Projection Design for Statistical Compressive Sensing: A Tight Frame Based Approach
In this paper, we develop a framework to design sensing matrices for compressive sensing applications that lead to good mean squared error (MSE) performance subject to sensing cost constraints. By capitalizing on the MSE of the oracle estimator, whose performance has been shown to act as a benchmark...
        Saved in:
      
    
          | Published in | IEEE transactions on signal processing Vol. 61; no. 8; pp. 2016 - 2029 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York, NY
          IEEE
    
        01.04.2013
     Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1053-587X 1941-0476  | 
| DOI | 10.1109/TSP.2013.2245661 | 
Cover
| Abstract | In this paper, we develop a framework to design sensing matrices for compressive sensing applications that lead to good mean squared error (MSE) performance subject to sensing cost constraints. By capitalizing on the MSE of the oracle estimator, whose performance has been shown to act as a benchmark to the performance of standard sparse recovery algorithms, we use the fact that a Parseval tight frame is the closest design - in the Frobenius norm sense - to the solution of a convex relaxation of the optimization problem that relates to the minimization of the MSE of the oracleestimator with respect to the equivalent sensing matrix, subject to sensing energy constraints. Based on this result, we then propose two sensing matrix designs that exhibit two key properties: the designs are closed form rather than iterative; the designs exhibit superior performance in relation to other designs in the literature, which is revealed by our numerical investigation in various scenarios with different sparse recovery algorithms including basis pursuit de-noise (BPDN), the Dantzig selector and orthogonal matching pursuit (OMP). | 
    
|---|---|
| AbstractList | In this paper, we develop a framework to design sensing matrices for compressive sensing applications that lead to good mean squared error (MSE) performance subject to sensing cost constraints. By capitalizing on the MSE of the oracle estimator, whose performance has been shown to act as a benchmark to the performance of standard sparse recovery algorithms, we use the fact that a Parseval tight frame is the closest design - in the Frobenius norm sense - to the solution of a convex relaxation of the optimization problem that relates to the minimization of the MSE of the oracleestimator with respect to the equivalent sensing matrix, subject to sensing energy constraints. Based on this result, we then propose two sensing matrix designs that exhibit two key properties: the designs are closed form rather than iterative; the designs exhibit superior performance in relation to other designs in the literature, which is revealed by our numerical investigation in various scenarios with different sparse recovery algorithms including basis pursuit de-noise (BPDN), the Dantzig selector and orthogonal matching pursuit (OMP). In this paper, we develop a framework to design sensing matrices for compressive sensing applications that lead to good mean squared error (MSE) performance subject to sensing cost constraints. By capitalizing on the MSE of the oracle estimator, whose performance has been shown to act as a benchmark to the performance of standard sparse recovery algorithms, we use the fact that a Parseval tight frame is the closest design - in the Frobenius norm sense - to the solution of a convex relaxation of the optimization problem that relates to the minimization of the MSE of the oracleestimator with respect to the equivalent sensing matrix, subject to sensing energy constraints. Based on this result, we then propose two sensing matrix designs that exhibit two key properties: i) the designs are closed form rather than iterative; ii) the designs exhibit superior performance in relation to other designs in the literature, which is revealed by our numerical investigation in various scenarios with different sparse recovery algorithms including basis pursuit de-noise (BPDN), the Dantzig selector and orthogonal matching pursuit (OMP).  | 
    
| Author | Rodrigues, M. R. D. Wei Chen Wassell, I. J.  | 
    
| Author_xml | – sequence: 1 surname: Wei Chen fullname: Wei Chen email: wc253@cam.ac.uk organization: Comput. Lab., Univ. of Cambridge, Cambridge, UK – sequence: 2 givenname: M. R. D. surname: Rodrigues fullname: Rodrigues, M. R. D. email: m.rodrigues@ucl.ac.uk organization: Dept. of Electron. & Electr. Eng., Univ. Coll. London, London, UK – sequence: 3 givenname: I. J. surname: Wassell fullname: Wassell, I. J. email: ijw24@cam.ac.uk organization: Comput. Lab., Univ. of Cambridge, Cambridge, UK  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27251981$$DView record in Pascal Francis | 
    
| BookMark | eNp9kUtrGzEUhUVJoHl0X-hGUArdjKOr50x3rpu0gUADdqE7Ict3HJmx5ErjQv99ZOx2kUVX9y6-c-7jXJKzmCIS8hbYBIB1N4v544QzEBPOpdIaXpEL6CQ0TBp9VnumRKNa8_M1uSxlwxhI2ekLMn_MaYN-DCnSL1jCOtI-ZTof3RjKGLwb6CxtdxlLCb-RzjGWENef6JQuwvpppHfZbZF-dgVXdLrb5eT80zU5791Q8M2pXpEfd7eL2bfm4fvX-9n0ofFCybHxXC01W_ZaG6NY64RZcqEBli0zvQPfCsUMGNAr4XkLPayU6RUKrzqp6_Liinw8-taxv_ZYRrsNxeMwuIhpXywIWclWmQP6_gW6Sfsc63aV4kqA0B2v1IcT5Uq9vM8u-lDsLoety38sN1xB10Ll9JHzOZWSsbc-HB6W4phdGCwwe8jE1kzsIRN7yqQK2QvhX-__SN4dJQER_-FaKiONEc-ouZYB | 
    
| CODEN | ITPRED | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2930236 crossref_primary_10_1109_LSP_2019_2897458 crossref_primary_10_1109_TCI_2018_2884291 crossref_primary_10_1109_TSP_2016_2521608 crossref_primary_10_1137_23M1625846 crossref_primary_10_1049_iet_spr_2017_0537 crossref_primary_10_1007_s11704_015_3326_8 crossref_primary_10_1016_j_dsp_2019_05_014 crossref_primary_10_1016_j_knosys_2023_110466 crossref_primary_10_1016_j_sigpro_2018_05_021 crossref_primary_10_1364_OE_24_009869 crossref_primary_10_1186_s13638_016_0730_1 crossref_primary_10_1109_TVT_2019_2929095 crossref_primary_10_1109_TSP_2015_2425809 crossref_primary_10_1016_j_dsp_2022_103426 crossref_primary_10_1109_TSP_2017_2699639 crossref_primary_10_1109_ACCESS_2020_2974927 crossref_primary_10_1016_j_sigpro_2017_05_019 crossref_primary_10_1109_TIP_2015_2479474 crossref_primary_10_3390_s17010105 crossref_primary_10_1016_j_sigpro_2016_11_024 crossref_primary_10_1109_LSP_2018_2809693 crossref_primary_10_1155_2018_8738613 crossref_primary_10_1002_dac_3576 crossref_primary_10_1109_ACCESS_2019_2923646 crossref_primary_10_1109_ACCESS_2019_2947012 crossref_primary_10_1109_TSP_2013_2253776 crossref_primary_10_1016_j_memori_2023_100060 crossref_primary_10_1109_JSTSP_2024_3511403 crossref_primary_10_1016_j_sigpro_2020_107756 crossref_primary_10_1049_iet_com_2017_0994 crossref_primary_10_1109_TVT_2015_2400635 crossref_primary_10_1109_TSP_2016_2585123 crossref_primary_10_1109_TVT_2024_3476385 crossref_primary_10_1109_MCAS_2019_2961727 crossref_primary_10_12720_jcm_8_7_456_462 crossref_primary_10_1109_TCSVT_2016_2540073 crossref_primary_10_1364_AO_58_000B28 crossref_primary_10_1186_s13638_018_1079_4 crossref_primary_10_1109_TIT_2014_2310482 crossref_primary_10_1109_TSP_2018_2807411 crossref_primary_10_1016_j_dsp_2017_10_023 crossref_primary_10_1016_j_sigpro_2019_02_004 crossref_primary_10_1109_LSP_2017_2736159 crossref_primary_10_1016_j_sigpro_2018_05_012 crossref_primary_10_1016_j_patrec_2016_04_014 crossref_primary_10_1109_LSP_2013_2278019 crossref_primary_10_3390_s150819880 crossref_primary_10_1109_TSP_2015_2399864  | 
    
| Cites_doi | 10.1109/TIT.2011.2165799 10.1109/TIT.2005.862083 10.1109/TIT.2008.920190 10.1137/S003614450037906X 10.1109/TIT.2010.2040894 10.1109/TSP.2009.2025154 10.1109/TSP.2007.900760 10.1155/2010/560349 10.1002/cpa.20294 10.1109/TIT.2005.858979 10.1109/TSP.2010.2052460 10.1002/mrm.21391 10.1016/j.acha.2010.10.002 10.1109/LSP.2011.2173675 10.1109/TSP.2011.2159211 10.1109/TBME.2004.826702 10.1214/009053606000001523 10.1016/j.crma.2008.03.014 10.1109/TIT.2012.2210860 10.1109/TIP.2006.881969 10.1109/TSP.2006.887109 10.1109/JSTSP.2011.2159773 10.1109/41.847906 10.1109/JSTSP.2010.2043161 10.1109/TIT.2005.860430 10.1109/78.553473 10.1016/S1063-5203(03)00023-X 10.1109/TIP.2011.2156801 10.1109/TSP.2009.2017570 10.1109/TIP.2011.2177989 10.1109/TSP.2011.2160633 10.1109/TWC.2012.081612.111908 10.1109/TSP.2010.2045423 10.1109/TSP.2010.2041594 10.1109/TIT.2009.2027565 10.1109/TSP.2012.2188520 10.1109/TSP.2007.914345 10.1109/TIP.2009.2022459 10.1016/j.acha.2007.09.001 10.1109/TIT.2006.871582 10.1109/TSP.2005.859314 10.1109/TIT.2010.2048466 10.1109/TSP.2010.2070796 10.1137/120878380 10.1109/TSP.2009.2040018  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2014 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013  | 
    
| Copyright_xml | – notice: 2014 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013  | 
    
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3  | 
    
| DOI | 10.1109/TSP.2013.2245661 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering  | 
    
| DatabaseTitleList | Technology Research Database Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Applied Sciences  | 
    
| EISSN | 1941-0476 | 
    
| EndPage | 2029 | 
    
| ExternalDocumentID | 2941374901 27251981 10_1109_TSP_2013_2245661 6457477  | 
    
| Genre | orig-research | 
    
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AGSQL AHBIQ AJQPL AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 3EH 53G 5VS AAYXX ABFSI ACKIV AETIX AI. AIBXA AKJIK ALLEH CITATION H~9 ICLAB IFJZH VH1 IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3  | 
    
| ID | FETCH-LOGICAL-c354t-c25b60bf6677508a37b23611b807fa1c835071716d3c281f1d57f5e3c59464963 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1053-587X | 
    
| IngestDate | Wed Oct 01 13:48:54 EDT 2025 Mon Jun 30 10:21:19 EDT 2025 Mon Jul 21 09:12:19 EDT 2025 Thu Apr 24 23:02:08 EDT 2025 Wed Oct 01 03:34:10 EDT 2025 Tue Aug 26 16:46:28 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Keywords | Performance evaluation Overcomplete dictionary Iterative method Performance standard Algorithm Optimization Mean square error tight frames Relaxation Compressive sensing Estimator efficiency Matching pursuit Signal processing Sparse representation Oracle Compressed sensing sensing projection design  | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c354t-c25b60bf6677508a37b23611b807fa1c835071716d3c281f1d57f5e3c59464963 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23  | 
    
| PQID | 1325313692 | 
    
| PQPubID | 85478 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | ieee_primary_6457477 pascalfrancis_primary_27251981 proquest_miscellaneous_1349468576 proquest_journals_1325313692 crossref_citationtrail_10_1109_TSP_2013_2245661 crossref_primary_10_1109_TSP_2013_2245661  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2013-04-01 | 
    
| PublicationDateYYYYMMDD | 2013-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York, NY | 
    
| PublicationPlace_xml | – name: New York, NY – name: New York  | 
    
| PublicationTitle | IEEE transactions on signal processing | 
    
| PublicationTitleAbbrev | TSP | 
    
| PublicationYear | 2013 | 
    
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref12 ref52 ref11 ref10 ref17 ref16 ref19 ref18 davenport (ref27) 2012 danielyan (ref15) 2010 ref51 ref50 ref46 ref45 ref42 ref41 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 danielyan (ref13) 2008 ref35 ref34 ref37 ref36 ref30 ref33 ref32 ref2 ref1 ref39 cands (ref47) 2012 gribonval (ref31) 2010; 56 egiazarian (ref14) 2007 kim (ref38) 2009; 57 ref24 ref23 ref26 ref25 ref20 ye (ref48) 2010; 11 ref22 ref21 ref28 schniter (ref44) 2009 ref29  | 
    
| References_xml | – ident: ref49 doi: 10.1109/TIT.2011.2165799 – ident: ref1 doi: 10.1109/TIT.2005.862083 – ident: ref25 doi: 10.1109/TIT.2008.920190 – ident: ref35 doi: 10.1137/S003614450037906X – ident: ref5 doi: 10.1109/TIT.2010.2040894 – ident: ref29 doi: 10.1109/TSP.2009.2025154 – ident: ref16 doi: 10.1109/TSP.2007.900760 – ident: ref18 doi: 10.1155/2010/560349 – volume: 11 start-page: 3519 year: 2010 ident: ref48 article-title: Rate minimaxity of the lasso and dantzig selector for the <tex Notation="TeX">$\ell_{q}$</tex> loss in <tex Notation="TeX">$\ell_{r}$</tex> balls publication-title: J Mach Learn Res – start-page: 123 year: 2010 ident: ref15 publication-title: Super-Resolution Imaging – ident: ref50 doi: 10.1002/cpa.20294 – ident: ref37 doi: 10.1109/TIT.2005.858979 – ident: ref42 doi: 10.1109/TSP.2010.2052460 – ident: ref3 doi: 10.1002/mrm.21391 – start-page: 549 year: 2007 ident: ref14 article-title: Compressed sensing image reconstruction via recursive spatially adaptive filtering publication-title: Proc IEEE Int Conf Image Process (ICIP) – ident: ref26 doi: 10.1016/j.acha.2010.10.002 – ident: ref24 doi: 10.1109/LSP.2011.2173675 – ident: ref19 doi: 10.1109/TSP.2011.2159211 – ident: ref39 doi: 10.1109/TBME.2004.826702 – ident: ref23 doi: 10.1214/009053606000001523 – ident: ref36 doi: 10.1016/j.crma.2008.03.014 – ident: ref7 doi: 10.1109/TIT.2012.2210860 – ident: ref46 doi: 10.1109/TIP.2006.881969 – year: 2012 ident: ref27 publication-title: Signal space cosamp for sparse recovery with redundant dictionaries – ident: ref43 doi: 10.1109/TSP.2006.887109 – ident: ref11 doi: 10.1109/JSTSP.2011.2159773 – ident: ref40 doi: 10.1109/41.847906 – ident: ref22 doi: 10.1109/JSTSP.2010.2043161 – ident: ref21 doi: 10.1109/TIT.2005.860430 – ident: ref28 doi: 10.1109/78.553473 – ident: ref52 doi: 10.1016/S1063-5203(03)00023-X – ident: ref9 doi: 10.1109/TIP.2011.2156801 – volume: 57 start-page: 2604 year: 2009 ident: ref38 article-title: Underdetermined blind source separation based on subspace representation publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2009.2017570 – ident: ref10 doi: 10.1109/TIP.2011.2177989 – ident: ref34 doi: 10.1109/TSP.2011.2160633 – ident: ref4 doi: 10.1109/TWC.2012.081612.111908 – ident: ref41 doi: 10.1109/TSP.2010.2045423 – year: 2009 ident: ref44 publication-title: Fast Bayesian matching pursuit Model uncertainty and parameter estimation for sparse linear models – ident: ref30 doi: 10.1109/TSP.2010.2041594 – ident: ref45 doi: 10.1109/TIT.2009.2027565 – year: 2012 ident: ref47 article-title: How well can we estimate a sparse vector? publication-title: Appl Comput Harmon Anal – year: 2008 ident: ref13 article-title: Image upsampling via spatially adaptive block-matching filtering publication-title: 16th Eur Signal Process Conf (EUSIPCO) – ident: ref12 doi: 10.1109/TSP.2012.2188520 – ident: ref6 doi: 10.1109/TSP.2007.914345 – ident: ref17 doi: 10.1109/TIP.2009.2022459 – ident: ref51 doi: 10.1016/j.acha.2007.09.001 – ident: ref2 doi: 10.1109/TIT.2006.871582 – ident: ref32 doi: 10.1109/TSP.2005.859314 – volume: 56 start-page: 3523 year: 2010 ident: ref31 article-title: Dictionary identification-sparse matrix-factorization via <tex Notation="TeX">$\ell_{1}$</tex> -minimization publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2010.2048466 – ident: ref8 doi: 10.1109/TSP.2010.2070796 – ident: ref20 doi: 10.1137/120878380 – ident: ref33 doi: 10.1109/TSP.2009.2040018  | 
    
| SSID | ssj0014496 | 
    
| Score | 2.4111984 | 
    
| Snippet | In this paper, we develop a framework to design sensing matrices for compressive sensing applications that lead to good mean squared error (MSE) performance... | 
    
| SourceID | proquest pascalfrancis crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 2016 | 
    
| SubjectTerms | Algorithm design and analysis Algorithms Applied sciences Compressed sensing Compressive sensing Detection Detection, estimation, filtering, equalization, prediction Dictionaries Exact sciences and technology Exact solutions Frames Image reconstruction Information, signal and communications theory Mathematical analysis Matrices Optimization overcomplete dictionary Recovery Sampling, quantization sensing projection design Sensors Signal and communications theory Signal, noise Sparse matrices sparse representation Studies Telecommunications and information theory tight frames Vectors  | 
    
| Title | Projection Design for Statistical Compressive Sensing: A Tight Frame Based Approach | 
    
| URI | https://ieeexplore.ieee.org/document/6457477 https://www.proquest.com/docview/1325313692 https://www.proquest.com/docview/1349468576  | 
    
| Volume | 61 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT-swDLeAE-_AN2J8KUhcnvS6tU3zUW7jY0JIIKQNabeqTVIOoA7BxoG_HjvtKuAhxK2SE7W148SOf7YBjg0SqNwkNTRRQSJ1TiqFm2GeypSXcS5DShS-vpGXd8nVWIwX4F-bC-Oc8-Az16VHH8u3EzOjq7KeTARav2oRFpWWda5WGzFIEt-LC80FHgitxvOQZJj2RsNbwnDxbkxRPhl9OoJ8TxVCROYvyJSy7mbx38bsT5vBKlzPv7MGmTx0Z9Oia96-lHD87Y-swUpjdrJ-vU7WYcFVG_DnQzHCTRje1pcyKCh27nEdDA1aRtaoL-aM02nz8LjZV8eGhHyv7k9Yn43IwWcDgnmxUzwVLes3lcq34G5wMTq7DJqWC4HhIpkGJhaFDItSSoWmhM65Kqg6S1ToUJV5ZNBeIwcwkpabWEdlZIUqheNGpIlECfBtWKomldsBFitUdWu0FkgpQp1ajr-stLWyVLbIO9CbSyEzTT1yaovxmHm_JEwzlFtGcssauXXgbzvjqa7F8cPYTWJ7O67heAcOPwm6pceKUng1ztufSz5rtPklQ48dtyou07gDRy0Z9ZCCK3nlJjMakyALNLpvu9-_eg-WY99Kg1A_-7A0fZ65AzRopsWhX8nvAVHvDw | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9NADLfGeIA9bMCY1rGNQ-IFibRJ7jO8dUBVYJ0mtZP6FiV3Fx6Y0mlr97C_fvYljTZAiLdIvlMS-3xnn3-2Ad5bJFC5SWpooiOhTEEqhZthkamMV2mhYkoUnpyp8YX4PpfzDfjY5cJ47wP4zPfpMcTy3cKu6KpsoIRE61c_gadSCCGbbK0uZiBE6MaFBgOPpNHzdVAyzgaz6TmhuHg_pTifSh4dQqGrCmEiixtkS9X0s_hjaw7nzWgHJusvbWAmv_qrZdm3d78VcfzfX3kB263hyYbNSnkJG75-BVsPyhHuwvS8uZZBUbEvAdnB0KRlZI-Gcs44nbaPgJy99WxK2Pf65yc2ZDNy8dmIgF7sBM9Fx4ZtrfLXcDH6Ovs8jtqmC5HlUiwjm8pSxWWllEZjwhRcl1SfJSlNrKsisWixkQuYKMdtapIqcVJX0nMrM6FQAnwPNutF7feBpRqV3VljJFLK2GSO4y9r45yqtCuLHgzWUshtW5GcGmNc5sEzibMc5ZaT3PJWbj340M24aqpx_GPsLrG9G9dyvAfHjwTd0VNNSbwG5x2uJZ-3-nyTo8-OmxVXWdqDdx0ZNZHCK0XtFysaI5AFBh24g7-_-i08G88mp_npt7Mfb-B5GhprEAboEDaX1yt_hObNsjwOq_oeq6jyXA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Projection+Design+for+Statistical+Compressive+Sensing%3A+A+Tight+Frame+Based+Approach&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Chen%2C+Wei&rft.au=Rodrigues%2C+Miguel+R.+D.&rft.au=Wassell%2C+Ian+J.&rft.date=2013-04-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=61&rft.issue=8&rft.spage=2016&rft.epage=2029&rft_id=info:doi/10.1109%2FTSP.2013.2245661&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2013_2245661 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |