide nucleotide self-assemblies toward precise cancer therapy publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202116983 – volume: 5 start-page: 9367 issue: 7 year: 2022 end-page: 9378 ident: CR128 article-title: Tumor-responsive upconversion nanoparticles with tunable degradability and ultrabright emission for optical bioimaging publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c01670 – volume: 9 start-page: 14912 issue: 1 year: 2019 ident: CR18 article-title: Effect of gold nanoparticle size on their properties as contrast agents for computed tomography publication-title: Sci. Rep. doi: 10.1038/s41598-019-50332-8 – volume: 271 start-page: 933 issue: 5251 year: 1996 end-page: 937 ident: CR19 article-title: Semiconductor clusters, nanocrystals, and quantum dots publication-title: Science doi: 10.1126/science.271.5251.933 – volume: 9 start-page: 2104561 issue: 7 year: 2022 ident: CR115 article-title: Cyanine-doped lanthanide metal-organic frameworks for near-infrared II bioimaging publication-title: Adv. Sci. doi: 10.1002/advs.202104561 – volume: 8 start-page: 10621 issue: 10 year: 2014 end-page: 10630 ident: CR108 article-title: Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy publication-title: ACS Nano doi: 10.1021/nn505051d – volume: 3 start-page: 11511 issue: 29 year: 2013 end-page: 11514 ident: CR90 article-title: One-pot synthesis of near-infrared type II quantum dots and their in vivo applications publication-title: RSC Adv. doi: 10.1039/c3ra41153b – volume: 41 start-page: 1 issue: 1 year: 2024 end-page: 24 ident: CR14 article-title: Wearable and implantable light-emitting diodes and their biomedical applications publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-023-00006-z – volume: 9 start-page: 4370 issue: 19 year: 2018 end-page: 4380 ident: CR4 article-title: Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging publication-title: Chem. Sci. doi: 10.1039/C8SC01153B – volume: 63 issue: 7 year: 2024 ident: CR82 article-title: Topological single-stranded DNA encoding and programmable assembly of molecular nanostructures for NIR-II cancer theranostics publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202316562 – volume: 55 start-page: 9487 issue: 64 year: 2019 end-page: 9490 ident: CR28 article-title: 1300 nm absorption two-acceptor semiconducting polymer nanoparticles for NIR-II photoacoustic imaging system guided NIR-II photothermal therapy publication-title: Chem. Commun. doi: 10.1039/C9CC04196F – volume: 388 year: 2020 ident: CR91 article-title: Impact of one step alloying on the carrier relaxation and charge separation dynamics of Cd Zn Se graded nanocrystals publication-title: J. Photochem. Photobiol. A doi: 10.1016/j.jphotochem.2019.112131 – volume: 24 start-page: 2481 issue: 17 year: 2013 end-page: 2488 ident: CR13 article-title: Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag S quantum dots publication-title: Adv. Func. Mater. doi: 10.1002/adfm.201303263 – volume: 7 start-page: 4217 issue: 17 year: 2017 end-page: 4228 ident: CR25 article-title: Ultra-small pH-responsive Nd-doped NaDyF nanoagents for enhanced cancer theranostic by in situ aggregation publication-title: Theranostics doi: 10.7150/thno.21557 – volume: 35 start-page: 1800175 issue: 9 year: 2018 ident: CR72 article-title: Synthesis of NIR-emitting InAs-based core/shell quantum dots with the use of tripyrazolylarsane as arsenic precursor publication-title: Part. Part. Syst. Charact. doi: 10.1002/ppsc.201800175 – volume: 113 start-page: 5179 issue: 19 year: 2016 end-page: 5184 ident: CR22 article-title: Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1521175113 – volume: 381 year: 2023 ident: CR81 article-title: A glutathione-activated NIR-II fluorescent probe for precise localization of micrometastases publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2023.133457 – volume: 15 start-page: 1565 issue: 6 year: 2020 end-page: 1575 ident: CR79 article-title: Introducing new conjugated quantum dots for photothermal therapy in biological applications publication-title: Plasmonics doi: 10.1007/s11468-020-01171-1 – volume: 130 start-page: 5642 issue: 17 year: 2008 end-page: 5643 ident: CR102 article-title: Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800868a – volume: 34 start-page: 2316646 issue: 27 year: 2024 ident: CR64 article-title: Activatable janus nanoparticles for precise NIR-II bioimaging and synergistic cancer therapy publication-title: Adv. Func. Mater. doi: 10.1002/adfm.202316646 – volume: 16 start-page: 8509 issue: 7 year: 2024 end-page: 8517 ident: CR70 article-title: Carboxyl-modified quantum dots for NIR-IIb bone marrow imaging publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c18282 – volume: 22 start-page: 2793 issue: 7 year: 2022 end-page: 2800 ident: CR127 article-title: High spatial and temporal resolution NIR-IIb gastrointestinal imaging in mice publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04909 – volume: 6 start-page: 1303 issue: 2 year: 2023 end-page: 1314 ident: CR94 article-title: Ag Bi S quantum dots as single-component theranostic agents for second near-infrared fluorescence imaging-guided photothermal therapy publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c04944 – volume: 9 start-page: 1634 issue: 7 year: 2014 end-page: 1644 ident: CR104 article-title: Preparation of core-shell NaGdF nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.111 – volume: 10 start-page: 2200173 issue: 13 year: 2022 ident: CR37 article-title: Printed chalcogenide/metal heterostructured photodetectors for flexible near-infrared sensing publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202200173 – volume: 451 year: 2023 ident: CR61 article-title: Seeking and identifying time window of antibiotic treatment under in vivo guidance of PbS QDs clustered microspheres based NIR-II fluorescence imaging publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.138584 – volume: 280 year: 2022 ident: CR32 article-title: Electron-acceptor density adjustments for preparation conjugated polymers with NIR-II absorption and brighter NIR-II fluorescence and 1064 nm active photothermal/gas therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121319 – volume: 14 start-page: 4973 issue: 4 year: 2020 end-page: 4981 ident: CR26 article-title: High-resolution shortwave infrared imaging of vascular disorders using gold nanoclusters publication-title: ACS Nano doi: 10.1021/acsnano.0c01174 – volume: 115 start-page: 8706 year: 1993 end-page: 8715 ident: CR42 article-title: Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00072a025 – volume: 33 start-page: 595 issue: 2 year: 2023 end-page: 599 ident: CR85 article-title: Synthesis, structure and near infrared fluorescence property of a new Nd-MOF based on a triangular benzylamine ligand publication-title: J. Fluoresc. doi: 10.1007/s10895-022-03048-4 – volume: 41 start-page: 1805 issue: 6 year: 2024 end-page: 1813 ident: CR45 article-title: Synthesis of a fluorescent sensor by exploiting nitrogen-doped MXene quantum dots for the detection of dopamine publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-024-00144-y – volume: 16 start-page: 2000708 issue: 19 year: 2020 ident: CR121 article-title: Lanthanide-doped Core@Multishell nanoarchitectures: multimodal excitable upconverting/downshifting luminescence and high-level anti-counterfeiting publication-title: Small doi: 10.1002/smll.202000708 – volume: 28 start-page: 115 issue: 1 year: 2017 end-page: 123 ident: CR9 article-title: Recent advances in inorganic nanoparticle-based NIR luminescence imaging: semiconductor nanoparticles and lanthanide nanoparticles publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.6b00654 – volume: 291 year: 2022 ident: CR116 article-title: Orthogonal excitations of lanthanide nanoparticle up/down conversion emissions via switching NIR lights for in-vivo theranostics publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121873 – volume: 69 start-page: 1263 issue: 9 year: 2024 end-page: 1274 ident: CR100 article-title: NIR-II imaging-guided precise photodynamic therapy for augmenting tumor-starvation therapy by glucose metabolism reprogramming interference publication-title: Sci. Bull. doi: 10.1016/j.scib.2024.02.008 – volume: 30 start-page: 1906483 issue: 4 year: 2020 ident: CR75 article-title: Efficient near-infrared light-emitting diodes based on In(Zn)As–In(Zn)P–GaP–ZnS quantum dots publication-title: Adv. Func. Mater. doi: 10.1002/adfm.201906483 – volume: 7 start-page: 87 year: 2018 ident: 300_CR92 publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2017.12.008 – volume: 17 start-page: 5033 issue: 5 year: 2023 ident: 300_CR95 publication-title: ACS Nano doi: 10.1021/acsnano.2c12840 – volume: 34 year: 2020 ident: 300_CR34 publication-title: Nano Today doi: 10.1016/j.nantod.2020.100893 – volume: 36 start-page: 625 issue: 4 year: 2019 ident: 300_CR48 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-019-0243-9 – volume: 95 start-page: 15540 issue: 42 year: 2023 ident: 300_CR50 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.3c01967 – volume: 113 start-page: 5179 issue: 19 year: 2016 ident: 300_CR22 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1521175113 – volume: 115 start-page: 8706 year: 1993 ident: 300_CR42 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00072a025 – volume: 41 start-page: 1273 issue: 5 year: 2024 ident: 300_CR5 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-024-00071-y – volume: 468 year: 2023 ident: 300_CR107 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.143827 – volume: 10 start-page: 3824 issue: 20 year: 2022 ident: 300_CR123 publication-title: J. Mater. Chem. B doi: 10.1039/D2TB00626J – volume: 14 start-page: 214 issue: 1 year: 2022 ident: 300_CR76 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics14010214 – volume: 7 start-page: 1900045 issue: 12 year: 2019 ident: 300_CR23 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900045 – volume: 16 start-page: 18143 issue: 11 year: 2022 ident: 300_CR130 publication-title: ACS Nano doi: 10.1021/acsnano.2c05152 – volume: 9 start-page: 4370 issue: 19 year: 2018 ident: 300_CR4 publication-title: Chem. Sci. doi: 10.1039/C8SC01153B – volume: 14 start-page: 4973 issue: 4 year: 2020 ident: 300_CR26 publication-title: ACS Nano doi: 10.1021/acsnano.0c01174 – volume: 148 year: 2020 ident: 300_CR71 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2020.106714 – volume: 130 start-page: 5642 issue: 17 year: 2008 ident: 300_CR102 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800868a – volume: 451 year: 2023 ident: 300_CR61 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.138584 – volume: 388 year: 2020 ident: 300_CR91 publication-title: J. Photochem. Photobiol. A doi: 10.1016/j.jphotochem.2019.112131 – volume: 33 start-page: 595 issue: 2 year: 2023 ident: 300_CR85 publication-title: J. Fluoresc. doi: 10.1007/s10895-022-03048-4 – volume: 130 start-page: 9240 issue: 29 year: 2008 ident: 300_CR58 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8036349 – volume: 94 start-page: 2641 issue: 5 year: 2022 ident: 300_CR111 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c05154 – volume: 24 start-page: 18643 issue: 70 year: 2018 ident: 300_CR59 publication-title: Chemistry doi: 10.1002/chem.201804800 – volume: 6 start-page: 1303 issue: 2 year: 2023 ident: 300_CR94 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c04944 – volume: 11 start-page: 1765 issue: 12 year: 2016 ident: 300_CR113 publication-title: Chemistry – volume: 9 start-page: 14912 issue: 1 year: 2019 ident: 300_CR18 publication-title: Sci. Rep. doi: 10.1038/s41598-019-50332-8 – volume: 4 start-page: 2932 issue: 6 year: 2016 ident: 300_CR67 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b00490 – volume: 9 start-page: 1634 issue: 7 year: 2014 ident: 300_CR104 publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.111 – volume: 16 start-page: 2000708 issue: 19 year: 2020 ident: 300_CR121 publication-title: Small doi: 10.1002/smll.202000708 – volume: 16 start-page: 8076 issue: 5 year: 2022 ident: 300_CR74 publication-title: ACS Nano doi: 10.1021/acsnano.2c01153 – volume: 44 start-page: 842 issue: 10 year: 2011 ident: 300_CR2 publication-title: Acc. Chem. Res. doi: 10.1021/ar200084x – volume: 15 start-page: 30 year: 2023 ident: 300_CR73 publication-title: NPG Asia Mater. doi: 10.1038/s41427-023-00477-w – volume: 22 start-page: 2793 issue: 7 year: 2022 ident: 300_CR127 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04909 – volume: 16 start-page: 8509 issue: 7 year: 2024 ident: 300_CR70 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c18282 – volume: 17 start-page: 5786 issue: 23 year: 2006 ident: 300_CR101 publication-title: Nanotechnology doi: 10.1088/0957-4484/17/23/013 – volume: 474 year: 2023 ident: 300_CR77 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.145685 – volume: 61 issue: 42 year: 2022 ident: 300_CR96 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202209378 – volume: 24 start-page: 1987 issue: 15 year: 2012 ident: 300_CR103 publication-title: Adv. Mater. doi: 10.1002/adma.201200431 – volume: 16 start-page: 2001003 issue: 14 year: 2020 ident: 300_CR8 publication-title: Small doi: 10.1002/smll.202001003 – volume: 24 start-page: 8215 issue: 15 year: 2008 ident: 300_CR54 publication-title: Langmuir doi: 10.1021/la800568k – volume: 10 start-page: 2200694 issue: 17 year: 2022 ident: 300_CR83 publication-title: Adv. Opt. Mater doi: 10.1002/adom.202200694 – volume: 69 start-page: 1263 issue: 9 year: 2024 ident: 300_CR100 publication-title: Sci. Bull. doi: 10.1016/j.scib.2024.02.008 – volume: 291 year: 2022 ident: 300_CR116 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121873 – volume: 134 start-page: 202 year: 2017 ident: 300_CR24 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.04.046 – volume: 7 start-page: 2201706 issue: 7 year: 2023 ident: 300_CR52 publication-title: Small Methods doi: 10.1002/smtd.202201706 – volume: 271 start-page: 933 issue: 5251 year: 1996 ident: 300_CR19 publication-title: Science doi: 10.1126/science.271.5251.933 – volume: 414 start-page: 4291 issue: 15 year: 2022 ident: 300_CR99 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-022-03999-4 – volume: 95 start-page: 3761 issue: 7 year: 2023 ident: 300_CR117 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c04873 – volume: 8 start-page: 1443 issue: 5 year: 2015 ident: 300_CR89 publication-title: Nano Res. doi: 10.1007/s12274-014-0629-2 – volume: 21 start-page: 26 issue: 1 year: 2021 ident: 300_CR43 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c03939 – volume: 108 start-page: 8943 issue: 22 year: 2011 ident: 300_CR16 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1014501108 – volume: 287 year: 2022 ident: 300_CR69 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121636 – volume: 28 start-page: 3041 issue: 9 year: 2016 ident: 300_CR12 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00208 – volume: 7 start-page: 4217 issue: 17 year: 2017 ident: 300_CR25 publication-title: Theranostics doi: 10.7150/thno.21557 – volume: 10 start-page: 2206579 issue: 7 year: 2023 ident: 300_CR53 publication-title: Adv. Sci. doi: 10.1002/advs.202206579 – volume: 63 issue: 7 year: 2024 ident: 300_CR82 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202316562 – volume: 10 start-page: 2200173 issue: 13 year: 2022 ident: 300_CR37 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202200173 – volume: 560 start-page: 2 year: 2014 ident: 300_CR66 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2013.10.060 – volume: 54 start-page: 14758 issue: 49 year: 2015 ident: 300_CR21 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201507473 – volume: 61 issue: 14 year: 2022 ident: 300_CR98 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202116983 – volume: 8 start-page: 10621 issue: 10 year: 2014 ident: 300_CR108 publication-title: ACS Nano doi: 10.1021/nn505051d – volume: 348 start-page: 2491 issue: 25 year: 2003 ident: 300_CR17 publication-title: New England J Med doi: 10.1056/NEJMoa022749 – volume: 2 start-page: 20200128 issue: 6 year: 2021 ident: 300_CR3 publication-title: View doi: 10.1002/VIW.20200128 – volume: 35 start-page: 1800175 issue: 9 year: 2018 ident: 300_CR72 publication-title: Part. Part. Syst. Charact. doi: 10.1002/ppsc.201800175 – volume: 15 start-page: 4543 issue: 13 year: 2022 ident: 300_CR84 publication-title: Materials doi: 10.3390/ma15134543 – volume: 5 start-page: 3415 issue: 3 year: 2022 ident: 300_CR87 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c04005 – volume: 14 start-page: 6287 issue: 1 year: 2023 ident: 300_CR135 publication-title: Nat. Commun. doi: 10.1038/s41467-023-42001-2 – volume: 55 start-page: 9487 issue: 64 year: 2019 ident: 300_CR28 publication-title: Chem. Commun. doi: 10.1039/C9CC04196F – volume: 6 start-page: 14289 issue: 15 year: 2023 ident: 300_CR51 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.3c02256 – volume: 9 start-page: 3105 issue: 12 year: 2018 ident: 300_CR29 publication-title: Chem. Sci. doi: 10.1039/C8SC00206A – volume: 33 start-page: 2212523 issue: 11 year: 2023 ident: 300_CR36 publication-title: Adv. Func. Mater. doi: 10.1002/adfm.202212523 – volume: 11 start-page: 116 issue: 1 year: 2022 ident: 300_CR38 publication-title: Light Sci. Appl. doi: 10.1038/s41377-022-00794-9 – volume: 39 start-page: 1065 issue: 4 year: 2022 ident: 300_CR46 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-021-0956-4 – volume: 14 start-page: 14770 issue: 39 year: 2022 ident: 300_CR129 publication-title: Nanoscale doi: 10.1039/D2NR01680J – volume: 12 start-page: 4478 issue: 24 year: 2022 ident: 300_CR131 publication-title: Nanomaterials doi: 10.3390/nano12244478 – volume: 11 start-page: 7754 issue: 16 year: 2019 ident: 300_CR27 publication-title: Nanoscale doi: 10.1039/C9NR00552H – volume: 34 start-page: 2316646 issue: 27 year: 2024 ident: 300_CR64 publication-title: Adv. Func. Mater. doi: 10.1002/adfm.202316646 – volume: 2 start-page: 1800153 issue: 6 year: 2019 ident: 300_CR110 publication-title: Adv. Therap. doi: 10.1002/adtp.201800153 – volume: 24 start-page: 2876 issue: 9 year: 2024 ident: 300_CR125 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c05086 – volume: 4 start-page: 324 issue: 3 year: 2018 ident: 300_CR1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00574 – volume: 9 start-page: 2104728 issue: 12 year: 2022 ident: 300_CR40 publication-title: Adv. Sci. doi: 10.1002/advs.202104728 – volume: 43 year: 2022 ident: 300_CR112 publication-title: Nano Today doi: 10.1016/j.nantod.2022.101439 – volume: 15 start-page: 7400 issue: 11 year: 2015 ident: 300_CR105 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02830 – volume: 5 start-page: 9367 issue: 7 year: 2022 ident: 300_CR128 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c01670 – volume: 22 start-page: 2691 issue: 7 year: 2022 ident: 300_CR134 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04531 – volume: 17 start-page: 9110 issue: 10 year: 2023 ident: 300_CR39 publication-title: ACS Nano doi: 10.1021/acsnano.2c12319 – volume: 16 start-page: 42 issue: 1 year: 2018 ident: 300_CR80 publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-018-0367-9 – volume: 29 start-page: 1606086 issue: 19 year: 2017 ident: 300_CR118 publication-title: Adv. Mater. doi: 10.1002/adma.201606086 – volume: 23 start-page: 11203 issue: 23 year: 2023 ident: 300_CR124 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c03698 – volume: 7 start-page: 2235 issue: 8 year: 2022 ident: 300_CR119 publication-title: ACS Sensors doi: 10.1021/acssensors.2c00683 – volume: 30 start-page: 1705980 issue: 14 year: 2018 ident: 300_CR35 publication-title: Adv. Mater. doi: 10.1002/adma.201705980 – volume: 41 start-page: 1 issue: 1 year: 2024 ident: 300_CR14 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-023-00006-z – volume: 20 start-page: 1980 issue: 3 year: 2020 ident: 300_CR20 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b05259 – volume: 19 start-page: 2300392 issue: 35 year: 2023 ident: 300_CR122 publication-title: Small doi: 10.1002/smll.202300392 – volume: 3 start-page: 11511 issue: 29 year: 2013 ident: 300_CR90 publication-title: RSC Adv. doi: 10.1039/c3ra41153b – volume: 9 issue: 6 year: 2023 ident: 300_CR132 publication-title: ChemNanoMat doi: 10.1002/cnma.202200570 – volume: 4 start-page: 2199 issue: 1 year: 2013 ident: 300_CR6 publication-title: Nat. Commun. doi: 10.1038/ncomms3199 – volume: 36 start-page: 2776 issue: 6 year: 2024 ident: 300_CR65 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.3c02983 – volume: 280 year: 2022 ident: 300_CR32 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121319 – volume: 9 start-page: 449 issue: 1 year: 2023 ident: 300_CR93 publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.2c00886 – volume: 6 start-page: 13242 issue: 21 year: 2014 ident: 300_CR106 publication-title: Nanoscale doi: 10.1039/C4NR04258A – volume: 17 start-page: 1248 issue: 2 year: 2017 ident: 300_CR68 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05087 – volume: 34 start-page: 2203820 issue: 34 year: 2022 ident: 300_CR31 publication-title: Adv. Mater. doi: 10.1002/adma.202203820 – volume: 41 start-page: 1805 issue: 6 year: 2024 ident: 300_CR45 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-024-00144-y – volume: 351 start-page: 83 issue: 1 year: 2010 ident: 300_CR88 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2010.07.025 – volume: 40 start-page: 722 issue: 4 year: 2023 ident: 300_CR44 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-022-1374-y – volume: 15 start-page: 18672 issue: 15 year: 2023 ident: 300_CR63 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c00861 – volume: 431 start-page: 76 year: 2016 ident: 300_CR57 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2015.05.006 – volume: 17 start-page: 20013 issue: 20 year: 2023 ident: 300_CR49 publication-title: ACS Nano doi: 10.1021/acsnano.3c05178 – volume: 18 start-page: 2202035 issue: 31 year: 2022 ident: 300_CR10 publication-title: Small doi: 10.1002/smll.202202035 – volume: 381 year: 2023 ident: 300_CR81 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2023.133457 – volume: 10 start-page: 3972 issue: 14 year: 2022 ident: 300_CR86 publication-title: Biomater. Sci. doi: 10.1039/D2BM00550F – volume: 145 start-page: 88 year: 2022 ident: 300_CR78 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2022.04.013 – volume: 15 start-page: 1565 issue: 6 year: 2020 ident: 300_CR79 publication-title: Plasmonics doi: 10.1007/s11468-020-01171-1 – volume: 8 start-page: 1900260 issue: 14 year: 2019 ident: 300_CR11 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201900260 – volume: 5 start-page: 5093 issue: 1 year: 2014 ident: 300_CR62 publication-title: Nat. Commun. doi: 10.1038/ncomms6093 – volume: 35 start-page: 4068 issue: 10 year: 2023 ident: 300_CR41 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.3c00538 – volume: 452 year: 2023 ident: 300_CR126 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139133 – volume: 24 start-page: 2481 issue: 17 year: 2013 ident: 300_CR13 publication-title: Adv. Func. Mater. doi: 10.1002/adfm.201303263 – volume: 245 year: 2023 ident: 300_CR114 publication-title: J. Photochem. Photobiol. B. doi: 10.1016/j.jphotobiol.2023.112731 – volume: 55 start-page: 2464 issue: 7 year: 2016 ident: 300_CR120 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201510609 – volume: 30 start-page: 1906483 issue: 4 year: 2020 ident: 300_CR75 publication-title: Adv. Func. Mater. doi: 10.1002/adfm.201906483 – volume: 97 start-page: 448 issue: 5 year: 2020 ident: 300_CR7 publication-title: Cytometry A doi: 10.1002/cyto.a.23963 – volume: 11 start-page: 2200521 issue: 16 year: 2022 ident: 300_CR97 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.202200521 – volume: 1031 start-page: 194 year: 2013 ident: 300_CR56 publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2012.10.016 – volume: 4 start-page: 536 issue: 6 year: 2023 ident: 300_CR109 publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.2c00117 – volume: 18 start-page: 1841 issue: 12 year: 2012 ident: 300_CR15 publication-title: Nat. Med. doi: 10.1038/nm.2995 – volume: 33 start-page: 2006902 issue: 16 year: 2021 ident: 300_CR33 publication-title: Adv. Mater. doi: 10.1002/adma.202006902 – volume: 384 year: 2023 ident: 300_CR133 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2023.133669 – volume: 49 start-page: 7584 issue: 69 year: 2013 ident: 300_CR55 publication-title: Chem. Commun. doi: 10.1039/c3cc44000a – volume: 37 start-page: 1000 issue: 6 year: 2020 ident: 300_CR47 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-020-0507-4 – volume: 31 start-page: 1808166 issue: 11 year: 2019 ident: 300_CR30 publication-title: Adv. Mater. doi: 10.1002/adma.201808166 – volume: 61 issue: 37 year: 2022 ident: 300_CR60 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202203851 – volume: 9 start-page: 2104561 issue: 7 year: 2022 ident: 300_CR115 publication-title: Adv. Sci. doi: 10.1002/advs.202104561 – volume: 28 start-page: 115 issue: 1 year: 2017 ident: 300_CR9 publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.6b00654 |
SSID | ssj0055620 |
Score | 2.3891895 |
SecondaryResourceType | review_article |
Snippet | Fluorescence imaging finds extensive application in cellular and small animal studies due to its superior temporal and spatial resolution. However,... Fluorescence imaging fi nds extensive application in cellular and small animal studies due to its superior temporal and spatial resolution. However, fl... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3603 |
SubjectTerms | Biotechnology Catalysis Chemistry Chemistry and Materials Science Emission Fluorescence Image resolution Industrial Chemistry/Chemical Engineering Infrared imaging Luminescence Materials Science Nanoparticles Near infrared radiation Penetration depth Quantum dots Review Article Spatial resolution Wavelengths 화학공학 |
Title | Recent Developments in Near-Infrared-II Luminescence Imaging Using Inorganic Nanoparticles: Semiconductor Quantum Dots and Lanthanide Nanoparticles |
URI | https://link.springer.com/article/10.1007/s11814-024-00300-4 https://www.proquest.com/docview/3128679581 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003146631 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Korean Journal of Chemical Engineering, 2024, 41(13), 298, pp.3603-3619 |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1975-7220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055620 issn: 0256-1115 databaseCode: AFBBN dateStart: 19840301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1975-7220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055620 issn: 0256-1115 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1975-7220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055620 issn: 0256-1115 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6x2wP0wKOAWCgrS3ADV3Vi58FtW7o0UFZCsFI5WYnjQLVdB2U3F_4Gf5iZPNhuBUg9RVHsxHHGM9_E38wAvJTCxLEtPJ5aiQ6KKHweo1nEdeVlYaSsFTkFOH-cBadz-f5cnXdBYaue7d5vSTaaehPshsZIcrQpnCTzkMsB7ChyUIawM3n39cNJr4EV2vT23wrl2EPI0wXL_P0uWwZp4KpiC2te2x5trM70Hsz78bZkk8VBvc4OzM9rqRxv-kL34W4HQ9mklZsHcMu6Pbh93Fd_24PdK4kKH8IvRJdondgVitGKXTg2w3XCE1dURGPnScLO6iXx6A3pC5YsmxJIrKElsMS1FaQMQ42OrnrHyHvDPhM_v3SUeLas2Kcav3W9ZG9LfETqcnaG59-xX263Oz6C-fTky_Ep78o5cOMrueZGojyEyiKqEx7CwDD0QxXkXoaHwzQy6AyhfxSYIlC-LUSUh6HxizTwLO1WytB_DENXOvsEmJWFEb7KlcoQYpgoJWQo8sjPREz7iiMQ_TfVpst1TiU3LvUmSzNNvsbJ183kazmCV3_6_Ggzffy39QsUFb0wF5oSdNPxW6kXlUY3JMFOFCNG49jvRUl3umGlfYQEQRirSIzgdS8Zm8v_fubTmzV_Bnc8Eq6Ge7MPw3VV2-eIoNbZGBfM9OhoNu4WzhgGc2_yG4_aEGw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7aFwaKGAWChgCW7gqo7tOOFW9cGGbldCdKVyshLHgWpZB2U3l_4N_jDjPNhuBUg9RVHsxHHGM9_E38wAvBXMxLEtAppagQ4KKziN0SziugoyFUlrWe4DnM8n4WgqPl3Kyy4obNGz3fstyUZTr4Ld0BgJijaFesk8oGIDNgWLIjGAzcOPX89Oeg0s0aa3_1Z8jj2EPF2wzN_vsmaQNlxVrGHNW9ujjdU53YFpP96WbDLbr5fZvrm-lcrxri_0ELY7GEoOW7l5BPes24Wto7762y48uJGo8DH8QnSJ1oncoBgtyJUjE1wnNHFF5WnsNEnIuJ57Hr3x-oIk86YEEmloCSRxbQUpQ1Cjo6veMfI-kC-en186n3i2rMjnGr91PSfHJT4idTkZ4_l37Jfb9Y5PYHp6cnE0ol05B2q4FEtqBMqDkhZRHQsQBirFlQzzIMPDQRoZdIbQPwpNEUpuCxblShlepGFg_W6lUPwpDFzp7DMgVhSGcZlLmSHEMFHqkSHLI56x2O8rDoH131SbLte5L7nxQ6-yNPvJ1zj5upl8LYbw7k-fn22mj_-2foOiomfmSvsE3f74rdSzSqMbkmAnHyPmx7HXi5LudMNCc4QEoYplxIbwvpeM1eV_P_P53Zq_hq3RxflYj5PJ2Qu4H3hBa3g4ezBYVrV9iWhqmb3qFs9vmukQ-A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEG8EE9EHooDxFLSJvkkD3bbbXd8IcGH1vGjgEt6a3W6rBK9Llru_xH_Ymf3g7oiS-NRstrNfM-38ZueLkA-S2zR1PmK5k2CgcC9YCmoR1lVU6EQ5x0tMcP46js8m8vOlulzK4m-i3XuXZJvTgFWawuzgpvQHi8Q3UEySgX5hKKWHTK6RxxJ0NZpfk-io34sVaPf2LwtW2wPw06XN_P0aK6ppLdR-BXXec5Q2-mf4nGx2wJEetZx-QR65sEU2jvt-bVvk2VJpwW3yG_AgvA9dCgq6pVeBjkGyWRZ8jYHnLMvoaD7FyHeLK5xm06ZpEW0CCWgW2p5PlsIeDMZ1F0P3iZ5jRH0VsFRsVdPvc-DOfEpPKrhFHko6guOfQFe6VcIdMhmeXhyfsa4BA7NCyRmzEjiolQMcxiMAbloLreIyKmA4zBML5gtYNLH1sRLO86TU2gqfx5FD_6LU4iVZD1Vwrwh10lsuVKlUAaDAJjliOV4mouApegIHhPff3tiuOjk2yfhlFnWVkV8G-GUafhk5IB_vaG7a2hwPzn4PLDXX9spgSW0cf1TmujZgOGRAhFld-By7PctNt5pvjQAlHutUJXxA9nsxWJz-9z1f_9_0d-TJt5OhGWXjL2_I0whFswmc2SXrs3ru9gD-zIq3jYT_AeWu-EE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Developments+in+Near-Infrared-II+Luminescence+Imaging+Using+Inorganic+Nanoparticles%3A+Semiconductor+Quantum+Dots+and+Lanthanide+Nanoparticles&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Jeong+Geun+Kim&rft.au=Hyeon+Jung+Yu&rft.au=Ruda+Lee%28Institute+of+Industrial+Nanomaterials+%2C+Kumamoto+University&rft.au=International+Research+Organization+for+Advanced+Science+and+Technology+%2C+Kumamoto+University&rft.date=2024-12-01&rft.pub=%ED%95%9C%EA%B5%AD%ED%99%94%ED%95%99%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=0256-1115&rft.eissn=1975-7220&rft.spage=3603&rft.epage=3619&rft_id=info:doi/10.1007%2Fs11814-024-00300-4&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10654625 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon |