Artificial intelligence and automated monitoring for assisting conservation of marine ecosystems: A perspective

Conservation of marine ecosystems has been highlighted as a priority to ensure a sustainable future. Effective management requires data collection over large spatio-temporal scales, readily accessible and integrated information from monitoring, and tools to support decision-making. However, there ar...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in Marine Science Vol. 9
Main Authors Ditria, Ellen M., Buelow, Christina A., Gonzalez-Rivero, Manuel, Connolly, Rod M.
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 28.07.2022
Subjects
Online AccessGet full text
ISSN2296-7745
2296-7745
DOI10.3389/fmars.2022.918104

Cover

Abstract Conservation of marine ecosystems has been highlighted as a priority to ensure a sustainable future. Effective management requires data collection over large spatio-temporal scales, readily accessible and integrated information from monitoring, and tools to support decision-making. However, there are many roadblocks to achieving adequate and timely information on both the effectiveness, and long-term success of conservation efforts, including limited funding, inadequate sampling, and data processing bottlenecks. These factors can result in ineffective, or even detrimental, management decisions in already impacted ecosystems. An automated approach facilitated by artificial intelligence (AI) provides conservation managers with a toolkit that can help alleviate a number of these issues by reducing the monitoring bottlenecks and long-term costs of monitoring. Automating the collection, transfer, and processing of data provides managers access to greater information, thereby facilitating timely and effective management. Incorporating automation and big data availability into a decision support system with a user-friendly interface also enables effective adaptive management. We summarise the current state of artificial intelligence and automation techniques used in marine science and use examples in other disciplines to identify existing and potentially transferable methods that can enable automated monitoring and improve predictive modelling capabilities to support decision making. We also discuss emerging technologies that are likely to be useful as research in computer science and associated technologies continues to develop and become more accessible. Our perspective highlights the potential of AI and big data analytics for supporting decision-making, but also points to important knowledge gaps in multiple areas of the automation processes. These current challenges should be prioritised in conservation research to move toward implementing AI and automation in conservation management for a more informed understanding of impacted ecosystems to result in successful outcomes for conservation managers. We conclude that the current research and emphasis on automated and AI assisted tools in several scientific disciplines may mean the future of monitoring and management in marine science is facilitated and improved by the implementation of automation.
AbstractList Conservation of marine ecosystems has been highlighted as a priority to ensure a sustainable future. Effective management requires data collection over large spatio-temporal scales, readily accessible and integrated information from monitoring, and tools to support decision-making. However, there are many roadblocks to achieving adequate and timely information on both the effectiveness, and long-term success of conservation efforts, including limited funding, inadequate sampling, and data processing bottlenecks. These factors can result in ineffective, or even detrimental, management decisions in already impacted ecosystems. An automated approach facilitated by artificial intelligence (AI) provides conservation managers with a toolkit that can help alleviate a number of these issues by reducing the monitoring bottlenecks and long-term costs of monitoring. Automating the collection, transfer, and processing of data provides managers access to greater information, thereby facilitating timely and effective management. Incorporating automation and big data availability into a decision support system with a user-friendly interface also enables effective adaptive management. We summarise the current state of artificial intelligence and automation techniques used in marine science and use examples in other disciplines to identify existing and potentially transferable methods that can enable automated monitoring and improve predictive modelling capabilities to support decision making. We also discuss emerging technologies that are likely to be useful as research in computer science and associated technologies continues to develop and become more accessible. Our perspective highlights the potential of AI and big data analytics for supporting decision-making, but also points to important knowledge gaps in multiple areas of the automation processes. These current challenges should be prioritised in conservation research to move toward implementing AI and automation in conservation management for a more informed understanding of impacted ecosystems to result in successful outcomes for conservation managers. We conclude that the current research and emphasis on automated and AI assisted tools in several scientific disciplines may mean the future of monitoring and management in marine science is facilitated and improved by the implementation of automation.
Author Gonzalez-Rivero, Manuel
Ditria, Ellen M.
Connolly, Rod M.
Buelow, Christina A.
Author_xml – sequence: 1
  givenname: Ellen M.
  surname: Ditria
  fullname: Ditria, Ellen M.
– sequence: 2
  givenname: Christina A.
  surname: Buelow
  fullname: Buelow, Christina A.
– sequence: 3
  givenname: Manuel
  surname: Gonzalez-Rivero
  fullname: Gonzalez-Rivero, Manuel
– sequence: 4
  givenname: Rod M.
  surname: Connolly
  fullname: Connolly, Rod M.
BookMark eNp9kctKAzEUhoMoWC8P4C4v0JrJZWbirog3ENzoOpxkTkrKNClJFHx7p62IuHB1LvD_5_KdkeOYIhJy1bCFEL2-9hvIZcEZ5wvd9A2TR2TGuW7nXSfV8a_8lFyWsmaMNUIyJfWMpGWuwQcXYKQhVhzHsMLokEIcKLzXtIGKA92kGGrKIa6oT5lCKaHUXeVSLJg_oIYUafJ02iREpOhS-SwVN-WGLukWc9miq-EDL8iJh7Hg5Xc8J2_3d6-3j_Pnl4en2-Xz3Akl69wK3XOpul43qkc3oEeLvEOpVCOcVba1Vmo_tFYox2UnQDhlOSBIyXzbiXPydPAdEqzNNodpsU-TIJh9I-WVgelyN6LBfmC2F5oxLySodhqkBwY4IEOlLJu8moOXy6mUjP7Hr2FmB8DsAZgdAHMAMGm6PxoX6v5LNUMY_1F-AZH9kbU
CitedBy_id crossref_primary_10_3389_fmars_2022_918504
crossref_primary_10_3390_drones7100637
crossref_primary_10_1016_j_fochx_2024_101309
crossref_primary_10_3390_jmse13030611
crossref_primary_10_1016_j_jembe_2024_152001
crossref_primary_10_1016_j_aej_2025_01_077
crossref_primary_10_24883_eagleSustainable_v15i_474
crossref_primary_10_1080_09524622_2023_2197863
crossref_primary_10_4031_MTSJ_57_1_15
crossref_primary_10_1007_s10531_024_02977_9
crossref_primary_10_1007_s11033_024_09344_5
crossref_primary_10_1007_s12237_022_01149_8
crossref_primary_10_1016_j_ecoinf_2023_102268
crossref_primary_10_3389_fmars_2023_1099479
crossref_primary_10_4236_gep_2023_119008
crossref_primary_10_1016_j_heha_2024_100114
crossref_primary_10_1016_j_marpolbul_2024_116751
crossref_primary_10_13168_AGG_2024_0028
crossref_primary_10_1016_j_marpolbul_2024_116273
crossref_primary_10_3390_jmse12081346
crossref_primary_10_1590_2675_2824071_22044gf
crossref_primary_10_3390_jmse12071181
crossref_primary_10_36074_grail_of_science_16_02_2024_093
crossref_primary_10_3390_ecologies6010010
crossref_primary_10_1007_s10499_024_01603_3
crossref_primary_10_1111_ele_14311
crossref_primary_10_3389_frai_2023_1099022
crossref_primary_10_1109_ACCESS_2023_3330968
crossref_primary_10_3390_rs15164112
crossref_primary_10_1007_s44163_024_00209_1
crossref_primary_10_1093_icesjms_fsae141
crossref_primary_10_3390_ijgi13100358
crossref_primary_10_3389_fmars_2023_1126301
Cites_doi 10.1080/01431161.2018.1500072
10.1016/j.patter.2020.100109
10.1109/SMC.2015.208
10.1371/journal.pbio.1002052
10.1016/j.ecss.2011.07.011
10.1111/rec.12958
10.1145/3154834
10.1002/ecm.1422
10.3390/rs12030489
10.1007/s12237-021-00939-w
10.1111/1365-2656.12780
10.1108/JEIM-06-2020-0233
10.3390/electronics8030292
10.1016/j.biocon.2015.03.033
10.3389/fmars.2019.00349
10.1093/icesjms/fsw106
10.1073/pnas.1710231115
10.1080/07350015.2019.1624293
10.1002/rse2.137
10.1016/j.ijinfomgt.2020.102104
10.1038/s41598-020-71639-x
10.1615/CritRevBiomedEng.2018026019
10.1016/j.ecoinf.2021.101311
10.1016/j.tig.2020.03.005
10.1063/5.0018384
10.1038/498255a
10.3390/s101109647
10.1007/s00227-021-03896-x
10.1007/978-3-540-79881-1_2
10.1109/COMST.2019.2916583
10.1002/ecs2.2567
10.1111/jpim.12545
10.1109/ACCESS.2020.2992480
10.1109/ACCESS.2021.3073929
10.1093/icesjms/fsz057
10.1016/j.crme.2019.11.009
10.1890/15-1077
10.1002/edn3.185
10.3389/fmars.2020.00429
10.1111/2041-210X.13256
10.1007/s11160-022-09700-3
10.1002/aqc.3432
10.1038/nature14539
10.1007/s00338-018-1734-6
10.1098/rspb.2015.2647
10.1111/rec.12871
10.1007/s00146-019-00931-w
10.1016/j.ecolmodel.2019.108784
10.1016/j.neucom.2018.05.083
10.1038/450789a
10.1016/j.tree.2010.07.002
10.1002/rse2.59
10.1111/jgh.15384
10.1111/gcb.15409
10.1016/j.tree.2011.04.007
10.1109/HICSS.2016.520
10.1111/j.1442-9993.2011.02351.x
10.1007/978-3-030-61702-8_8
10.1002/lom3.10113
10.48550/arXiv.2106.08272
10.1016/j.jenvman.2005.08.012
10.1016/j.jenvman.2010.10.039
10.1007/s10592-015-0775-4
10.1142/9789811234033_0018
10.1109/CSSS.2011.5974581
10.1016/j.ecoser.2018.04.004
10.1002/lary.28292
10.3389/fmars.2021.629485
10.1016/j.cub.2019.08.016
10.1371/journal.pone.0242020
10.3389/fmars.2019.00727
10.1016/j.biocon.2021.109429
10.1016/j.landusepol.2011.05.009
10.1016/S1470-160X(01)00015-2
10.1017/CBO9780511549984
10.1109/JOE.2012.2212751
10.1016/j.orgdyn.2020.100786
10.1016/j.tree.2015.08.008
10.1016/j.cub.2020.10.056
10.1146/annurev.energy.23.1.25
10.1016/j.tree.2009.03.005
10.1093/biosci/biw185
10.1016/j.jenvman.2017.01.067
10.1609/aimag.v34i1.2431
10.1186/s41747-020-00159-0
10.1038/s41586-020-2824-5
10.1016/j.jenvman.2005.04.016
10.3390/rs10091343
10.1093/biosci/biy141
10.1016/j.beproc.2018.01.008
10.1038/s41559-020-01298-8
10.1177/2053951714528481
10.1111/j.1526-100X.2010.00725.x
10.1016/j.procs.2015.04.188
10.3856/vol46-issue5-fulltext-15
10.1111/2041-210X.13165
10.1101/2020.12.09.417600
10.1126/science.abc1430
10.1007/s10661-020-08653-z
10.1002/lob.10213
10.1073/pnas.1800923115
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fmars.2022.918104
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 2296-7745
ExternalDocumentID oai_doaj_org_article_e8d0b83900f34a56be29d0aede0e55b0
10_3389_fmars_2022_918104
GroupedDBID 5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFS
ACXDI
ADBBV
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
LK8
M2P
M7P
M~E
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PQGLB
PUEGO
ID FETCH-LOGICAL-c354t-b398245789158ecdefebe27e45513cb5b6bb49fd6b35c2473a3c5b2aea440f673
IEDL.DBID DOA
ISSN 2296-7745
IngestDate Wed Aug 27 01:28:14 EDT 2025
Thu Apr 24 22:59:11 EDT 2025
Tue Jul 01 02:47:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-b398245789158ecdefebe27e45513cb5b6bb49fd6b35c2473a3c5b2aea440f673
OpenAccessLink https://doaj.org/article/e8d0b83900f34a56be29d0aede0e55b0
ParticipantIDs doaj_primary_oai_doaj_org_article_e8d0b83900f34a56be29d0aede0e55b0
crossref_primary_10_3389_fmars_2022_918104
crossref_citationtrail_10_3389_fmars_2022_918104
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-28
PublicationDateYYYYMMDD 2022-07-28
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-28
  day: 28
PublicationDecade 2020
PublicationTitle Frontiers in Marine Science
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Pettorelli (B81) 2018; 4
Zhao (B108) 2021; 39
Tscherning (B98) 2012; 29
Caughlan (B13) 2001; 1
Hughes (B44) 2017; 67
Hoshyar (B43) 2011
Anuradha (B2) 2015; 48
Malde (B68) 2020; 77
Verma (B100) 2018; 115
Saunders (B90) 2020; 30
Eger (B32) 2022; 266
Geary (B37) 2020; 4
Hale (B41) 2016; 283
Kwong (B52) 2021; 168
Ward (B103) 2022; 32
Schuttler (B91) 2019; 69
Nishant (B76) 2020; 53
Fer (B35) 2021; 27
Durden (B31) 2017; 26
Lucas (B65) 2020; 90
Dietze (B27) 2018; 115
Shafait (B94) 2016; 73
Lindenmayer (B61) 2009; 24
Espinosa (B34) 2020
Willcock (B105) 2018; 33
Li (B60) 2021; 9
Chau (B17) 2006; 80
Uthicke (B99) 2018; 37
Schuwirth (B92) 2019; 411
Torney (B97) 2019; 10
Xia (B107) 2018; 10
Kimball (B49) 2021; 44
Saleh (B88) 2020; 10
Barnes (B6) 2016; 17
Rodríguez-González (B86) 2017; 202
Azodi (B4) 2020; 36
Ditria (B29) 2020; 7
Ditria (B28) 2021; 8
Bedué (B9) 2021; 35
Hensel (B42) 2018; 46
Díaz-García (B26) 2020; 15
Williams (B106) 2011; 92
Chen (B18) 2015
Intezari (B45) 2016
Weinstein (B104) 2018; 87
Kudva (B51) 2018; 46
Pimm (B82) 2015; 30
Jones (B46) 2015; 186
McDonald-Madden (B71) 2010; 25
Luong (B66) 2019; 21
Lai (B53) 2019; 10
Solomatine (B95) 2008
Frankenhuis (B36) 2019; 161
Kitchin (B50) 2014; 1
Lindenmayer (B62) 2012; 37
Sutton (B96) 2018
Lapeyrolerie (B55) 2021
Christin (B20) 2019; 10
Keeling (B47) 1998; 23
LeCun (B56) 2015; 521
Mohri (B72) 2018
Lamba (B54) 2019; 29
Madin (B67) 2019; 6
Pearson (B77) 2020; 368
Lopez-Marcano (B64) 2021; 31
Poon (B84) 2021; 36
Marx (B69) 2013; 498
Morrison (B74) 2011; 19
Araujo (B3) 2020; 35
Baselli (B7) 2020; 4
Livingstone (B63) 2020; 130
Diana (B25) 2020; 44
Brandt (B11) 2020; 587
Chibani (B19) 2020; 8
Barnes (B5) 2012; 38
Montáns (B73) 2019; 347
Nisbet (B75) 2007; 450
Elavarasan (B33) 2020; 8
Charnock (B16) 2022
Legg (B58) 2006; 78
Polasky (B83) 2011; 26
Cook (B22) 2018; 9
González-Rivero (B38) 2020; 12
Coro (B23) 2021; 63
Kelling (B48) 2013; 34
Possingham (B85) 2015; 13
Sekovski (B93) 2012; 96
Perring (B79) 2018; 26
Collin (B21) 2018; 39
Perrow (B80) 2002
Wang (B102) 2010; 10
Wang (B101) 2018; 312
Cappa (B12) 2021; 38
Rourke (B87) 2022; 4
Hale (B40) 2019; 27
Charnock (B15) 2020
Likens (B59) 2018
Coutinho (B24) 2018; 51
Ditria (B30) 2020; 192
Gorlach (B39) 2008; 16
Belmonte (B10) 2020; 6
McClure (B70) 2020; 1
Lee (B57) 1998
Bayraktarov (B8) 2016; 26
Pecl (B78) 2019; 6
Alom (B1) 2019; 8
Chades (B14) 2007
Salman (B89) 2016; 14
Zhu (B109) 2021; 50
References_xml – volume: 39
  start-page: 5676
  year: 2018
  ident: B21
  article-title: Very high resolution mapping of coral reef state using airborne bathymetric LiDAR surface-intensity and drone imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1500072
– volume: 1
  start-page: 100109
  year: 2020
  ident: B70
  article-title: Artificial intelligence meets citizen science to supercharge ecological monitoring
  publication-title: Patterns
  doi: 10.1016/j.patter.2020.100109
– start-page: 1161
  volume-title: Proc 2015 IEEE international conference on systems, man, and cybernetics
  year: 2015
  ident: B18
  article-title: Automated monitoring system for the fish farm aquaculture environment
  doi: 10.1109/SMC.2015.208
– volume: 13
  year: 2015
  ident: B85
  article-title: Optimal conservation outcomes require both restoration and protection
  publication-title: PloS Biol.
  doi: 10.1371/journal.pbio.1002052
– volume: 96
  start-page: 48
  year: 2012
  ident: B93
  article-title: Megacities in the coastal zone: Using a driver-pressure-state-impact-response framework to address complex environmental problems
  publication-title: Estuarine Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2011.07.011
– volume: 27
  start-page: 775
  year: 2019
  ident: B40
  article-title: Evaluating where and how habitat restoration is undertaken for animals
  publication-title: Restor. Ecol.
  doi: 10.1111/rec.12958
– volume: 51
  start-page: 1
  year: 2018
  ident: B24
  article-title: Underwater wireless sensor networks: A new challenge for topology control–based systems
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3154834
– volume: 90
  year: 2020
  ident: B65
  article-title: A translucent box: Interpretable machine learning in ecology
  publication-title: Ecol. Monogr.
  doi: 10.1002/ecm.1422
– volume: 12
  start-page: 489
  year: 2020
  ident: B38
  article-title: Monitoring of coral reefs using artificial intelligence: A feasible and cost-effective approach
  publication-title: Remote Sens.
  doi: 10.3390/rs12030489
– volume: 44
  start-page: 1568
  year: 2021
  ident: B49
  article-title: Novel applications of technology for advancing tidal marsh ecology
  publication-title: Estuaries Coasts
  doi: 10.1007/s12237-021-00939-w
– volume: 87
  start-page: 533
  year: 2018
  ident: B104
  article-title: A computer vision for animal ecology
  publication-title: J. Anim. Ecol.
  doi: 10.1111/1365-2656.12780
– volume: 35
  start-page: 530
  year: 2021
  ident: B9
  article-title: Can we trust AI? An empirical investigation of trust requirements and guide to successful AI adoption
  publication-title: J. Enterprise Inf. Manage
  doi: 10.1108/JEIM-06-2020-0233
– volume: 8
  start-page: 292
  year: 2019
  ident: B1
  article-title: A state-of-the-art survey on deep learning theory and architectures
  publication-title: Electronics
  doi: 10.3390/electronics8030292
– volume: 186
  start-page: 326
  year: 2015
  ident: B46
  article-title: Evaluation and optimisation of underwater visual census monitoring for quantifying change in rocky-reef fish abundance
  publication-title: Biol. Conserv.
  doi: 10.1016/j.biocon.2015.03.033
– volume: 6
  year: 2019
  ident: B78
  article-title: Redmap Australia: Challenges and successes with a large-scale citizen science-based approach to ecological monitoring and community engagement on climate change
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2019.00349
– volume: 73
  start-page: 2737
  year: 2016
  ident: B94
  article-title: Fish identification from videos captured in uncontrolled underwater environments
  publication-title: ICES J. Mar. Sci.
  doi: 10.1093/icesjms/fsw106
– volume: 115
  start-page: 1424
  year: 2018
  ident: B27
  article-title: Iterative near-term ecological forecasting: Needs, opportunities, and challenges
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1710231115
– volume: 39
  start-page: 272
  year: 2021
  ident: B108
  article-title: Causal interpretations of black-box models
  publication-title: J. Business Economic Stat
  doi: 10.1080/07350015.2019.1624293
– volume: 6
  start-page: 181
  year: 2020
  ident: B10
  article-title: UAV-derived estimates of forest structure to inform ponderosa pine forest restoration
  publication-title: Remote Sens. Ecol. Conserv.
  doi: 10.1002/rse2.137
– volume: 53
  start-page: 102104
  year: 2020
  ident: B76
  article-title: Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda
  publication-title: Int. J. Inf. Manage.
  doi: 10.1016/j.ijinfomgt.2020.102104
– volume: 16
  start-page: p141
  year: 2008
  ident: B39
  article-title: Optimal level of automation in the automotive industry
  publication-title: Eng. Lett.
– volume-title: Effective ecological monitoring
  year: 2018
  ident: B59
– volume: 10
  start-page: 1
  year: 2020
  ident: B88
  article-title: A realistic fish-habitat dataset to evaluate algorithms for underwater visual analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-71639-x
– volume: 46
  start-page: 135
  year: 2018
  ident: B51
  article-title: Automation of detection of cervical cancer using convolutional neural networks
  publication-title: Crit. Reviews™ Biomed. Eng.
  doi: 10.1615/CritRevBiomedEng.2018026019
– volume: 63
  start-page: 101311
  year: 2021
  ident: B23
  article-title: An intelligent and cost-effective remote underwater video device for fish size monitoring
  publication-title: Ecol. Inf.
  doi: 10.1016/j.ecoinf.2021.101311
– volume: 36
  start-page: 442
  year: 2020
  ident: B4
  article-title: Opening the black box: interpretable machine learning for geneticists
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2020.03.005
– volume: 8
  start-page: 080701
  year: 2020
  ident: B19
  article-title: Machine learning approaches for the prediction of materials properties
  publication-title: APL Materials
  doi: 10.1063/5.0018384
– volume: 498
  start-page: 255
  year: 2013
  ident: B69
  article-title: The big challenges of big data
  publication-title: Nature
  doi: 10.1038/498255a
– volume: 10
  start-page: 9647
  year: 2010
  ident: B102
  article-title: Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists
  publication-title: Sensors
  doi: 10.3390/s101109647
– volume: 168
  start-page: 1
  year: 2021
  ident: B52
  article-title: Quantifying shedding and degradation rates of environmental DNA (eDNA) from pacific crown-of-thorns seastar (Acanthaster cf. solaris)
  publication-title: Mar. Biol.
  doi: 10.1007/s00227-021-03896-x
– volume-title: Practical hydroinformatics: Computational intelligence and technological developments in water applications
  year: 2008
  ident: B95
  article-title: Data-driven modelling: Concepts, approaches and experiences
  doi: 10.1007/978-3-540-79881-1_2
– volume-title: Foundations of machine learning
  year: 2018
  ident: B72
– volume: 21
  start-page: 3133
  year: 2019
  ident: B66
  article-title: Applications of deep reinforcement learning in communications and networking: A survey
  publication-title: IEEE Commun. Surveys Tutorials
  doi: 10.1109/COMST.2019.2916583
– volume: 10
  start-page: e02567
  year: 2019
  ident: B53
  article-title: Evaluating the popularity of r in ecology
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2567
– volume: 9
  start-page: 1
  year: 2018
  ident: B22
  article-title: Estimating seabird flight height using LiDAR
  publication-title: Scottish Mar. Freshw. Sci.
– volume: 38
  start-page: 49
  year: 2021
  ident: B12
  article-title: Big data for creating and capturing value in the digitalized environment: Unpacking the effects of volume, variety, and veracity on firm performance
  publication-title: J. Product Innovation Manage.
  doi: 10.1111/jpim.12545
– volume: 8
  start-page: 86886
  year: 2020
  ident: B33
  article-title: Crop yield prediction using deep reinforcement learning model for sustainable agrarian applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2992480
– volume: 9
  start-page: 66346
  year: 2021
  ident: B60
  article-title: A remote sensing and airborne edge-computing based detection system for pine wilt disease
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3073929
– volume-title: What is an exchange?: automation, management, and regulation of financial markets
  year: 1998
  ident: B57
– volume: 77
  start-page: 1274
  year: 2020
  ident: B68
  article-title: Machine intelligence and the data-driven future of marine science
  publication-title: ICES J. Mar. Sci.
  doi: 10.1093/icesjms/fsz057
– volume: 347
  start-page: 845
  year: 2019
  ident: B73
  article-title: Data-driven modeling and learning in science and engineering
  publication-title: Comptes Rendus Mécanique
  doi: 10.1016/j.crme.2019.11.009
– volume: 26
  start-page: 1055
  year: 2016
  ident: B8
  article-title: The cost and feasibility of marine coastal restoration
  publication-title: Ecol. Appl.
  doi: 10.1890/15-1077
– volume: 4
  start-page: 9
  year: 2022
  ident: B87
  article-title: Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches and future considerations for resource surveys
  publication-title: Environ. DNA
  doi: 10.1002/edn3.185
– volume: 7
  year: 2020
  ident: B29
  article-title: Automating the analysis of fish abundance using object detection: optimizing animal ecology with deep learning
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2020.00429
– year: 2020
  ident: B15
  article-title: Bayesian Neural networks
– volume: 10
  start-page: 1632
  year: 2019
  ident: B20
  article-title: Applications for deep learning in ecology
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13256
– volume: 32
  start-page: 65
  year: 2022
  ident: B103
  article-title: Safeguarding marine life: conservation of biodiversity and ecosystems
  publication-title: Rev. Fish Biol. Fisheries
  doi: 10.1007/s11160-022-09700-3
– volume: 31
  start-page: 210
  year: 2021
  ident: B64
  article-title: The slow rise of technology: Computer vision techniques in fish population connectivity
  publication-title: Aquat. Conservation: Mar. Freshw. Ecosyst.
  doi: 10.1002/aqc.3432
– volume: 521
  start-page: 436
  year: 2015
  ident: B56
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 37
  start-page: 1229
  year: 2018
  ident: B99
  article-title: eDNA detection of corallivorous seastar (Acanthaster cf. solaris) outbreaks on the great barrier reef using digital droplet PCR
  publication-title: Coral Reefs
  doi: 10.1007/s00338-018-1734-6
– volume: 283
  start-page: 20152647
  year: 2016
  ident: B41
  article-title: Ecological traps: current evidence and future directions
  publication-title: Proc. R. Soc. B: Biol. Sci.
  doi: 10.1098/rspb.2015.2647
– volume: 26
  start-page: 1017
  year: 2018
  ident: B79
  article-title: Rocketing restoration: Enabling the upscaling of ecological restoration in the anthropocene
  publication-title: Restor. Ecol.
  doi: 10.1111/rec.12871
– volume: 35
  start-page: 611
  year: 2020
  ident: B3
  article-title: In AI we trust? Perceptions about automated decision-making by artificial intelligence
  publication-title: AI Soc.
  doi: 10.1007/s00146-019-00931-w
– volume: 411
  start-page: 108784
  year: 2019
  ident: B92
  article-title: How to make ecological models useful for environmental management
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2019.108784
– volume: 312
  start-page: 135
  year: 2018
  ident: B101
  article-title: Deep visual domain adaptation: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.083
– volume: 450
  start-page: 789
  year: 2007
  ident: B75
  article-title: Cinderella Science
  publication-title: Nature
  doi: 10.1038/450789a
– volume: 25
  start-page: 547
  year: 2010
  ident: B71
  article-title: Monitoring does not always count
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2010.07.002
– volume: 4
  start-page: 71
  year: 2018
  ident: B81
  article-title: Satellite remote sensing of ecosystem functions: Opportunities, challenges and way forward
  publication-title: Remote Sens. Ecol. Conserv.
  doi: 10.1002/rse2.59
– volume: 36
  start-page: 581
  year: 2021
  ident: B84
  article-title: Opening the black box of AI-medicine
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/jgh.15384
– volume: 27
  start-page: 13
  year: 2021
  ident: B35
  article-title: Beyond ecosystem modeling: A roadmap to community cyberinfrastructure for ecological data-model integration
  publication-title: Global Change Biol.
  doi: 10.1111/gcb.15409
– volume: 26
  start-page: 398
  year: 2011
  ident: B83
  article-title: Decision-making under great uncertainty: Environmental management in an era of global change
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2011.04.007
– start-page: 4193
  volume-title: Proc 2016 49th Hawaii international conference on system sciences (HICSS)
  year: 2016
  ident: B45
  article-title: The DIKW hierarchy and management decision-making
  doi: 10.1109/HICSS.2016.520
– volume: 37
  start-page: 745
  year: 2012
  ident: B62
  article-title: Value of long-term ecological studies
  publication-title: Austral Ecol.
  doi: 10.1111/j.1442-9993.2011.02351.x
– start-page: 74
  year: 2007
  ident: B14
  article-title: Managing interacting species: A reinforcement learning decision theoretic approach
  publication-title: Proc. Proc. 2007 Int. Congress Model. Simulation. Citeseer
– volume-title: Proc international conference on applied informatics
  year: 2020
  ident: B34
  article-title: Prostate cancer diagnosis automation using supervised artificial intelligence. a systematic literature review
  doi: 10.1007/978-3-030-61702-8_8
– volume: 14
  start-page: 570
  year: 2016
  ident: B89
  article-title: Fish species classification in unconstrained underwater environments based on deep learning
  publication-title: Limnology Oceanography: Methods
  doi: 10.1002/lom3.10113
– year: 2021
  ident: B55
  article-title: Deep reinforcement learning for conservation decisions
  publication-title: arXiv preprint arXiv:210608272
  doi: 10.48550/arXiv.2106.08272
– volume: 80
  start-page: 47
  year: 2006
  ident: B17
  article-title: A review on the integration of artificial intelligence into coastal modeling
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2005.08.012
– volume: 92
  start-page: 1371
  year: 2011
  ident: B106
  article-title: Passive and active adaptive management: approaches and an example
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2010.10.039
– volume: 17
  start-page: 1
  year: 2016
  ident: B6
  article-title: The ecology of environmental DNA and implications for conservation genetics
  publication-title: Conserv. Genet.
  doi: 10.1007/s10592-015-0775-4
– start-page: 663
  volume-title: Bayesian Neural networks. artificial intelligence for high energy physics
  year: 2022
  ident: B16
  doi: 10.1142/9789811234033_0018
– start-page: 4036
  volume-title: Proc 2011 international conference on computer science and service system (CSSS)
  year: 2011
  ident: B43
  article-title: Review on automatic early skin cancer detection
  doi: 10.1109/CSSS.2011.5974581
– volume: 33
  start-page: 165
  year: 2018
  ident: B105
  article-title: Machine learning for ecosystem services
  publication-title: Ecosystem Serv.
  doi: 10.1016/j.ecoser.2018.04.004
– volume: 130
  start-page: 1408
  year: 2020
  ident: B63
  article-title: Otoscopic diagnosis using computer vision: An automated machine learning approach
  publication-title: Laryngoscope
  doi: 10.1002/lary.28292
– volume: 8
  year: 2021
  ident: B28
  article-title: Annotated video footage for automated identification and counting of fish in unconstrained seagrass habitats
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2021.629485
– volume: 29
  start-page: R977
  year: 2019
  ident: B54
  article-title: Deep learning for environmental conservation
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2019.08.016
– volume: 15
  year: 2020
  ident: B26
  article-title: Comparing the success of active and passive restoration in a tropical cloud forest landscape: A multi-taxa fauna approach
  publication-title: PloS One
  doi: 10.1371/journal.pone.0242020
– volume: 6
  year: 2019
  ident: B67
  article-title: Emerging technologies and coral reef conservation: Opportunities, challenges, and moving forward
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2019.00727
– volume: 266
  start-page: 109429
  year: 2022
  ident: B32
  article-title: The need, opportunities, and challenges for creating a standardized framework for marine restoration monitoring and reporting
  publication-title: Biol. Conserv.
  doi: 10.1016/j.biocon.2021.109429
– volume: 29
  start-page: 102
  year: 2012
  ident: B98
  article-title: Does research applying the DPSIR framework support decision making
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2011.05.009
– volume: 1
  start-page: 123
  year: 2001
  ident: B13
  article-title: Cost considerations for long-term ecological monitoring
  publication-title: Ecol. Indic.
  doi: 10.1016/S1470-160X(01)00015-2
– volume-title: Handbook of ecological restoration, vol 2
  year: 2002
  ident: B80
  doi: 10.1017/CBO9780511549984
– volume: 38
  start-page: 144
  year: 2012
  ident: B5
  article-title: Challenges, benefits, and opportunities in installing and operating cabled ocean observatories: Perspectives from NEPTUNE Canada
  publication-title: IEEE J. Oceanic Eng.
  doi: 10.1109/JOE.2012.2212751
– volume: 50
  start-page: 100786
  year: 2021
  ident: B109
  article-title: Understanding employees’ responses to artificial intelligence
  publication-title: Organizational Dynamics
  doi: 10.1016/j.orgdyn.2020.100786
– volume: 30
  start-page: 685
  year: 2015
  ident: B82
  article-title: Emerging technologies to conserve biodiversity
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2015.08.008
– volume: 30
  start-page: R1500
  year: 2020
  ident: B90
  article-title: Bright spots in coastal marine ecosystem restoration
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2020.10.056
– volume: 23
  start-page: 25
  year: 1998
  ident: B47
  article-title: Rewards and penalties of monitoring the earth
  publication-title: Annu. Rev. Energy Environ.
  doi: 10.1146/annurev.energy.23.1.25
– volume: 24
  start-page: 482
  year: 2009
  ident: B61
  article-title: Adaptive monitoring: a new paradigm for long-term research and monitoring
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2009.03.005
– volume: 67
  start-page: 271
  year: 2017
  ident: B44
  article-title: Long-term studies contribute disproportionately to ecology and policy
  publication-title: BioScience
  doi: 10.1093/biosci/biw185
– volume: 202
  start-page: 392
  year: 2017
  ident: B86
  article-title: Long-term monitoring for conservation management: Lessons from a case study integrating remote sensing and field approaches in floodplain forests
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2017.01.067
– volume: 34
  start-page: 10
  year: 2013
  ident: B48
  article-title: A human/computer learning network to improve biodiversity conservation and research
  publication-title: AI magazine
  doi: 10.1609/aimag.v34i1.2431
– volume: 4
  start-page: 1
  year: 2020
  ident: B7
  article-title: Opening the black box of machine learning in radiology: Can the proximity of annotated cases be a way
  publication-title: Eur. Radiol. Exp.
  doi: 10.1186/s41747-020-00159-0
– volume: 587
  start-page: 78
  year: 2020
  ident: B11
  article-title: An unexpectedly large count of trees in the West African Sahara and sahel
  publication-title: Nature
  doi: 10.1038/s41586-020-2824-5
– volume: 78
  start-page: 194
  year: 2006
  ident: B58
  article-title: Why most conservation monitoring is, but need not be, a waste of time
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2005.04.016
– volume-title: Reinforcement learning: An introduction
  year: 2018
  ident: B96
– volume: 10
  start-page: 1343
  year: 2018
  ident: B107
  article-title: Mapping mangrove forests based on multi-tidal high-resolution satellite imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs10091343
– volume: 69
  start-page: 69
  year: 2019
  ident: B91
  article-title: Citizen science in schools: Students collect valuable mammal data for science, conservation, and community engagement
  publication-title: Bioscience
  doi: 10.1093/biosci/biy141
– volume: 161
  start-page: 94
  year: 2019
  ident: B36
  article-title: Enriching behavioral ecology with reinforcement learning methods
  publication-title: Behav. Processes
  doi: 10.1016/j.beproc.2018.01.008
– volume: 4
  start-page: 1459
  year: 2020
  ident: B37
  article-title: A guide to ecosystem models and their environmental applications
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-020-01298-8
– volume: 1
  year: 2014
  ident: B50
  article-title: Big data, new epistemologies and paradigm shifts
  publication-title: Big Data Soc.
  doi: 10.1177/2053951714528481
– volume: 19
  start-page: 170
  year: 2011
  ident: B74
  article-title: Active or passive forest restoration? Assessing restoration alternatives with avian foraging behavior
  publication-title: Restor. Ecol.
  doi: 10.1111/j.1526-100X.2010.00725.x
– volume: 48
  start-page: 319
  year: 2015
  ident: B2
  article-title: A brief introduction on big data 5Vs characteristics and hadoop technology
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2015.04.188
– volume: 46
  start-page: 1025
  year: 2018
  ident: B42
  article-title: Using a small, consumer-grade drone to identify and count marine megafauna in shallow habitats
  publication-title: Latin Am. J. Aquat. Res.
  doi: 10.3856/vol46-issue5-fulltext-15
– volume: 10
  start-page: 779
  year: 2019
  ident: B97
  article-title: A comparison of deep learning and citizen science techniques for counting wildlife in aerial survey images
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13165
– volume: 44
  start-page: 1838
  year: 2020
  ident: B25
  article-title: An rshiny app for modelling environmental DNA data: Accounting for false positive and false negative observation error
  publication-title: bioRxiv
  doi: 10.1101/2020.12.09.417600
– volume: 368
  start-page: 838
  year: 2020
  ident: B77
  article-title: COVID-19 recovery can benefit biodiversity
  publication-title: Science
  doi: 10.1126/science.abc1430
– volume: 192
  start-page: 1
  year: 2020
  ident: B30
  article-title: Deep learning for automated analysis of fish abundance: The benefits of training across multiple habitats
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-020-08653-z
– volume: 26
  start-page: 101
  year: 2017
  ident: B31
  article-title: Integrating “big data” into aquatic ecology: Challenges and opportunities
  publication-title: Limnology Oceanography Bull.
  doi: 10.1002/lob.10213
– volume: 115
  start-page: 5849
  year: 2018
  ident: B100
  article-title: Efficient collective swimming by harnessing vortices through deep reinforcement learning
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1800923115
SSID ssj0001340549
Score 2.4439175
SecondaryResourceType review_article
Snippet Conservation of marine ecosystems has been highlighted as a priority to ensure a sustainable future. Effective management requires data collection over large...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms artificial intelligence
automation
conservation management
ecological monitoring
machine learning
marine conservation
Title Artificial intelligence and automated monitoring for assisting conservation of marine ecosystems: A perspective
URI https://doaj.org/article/e8d0b83900f34a56be29d0aede0e55b0
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2296-7745
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340549
  issn: 2296-7745
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-7745
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340549
  issn: 2296-7745
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-7745
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340549
  issn: 2296-7745
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2296-7745
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340549
  issn: 2296-7745
  databaseCode: BENPR
  dateStart: 20140225
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJxHEJ64vcvAkVNu82nhbxWUR1IsLeyt5TEDQdtHu_3fS1rUnvXhsm5YwM2G-b5p8Q8gFhoDhXtjESuUSoQqZ6JBC4nnOXJEF5Ww8jfz4pGZz8bCQi0Grr7gnrJMH7gx3DYVPLWbxNA1cGKksMO1TAx5SkNK2bB3T2IBMtdUVjkBE6O43JrIwjW5Cooh8kLErjVmtb8z2nYgGev1tYpnukO0eEdJJN5NdsgHVHtl6dmCqXk56n9Txaaf1QF8HIprUVJ6aVVMj7gRP39sFGit1FLEoRVwcVzBeubhnuq--0jpQnCWiS4rUs1Ny_ryhE7r8OXd5QObT-5e7WdK3Skgcl6JJLNcFE7j6dCYLcB4COoflIGL_FmelVdYKHbyyXDomcm64k5YZMEKkQeX8kIyquoIjQhWD3EujMseFcFrozGIiBRWCk7IwckzSb7uVrtcRj-0s3krkE9HUZWvqMpq67Ew9JpfrV5adiMZvg2-jM9YDo_51ewOjouyjovwrKo7_4yMnZDPOK1ZyWXFKRs3HCs4QgjT2vI22LwtB3io
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+and+automated+monitoring+for+assisting+conservation+of+marine+ecosystems%3A+A+perspective&rft.jtitle=Frontiers+in+Marine+Science&rft.au=Ditria%2C+Ellen+M.&rft.au=Buelow%2C+Christina+A.&rft.au=Gonzalez-Rivero%2C+Manuel&rft.au=Connolly%2C+Rod+M.&rft.date=2022-07-28&rft.issn=2296-7745&rft.eissn=2296-7745&rft.volume=9&rft_id=info:doi/10.3389%2Ffmars.2022.918104&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fmars_2022_918104
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-7745&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-7745&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-7745&client=summon