Artificial intelligence and automated monitoring for assisting conservation of marine ecosystems: A perspective
Conservation of marine ecosystems has been highlighted as a priority to ensure a sustainable future. Effective management requires data collection over large spatio-temporal scales, readily accessible and integrated information from monitoring, and tools to support decision-making. However, there ar...
Saved in:
Published in | Frontiers in Marine Science Vol. 9 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
28.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2296-7745 2296-7745 |
DOI | 10.3389/fmars.2022.918104 |
Cover
Abstract | Conservation of marine ecosystems has been highlighted as a priority to ensure a sustainable future. Effective management requires data collection over large spatio-temporal scales, readily accessible and integrated information from monitoring, and tools to support decision-making. However, there are many roadblocks to achieving adequate and timely information on both the effectiveness, and long-term success of conservation efforts, including limited funding, inadequate sampling, and data processing bottlenecks. These factors can result in ineffective, or even detrimental, management decisions in already impacted ecosystems. An automated approach facilitated by artificial intelligence (AI) provides conservation managers with a toolkit that can help alleviate a number of these issues by reducing the monitoring bottlenecks and long-term costs of monitoring. Automating the collection, transfer, and processing of data provides managers access to greater information, thereby facilitating timely and effective management. Incorporating automation and big data availability into a decision support system with a user-friendly interface also enables effective adaptive management. We summarise the current state of artificial intelligence and automation techniques used in marine science and use examples in other disciplines to identify existing and potentially transferable methods that can enable automated monitoring and improve predictive modelling capabilities to support decision making. We also discuss emerging technologies that are likely to be useful as research in computer science and associated technologies continues to develop and become more accessible. Our perspective highlights the potential of AI and big data analytics for supporting decision-making, but also points to important knowledge gaps in multiple areas of the automation processes. These current challenges should be prioritised in conservation research to move toward implementing AI and automation in conservation management for a more informed understanding of impacted ecosystems to result in successful outcomes for conservation managers. We conclude that the current research and emphasis on automated and AI assisted tools in several scientific disciplines may mean the future of monitoring and management in marine science is facilitated and improved by the implementation of automation. |
---|---|
AbstractList | Conservation of marine ecosystems has been highlighted as a priority to ensure a sustainable future. Effective management requires data collection over large spatio-temporal scales, readily accessible and integrated information from monitoring, and tools to support decision-making. However, there are many roadblocks to achieving adequate and timely information on both the effectiveness, and long-term success of conservation efforts, including limited funding, inadequate sampling, and data processing bottlenecks. These factors can result in ineffective, or even detrimental, management decisions in already impacted ecosystems. An automated approach facilitated by artificial intelligence (AI) provides conservation managers with a toolkit that can help alleviate a number of these issues by reducing the monitoring bottlenecks and long-term costs of monitoring. Automating the collection, transfer, and processing of data provides managers access to greater information, thereby facilitating timely and effective management. Incorporating automation and big data availability into a decision support system with a user-friendly interface also enables effective adaptive management. We summarise the current state of artificial intelligence and automation techniques used in marine science and use examples in other disciplines to identify existing and potentially transferable methods that can enable automated monitoring and improve predictive modelling capabilities to support decision making. We also discuss emerging technologies that are likely to be useful as research in computer science and associated technologies continues to develop and become more accessible. Our perspective highlights the potential of AI and big data analytics for supporting decision-making, but also points to important knowledge gaps in multiple areas of the automation processes. These current challenges should be prioritised in conservation research to move toward implementing AI and automation in conservation management for a more informed understanding of impacted ecosystems to result in successful outcomes for conservation managers. We conclude that the current research and emphasis on automated and AI assisted tools in several scientific disciplines may mean the future of monitoring and management in marine science is facilitated and improved by the implementation of automation. |
Author | Gonzalez-Rivero, Manuel Ditria, Ellen M. Connolly, Rod M. Buelow, Christina A. |
Author_xml | – sequence: 1 givenname: Ellen M. surname: Ditria fullname: Ditria, Ellen M. – sequence: 2 givenname: Christina A. surname: Buelow fullname: Buelow, Christina A. – sequence: 3 givenname: Manuel surname: Gonzalez-Rivero fullname: Gonzalez-Rivero, Manuel – sequence: 4 givenname: Rod M. surname: Connolly fullname: Connolly, Rod M. |
BookMark | eNp9kctKAzEUhoMoWC8P4C4v0JrJZWbirog3ENzoOpxkTkrKNClJFHx7p62IuHB1LvD_5_KdkeOYIhJy1bCFEL2-9hvIZcEZ5wvd9A2TR2TGuW7nXSfV8a_8lFyWsmaMNUIyJfWMpGWuwQcXYKQhVhzHsMLokEIcKLzXtIGKA92kGGrKIa6oT5lCKaHUXeVSLJg_oIYUafJ02iREpOhS-SwVN-WGLukWc9miq-EDL8iJh7Hg5Xc8J2_3d6-3j_Pnl4en2-Xz3Akl69wK3XOpul43qkc3oEeLvEOpVCOcVba1Vmo_tFYox2UnQDhlOSBIyXzbiXPydPAdEqzNNodpsU-TIJh9I-WVgelyN6LBfmC2F5oxLySodhqkBwY4IEOlLJu8moOXy6mUjP7Hr2FmB8DsAZgdAHMAMGm6PxoX6v5LNUMY_1F-AZH9kbU |
CitedBy_id | crossref_primary_10_3389_fmars_2022_918504 crossref_primary_10_3390_drones7100637 crossref_primary_10_1016_j_fochx_2024_101309 crossref_primary_10_3390_jmse13030611 crossref_primary_10_1016_j_jembe_2024_152001 crossref_primary_10_1016_j_aej_2025_01_077 crossref_primary_10_24883_eagleSustainable_v15i_474 crossref_primary_10_1080_09524622_2023_2197863 crossref_primary_10_4031_MTSJ_57_1_15 crossref_primary_10_1007_s10531_024_02977_9 crossref_primary_10_1007_s11033_024_09344_5 crossref_primary_10_1007_s12237_022_01149_8 crossref_primary_10_1016_j_ecoinf_2023_102268 crossref_primary_10_3389_fmars_2023_1099479 crossref_primary_10_4236_gep_2023_119008 crossref_primary_10_1016_j_heha_2024_100114 crossref_primary_10_1016_j_marpolbul_2024_116751 crossref_primary_10_13168_AGG_2024_0028 crossref_primary_10_1016_j_marpolbul_2024_116273 crossref_primary_10_3390_jmse12081346 crossref_primary_10_1590_2675_2824071_22044gf crossref_primary_10_3390_jmse12071181 crossref_primary_10_36074_grail_of_science_16_02_2024_093 crossref_primary_10_3390_ecologies6010010 crossref_primary_10_1007_s10499_024_01603_3 crossref_primary_10_1111_ele_14311 crossref_primary_10_3389_frai_2023_1099022 crossref_primary_10_1109_ACCESS_2023_3330968 crossref_primary_10_3390_rs15164112 crossref_primary_10_1007_s44163_024_00209_1 crossref_primary_10_1093_icesjms_fsae141 crossref_primary_10_3390_ijgi13100358 crossref_primary_10_3389_fmars_2023_1126301 |
Cites_doi | 10.1080/01431161.2018.1500072 10.1016/j.patter.2020.100109 10.1109/SMC.2015.208 10.1371/journal.pbio.1002052 10.1016/j.ecss.2011.07.011 10.1111/rec.12958 10.1145/3154834 10.1002/ecm.1422 10.3390/rs12030489 10.1007/s12237-021-00939-w 10.1111/1365-2656.12780 10.1108/JEIM-06-2020-0233 10.3390/electronics8030292 10.1016/j.biocon.2015.03.033 10.3389/fmars.2019.00349 10.1093/icesjms/fsw106 10.1073/pnas.1710231115 10.1080/07350015.2019.1624293 10.1002/rse2.137 10.1016/j.ijinfomgt.2020.102104 10.1038/s41598-020-71639-x 10.1615/CritRevBiomedEng.2018026019 10.1016/j.ecoinf.2021.101311 10.1016/j.tig.2020.03.005 10.1063/5.0018384 10.1038/498255a 10.3390/s101109647 10.1007/s00227-021-03896-x 10.1007/978-3-540-79881-1_2 10.1109/COMST.2019.2916583 10.1002/ecs2.2567 10.1111/jpim.12545 10.1109/ACCESS.2020.2992480 10.1109/ACCESS.2021.3073929 10.1093/icesjms/fsz057 10.1016/j.crme.2019.11.009 10.1890/15-1077 10.1002/edn3.185 10.3389/fmars.2020.00429 10.1111/2041-210X.13256 10.1007/s11160-022-09700-3 10.1002/aqc.3432 10.1038/nature14539 10.1007/s00338-018-1734-6 10.1098/rspb.2015.2647 10.1111/rec.12871 10.1007/s00146-019-00931-w 10.1016/j.ecolmodel.2019.108784 10.1016/j.neucom.2018.05.083 10.1038/450789a 10.1016/j.tree.2010.07.002 10.1002/rse2.59 10.1111/jgh.15384 10.1111/gcb.15409 10.1016/j.tree.2011.04.007 10.1109/HICSS.2016.520 10.1111/j.1442-9993.2011.02351.x 10.1007/978-3-030-61702-8_8 10.1002/lom3.10113 10.48550/arXiv.2106.08272 10.1016/j.jenvman.2005.08.012 10.1016/j.jenvman.2010.10.039 10.1007/s10592-015-0775-4 10.1142/9789811234033_0018 10.1109/CSSS.2011.5974581 10.1016/j.ecoser.2018.04.004 10.1002/lary.28292 10.3389/fmars.2021.629485 10.1016/j.cub.2019.08.016 10.1371/journal.pone.0242020 10.3389/fmars.2019.00727 10.1016/j.biocon.2021.109429 10.1016/j.landusepol.2011.05.009 10.1016/S1470-160X(01)00015-2 10.1017/CBO9780511549984 10.1109/JOE.2012.2212751 10.1016/j.orgdyn.2020.100786 10.1016/j.tree.2015.08.008 10.1016/j.cub.2020.10.056 10.1146/annurev.energy.23.1.25 10.1016/j.tree.2009.03.005 10.1093/biosci/biw185 10.1016/j.jenvman.2017.01.067 10.1609/aimag.v34i1.2431 10.1186/s41747-020-00159-0 10.1038/s41586-020-2824-5 10.1016/j.jenvman.2005.04.016 10.3390/rs10091343 10.1093/biosci/biy141 10.1016/j.beproc.2018.01.008 10.1038/s41559-020-01298-8 10.1177/2053951714528481 10.1111/j.1526-100X.2010.00725.x 10.1016/j.procs.2015.04.188 10.3856/vol46-issue5-fulltext-15 10.1111/2041-210X.13165 10.1101/2020.12.09.417600 10.1126/science.abc1430 10.1007/s10661-020-08653-z 10.1002/lob.10213 10.1073/pnas.1800923115 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fmars.2022.918104 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Oceanography |
EISSN | 2296-7745 |
ExternalDocumentID | oai_doaj_org_article_e8d0b83900f34a56be29d0aede0e55b0 10_3389_fmars_2022_918104 |
GroupedDBID | 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFS ACXDI ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BCNDV BENPR BHPHI BKSAR BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ HCIFZ KQ8 LK8 M2P M7P M~E OK1 PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PQGLB PUEGO |
ID | FETCH-LOGICAL-c354t-b398245789158ecdefebe27e45513cb5b6bb49fd6b35c2473a3c5b2aea440f673 |
IEDL.DBID | DOA |
ISSN | 2296-7745 |
IngestDate | Wed Aug 27 01:28:14 EDT 2025 Thu Apr 24 22:59:11 EDT 2025 Tue Jul 01 02:47:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-b398245789158ecdefebe27e45513cb5b6bb49fd6b35c2473a3c5b2aea440f673 |
OpenAccessLink | https://doaj.org/article/e8d0b83900f34a56be29d0aede0e55b0 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e8d0b83900f34a56be29d0aede0e55b0 crossref_primary_10_3389_fmars_2022_918104 crossref_citationtrail_10_3389_fmars_2022_918104 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-28 |
PublicationDateYYYYMMDD | 2022-07-28 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in Marine Science |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Pettorelli (B81) 2018; 4 Zhao (B108) 2021; 39 Tscherning (B98) 2012; 29 Caughlan (B13) 2001; 1 Hughes (B44) 2017; 67 Hoshyar (B43) 2011 Anuradha (B2) 2015; 48 Malde (B68) 2020; 77 Verma (B100) 2018; 115 Saunders (B90) 2020; 30 Eger (B32) 2022; 266 Geary (B37) 2020; 4 Hale (B41) 2016; 283 Kwong (B52) 2021; 168 Ward (B103) 2022; 32 Schuttler (B91) 2019; 69 Nishant (B76) 2020; 53 Fer (B35) 2021; 27 Durden (B31) 2017; 26 Lucas (B65) 2020; 90 Dietze (B27) 2018; 115 Shafait (B94) 2016; 73 Lindenmayer (B61) 2009; 24 Espinosa (B34) 2020 Willcock (B105) 2018; 33 Li (B60) 2021; 9 Chau (B17) 2006; 80 Uthicke (B99) 2018; 37 Schuwirth (B92) 2019; 411 Torney (B97) 2019; 10 Xia (B107) 2018; 10 Kimball (B49) 2021; 44 Saleh (B88) 2020; 10 Barnes (B6) 2016; 17 Rodríguez-González (B86) 2017; 202 Azodi (B4) 2020; 36 Ditria (B29) 2020; 7 Ditria (B28) 2021; 8 Bedué (B9) 2021; 35 Hensel (B42) 2018; 46 Díaz-García (B26) 2020; 15 Williams (B106) 2011; 92 Chen (B18) 2015 Intezari (B45) 2016 Weinstein (B104) 2018; 87 Kudva (B51) 2018; 46 Pimm (B82) 2015; 30 Jones (B46) 2015; 186 McDonald-Madden (B71) 2010; 25 Luong (B66) 2019; 21 Lai (B53) 2019; 10 Solomatine (B95) 2008 Frankenhuis (B36) 2019; 161 Kitchin (B50) 2014; 1 Lindenmayer (B62) 2012; 37 Sutton (B96) 2018 Lapeyrolerie (B55) 2021 Christin (B20) 2019; 10 Keeling (B47) 1998; 23 LeCun (B56) 2015; 521 Mohri (B72) 2018 Lamba (B54) 2019; 29 Madin (B67) 2019; 6 Pearson (B77) 2020; 368 Lopez-Marcano (B64) 2021; 31 Poon (B84) 2021; 36 Marx (B69) 2013; 498 Morrison (B74) 2011; 19 Araujo (B3) 2020; 35 Baselli (B7) 2020; 4 Livingstone (B63) 2020; 130 Diana (B25) 2020; 44 Brandt (B11) 2020; 587 Chibani (B19) 2020; 8 Barnes (B5) 2012; 38 Montáns (B73) 2019; 347 Nisbet (B75) 2007; 450 Elavarasan (B33) 2020; 8 Charnock (B16) 2022 Legg (B58) 2006; 78 Polasky (B83) 2011; 26 Cook (B22) 2018; 9 González-Rivero (B38) 2020; 12 Coro (B23) 2021; 63 Kelling (B48) 2013; 34 Possingham (B85) 2015; 13 Sekovski (B93) 2012; 96 Perring (B79) 2018; 26 Collin (B21) 2018; 39 Perrow (B80) 2002 Wang (B102) 2010; 10 Wang (B101) 2018; 312 Cappa (B12) 2021; 38 Rourke (B87) 2022; 4 Hale (B40) 2019; 27 Charnock (B15) 2020 Likens (B59) 2018 Coutinho (B24) 2018; 51 Ditria (B30) 2020; 192 Gorlach (B39) 2008; 16 Belmonte (B10) 2020; 6 McClure (B70) 2020; 1 Lee (B57) 1998 Bayraktarov (B8) 2016; 26 Pecl (B78) 2019; 6 Alom (B1) 2019; 8 Chades (B14) 2007 Salman (B89) 2016; 14 Zhu (B109) 2021; 50 |
References_xml | – volume: 39 start-page: 5676 year: 2018 ident: B21 article-title: Very high resolution mapping of coral reef state using airborne bathymetric LiDAR surface-intensity and drone imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1500072 – volume: 1 start-page: 100109 year: 2020 ident: B70 article-title: Artificial intelligence meets citizen science to supercharge ecological monitoring publication-title: Patterns doi: 10.1016/j.patter.2020.100109 – start-page: 1161 volume-title: Proc 2015 IEEE international conference on systems, man, and cybernetics year: 2015 ident: B18 article-title: Automated monitoring system for the fish farm aquaculture environment doi: 10.1109/SMC.2015.208 – volume: 13 year: 2015 ident: B85 article-title: Optimal conservation outcomes require both restoration and protection publication-title: PloS Biol. doi: 10.1371/journal.pbio.1002052 – volume: 96 start-page: 48 year: 2012 ident: B93 article-title: Megacities in the coastal zone: Using a driver-pressure-state-impact-response framework to address complex environmental problems publication-title: Estuarine Coast. Shelf Sci. doi: 10.1016/j.ecss.2011.07.011 – volume: 27 start-page: 775 year: 2019 ident: B40 article-title: Evaluating where and how habitat restoration is undertaken for animals publication-title: Restor. Ecol. doi: 10.1111/rec.12958 – volume: 51 start-page: 1 year: 2018 ident: B24 article-title: Underwater wireless sensor networks: A new challenge for topology control–based systems publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3154834 – volume: 90 year: 2020 ident: B65 article-title: A translucent box: Interpretable machine learning in ecology publication-title: Ecol. Monogr. doi: 10.1002/ecm.1422 – volume: 12 start-page: 489 year: 2020 ident: B38 article-title: Monitoring of coral reefs using artificial intelligence: A feasible and cost-effective approach publication-title: Remote Sens. doi: 10.3390/rs12030489 – volume: 44 start-page: 1568 year: 2021 ident: B49 article-title: Novel applications of technology for advancing tidal marsh ecology publication-title: Estuaries Coasts doi: 10.1007/s12237-021-00939-w – volume: 87 start-page: 533 year: 2018 ident: B104 article-title: A computer vision for animal ecology publication-title: J. Anim. Ecol. doi: 10.1111/1365-2656.12780 – volume: 35 start-page: 530 year: 2021 ident: B9 article-title: Can we trust AI? An empirical investigation of trust requirements and guide to successful AI adoption publication-title: J. Enterprise Inf. Manage doi: 10.1108/JEIM-06-2020-0233 – volume: 8 start-page: 292 year: 2019 ident: B1 article-title: A state-of-the-art survey on deep learning theory and architectures publication-title: Electronics doi: 10.3390/electronics8030292 – volume: 186 start-page: 326 year: 2015 ident: B46 article-title: Evaluation and optimisation of underwater visual census monitoring for quantifying change in rocky-reef fish abundance publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2015.03.033 – volume: 6 year: 2019 ident: B78 article-title: Redmap Australia: Challenges and successes with a large-scale citizen science-based approach to ecological monitoring and community engagement on climate change publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2019.00349 – volume: 73 start-page: 2737 year: 2016 ident: B94 article-title: Fish identification from videos captured in uncontrolled underwater environments publication-title: ICES J. Mar. Sci. doi: 10.1093/icesjms/fsw106 – volume: 115 start-page: 1424 year: 2018 ident: B27 article-title: Iterative near-term ecological forecasting: Needs, opportunities, and challenges publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1710231115 – volume: 39 start-page: 272 year: 2021 ident: B108 article-title: Causal interpretations of black-box models publication-title: J. Business Economic Stat doi: 10.1080/07350015.2019.1624293 – volume: 6 start-page: 181 year: 2020 ident: B10 article-title: UAV-derived estimates of forest structure to inform ponderosa pine forest restoration publication-title: Remote Sens. Ecol. Conserv. doi: 10.1002/rse2.137 – volume: 53 start-page: 102104 year: 2020 ident: B76 article-title: Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda publication-title: Int. J. Inf. Manage. doi: 10.1016/j.ijinfomgt.2020.102104 – volume: 16 start-page: p141 year: 2008 ident: B39 article-title: Optimal level of automation in the automotive industry publication-title: Eng. Lett. – volume-title: Effective ecological monitoring year: 2018 ident: B59 – volume: 10 start-page: 1 year: 2020 ident: B88 article-title: A realistic fish-habitat dataset to evaluate algorithms for underwater visual analysis publication-title: Sci. Rep. doi: 10.1038/s41598-020-71639-x – volume: 46 start-page: 135 year: 2018 ident: B51 article-title: Automation of detection of cervical cancer using convolutional neural networks publication-title: Crit. Reviews™ Biomed. Eng. doi: 10.1615/CritRevBiomedEng.2018026019 – volume: 63 start-page: 101311 year: 2021 ident: B23 article-title: An intelligent and cost-effective remote underwater video device for fish size monitoring publication-title: Ecol. Inf. doi: 10.1016/j.ecoinf.2021.101311 – volume: 36 start-page: 442 year: 2020 ident: B4 article-title: Opening the black box: interpretable machine learning for geneticists publication-title: Trends Genet. doi: 10.1016/j.tig.2020.03.005 – volume: 8 start-page: 080701 year: 2020 ident: B19 article-title: Machine learning approaches for the prediction of materials properties publication-title: APL Materials doi: 10.1063/5.0018384 – volume: 498 start-page: 255 year: 2013 ident: B69 article-title: The big challenges of big data publication-title: Nature doi: 10.1038/498255a – volume: 10 start-page: 9647 year: 2010 ident: B102 article-title: Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists publication-title: Sensors doi: 10.3390/s101109647 – volume: 168 start-page: 1 year: 2021 ident: B52 article-title: Quantifying shedding and degradation rates of environmental DNA (eDNA) from pacific crown-of-thorns seastar (Acanthaster cf. solaris) publication-title: Mar. Biol. doi: 10.1007/s00227-021-03896-x – volume-title: Practical hydroinformatics: Computational intelligence and technological developments in water applications year: 2008 ident: B95 article-title: Data-driven modelling: Concepts, approaches and experiences doi: 10.1007/978-3-540-79881-1_2 – volume-title: Foundations of machine learning year: 2018 ident: B72 – volume: 21 start-page: 3133 year: 2019 ident: B66 article-title: Applications of deep reinforcement learning in communications and networking: A survey publication-title: IEEE Commun. Surveys Tutorials doi: 10.1109/COMST.2019.2916583 – volume: 10 start-page: e02567 year: 2019 ident: B53 article-title: Evaluating the popularity of r in ecology publication-title: Ecosphere doi: 10.1002/ecs2.2567 – volume: 9 start-page: 1 year: 2018 ident: B22 article-title: Estimating seabird flight height using LiDAR publication-title: Scottish Mar. Freshw. Sci. – volume: 38 start-page: 49 year: 2021 ident: B12 article-title: Big data for creating and capturing value in the digitalized environment: Unpacking the effects of volume, variety, and veracity on firm performance publication-title: J. Product Innovation Manage. doi: 10.1111/jpim.12545 – volume: 8 start-page: 86886 year: 2020 ident: B33 article-title: Crop yield prediction using deep reinforcement learning model for sustainable agrarian applications publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2992480 – volume: 9 start-page: 66346 year: 2021 ident: B60 article-title: A remote sensing and airborne edge-computing based detection system for pine wilt disease publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3073929 – volume-title: What is an exchange?: automation, management, and regulation of financial markets year: 1998 ident: B57 – volume: 77 start-page: 1274 year: 2020 ident: B68 article-title: Machine intelligence and the data-driven future of marine science publication-title: ICES J. Mar. Sci. doi: 10.1093/icesjms/fsz057 – volume: 347 start-page: 845 year: 2019 ident: B73 article-title: Data-driven modeling and learning in science and engineering publication-title: Comptes Rendus Mécanique doi: 10.1016/j.crme.2019.11.009 – volume: 26 start-page: 1055 year: 2016 ident: B8 article-title: The cost and feasibility of marine coastal restoration publication-title: Ecol. Appl. doi: 10.1890/15-1077 – volume: 4 start-page: 9 year: 2022 ident: B87 article-title: Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches and future considerations for resource surveys publication-title: Environ. DNA doi: 10.1002/edn3.185 – volume: 7 year: 2020 ident: B29 article-title: Automating the analysis of fish abundance using object detection: optimizing animal ecology with deep learning publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2020.00429 – year: 2020 ident: B15 article-title: Bayesian Neural networks – volume: 10 start-page: 1632 year: 2019 ident: B20 article-title: Applications for deep learning in ecology publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13256 – volume: 32 start-page: 65 year: 2022 ident: B103 article-title: Safeguarding marine life: conservation of biodiversity and ecosystems publication-title: Rev. Fish Biol. Fisheries doi: 10.1007/s11160-022-09700-3 – volume: 31 start-page: 210 year: 2021 ident: B64 article-title: The slow rise of technology: Computer vision techniques in fish population connectivity publication-title: Aquat. Conservation: Mar. Freshw. Ecosyst. doi: 10.1002/aqc.3432 – volume: 521 start-page: 436 year: 2015 ident: B56 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 37 start-page: 1229 year: 2018 ident: B99 article-title: eDNA detection of corallivorous seastar (Acanthaster cf. solaris) outbreaks on the great barrier reef using digital droplet PCR publication-title: Coral Reefs doi: 10.1007/s00338-018-1734-6 – volume: 283 start-page: 20152647 year: 2016 ident: B41 article-title: Ecological traps: current evidence and future directions publication-title: Proc. R. Soc. B: Biol. Sci. doi: 10.1098/rspb.2015.2647 – volume: 26 start-page: 1017 year: 2018 ident: B79 article-title: Rocketing restoration: Enabling the upscaling of ecological restoration in the anthropocene publication-title: Restor. Ecol. doi: 10.1111/rec.12871 – volume: 35 start-page: 611 year: 2020 ident: B3 article-title: In AI we trust? Perceptions about automated decision-making by artificial intelligence publication-title: AI Soc. doi: 10.1007/s00146-019-00931-w – volume: 411 start-page: 108784 year: 2019 ident: B92 article-title: How to make ecological models useful for environmental management publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2019.108784 – volume: 312 start-page: 135 year: 2018 ident: B101 article-title: Deep visual domain adaptation: A survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.083 – volume: 450 start-page: 789 year: 2007 ident: B75 article-title: Cinderella Science publication-title: Nature doi: 10.1038/450789a – volume: 25 start-page: 547 year: 2010 ident: B71 article-title: Monitoring does not always count publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2010.07.002 – volume: 4 start-page: 71 year: 2018 ident: B81 article-title: Satellite remote sensing of ecosystem functions: Opportunities, challenges and way forward publication-title: Remote Sens. Ecol. Conserv. doi: 10.1002/rse2.59 – volume: 36 start-page: 581 year: 2021 ident: B84 article-title: Opening the black box of AI-medicine publication-title: J. Gastroenterol. Hepatol. doi: 10.1111/jgh.15384 – volume: 27 start-page: 13 year: 2021 ident: B35 article-title: Beyond ecosystem modeling: A roadmap to community cyberinfrastructure for ecological data-model integration publication-title: Global Change Biol. doi: 10.1111/gcb.15409 – volume: 26 start-page: 398 year: 2011 ident: B83 article-title: Decision-making under great uncertainty: Environmental management in an era of global change publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2011.04.007 – start-page: 4193 volume-title: Proc 2016 49th Hawaii international conference on system sciences (HICSS) year: 2016 ident: B45 article-title: The DIKW hierarchy and management decision-making doi: 10.1109/HICSS.2016.520 – volume: 37 start-page: 745 year: 2012 ident: B62 article-title: Value of long-term ecological studies publication-title: Austral Ecol. doi: 10.1111/j.1442-9993.2011.02351.x – start-page: 74 year: 2007 ident: B14 article-title: Managing interacting species: A reinforcement learning decision theoretic approach publication-title: Proc. Proc. 2007 Int. Congress Model. Simulation. Citeseer – volume-title: Proc international conference on applied informatics year: 2020 ident: B34 article-title: Prostate cancer diagnosis automation using supervised artificial intelligence. a systematic literature review doi: 10.1007/978-3-030-61702-8_8 – volume: 14 start-page: 570 year: 2016 ident: B89 article-title: Fish species classification in unconstrained underwater environments based on deep learning publication-title: Limnology Oceanography: Methods doi: 10.1002/lom3.10113 – year: 2021 ident: B55 article-title: Deep reinforcement learning for conservation decisions publication-title: arXiv preprint arXiv:210608272 doi: 10.48550/arXiv.2106.08272 – volume: 80 start-page: 47 year: 2006 ident: B17 article-title: A review on the integration of artificial intelligence into coastal modeling publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2005.08.012 – volume: 92 start-page: 1371 year: 2011 ident: B106 article-title: Passive and active adaptive management: approaches and an example publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2010.10.039 – volume: 17 start-page: 1 year: 2016 ident: B6 article-title: The ecology of environmental DNA and implications for conservation genetics publication-title: Conserv. Genet. doi: 10.1007/s10592-015-0775-4 – start-page: 663 volume-title: Bayesian Neural networks. artificial intelligence for high energy physics year: 2022 ident: B16 doi: 10.1142/9789811234033_0018 – start-page: 4036 volume-title: Proc 2011 international conference on computer science and service system (CSSS) year: 2011 ident: B43 article-title: Review on automatic early skin cancer detection doi: 10.1109/CSSS.2011.5974581 – volume: 33 start-page: 165 year: 2018 ident: B105 article-title: Machine learning for ecosystem services publication-title: Ecosystem Serv. doi: 10.1016/j.ecoser.2018.04.004 – volume: 130 start-page: 1408 year: 2020 ident: B63 article-title: Otoscopic diagnosis using computer vision: An automated machine learning approach publication-title: Laryngoscope doi: 10.1002/lary.28292 – volume: 8 year: 2021 ident: B28 article-title: Annotated video footage for automated identification and counting of fish in unconstrained seagrass habitats publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2021.629485 – volume: 29 start-page: R977 year: 2019 ident: B54 article-title: Deep learning for environmental conservation publication-title: Curr. Biol. doi: 10.1016/j.cub.2019.08.016 – volume: 15 year: 2020 ident: B26 article-title: Comparing the success of active and passive restoration in a tropical cloud forest landscape: A multi-taxa fauna approach publication-title: PloS One doi: 10.1371/journal.pone.0242020 – volume: 6 year: 2019 ident: B67 article-title: Emerging technologies and coral reef conservation: Opportunities, challenges, and moving forward publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2019.00727 – volume: 266 start-page: 109429 year: 2022 ident: B32 article-title: The need, opportunities, and challenges for creating a standardized framework for marine restoration monitoring and reporting publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2021.109429 – volume: 29 start-page: 102 year: 2012 ident: B98 article-title: Does research applying the DPSIR framework support decision making publication-title: Land Use Policy doi: 10.1016/j.landusepol.2011.05.009 – volume: 1 start-page: 123 year: 2001 ident: B13 article-title: Cost considerations for long-term ecological monitoring publication-title: Ecol. Indic. doi: 10.1016/S1470-160X(01)00015-2 – volume-title: Handbook of ecological restoration, vol 2 year: 2002 ident: B80 doi: 10.1017/CBO9780511549984 – volume: 38 start-page: 144 year: 2012 ident: B5 article-title: Challenges, benefits, and opportunities in installing and operating cabled ocean observatories: Perspectives from NEPTUNE Canada publication-title: IEEE J. Oceanic Eng. doi: 10.1109/JOE.2012.2212751 – volume: 50 start-page: 100786 year: 2021 ident: B109 article-title: Understanding employees’ responses to artificial intelligence publication-title: Organizational Dynamics doi: 10.1016/j.orgdyn.2020.100786 – volume: 30 start-page: 685 year: 2015 ident: B82 article-title: Emerging technologies to conserve biodiversity publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2015.08.008 – volume: 30 start-page: R1500 year: 2020 ident: B90 article-title: Bright spots in coastal marine ecosystem restoration publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.10.056 – volume: 23 start-page: 25 year: 1998 ident: B47 article-title: Rewards and penalties of monitoring the earth publication-title: Annu. Rev. Energy Environ. doi: 10.1146/annurev.energy.23.1.25 – volume: 24 start-page: 482 year: 2009 ident: B61 article-title: Adaptive monitoring: a new paradigm for long-term research and monitoring publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2009.03.005 – volume: 67 start-page: 271 year: 2017 ident: B44 article-title: Long-term studies contribute disproportionately to ecology and policy publication-title: BioScience doi: 10.1093/biosci/biw185 – volume: 202 start-page: 392 year: 2017 ident: B86 article-title: Long-term monitoring for conservation management: Lessons from a case study integrating remote sensing and field approaches in floodplain forests publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2017.01.067 – volume: 34 start-page: 10 year: 2013 ident: B48 article-title: A human/computer learning network to improve biodiversity conservation and research publication-title: AI magazine doi: 10.1609/aimag.v34i1.2431 – volume: 4 start-page: 1 year: 2020 ident: B7 article-title: Opening the black box of machine learning in radiology: Can the proximity of annotated cases be a way publication-title: Eur. Radiol. Exp. doi: 10.1186/s41747-020-00159-0 – volume: 587 start-page: 78 year: 2020 ident: B11 article-title: An unexpectedly large count of trees in the West African Sahara and sahel publication-title: Nature doi: 10.1038/s41586-020-2824-5 – volume: 78 start-page: 194 year: 2006 ident: B58 article-title: Why most conservation monitoring is, but need not be, a waste of time publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2005.04.016 – volume-title: Reinforcement learning: An introduction year: 2018 ident: B96 – volume: 10 start-page: 1343 year: 2018 ident: B107 article-title: Mapping mangrove forests based on multi-tidal high-resolution satellite imagery publication-title: Remote Sens. doi: 10.3390/rs10091343 – volume: 69 start-page: 69 year: 2019 ident: B91 article-title: Citizen science in schools: Students collect valuable mammal data for science, conservation, and community engagement publication-title: Bioscience doi: 10.1093/biosci/biy141 – volume: 161 start-page: 94 year: 2019 ident: B36 article-title: Enriching behavioral ecology with reinforcement learning methods publication-title: Behav. Processes doi: 10.1016/j.beproc.2018.01.008 – volume: 4 start-page: 1459 year: 2020 ident: B37 article-title: A guide to ecosystem models and their environmental applications publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-020-01298-8 – volume: 1 year: 2014 ident: B50 article-title: Big data, new epistemologies and paradigm shifts publication-title: Big Data Soc. doi: 10.1177/2053951714528481 – volume: 19 start-page: 170 year: 2011 ident: B74 article-title: Active or passive forest restoration? Assessing restoration alternatives with avian foraging behavior publication-title: Restor. Ecol. doi: 10.1111/j.1526-100X.2010.00725.x – volume: 48 start-page: 319 year: 2015 ident: B2 article-title: A brief introduction on big data 5Vs characteristics and hadoop technology publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2015.04.188 – volume: 46 start-page: 1025 year: 2018 ident: B42 article-title: Using a small, consumer-grade drone to identify and count marine megafauna in shallow habitats publication-title: Latin Am. J. Aquat. Res. doi: 10.3856/vol46-issue5-fulltext-15 – volume: 10 start-page: 779 year: 2019 ident: B97 article-title: A comparison of deep learning and citizen science techniques for counting wildlife in aerial survey images publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13165 – volume: 44 start-page: 1838 year: 2020 ident: B25 article-title: An rshiny app for modelling environmental DNA data: Accounting for false positive and false negative observation error publication-title: bioRxiv doi: 10.1101/2020.12.09.417600 – volume: 368 start-page: 838 year: 2020 ident: B77 article-title: COVID-19 recovery can benefit biodiversity publication-title: Science doi: 10.1126/science.abc1430 – volume: 192 start-page: 1 year: 2020 ident: B30 article-title: Deep learning for automated analysis of fish abundance: The benefits of training across multiple habitats publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-020-08653-z – volume: 26 start-page: 101 year: 2017 ident: B31 article-title: Integrating “big data” into aquatic ecology: Challenges and opportunities publication-title: Limnology Oceanography Bull. doi: 10.1002/lob.10213 – volume: 115 start-page: 5849 year: 2018 ident: B100 article-title: Efficient collective swimming by harnessing vortices through deep reinforcement learning publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1800923115 |
SSID | ssj0001340549 |
Score | 2.4439175 |
SecondaryResourceType | review_article |
Snippet | Conservation of marine ecosystems has been highlighted as a priority to ensure a sustainable future. Effective management requires data collection over large... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | artificial intelligence automation conservation management ecological monitoring machine learning marine conservation |
Title | Artificial intelligence and automated monitoring for assisting conservation of marine ecosystems: A perspective |
URI | https://doaj.org/article/e8d0b83900f34a56be29d0aede0e55b0 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2296-7745 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340549 issn: 2296-7745 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2296-7745 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340549 issn: 2296-7745 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2296-7745 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340549 issn: 2296-7745 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2296-7745 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340549 issn: 2296-7745 databaseCode: BENPR dateStart: 20140225 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJxHEJ64vcvAkVNu82nhbxWUR1IsLeyt5TEDQdtHu_3fS1rUnvXhsm5YwM2G-b5p8Q8gFhoDhXtjESuUSoQqZ6JBC4nnOXJEF5Ww8jfz4pGZz8bCQi0Grr7gnrJMH7gx3DYVPLWbxNA1cGKksMO1TAx5SkNK2bB3T2IBMtdUVjkBE6O43JrIwjW5Cooh8kLErjVmtb8z2nYgGev1tYpnukO0eEdJJN5NdsgHVHtl6dmCqXk56n9Txaaf1QF8HIprUVJ6aVVMj7gRP39sFGit1FLEoRVwcVzBeubhnuq--0jpQnCWiS4rUs1Ny_ryhE7r8OXd5QObT-5e7WdK3Skgcl6JJLNcFE7j6dCYLcB4COoflIGL_FmelVdYKHbyyXDomcm64k5YZMEKkQeX8kIyquoIjQhWD3EujMseFcFrozGIiBRWCk7IwckzSb7uVrtcRj-0s3krkE9HUZWvqMpq67Ew9JpfrV5adiMZvg2-jM9YDo_51ewOjouyjovwrKo7_4yMnZDPOK1ZyWXFKRs3HCs4QgjT2vI22LwtB3io |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+and+automated+monitoring+for+assisting+conservation+of+marine+ecosystems%3A+A+perspective&rft.jtitle=Frontiers+in+Marine+Science&rft.au=Ditria%2C+Ellen+M.&rft.au=Buelow%2C+Christina+A.&rft.au=Gonzalez-Rivero%2C+Manuel&rft.au=Connolly%2C+Rod+M.&rft.date=2022-07-28&rft.issn=2296-7745&rft.eissn=2296-7745&rft.volume=9&rft_id=info:doi/10.3389%2Ffmars.2022.918104&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fmars_2022_918104 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-7745&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-7745&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-7745&client=summon |