Projection Design for Statistical Compressive Sensing: A Tight Frame Based Approach

In this paper, we develop a framework to design sensing matrices for compressive sensing applications that lead to good mean squared error (MSE) performance subject to sensing cost constraints. By capitalizing on the MSE of the oracle estimator, whose performance has been shown to act as a benchmark...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 61; no. 8; pp. 2016 - 2029
Main Authors Wei Chen, Rodrigues, M. R. D., Wassell, I. J.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2013.2245661

Cover

Abstract In this paper, we develop a framework to design sensing matrices for compressive sensing applications that lead to good mean squared error (MSE) performance subject to sensing cost constraints. By capitalizing on the MSE of the oracle estimator, whose performance has been shown to act as a benchmark to the performance of standard sparse recovery algorithms, we use the fact that a Parseval tight frame is the closest design - in the Frobenius norm sense - to the solution of a convex relaxation of the optimization problem that relates to the minimization of the MSE of the oracleestimator with respect to the equivalent sensing matrix, subject to sensing energy constraints. Based on this result, we then propose two sensing matrix designs that exhibit two key properties: the designs are closed form rather than iterative; the designs exhibit superior performance in relation to other designs in the literature, which is revealed by our numerical investigation in various scenarios with different sparse recovery algorithms including basis pursuit de-noise (BPDN), the Dantzig selector and orthogonal matching pursuit (OMP).
AbstractList In this paper, we develop a framework to design sensing matrices for compressive sensing applications that lead to good mean squared error (MSE) performance subject to sensing cost constraints. By capitalizing on the MSE of the oracle estimator, whose performance has been shown to act as a benchmark to the performance of standard sparse recovery algorithms, we use the fact that a Parseval tight frame is the closest design - in the Frobenius norm sense - to the solution of a convex relaxation of the optimization problem that relates to the minimization of the MSE of the oracleestimator with respect to the equivalent sensing matrix, subject to sensing energy constraints. Based on this result, we then propose two sensing matrix designs that exhibit two key properties: the designs are closed form rather than iterative; the designs exhibit superior performance in relation to other designs in the literature, which is revealed by our numerical investigation in various scenarios with different sparse recovery algorithms including basis pursuit de-noise (BPDN), the Dantzig selector and orthogonal matching pursuit (OMP).
In this paper, we develop a framework to design sensing matrices for compressive sensing applications that lead to good mean squared error (MSE) performance subject to sensing cost constraints. By capitalizing on the MSE of the oracle estimator, whose performance has been shown to act as a benchmark to the performance of standard sparse recovery algorithms, we use the fact that a Parseval tight frame is the closest design - in the Frobenius norm sense - to the solution of a convex relaxation of the optimization problem that relates to the minimization of the MSE of the oracleestimator with respect to the equivalent sensing matrix, subject to sensing energy constraints. Based on this result, we then propose two sensing matrix designs that exhibit two key properties: i) the designs are closed form rather than iterative; ii) the designs exhibit superior performance in relation to other designs in the literature, which is revealed by our numerical investigation in various scenarios with different sparse recovery algorithms including basis pursuit de-noise (BPDN), the Dantzig selector and orthogonal matching pursuit (OMP).
Author Rodrigues, M. R. D.
Wei Chen
Wassell, I. J.
Author_xml – sequence: 1
  surname: Wei Chen
  fullname: Wei Chen
  email: wc253@cam.ac.uk
  organization: Comput. Lab., Univ. of Cambridge, Cambridge, UK
– sequence: 2
  givenname: M. R. D.
  surname: Rodrigues
  fullname: Rodrigues, M. R. D.
  email: m.rodrigues@ucl.ac.uk
  organization: Dept. of Electron. & Electr. Eng., Univ. Coll. London, London, UK
– sequence: 3
  givenname: I. J.
  surname: Wassell
  fullname: Wassell, I. J.
  email: ijw24@cam.ac.uk
  organization: Comput. Lab., Univ. of Cambridge, Cambridge, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27251981$$DView record in Pascal Francis
BookMark eNp9kUtrGzEUhUVJoHl0X-hGUArdjKOr50x3rpu0gUADdqE7Ict3HJmx5ErjQv99ZOx2kUVX9y6-c-7jXJKzmCIS8hbYBIB1N4v544QzEBPOpdIaXpEL6CQ0TBp9VnumRKNa8_M1uSxlwxhI2ekLMn_MaYN-DCnSL1jCOtI-ZTof3RjKGLwb6CxtdxlLCb-RzjGWENef6JQuwvpppHfZbZF-dgVXdLrb5eT80zU5791Q8M2pXpEfd7eL2bfm4fvX-9n0ofFCybHxXC01W_ZaG6NY64RZcqEBli0zvQPfCsUMGNAr4XkLPayU6RUKrzqp6_Liinw8-taxv_ZYRrsNxeMwuIhpXywIWclWmQP6_gW6Sfsc63aV4kqA0B2v1IcT5Uq9vM8u-lDsLoety38sN1xB10Ll9JHzOZWSsbc-HB6W4phdGCwwe8jE1kzsIRN7yqQK2QvhX-__SN4dJQER_-FaKiONEc-ouZYB
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2930236
crossref_primary_10_1109_LSP_2019_2897458
crossref_primary_10_1109_TCI_2018_2884291
crossref_primary_10_1109_TSP_2016_2521608
crossref_primary_10_1137_23M1625846
crossref_primary_10_1049_iet_spr_2017_0537
crossref_primary_10_1007_s11704_015_3326_8
crossref_primary_10_1016_j_dsp_2019_05_014
crossref_primary_10_1016_j_knosys_2023_110466
crossref_primary_10_1016_j_sigpro_2018_05_021
crossref_primary_10_1364_OE_24_009869
crossref_primary_10_1186_s13638_016_0730_1
crossref_primary_10_1109_TVT_2019_2929095
crossref_primary_10_1109_TSP_2015_2425809
crossref_primary_10_1016_j_dsp_2022_103426
crossref_primary_10_1109_TSP_2017_2699639
crossref_primary_10_1109_ACCESS_2020_2974927
crossref_primary_10_1016_j_sigpro_2017_05_019
crossref_primary_10_1109_TIP_2015_2479474
crossref_primary_10_3390_s17010105
crossref_primary_10_1016_j_sigpro_2016_11_024
crossref_primary_10_1109_LSP_2018_2809693
crossref_primary_10_1155_2018_8738613
crossref_primary_10_1002_dac_3576
crossref_primary_10_1109_ACCESS_2019_2923646
crossref_primary_10_1109_ACCESS_2019_2947012
crossref_primary_10_1109_TSP_2013_2253776
crossref_primary_10_1016_j_memori_2023_100060
crossref_primary_10_1109_JSTSP_2024_3511403
crossref_primary_10_1016_j_sigpro_2020_107756
crossref_primary_10_1049_iet_com_2017_0994
crossref_primary_10_1109_TVT_2015_2400635
crossref_primary_10_1109_TSP_2016_2585123
crossref_primary_10_1109_TVT_2024_3476385
crossref_primary_10_1109_MCAS_2019_2961727
crossref_primary_10_12720_jcm_8_7_456_462
crossref_primary_10_1109_TCSVT_2016_2540073
crossref_primary_10_1364_AO_58_000B28
crossref_primary_10_1186_s13638_018_1079_4
crossref_primary_10_1109_TIT_2014_2310482
crossref_primary_10_1109_TSP_2018_2807411
crossref_primary_10_1016_j_dsp_2017_10_023
crossref_primary_10_1016_j_sigpro_2019_02_004
crossref_primary_10_1109_LSP_2017_2736159
crossref_primary_10_1016_j_sigpro_2018_05_012
crossref_primary_10_1016_j_patrec_2016_04_014
crossref_primary_10_1109_LSP_2013_2278019
crossref_primary_10_3390_s150819880
crossref_primary_10_1109_TSP_2015_2399864
Cites_doi 10.1109/TIT.2011.2165799
10.1109/TIT.2005.862083
10.1109/TIT.2008.920190
10.1137/S003614450037906X
10.1109/TIT.2010.2040894
10.1109/TSP.2009.2025154
10.1109/TSP.2007.900760
10.1155/2010/560349
10.1002/cpa.20294
10.1109/TIT.2005.858979
10.1109/TSP.2010.2052460
10.1002/mrm.21391
10.1016/j.acha.2010.10.002
10.1109/LSP.2011.2173675
10.1109/TSP.2011.2159211
10.1109/TBME.2004.826702
10.1214/009053606000001523
10.1016/j.crma.2008.03.014
10.1109/TIT.2012.2210860
10.1109/TIP.2006.881969
10.1109/TSP.2006.887109
10.1109/JSTSP.2011.2159773
10.1109/41.847906
10.1109/JSTSP.2010.2043161
10.1109/TIT.2005.860430
10.1109/78.553473
10.1016/S1063-5203(03)00023-X
10.1109/TIP.2011.2156801
10.1109/TSP.2009.2017570
10.1109/TIP.2011.2177989
10.1109/TSP.2011.2160633
10.1109/TWC.2012.081612.111908
10.1109/TSP.2010.2045423
10.1109/TSP.2010.2041594
10.1109/TIT.2009.2027565
10.1109/TSP.2012.2188520
10.1109/TSP.2007.914345
10.1109/TIP.2009.2022459
10.1016/j.acha.2007.09.001
10.1109/TIT.2006.871582
10.1109/TSP.2005.859314
10.1109/TIT.2010.2048466
10.1109/TSP.2010.2070796
10.1137/120878380
10.1109/TSP.2009.2040018
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013
Copyright_xml – notice: 2014 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TSP.2013.2245661
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 2029
ExternalDocumentID 2941374901
27251981
10_1109_TSP_2013_2245661
6457477
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AJQPL
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
53G
5VS
AAYXX
ABFSI
ACKIV
AETIX
AI.
AIBXA
AKJIK
ALLEH
CITATION
H~9
ICLAB
IFJZH
VH1
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c354t-c25b60bf6677508a37b23611b807fa1c835071716d3c281f1d57f5e3c59464963
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Wed Oct 01 13:48:54 EDT 2025
Mon Jun 30 10:21:19 EDT 2025
Mon Jul 21 09:12:19 EDT 2025
Thu Apr 24 23:02:08 EDT 2025
Wed Oct 01 03:34:10 EDT 2025
Tue Aug 26 16:46:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Performance evaluation
Overcomplete dictionary
Iterative method
Performance standard
Algorithm
Optimization
Mean square error
tight frames
Relaxation
Compressive sensing
Estimator efficiency
Matching pursuit
Signal processing
Sparse representation
Oracle
Compressed sensing
sensing projection design
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-c25b60bf6677508a37b23611b807fa1c835071716d3c281f1d57f5e3c59464963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1325313692
PQPubID 85478
PageCount 14
ParticipantIDs ieee_primary_6457477
pascalfrancis_primary_27251981
proquest_miscellaneous_1349468576
proquest_journals_1325313692
crossref_citationtrail_10_1109_TSP_2013_2245661
crossref_primary_10_1109_TSP_2013_2245661
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref52
ref11
ref10
ref17
ref16
ref19
ref18
davenport (ref27) 2012
danielyan (ref15) 2010
ref51
ref50
ref46
ref45
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
danielyan (ref13) 2008
ref35
ref34
ref37
ref36
ref30
ref33
ref32
ref2
ref1
ref39
cands (ref47) 2012
gribonval (ref31) 2010; 56
egiazarian (ref14) 2007
kim (ref38) 2009; 57
ref24
ref23
ref26
ref25
ref20
ye (ref48) 2010; 11
ref22
ref21
ref28
schniter (ref44) 2009
ref29
References_xml – ident: ref49
  doi: 10.1109/TIT.2011.2165799
– ident: ref1
  doi: 10.1109/TIT.2005.862083
– ident: ref25
  doi: 10.1109/TIT.2008.920190
– ident: ref35
  doi: 10.1137/S003614450037906X
– ident: ref5
  doi: 10.1109/TIT.2010.2040894
– ident: ref29
  doi: 10.1109/TSP.2009.2025154
– ident: ref16
  doi: 10.1109/TSP.2007.900760
– ident: ref18
  doi: 10.1155/2010/560349
– volume: 11
  start-page: 3519
  year: 2010
  ident: ref48
  article-title: Rate minimaxity of the lasso and dantzig selector for the <tex Notation="TeX">$\ell_{q}$</tex> loss in <tex Notation="TeX">$\ell_{r}$</tex> balls
  publication-title: J Mach Learn Res
– start-page: 123
  year: 2010
  ident: ref15
  publication-title: Super-Resolution Imaging
– ident: ref50
  doi: 10.1002/cpa.20294
– ident: ref37
  doi: 10.1109/TIT.2005.858979
– ident: ref42
  doi: 10.1109/TSP.2010.2052460
– ident: ref3
  doi: 10.1002/mrm.21391
– start-page: 549
  year: 2007
  ident: ref14
  article-title: Compressed sensing image reconstruction via recursive spatially adaptive filtering
  publication-title: Proc IEEE Int Conf Image Process (ICIP)
– ident: ref26
  doi: 10.1016/j.acha.2010.10.002
– ident: ref24
  doi: 10.1109/LSP.2011.2173675
– ident: ref19
  doi: 10.1109/TSP.2011.2159211
– ident: ref39
  doi: 10.1109/TBME.2004.826702
– ident: ref23
  doi: 10.1214/009053606000001523
– ident: ref36
  doi: 10.1016/j.crma.2008.03.014
– ident: ref7
  doi: 10.1109/TIT.2012.2210860
– ident: ref46
  doi: 10.1109/TIP.2006.881969
– year: 2012
  ident: ref27
  publication-title: Signal space cosamp for sparse recovery with redundant dictionaries
– ident: ref43
  doi: 10.1109/TSP.2006.887109
– ident: ref11
  doi: 10.1109/JSTSP.2011.2159773
– ident: ref40
  doi: 10.1109/41.847906
– ident: ref22
  doi: 10.1109/JSTSP.2010.2043161
– ident: ref21
  doi: 10.1109/TIT.2005.860430
– ident: ref28
  doi: 10.1109/78.553473
– ident: ref52
  doi: 10.1016/S1063-5203(03)00023-X
– ident: ref9
  doi: 10.1109/TIP.2011.2156801
– volume: 57
  start-page: 2604
  year: 2009
  ident: ref38
  article-title: Underdetermined blind source separation based on subspace representation
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2009.2017570
– ident: ref10
  doi: 10.1109/TIP.2011.2177989
– ident: ref34
  doi: 10.1109/TSP.2011.2160633
– ident: ref4
  doi: 10.1109/TWC.2012.081612.111908
– ident: ref41
  doi: 10.1109/TSP.2010.2045423
– year: 2009
  ident: ref44
  publication-title: Fast Bayesian matching pursuit Model uncertainty and parameter estimation for sparse linear models
– ident: ref30
  doi: 10.1109/TSP.2010.2041594
– ident: ref45
  doi: 10.1109/TIT.2009.2027565
– year: 2012
  ident: ref47
  article-title: How well can we estimate a sparse vector?
  publication-title: Appl Comput Harmon Anal
– year: 2008
  ident: ref13
  article-title: Image upsampling via spatially adaptive block-matching filtering
  publication-title: 16th Eur Signal Process Conf (EUSIPCO)
– ident: ref12
  doi: 10.1109/TSP.2012.2188520
– ident: ref6
  doi: 10.1109/TSP.2007.914345
– ident: ref17
  doi: 10.1109/TIP.2009.2022459
– ident: ref51
  doi: 10.1016/j.acha.2007.09.001
– ident: ref2
  doi: 10.1109/TIT.2006.871582
– ident: ref32
  doi: 10.1109/TSP.2005.859314
– volume: 56
  start-page: 3523
  year: 2010
  ident: ref31
  article-title: Dictionary identification-sparse matrix-factorization via <tex Notation="TeX">$\ell_{1}$</tex> -minimization
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2010.2048466
– ident: ref8
  doi: 10.1109/TSP.2010.2070796
– ident: ref20
  doi: 10.1137/120878380
– ident: ref33
  doi: 10.1109/TSP.2009.2040018
SSID ssj0014496
Score 2.4111984
Snippet In this paper, we develop a framework to design sensing matrices for compressive sensing applications that lead to good mean squared error (MSE) performance...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2016
SubjectTerms Algorithm design and analysis
Algorithms
Applied sciences
Compressed sensing
Compressive sensing
Detection
Detection, estimation, filtering, equalization, prediction
Dictionaries
Exact sciences and technology
Exact solutions
Frames
Image reconstruction
Information, signal and communications theory
Mathematical analysis
Matrices
Optimization
overcomplete dictionary
Recovery
Sampling, quantization
sensing projection design
Sensors
Signal and communications theory
Signal, noise
Sparse matrices
sparse representation
Studies
Telecommunications and information theory
tight frames
Vectors
Title Projection Design for Statistical Compressive Sensing: A Tight Frame Based Approach
URI https://ieeexplore.ieee.org/document/6457477
https://www.proquest.com/docview/1325313692
https://www.proquest.com/docview/1349468576
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT-swDLeAE-_AN2J8KUhcnvS6tU3zUW7jY0JIIKQNabeqTVIOoA7BxoG_HjvtKuAhxK2SE7W148SOf7YBjg0SqNwkNTRRQSJ1TiqFm2GeypSXcS5DShS-vpGXd8nVWIwX4F-bC-Oc8-Az16VHH8u3EzOjq7KeTARav2oRFpWWda5WGzFIEt-LC80FHgitxvOQZJj2RsNbwnDxbkxRPhl9OoJ8TxVCROYvyJSy7mbx38bsT5vBKlzPv7MGmTx0Z9Oia96-lHD87Y-swUpjdrJ-vU7WYcFVG_DnQzHCTRje1pcyKCh27nEdDA1aRtaoL-aM02nz8LjZV8eGhHyv7k9Yn43IwWcDgnmxUzwVLes3lcq34G5wMTq7DJqWC4HhIpkGJhaFDItSSoWmhM65Kqg6S1ToUJV5ZNBeIwcwkpabWEdlZIUqheNGpIlECfBtWKomldsBFitUdWu0FkgpQp1ajr-stLWyVLbIO9CbSyEzTT1yaovxmHm_JEwzlFtGcssauXXgbzvjqa7F8cPYTWJ7O67heAcOPwm6pceKUng1ztufSz5rtPklQ48dtyou07gDRy0Z9ZCCK3nlJjMakyALNLpvu9-_eg-WY99Kg1A_-7A0fZ65AzRopsWhX8nvAVHvDw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9NADLfGeIA9bMCY1rGNQ-IFibRJ7jO8dUBVYJ0mtZP6FiV3Fx6Y0mlr97C_fvYljTZAiLdIvlMS-3xnn3-2Ad5bJFC5SWpooiOhTEEqhZthkamMV2mhYkoUnpyp8YX4PpfzDfjY5cJ47wP4zPfpMcTy3cKu6KpsoIRE61c_gadSCCGbbK0uZiBE6MaFBgOPpNHzdVAyzgaz6TmhuHg_pTifSh4dQqGrCmEiixtkS9X0s_hjaw7nzWgHJusvbWAmv_qrZdm3d78VcfzfX3kB263hyYbNSnkJG75-BVsPyhHuwvS8uZZBUbEvAdnB0KRlZI-Gcs44nbaPgJy99WxK2Pf65yc2ZDNy8dmIgF7sBM9Fx4ZtrfLXcDH6Ovs8jtqmC5HlUiwjm8pSxWWllEZjwhRcl1SfJSlNrKsisWixkQuYKMdtapIqcVJX0nMrM6FQAnwPNutF7feBpRqV3VljJFLK2GSO4y9r45yqtCuLHgzWUshtW5GcGmNc5sEzibMc5ZaT3PJWbj340M24aqpx_GPsLrG9G9dyvAfHjwTd0VNNSbwG5x2uJZ-3-nyTo8-OmxVXWdqDdx0ZNZHCK0XtFysaI5AFBh24g7-_-i08G88mp_npt7Mfb-B5GhprEAboEDaX1yt_hObNsjwOq_oeq6jyXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Projection+Design+for+Statistical+Compressive+Sensing%3A+A+Tight+Frame+Based+Approach&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Chen%2C+Wei&rft.au=Rodrigues%2C+Miguel+R.+D.&rft.au=Wassell%2C+Ian+J.&rft.date=2013-04-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=61&rft.issue=8&rft.spage=2016&rft.epage=2029&rft_id=info:doi/10.1109%2FTSP.2013.2245661&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2013_2245661
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon