A Machine Learning-Based Algorithm for Short-Term SMP Forecasting Using 2-Step Method
System marginal price (SMP) forecasting is essential for power generation companies or virtual transaction operators participating in the electricity market. In forecasting SMP, the load data is one of the most important pieces of information. Therefore, this paper presents a 2-Step method for SMP f...
Saved in:
| Published in | Journal of electrical engineering & technology Vol. 18; no. 3; pp. 1493 - 1501 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
Springer Nature Singapore
01.05.2023
Springer Nature B.V 대한전기학회 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1975-0102 2093-7423 |
| DOI | 10.1007/s42835-023-01473-4 |
Cover
| Abstract | System marginal price (SMP) forecasting is essential for power generation companies or virtual transaction operators participating in the electricity market. In forecasting SMP, the load data is one of the most important pieces of information. Therefore, this paper presents a 2-Step method for SMP forecasting after load forecasting. This paper performed feature selection using Shapley additional explanations and Pearson correlation coefficient and adjusted the hyperparameters of the forecasting model by Grid search. Through this, the total load and SMP in 2021 were forecasted, and the forecasting results were presented through MAPE (mean absolute percentage error), nMAE (normalized mean absolute error), and nRMSE (normalized root mean square error). This paper used XGBoost for load forecasting and XGBoost, random forest, light gradient boosting machine, and linear regression for SMP forecasting. As a result of forecasting SMP, in the average of 2021, LGBM and RF ensemble models showed the best performance with 3.33% in MAPE. In addition, when the forecasting results were shown by dividing it into 4 seasons, the ensemble model of LGBM and random forest showed the best performance in MAPE except for spring. |
|---|---|
| AbstractList | System marginal price (SMP) forecasting is essential for power generation companies or virtual transaction operators participating in the electricity market. In forecasting SMP, the load data is one of the most important pieces of information. Therefore, this paper presents a 2-Step method for SMP forecasting after load forecasting. This paper performed feature selection using Shapley additional explanations and Pearson correlation coefficient and adjusted the hyperparameters of the forecasting model by Grid search. Through this, the total load and SMP in 2021 were forecasted, and the forecasting results were presented through MAPE (mean absolute percentage error), nMAE (normalized mean absolute error), and nRMSE (normalized root mean square error). This paper used XGBoost for load forecasting and XGBoost, random forest, light gradient boosting machine, and linear regression for SMP forecasting. As a result of forecasting SMP, in the average of 2021, LGBM and RF ensemble models showed the best performance with 3.33% in MAPE. In addition, when the forecasting results were shown by dividing it into 4 seasons, the ensemble model of LGBM and random forest showed the best performance in MAPE except for spring. KCI Citation Count: 1 System marginal price (SMP) forecasting is essential for power generation companies or virtual transaction operators participating in the electricity market. In forecasting SMP, the load data is one of the most important pieces of information. Therefore, this paper presents a 2-Step method for SMP forecasting after load forecasting. This paper performed feature selection using Shapley additional explanations and Pearson correlation coefficient and adjusted the hyperparameters of the forecasting model by Grid search. Through this, the total load and SMP in 2021 were forecasted, and the forecasting results were presented through MAPE (mean absolute percentage error), nMAE (normalized mean absolute error), and nRMSE (normalized root mean square error). This paper used XGBoost for load forecasting and XGBoost, random forest, light gradient boosting machine, and linear regression for SMP forecasting. As a result of forecasting SMP, in the average of 2021, LGBM and RF ensemble models showed the best performance with 3.33% in MAPE. In addition, when the forecasting results were shown by dividing it into 4 seasons, the ensemble model of LGBM and random forest showed the best performance in MAPE except for spring. |
| Author | Shim, Sang Woo Roh, Jae Hyung Park, Jong-Bae Lee, Da Han |
| Author_xml | – sequence: 1 givenname: Sang Woo surname: Shim fullname: Shim, Sang Woo organization: Department of Electrical and Electronic Engineering, Konkuk University – sequence: 2 givenname: Da Han surname: Lee fullname: Lee, Da Han organization: Department of Electrical and Electronic Engineering, Konkuk University – sequence: 3 givenname: Jae Hyung surname: Roh fullname: Roh, Jae Hyung organization: Department of Electrical and Electronic Engineering, Konkuk University – sequence: 4 givenname: Jong-Bae orcidid: 0000-0001-8325-7060 surname: Park fullname: Park, Jong-Bae email: jbaepark@konkuk.ac.kr organization: Department of Electrical and Electronic Engineering, Konkuk University |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002956475$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNp9kE1LYzEUhoM4YFv9A64C7gYyk8_m3mWnWEdoGZm265Cb5LbRNqlJXPjvjV5hYBYeQs4iz3M4ecfgPMTgALgm-AfBWP7MnDZMIEwZwoRLhvgZGFHcMiQ5ZedgRFpZnwmmF2Cc8yPGU4IFG4HtDK602fvg4NLpFHzYoV86Owtnh11MvuyPsI8JrvcxFbRx6QjXqwe4iMkZnUvF4Ta_3xStizvBlSv7aC_Bt14fsrv67BOwXdxu5r_R8s_d_Xy2RIYJXlDXytaYqW2sm1pDuRFtZ7G0upaVvOe8bzothWsE1VzbriNdLUkc6RsyJWwCvg9zQ-rVk_Eqav_Rd1E9JTX7u7lX9c-UUIkrfDPApxSfX1wu6jG-pFD3U4wKUY-kolLNQJkUc06uV8YXXXwMJWl_qOPUe-JqSFzVxNVH4opXlf6nnpI_6vT6tcQGKVc47Fz6t9UX1hsTwpQx |
| CitedBy_id | crossref_primary_10_3390_app142110011 |
| Cites_doi | 10.1016/S1574-0005(02)03016-3 10.1109/ACCESS.2022.3155819 10.5626/KTCP.2020.26.10.435 10.5370/KIEE.2022.71.9.1201 10.5370/KIEE.2022.71.11.1578 10.1002/wics.84 10.1109/TCBB.2019.2911071 10.3390/app10186593 10.1007/s42835-018-00058-w 10.38094/jastt1457 10.9728/dcs.2021.22.7.1115 10.5370/KIEE.2019.68.12.1704 10.3390/min10050420 10.4491/KSEE.2021.43.5.347 10.1109/ACCESS.2020.2997330 10.5370/KIEE.2019.68.9.1094 |
| ContentType | Journal Article |
| Copyright | The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023. |
| Copyright_xml | – notice: The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS ACYCR |
| DOI | 10.1007/s42835-023-01473-4 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Korean Citation Index |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2093-7423 |
| EndPage | 1501 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_10221270 10_1007_s42835_023_01473_4 |
| GroupedDBID | -~X .UV 0R~ 2WC 406 9ZL AACDK AAHNG AAJBT AASML AATNV AAUYE AAYYP ABAKF ABECU ABFTV ABJNI ABKCH ABMQK ABTEG ABTKH ABTMW ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADURQ ADYFF AEFQL AEMSY AENEX AESKC AFBBN AFQWF AGDGC AGMZJ AGQEE AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AXYYD BGNMA CSCUP DBRKI DPUIP EBLON EBS EJD FIGPU FNLPD FRJ GGCAI GW5 IKXTQ IWAJR JDI JZLTJ KOV KVFHK LLZTM M4Y NPVJJ NQJWS NU0 OK1 PT4 ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW TDB UOJIU UTJUX VEKWB VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 8FE 8FG ABJCF AEUYN AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS AAFGU AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC Z7R Z7S Z7X Z88 |
| ID | FETCH-LOGICAL-c354t-b979cc6d8de6dc24c59bd07daaaad74f44f8ba75e852a4adbb1bbbb71e1f81613 |
| IEDL.DBID | BENPR |
| ISSN | 1975-0102 |
| IngestDate | Wed Feb 28 03:40:28 EST 2024 Thu Oct 02 16:35:33 EDT 2025 Wed Oct 01 01:13:14 EDT 2025 Thu Apr 24 23:10:31 EDT 2025 Fri Feb 21 02:45:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | System marginal price Shapley value 2-Step method Ensemble |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c354t-b979cc6d8de6dc24c59bd07daaaad74f44f8ba75e852a4adbb1bbbb71e1f81613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8325-7060 |
| PQID | 3255255725 |
| PQPubID | 7435074 |
| PageCount | 9 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10221270 proquest_journals_3255255725 crossref_citationtrail_10_1007_s42835_023_01473_4 crossref_primary_10_1007_s42835_023_01473_4 springer_journals_10_1007_s42835_023_01473_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230500 2023-05-00 20230501 2023-05 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 5 year: 2023 text: 20230500 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Seoul |
| PublicationTitle | Journal of electrical engineering & technology |
| PublicationTitleAbbrev | J. Electr. Eng. Technol |
| PublicationYear | 2023 |
| Publisher | Springer Nature Singapore Springer Nature B.V 대한전기학회 |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: 대한전기학회 |
| References | LundbergSMLeeSIA unified approach to interpreting model predictionsProc Adv Neural Inf Process Syst20173047654774 LeeJKParkJBShinJRLeeKYA system marginal price forecasting based on an artificial neural network adapted with rough set theoryIEEE Power Eng Soc General Meet20051528533 MauludDHAbdulazeezAMA review on linear regression comprehensive in machine learningJ Appl Sci Technol Trends20201414014710.38094/jastt1457 OhBRLeeD-HLeeDHOil-price based long-term hourly system marginal electricity price scenario generationIEEE Access202210250512506110.1109/ACCESS.2022.3155819 KimRMKimKMAhnJHComparison between random forest and recurrent neural network for photovoltaic power forecastingJ Korean Soc Environ Eng202143534735510.4491/KSEE.2021.43.5.347 JufriFHOhSMJungJSDay-ahead system marginal price forecasting using artificial neural network and similar-days informationJ Electr Eng Technol20191456156810.1007/s42835-018-00058-w AylinAMulticollinearityWiley Interdiscipl Rev Comput Statist20103037037410.1002/wics.84 SonHSKimSYJangYLSTM-based 24-h solar power forecasting model using weather forecast dataKIISE Trans Comput Pract2020261043544110.5626/KTCP.2020.26.10.435 AlzamzamiFHodaMSaddikAELight Gradient boosting machine for general sentiment classification on short texts: a comparative evaluationIEEE Access2020810184010185810.1109/ACCESS.2020.2997330 Ministry of Trade Industry and Energy (2023) The 10th Basic Plan of Long-Term Electricity Supply and Demand AzizRMBaulchMFPatelSGanieAHLGBM: a machine learning approach for Ethereum fraud detectionInt J Inf Technol20221433213331 GuoRZhaoZWangTLiuGHZhaoJDegradation state recognition of piston pump based on ICEEMDAN and XGBoostAppl Sci20201018659310.3390/app10186593 KimDHJoHJKimMSRohJHParkJBShort-term load forecasting based on deep learning modelTrans Korean Inst Electr Eng20196891094109910.5370/KIEE.2019.68.9.1094 OhHRSonALLeeZKOccupational accident prediction modeling and analysis using SHAPJ Digital Contents Soc20212271115112310.9728/dcs.2021.22.7.1115 ShimSWLeeDHRohJHParkJBA machine learning based algorithm for short-term weekends load forecastingTrans Korean Inst Electr Eng202271111578158410.5370/KIEE.2022.71.11.1578 Winter E (2002) Handbook of game theory with economic applications. vol 3, pp 2025–2054 AldrichCProcess variable importance analysis by use of random forests in a Shapley regression frameworkMinerals202010542010.3390/min10050420 OgunleyeAWangQ-GXGBoost model for chronic kidney disease diagnosisIEEE/ACM Trans Comput Biol Bioinf20191762131214010.1109/TCBB.2019.2911071 ParkSJChoiWSLeeDHEnhancing accuracy of solar power forecasting by input data preprocessing and competitive model selection methodsTrans Korean Inst Electr Eng20227191201121010.5370/KIEE.2022.71.9.1201 LeeYRKimHJLeeDHLeeCJLeeDHValidation of forecasting performance of two-stage probabilistic solar irradiation and solar power forecasting algorithm using XGBoostTrans Korean Inst Electr Eng2019681217041710394679410.5370/KIEE.2019.68.12.1704 NajatNAbdulazeezAMGene clustering with partition around mediods algorithm based on weighted and normalized mahalanobis distanceInt Conf Intell Inform Biomed Sci (ICIIBMS)20172017140145 HR Oh (1473_CR5) 2021; 22 HS Son (1473_CR8) 2020; 26 SJ Park (1473_CR14) 2022; 71 SM Lundberg (1473_CR7) 2017; 30 DH Kim (1473_CR21) 2019; 68 F Alzamzami (1473_CR19) 2020; 8 SW Shim (1473_CR20) 2022; 71 DH Maulud (1473_CR10) 2020; 1 N Najat (1473_CR11) 2017; 2017 FH Jufri (1473_CR2) 2019; 14 1473_CR1 A Aylin (1473_CR9) 2010; 30 BR Oh (1473_CR4) 2022; 10 1473_CR6 JK Lee (1473_CR3) 2005; 1 RM Kim (1473_CR12) 2021; 43 C Aldrich (1473_CR13) 2020; 10 RM Aziz (1473_CR18) 2022; 14 A Ogunleye (1473_CR15) 2019; 17 R Guo (1473_CR17) 2020; 10 YR Lee (1473_CR16) 2019; 68 |
| References_xml | – reference: OhBRLeeD-HLeeDHOil-price based long-term hourly system marginal electricity price scenario generationIEEE Access202210250512506110.1109/ACCESS.2022.3155819 – reference: LeeYRKimHJLeeDHLeeCJLeeDHValidation of forecasting performance of two-stage probabilistic solar irradiation and solar power forecasting algorithm using XGBoostTrans Korean Inst Electr Eng2019681217041710394679410.5370/KIEE.2019.68.12.1704 – reference: AzizRMBaulchMFPatelSGanieAHLGBM: a machine learning approach for Ethereum fraud detectionInt J Inf Technol20221433213331 – reference: Winter E (2002) Handbook of game theory with economic applications. vol 3, pp 2025–2054 – reference: ShimSWLeeDHRohJHParkJBA machine learning based algorithm for short-term weekends load forecastingTrans Korean Inst Electr Eng202271111578158410.5370/KIEE.2022.71.11.1578 – reference: LeeJKParkJBShinJRLeeKYA system marginal price forecasting based on an artificial neural network adapted with rough set theoryIEEE Power Eng Soc General Meet20051528533 – reference: OgunleyeAWangQ-GXGBoost model for chronic kidney disease diagnosisIEEE/ACM Trans Comput Biol Bioinf20191762131214010.1109/TCBB.2019.2911071 – reference: JufriFHOhSMJungJSDay-ahead system marginal price forecasting using artificial neural network and similar-days informationJ Electr Eng Technol20191456156810.1007/s42835-018-00058-w – reference: ParkSJChoiWSLeeDHEnhancing accuracy of solar power forecasting by input data preprocessing and competitive model selection methodsTrans Korean Inst Electr Eng20227191201121010.5370/KIEE.2022.71.9.1201 – reference: GuoRZhaoZWangTLiuGHZhaoJDegradation state recognition of piston pump based on ICEEMDAN and XGBoostAppl Sci20201018659310.3390/app10186593 – reference: LundbergSMLeeSIA unified approach to interpreting model predictionsProc Adv Neural Inf Process Syst20173047654774 – reference: SonHSKimSYJangYLSTM-based 24-h solar power forecasting model using weather forecast dataKIISE Trans Comput Pract2020261043544110.5626/KTCP.2020.26.10.435 – reference: NajatNAbdulazeezAMGene clustering with partition around mediods algorithm based on weighted and normalized mahalanobis distanceInt Conf Intell Inform Biomed Sci (ICIIBMS)20172017140145 – reference: AldrichCProcess variable importance analysis by use of random forests in a Shapley regression frameworkMinerals202010542010.3390/min10050420 – reference: AylinAMulticollinearityWiley Interdiscipl Rev Comput Statist20103037037410.1002/wics.84 – reference: OhHRSonALLeeZKOccupational accident prediction modeling and analysis using SHAPJ Digital Contents Soc20212271115112310.9728/dcs.2021.22.7.1115 – reference: Ministry of Trade Industry and Energy (2023) The 10th Basic Plan of Long-Term Electricity Supply and Demand – reference: KimDHJoHJKimMSRohJHParkJBShort-term load forecasting based on deep learning modelTrans Korean Inst Electr Eng20196891094109910.5370/KIEE.2019.68.9.1094 – reference: KimRMKimKMAhnJHComparison between random forest and recurrent neural network for photovoltaic power forecastingJ Korean Soc Environ Eng202143534735510.4491/KSEE.2021.43.5.347 – reference: AlzamzamiFHodaMSaddikAELight Gradient boosting machine for general sentiment classification on short texts: a comparative evaluationIEEE Access2020810184010185810.1109/ACCESS.2020.2997330 – reference: MauludDHAbdulazeezAMA review on linear regression comprehensive in machine learningJ Appl Sci Technol Trends20201414014710.38094/jastt1457 – ident: 1473_CR1 – ident: 1473_CR6 doi: 10.1016/S1574-0005(02)03016-3 – volume: 10 start-page: 25051 year: 2022 ident: 1473_CR4 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3155819 – volume: 1 start-page: 528 year: 2005 ident: 1473_CR3 publication-title: IEEE Power Eng Soc General Meet – volume: 26 start-page: 435 issue: 10 year: 2020 ident: 1473_CR8 publication-title: KIISE Trans Comput Pract doi: 10.5626/KTCP.2020.26.10.435 – volume: 71 start-page: 1201 issue: 9 year: 2022 ident: 1473_CR14 publication-title: Trans Korean Inst Electr Eng doi: 10.5370/KIEE.2022.71.9.1201 – volume: 71 start-page: 1578 issue: 11 year: 2022 ident: 1473_CR20 publication-title: Trans Korean Inst Electr Eng doi: 10.5370/KIEE.2022.71.11.1578 – volume: 30 start-page: 370 year: 2010 ident: 1473_CR9 publication-title: Wiley Interdiscipl Rev Comput Statist doi: 10.1002/wics.84 – volume: 14 start-page: 3321 year: 2022 ident: 1473_CR18 publication-title: Int J Inf Technol – volume: 17 start-page: 2131 issue: 6 year: 2019 ident: 1473_CR15 publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2019.2911071 – volume: 10 start-page: 6593 issue: 18 year: 2020 ident: 1473_CR17 publication-title: Appl Sci doi: 10.3390/app10186593 – volume: 14 start-page: 561 year: 2019 ident: 1473_CR2 publication-title: J Electr Eng Technol doi: 10.1007/s42835-018-00058-w – volume: 30 start-page: 4765 year: 2017 ident: 1473_CR7 publication-title: Proc Adv Neural Inf Process Syst – volume: 2017 start-page: 140 year: 2017 ident: 1473_CR11 publication-title: Int Conf Intell Inform Biomed Sci (ICIIBMS) – volume: 1 start-page: 140 issue: 4 year: 2020 ident: 1473_CR10 publication-title: J Appl Sci Technol Trends doi: 10.38094/jastt1457 – volume: 22 start-page: 1115 issue: 7 year: 2021 ident: 1473_CR5 publication-title: J Digital Contents Soc doi: 10.9728/dcs.2021.22.7.1115 – volume: 68 start-page: 1704 issue: 12 year: 2019 ident: 1473_CR16 publication-title: Trans Korean Inst Electr Eng doi: 10.5370/KIEE.2019.68.12.1704 – volume: 10 start-page: 420 issue: 5 year: 2020 ident: 1473_CR13 publication-title: Minerals doi: 10.3390/min10050420 – volume: 43 start-page: 347 issue: 5 year: 2021 ident: 1473_CR12 publication-title: J Korean Soc Environ Eng doi: 10.4491/KSEE.2021.43.5.347 – volume: 8 start-page: 101840 year: 2020 ident: 1473_CR19 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2997330 – volume: 68 start-page: 1094 issue: 9 year: 2019 ident: 1473_CR21 publication-title: Trans Korean Inst Electr Eng doi: 10.5370/KIEE.2019.68.9.1094 |
| SSID | ssj0061053 |
| Score | 2.268157 |
| Snippet | System marginal price (SMP) forecasting is essential for power generation companies or virtual transaction operators participating in the electricity market.... |
| SourceID | nrf proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1493 |
| SubjectTerms | Electrical Engineering Electrical Machines and Networks Electronics and Microelectronics Engineering Instrumentation Original Article Power Electronics 전기공학 |
| Title | A Machine Learning-Based Algorithm for Short-Term SMP Forecasting Using 2-Step Method |
| URI | https://link.springer.com/article/10.1007/s42835-023-01473-4 https://www.proquest.com/docview/3255255725 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002956475 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Journal of Electrical Engineering & Technology, 2023, 18(3), , pp.1493-1501 |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2093-7423 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061053 issn: 1975-0102 databaseCode: AFBBN dateStart: 20190101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bT9swFD6i7ct4QLuKMlZZgrdhrXGc2HmYpnaiMKRWCKjEm-VrmWAtlO7_79gkZSBBFCUPzkU558TnS_z5OwD70vBgucmocT5QzoynppR9KrUIpWbW4jayLSbl8ZSfXBaXGzBp5sJEWmXTJ6aO2i1s_Ef-LUfsi6tgxY_bOxqrRsXR1aaEhq5LK7jvSWKsBR0WlbHa0BkeTk7Pmr4ZsULSpcwqESlrkduzs55Ml6THKOYwbOEip_xJqmrNl-EJCn02cJry0egtbNVAkgwePP8ONvz8PWz-Jy_4AaYDMk5cSU9qGdUZHWLWcmRwM8NnW139IYhZyfkVYnB6gX00OR-fklit0-r7yIcmiVFAGI1kMDJO1aY_wnR0ePHzmNZlFKjNC76iphKVtaWTzpfOMm6Lyri-cBoXJ3jgPEijReFlwTTXzpjM4CIynwWJgDD_BO35Yu63gfAqs4blgmnEYa7o65CHwCvPJc8tK1gXssZiytYa47HUxY1aqyMnKyu0skpWVrwLX9fn3D4obLx69B46Ql3b3yoKY8f9bKGulwrh_y8VP1_jUHoXdhtHqfqdvFePEdSFg8Z5j80v33Pn9at9hjcsRU0MqV1or5Z__RdEKivTg5YcHfWgMxgNh5NeHYz_AAj45Qg |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB71cQAOiKdIKWUl4AQr4vXYax8qlJZWCW2iiiZSb8u-nKKWpCRBiD_Hb2N2a6cUid5qWfZh7bU0M9r51vvtNwCvC4OVRZNw43zFURjPTV60eaFllWthLV0D22KQd0f46SQ7WYHfzV6YQKtsxsQ4ULupDf_I36eEfemUIvtw8Z2HqlFhdbUpoaHr0gpuO0qM1Rs7DvyvnzSFm2_3PpK_3wixvzfc7fK6ygC3aYYLbkpZWpu7wvncWYE2K41rS6fpcBIrxKowWma-yIRG7YxJDB0y8UlVEF5Kqd9VWMcUS5r8re_sDY4-N7mAsEnUwUxKGShygUu0sdy8F6XOOOVMakGZcryWGlcns-oa6v1noTbmv_0HcL8GrqxzGWkPYcVPHsG9v-QMH8Oow_qRm-lZLds65juUJR3rnI_JlovTb4wwMjs-JczPh5QT2HH_iIXqoFbPA_-aRQYDEzyQz1g_Vrd-AqNbMehTWJtMJ_4ZMCwTa0QqhSbc57K2rtKqwtJjgakVmWhB0lhM2VrTPJTWOFdLNeZoZUVWVtHKClvwdvnOxaWix41PvyJHqDP7VQUh7nAfT9XZTNF0o6fCdDks3bdgs3GUqseAubqK2Ba8a5x31fz_b27c3NtLuNMd9g_VYW9w8BzuihhBIbw2YW0x--FfEEpamK06FBl8ue3o_wMXkyLF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning-Based+Algorithm+for+Short-Term+SMP+Forecasting+Using+2-Step+Method&rft.jtitle=Journal+of+electrical+engineering+%26+technology&rft.au=Shim+Sang+Woo&rft.au=Lee+Da+Han&rft.au=Roh+Jae+Hyung&rft.au=Park+Jong-Bae&rft.date=2023-05-01&rft.pub=%EB%8C%80%ED%95%9C%EC%A0%84%EA%B8%B0%ED%95%99%ED%9A%8C&rft.issn=1975-0102&rft.eissn=2093-7423&rft.spage=1493&rft.epage=1501&rft_id=info:doi/10.1007%2Fs42835-023-01473-4&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10221270 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1975-0102&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1975-0102&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1975-0102&client=summon |