A Machine Learning-Based Algorithm for Short-Term SMP Forecasting Using 2-Step Method

System marginal price (SMP) forecasting is essential for power generation companies or virtual transaction operators participating in the electricity market. In forecasting SMP, the load data is one of the most important pieces of information. Therefore, this paper presents a 2-Step method for SMP f...

Full description

Saved in:
Bibliographic Details
Published inJournal of electrical engineering & technology Vol. 18; no. 3; pp. 1493 - 1501
Main Authors Shim, Sang Woo, Lee, Da Han, Roh, Jae Hyung, Park, Jong-Bae
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.05.2023
Springer Nature B.V
대한전기학회
Subjects
Online AccessGet full text
ISSN1975-0102
2093-7423
DOI10.1007/s42835-023-01473-4

Cover

Abstract System marginal price (SMP) forecasting is essential for power generation companies or virtual transaction operators participating in the electricity market. In forecasting SMP, the load data is one of the most important pieces of information. Therefore, this paper presents a 2-Step method for SMP forecasting after load forecasting. This paper performed feature selection using Shapley additional explanations and Pearson correlation coefficient and adjusted the hyperparameters of the forecasting model by Grid search. Through this, the total load and SMP in 2021 were forecasted, and the forecasting results were presented through MAPE (mean absolute percentage error), nMAE (normalized mean absolute error), and nRMSE (normalized root mean square error). This paper used XGBoost for load forecasting and XGBoost, random forest, light gradient boosting machine, and linear regression for SMP forecasting. As a result of forecasting SMP, in the average of 2021, LGBM and RF ensemble models showed the best performance with 3.33% in MAPE. In addition, when the forecasting results were shown by dividing it into 4 seasons, the ensemble model of LGBM and random forest showed the best performance in MAPE except for spring.
AbstractList System marginal price (SMP) forecasting is essential for power generation companies or virtual transaction operators participating in the electricity market. In forecasting SMP, the load data is one of the most important pieces of information. Therefore, this paper presents a 2-Step method for SMP forecasting after load forecasting. This paper performed feature selection using Shapley additional explanations and Pearson correlation coefficient and adjusted the hyperparameters of the forecasting model by Grid search. Through this, the total load and SMP in 2021 were forecasted, and the forecasting results were presented through MAPE (mean absolute percentage error), nMAE (normalized mean absolute error), and nRMSE (normalized root mean square error). This paper used XGBoost for load forecasting and XGBoost, random forest, light gradient boosting machine, and linear regression for SMP forecasting. As a result of forecasting SMP, in the average of 2021, LGBM and RF ensemble models showed the best performance with 3.33% in MAPE. In addition, when the forecasting results were shown by dividing it into 4 seasons, the ensemble model of LGBM and random forest showed the best performance in MAPE except for spring. KCI Citation Count: 1
System marginal price (SMP) forecasting is essential for power generation companies or virtual transaction operators participating in the electricity market. In forecasting SMP, the load data is one of the most important pieces of information. Therefore, this paper presents a 2-Step method for SMP forecasting after load forecasting. This paper performed feature selection using Shapley additional explanations and Pearson correlation coefficient and adjusted the hyperparameters of the forecasting model by Grid search. Through this, the total load and SMP in 2021 were forecasted, and the forecasting results were presented through MAPE (mean absolute percentage error), nMAE (normalized mean absolute error), and nRMSE (normalized root mean square error). This paper used XGBoost for load forecasting and XGBoost, random forest, light gradient boosting machine, and linear regression for SMP forecasting. As a result of forecasting SMP, in the average of 2021, LGBM and RF ensemble models showed the best performance with 3.33% in MAPE. In addition, when the forecasting results were shown by dividing it into 4 seasons, the ensemble model of LGBM and random forest showed the best performance in MAPE except for spring.
Author Shim, Sang Woo
Roh, Jae Hyung
Park, Jong-Bae
Lee, Da Han
Author_xml – sequence: 1
  givenname: Sang Woo
  surname: Shim
  fullname: Shim, Sang Woo
  organization: Department of Electrical and Electronic Engineering, Konkuk University
– sequence: 2
  givenname: Da Han
  surname: Lee
  fullname: Lee, Da Han
  organization: Department of Electrical and Electronic Engineering, Konkuk University
– sequence: 3
  givenname: Jae Hyung
  surname: Roh
  fullname: Roh, Jae Hyung
  organization: Department of Electrical and Electronic Engineering, Konkuk University
– sequence: 4
  givenname: Jong-Bae
  orcidid: 0000-0001-8325-7060
  surname: Park
  fullname: Park, Jong-Bae
  email: jbaepark@konkuk.ac.kr
  organization: Department of Electrical and Electronic Engineering, Konkuk University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002956475$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kE1LYzEUhoM4YFv9A64C7gYyk8_m3mWnWEdoGZm265Cb5LbRNqlJXPjvjV5hYBYeQs4iz3M4ecfgPMTgALgm-AfBWP7MnDZMIEwZwoRLhvgZGFHcMiQ5ZedgRFpZnwmmF2Cc8yPGU4IFG4HtDK602fvg4NLpFHzYoV86Owtnh11MvuyPsI8JrvcxFbRx6QjXqwe4iMkZnUvF4Ta_3xStizvBlSv7aC_Bt14fsrv67BOwXdxu5r_R8s_d_Xy2RIYJXlDXytaYqW2sm1pDuRFtZ7G0upaVvOe8bzothWsE1VzbriNdLUkc6RsyJWwCvg9zQ-rVk_Eqav_Rd1E9JTX7u7lX9c-UUIkrfDPApxSfX1wu6jG-pFD3U4wKUY-kolLNQJkUc06uV8YXXXwMJWl_qOPUe-JqSFzVxNVH4opXlf6nnpI_6vT6tcQGKVc47Fz6t9UX1hsTwpQx
CitedBy_id crossref_primary_10_3390_app142110011
Cites_doi 10.1016/S1574-0005(02)03016-3
10.1109/ACCESS.2022.3155819
10.5626/KTCP.2020.26.10.435
10.5370/KIEE.2022.71.9.1201
10.5370/KIEE.2022.71.11.1578
10.1002/wics.84
10.1109/TCBB.2019.2911071
10.3390/app10186593
10.1007/s42835-018-00058-w
10.38094/jastt1457
10.9728/dcs.2021.22.7.1115
10.5370/KIEE.2019.68.12.1704
10.3390/min10050420
10.4491/KSEE.2021.43.5.347
10.1109/ACCESS.2020.2997330
10.5370/KIEE.2019.68.9.1094
ContentType Journal Article
Copyright The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023.
Copyright_xml – notice: The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
ACYCR
DOI 10.1007/s42835-023-01473-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Korean Citation Index
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList

Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-7423
EndPage 1501
ExternalDocumentID oai_kci_go_kr_ARTI_10221270
10_1007_s42835_023_01473_4
GroupedDBID -~X
.UV
0R~
2WC
406
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
AAYYP
ABAKF
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AFBBN
AFQWF
AGDGC
AGMZJ
AGQEE
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AXYYD
BGNMA
CSCUP
DBRKI
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
FRJ
GGCAI
GW5
IKXTQ
IWAJR
JDI
JZLTJ
KOV
KVFHK
LLZTM
M4Y
NPVJJ
NQJWS
NU0
OK1
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
TDB
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
AAFGU
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
Z7R
Z7S
Z7X
Z88
ID FETCH-LOGICAL-c354t-b979cc6d8de6dc24c59bd07daaaad74f44f8ba75e852a4adbb1bbbb71e1f81613
IEDL.DBID BENPR
ISSN 1975-0102
IngestDate Wed Feb 28 03:40:28 EST 2024
Thu Oct 02 16:35:33 EDT 2025
Wed Oct 01 01:13:14 EDT 2025
Thu Apr 24 23:10:31 EDT 2025
Fri Feb 21 02:45:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords System marginal price
Shapley value
2-Step method
Ensemble
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-b979cc6d8de6dc24c59bd07daaaad74f44f8ba75e852a4adbb1bbbb71e1f81613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8325-7060
PQID 3255255725
PQPubID 7435074
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10221270
proquest_journals_3255255725
crossref_citationtrail_10_1007_s42835_023_01473_4
crossref_primary_10_1007_s42835_023_01473_4
springer_journals_10_1007_s42835_023_01473_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230500
2023-05-00
20230501
2023-05
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 5
  year: 2023
  text: 20230500
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Seoul
PublicationTitle Journal of electrical engineering & technology
PublicationTitleAbbrev J. Electr. Eng. Technol
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
대한전기학회
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: 대한전기학회
References LundbergSMLeeSIA unified approach to interpreting model predictionsProc Adv Neural Inf Process Syst20173047654774
LeeJKParkJBShinJRLeeKYA system marginal price forecasting based on an artificial neural network adapted with rough set theoryIEEE Power Eng Soc General Meet20051528533
MauludDHAbdulazeezAMA review on linear regression comprehensive in machine learningJ Appl Sci Technol Trends20201414014710.38094/jastt1457
OhBRLeeD-HLeeDHOil-price based long-term hourly system marginal electricity price scenario generationIEEE Access202210250512506110.1109/ACCESS.2022.3155819
KimRMKimKMAhnJHComparison between random forest and recurrent neural network for photovoltaic power forecastingJ Korean Soc Environ Eng202143534735510.4491/KSEE.2021.43.5.347
JufriFHOhSMJungJSDay-ahead system marginal price forecasting using artificial neural network and similar-days informationJ Electr Eng Technol20191456156810.1007/s42835-018-00058-w
AylinAMulticollinearityWiley Interdiscipl Rev Comput Statist20103037037410.1002/wics.84
SonHSKimSYJangYLSTM-based 24-h solar power forecasting model using weather forecast dataKIISE Trans Comput Pract2020261043544110.5626/KTCP.2020.26.10.435
AlzamzamiFHodaMSaddikAELight Gradient boosting machine for general sentiment classification on short texts: a comparative evaluationIEEE Access2020810184010185810.1109/ACCESS.2020.2997330
Ministry of Trade Industry and Energy (2023) The 10th Basic Plan of Long-Term Electricity Supply and Demand
AzizRMBaulchMFPatelSGanieAHLGBM: a machine learning approach for Ethereum fraud detectionInt J Inf Technol20221433213331
GuoRZhaoZWangTLiuGHZhaoJDegradation state recognition of piston pump based on ICEEMDAN and XGBoostAppl Sci20201018659310.3390/app10186593
KimDHJoHJKimMSRohJHParkJBShort-term load forecasting based on deep learning modelTrans Korean Inst Electr Eng20196891094109910.5370/KIEE.2019.68.9.1094
OhHRSonALLeeZKOccupational accident prediction modeling and analysis using SHAPJ Digital Contents Soc20212271115112310.9728/dcs.2021.22.7.1115
ShimSWLeeDHRohJHParkJBA machine learning based algorithm for short-term weekends load forecastingTrans Korean Inst Electr Eng202271111578158410.5370/KIEE.2022.71.11.1578
Winter E (2002) Handbook of game theory with economic applications. vol 3, pp 2025–2054
AldrichCProcess variable importance analysis by use of random forests in a Shapley regression frameworkMinerals202010542010.3390/min10050420
OgunleyeAWangQ-GXGBoost model for chronic kidney disease diagnosisIEEE/ACM Trans Comput Biol Bioinf20191762131214010.1109/TCBB.2019.2911071
ParkSJChoiWSLeeDHEnhancing accuracy of solar power forecasting by input data preprocessing and competitive model selection methodsTrans Korean Inst Electr Eng20227191201121010.5370/KIEE.2022.71.9.1201
LeeYRKimHJLeeDHLeeCJLeeDHValidation of forecasting performance of two-stage probabilistic solar irradiation and solar power forecasting algorithm using XGBoostTrans Korean Inst Electr Eng2019681217041710394679410.5370/KIEE.2019.68.12.1704
NajatNAbdulazeezAMGene clustering with partition around mediods algorithm based on weighted and normalized mahalanobis distanceInt Conf Intell Inform Biomed Sci (ICIIBMS)20172017140145
HR Oh (1473_CR5) 2021; 22
HS Son (1473_CR8) 2020; 26
SJ Park (1473_CR14) 2022; 71
SM Lundberg (1473_CR7) 2017; 30
DH Kim (1473_CR21) 2019; 68
F Alzamzami (1473_CR19) 2020; 8
SW Shim (1473_CR20) 2022; 71
DH Maulud (1473_CR10) 2020; 1
N Najat (1473_CR11) 2017; 2017
FH Jufri (1473_CR2) 2019; 14
1473_CR1
A Aylin (1473_CR9) 2010; 30
BR Oh (1473_CR4) 2022; 10
1473_CR6
JK Lee (1473_CR3) 2005; 1
RM Kim (1473_CR12) 2021; 43
C Aldrich (1473_CR13) 2020; 10
RM Aziz (1473_CR18) 2022; 14
A Ogunleye (1473_CR15) 2019; 17
R Guo (1473_CR17) 2020; 10
YR Lee (1473_CR16) 2019; 68
References_xml – reference: OhBRLeeD-HLeeDHOil-price based long-term hourly system marginal electricity price scenario generationIEEE Access202210250512506110.1109/ACCESS.2022.3155819
– reference: LeeYRKimHJLeeDHLeeCJLeeDHValidation of forecasting performance of two-stage probabilistic solar irradiation and solar power forecasting algorithm using XGBoostTrans Korean Inst Electr Eng2019681217041710394679410.5370/KIEE.2019.68.12.1704
– reference: AzizRMBaulchMFPatelSGanieAHLGBM: a machine learning approach for Ethereum fraud detectionInt J Inf Technol20221433213331
– reference: Winter E (2002) Handbook of game theory with economic applications. vol 3, pp 2025–2054
– reference: ShimSWLeeDHRohJHParkJBA machine learning based algorithm for short-term weekends load forecastingTrans Korean Inst Electr Eng202271111578158410.5370/KIEE.2022.71.11.1578
– reference: LeeJKParkJBShinJRLeeKYA system marginal price forecasting based on an artificial neural network adapted with rough set theoryIEEE Power Eng Soc General Meet20051528533
– reference: OgunleyeAWangQ-GXGBoost model for chronic kidney disease diagnosisIEEE/ACM Trans Comput Biol Bioinf20191762131214010.1109/TCBB.2019.2911071
– reference: JufriFHOhSMJungJSDay-ahead system marginal price forecasting using artificial neural network and similar-days informationJ Electr Eng Technol20191456156810.1007/s42835-018-00058-w
– reference: ParkSJChoiWSLeeDHEnhancing accuracy of solar power forecasting by input data preprocessing and competitive model selection methodsTrans Korean Inst Electr Eng20227191201121010.5370/KIEE.2022.71.9.1201
– reference: GuoRZhaoZWangTLiuGHZhaoJDegradation state recognition of piston pump based on ICEEMDAN and XGBoostAppl Sci20201018659310.3390/app10186593
– reference: LundbergSMLeeSIA unified approach to interpreting model predictionsProc Adv Neural Inf Process Syst20173047654774
– reference: SonHSKimSYJangYLSTM-based 24-h solar power forecasting model using weather forecast dataKIISE Trans Comput Pract2020261043544110.5626/KTCP.2020.26.10.435
– reference: NajatNAbdulazeezAMGene clustering with partition around mediods algorithm based on weighted and normalized mahalanobis distanceInt Conf Intell Inform Biomed Sci (ICIIBMS)20172017140145
– reference: AldrichCProcess variable importance analysis by use of random forests in a Shapley regression frameworkMinerals202010542010.3390/min10050420
– reference: AylinAMulticollinearityWiley Interdiscipl Rev Comput Statist20103037037410.1002/wics.84
– reference: OhHRSonALLeeZKOccupational accident prediction modeling and analysis using SHAPJ Digital Contents Soc20212271115112310.9728/dcs.2021.22.7.1115
– reference: Ministry of Trade Industry and Energy (2023) The 10th Basic Plan of Long-Term Electricity Supply and Demand
– reference: KimDHJoHJKimMSRohJHParkJBShort-term load forecasting based on deep learning modelTrans Korean Inst Electr Eng20196891094109910.5370/KIEE.2019.68.9.1094
– reference: KimRMKimKMAhnJHComparison between random forest and recurrent neural network for photovoltaic power forecastingJ Korean Soc Environ Eng202143534735510.4491/KSEE.2021.43.5.347
– reference: AlzamzamiFHodaMSaddikAELight Gradient boosting machine for general sentiment classification on short texts: a comparative evaluationIEEE Access2020810184010185810.1109/ACCESS.2020.2997330
– reference: MauludDHAbdulazeezAMA review on linear regression comprehensive in machine learningJ Appl Sci Technol Trends20201414014710.38094/jastt1457
– ident: 1473_CR1
– ident: 1473_CR6
  doi: 10.1016/S1574-0005(02)03016-3
– volume: 10
  start-page: 25051
  year: 2022
  ident: 1473_CR4
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3155819
– volume: 1
  start-page: 528
  year: 2005
  ident: 1473_CR3
  publication-title: IEEE Power Eng Soc General Meet
– volume: 26
  start-page: 435
  issue: 10
  year: 2020
  ident: 1473_CR8
  publication-title: KIISE Trans Comput Pract
  doi: 10.5626/KTCP.2020.26.10.435
– volume: 71
  start-page: 1201
  issue: 9
  year: 2022
  ident: 1473_CR14
  publication-title: Trans Korean Inst Electr Eng
  doi: 10.5370/KIEE.2022.71.9.1201
– volume: 71
  start-page: 1578
  issue: 11
  year: 2022
  ident: 1473_CR20
  publication-title: Trans Korean Inst Electr Eng
  doi: 10.5370/KIEE.2022.71.11.1578
– volume: 30
  start-page: 370
  year: 2010
  ident: 1473_CR9
  publication-title: Wiley Interdiscipl Rev Comput Statist
  doi: 10.1002/wics.84
– volume: 14
  start-page: 3321
  year: 2022
  ident: 1473_CR18
  publication-title: Int J Inf Technol
– volume: 17
  start-page: 2131
  issue: 6
  year: 2019
  ident: 1473_CR15
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2019.2911071
– volume: 10
  start-page: 6593
  issue: 18
  year: 2020
  ident: 1473_CR17
  publication-title: Appl Sci
  doi: 10.3390/app10186593
– volume: 14
  start-page: 561
  year: 2019
  ident: 1473_CR2
  publication-title: J Electr Eng Technol
  doi: 10.1007/s42835-018-00058-w
– volume: 30
  start-page: 4765
  year: 2017
  ident: 1473_CR7
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 2017
  start-page: 140
  year: 2017
  ident: 1473_CR11
  publication-title: Int Conf Intell Inform Biomed Sci (ICIIBMS)
– volume: 1
  start-page: 140
  issue: 4
  year: 2020
  ident: 1473_CR10
  publication-title: J Appl Sci Technol Trends
  doi: 10.38094/jastt1457
– volume: 22
  start-page: 1115
  issue: 7
  year: 2021
  ident: 1473_CR5
  publication-title: J Digital Contents Soc
  doi: 10.9728/dcs.2021.22.7.1115
– volume: 68
  start-page: 1704
  issue: 12
  year: 2019
  ident: 1473_CR16
  publication-title: Trans Korean Inst Electr Eng
  doi: 10.5370/KIEE.2019.68.12.1704
– volume: 10
  start-page: 420
  issue: 5
  year: 2020
  ident: 1473_CR13
  publication-title: Minerals
  doi: 10.3390/min10050420
– volume: 43
  start-page: 347
  issue: 5
  year: 2021
  ident: 1473_CR12
  publication-title: J Korean Soc Environ Eng
  doi: 10.4491/KSEE.2021.43.5.347
– volume: 8
  start-page: 101840
  year: 2020
  ident: 1473_CR19
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2997330
– volume: 68
  start-page: 1094
  issue: 9
  year: 2019
  ident: 1473_CR21
  publication-title: Trans Korean Inst Electr Eng
  doi: 10.5370/KIEE.2019.68.9.1094
SSID ssj0061053
Score 2.268157
Snippet System marginal price (SMP) forecasting is essential for power generation companies or virtual transaction operators participating in the electricity market....
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1493
SubjectTerms Electrical Engineering
Electrical Machines and Networks
Electronics and Microelectronics
Engineering
Instrumentation
Original Article
Power Electronics
전기공학
Title A Machine Learning-Based Algorithm for Short-Term SMP Forecasting Using 2-Step Method
URI https://link.springer.com/article/10.1007/s42835-023-01473-4
https://www.proquest.com/docview/3255255725
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002956475
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Electrical Engineering & Technology, 2023, 18(3), , pp.1493-1501
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2093-7423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061053
  issn: 1975-0102
  databaseCode: AFBBN
  dateStart: 20190101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bT9swFD6i7ct4QLuKMlZZgrdhrXGc2HmYpnaiMKRWCKjEm-VrmWAtlO7_79gkZSBBFCUPzkU558TnS_z5OwD70vBgucmocT5QzoynppR9KrUIpWbW4jayLSbl8ZSfXBaXGzBp5sJEWmXTJ6aO2i1s_Ef-LUfsi6tgxY_bOxqrRsXR1aaEhq5LK7jvSWKsBR0WlbHa0BkeTk7Pmr4ZsULSpcwqESlrkduzs55Ml6THKOYwbOEip_xJqmrNl-EJCn02cJry0egtbNVAkgwePP8ONvz8PWz-Jy_4AaYDMk5cSU9qGdUZHWLWcmRwM8NnW139IYhZyfkVYnB6gX00OR-fklit0-r7yIcmiVFAGI1kMDJO1aY_wnR0ePHzmNZlFKjNC76iphKVtaWTzpfOMm6Lyri-cBoXJ3jgPEijReFlwTTXzpjM4CIynwWJgDD_BO35Yu63gfAqs4blgmnEYa7o65CHwCvPJc8tK1gXssZiytYa47HUxY1aqyMnKyu0skpWVrwLX9fn3D4obLx69B46Ql3b3yoKY8f9bKGulwrh_y8VP1_jUHoXdhtHqfqdvFePEdSFg8Z5j80v33Pn9at9hjcsRU0MqV1or5Z__RdEKivTg5YcHfWgMxgNh5NeHYz_AAj45Qg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB71cQAOiKdIKWUl4AQr4vXYax8qlJZWCW2iiiZSb8u-nKKWpCRBiD_Hb2N2a6cUid5qWfZh7bU0M9r51vvtNwCvC4OVRZNw43zFURjPTV60eaFllWthLV0D22KQd0f46SQ7WYHfzV6YQKtsxsQ4ULupDf_I36eEfemUIvtw8Z2HqlFhdbUpoaHr0gpuO0qM1Rs7DvyvnzSFm2_3PpK_3wixvzfc7fK6ygC3aYYLbkpZWpu7wvncWYE2K41rS6fpcBIrxKowWma-yIRG7YxJDB0y8UlVEF5Kqd9VWMcUS5r8re_sDY4-N7mAsEnUwUxKGShygUu0sdy8F6XOOOVMakGZcryWGlcns-oa6v1noTbmv_0HcL8GrqxzGWkPYcVPHsG9v-QMH8Oow_qRm-lZLds65juUJR3rnI_JlovTb4wwMjs-JczPh5QT2HH_iIXqoFbPA_-aRQYDEzyQz1g_Vrd-AqNbMehTWJtMJ_4ZMCwTa0QqhSbc57K2rtKqwtJjgakVmWhB0lhM2VrTPJTWOFdLNeZoZUVWVtHKClvwdvnOxaWix41PvyJHqDP7VQUh7nAfT9XZTNF0o6fCdDks3bdgs3GUqseAubqK2Ba8a5x31fz_b27c3NtLuNMd9g_VYW9w8BzuihhBIbw2YW0x--FfEEpamK06FBl8ue3o_wMXkyLF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning-Based+Algorithm+for+Short-Term+SMP+Forecasting+Using+2-Step+Method&rft.jtitle=Journal+of+electrical+engineering+%26+technology&rft.au=Shim+Sang+Woo&rft.au=Lee+Da+Han&rft.au=Roh+Jae+Hyung&rft.au=Park+Jong-Bae&rft.date=2023-05-01&rft.pub=%EB%8C%80%ED%95%9C%EC%A0%84%EA%B8%B0%ED%95%99%ED%9A%8C&rft.issn=1975-0102&rft.eissn=2093-7423&rft.spage=1493&rft.epage=1501&rft_id=info:doi/10.1007%2Fs42835-023-01473-4&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10221270
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1975-0102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1975-0102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1975-0102&client=summon