A Variational Bayesian Learning Approach for Nonlinear Acoustic Echo Control

In this work, we present novel Bayesian algorithms for acoustic echo cancellation and residual echo suppression in the presence of a memoryless loudspeaker nonlinearity. The system nonlinearity is modeled using a basis-generic nonlinear expansion. This allows us to express the microphone observation...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 61; no. 23; pp. 5853 - 5867
Main Authors Malik, Sarmad, Enzner, Gerald
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2013.2281021

Cover

Abstract In this work, we present novel Bayesian algorithms for acoustic echo cancellation and residual echo suppression in the presence of a memoryless loudspeaker nonlinearity. The system nonlinearity is modeled using a basis-generic nonlinear expansion. This allows us to express the microphone observation in the DFT domain in terms of the nonlinear-expansion coefficients and the acoustic echo path. We augment the observation model with first-order Markov models for the echo-path vector and the nonlinear-expansion coefficients to arrive at a composite state-space model. The echo path vector and each nonlinear-expansion coefficient are designated as the unknown random variables in our Bayesian model. The posterior estimators for the random variables and the learning rules for the a priori unknown model parameters are then derived via the maximization of the variational lower bound on the log likelihood. We further show that a Bayesian post-filter for residual echo suppression can be derived by optimizing a minimum-mean-square error (MMSE) cost function subject to marginalization with respect to the posteriors estimated in the echo cancellation stage. The effectiveness of the approach is supported by simulation results and an analysis using instrumental performance measures.
AbstractList In this work, we present novel Bayesian algorithms for acoustic echo cancellation and residual echo suppression in the presence of a memoryless loudspeaker nonlinearity. The system nonlinearity is modeled using a basis-generic nonlinear expansion. This allows us to express the microphone observation in the DFT domain in terms of the nonlinear-expansion coefficients and the acoustic echo path. We augment the observation model with first-order Markov models for the echo-path vector and the nonlinear-expansion coefficients to arrive at a composite state-space model. The echo path vector and each nonlinear-expansion coefficient are designated as the unknown random variables in our Bayesian model. The posterior estimators for the random variables and the learning rules for the a priori unknown model parameters are then derived via the maximization of the variational lower bound on the log likelihood. We further show that a Bayesian post-filter for residual echo suppression can be derived by optimizing a minimum-mean-square error (MMSE) cost function subject to marginalization with respect to the posteriors estimated in the echo cancellation stage. The effectiveness of the approach is supported by simulation results and an analysis using instrumental performance measures.
Author Malik, Sarmad
Enzner, Gerald
Author_xml – sequence: 1
  givenname: Sarmad
  surname: Malik
  fullname: Malik, Sarmad
  email: sarmad.malik@ieee.org
  organization: Inst. of Commun. Acoust., Ruhr-Univ. Bochum, Bochum, Germany
– sequence: 2
  givenname: Gerald
  surname: Enzner
  fullname: Enzner, Gerald
  email: gerald.enzner@rub.de
  organization: Inst. of Commun. Acoust., Ruhr-Univ. Bochum, Bochum, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28150162$$DView record in Pascal Francis
BookMark eNp9kc1rGzEQxUVIoUnaeyEXQSnksu7MSrsrHV2TLzBtoab0JmZlbaKwkVxpfch_Xzl2csihF0mg33u8mXfKjkMMjrFPCDNE0F9Xv37OakAxq2uFUOMRO0EtsQLZtcflDY2oGtX9ec9Oc34AQCl1e8KWc_6bkqfJx0Aj_0ZPLnsKfOkoBR_u-HyzSZHsPR9i4t9jGH0oX3xu4zZP3vJLex_5IoYpxfEDezfQmN3Hw33GVleXq8VNtfxxfbuYLysrGjlVPcCaNArRUtdIqexar2lwMOgSVva6Vr1TVrWdgrWwXTmgV9Kik1T3SoszdrG3Lcn-bl2ezKPP1o0jBVdSGZStbIo_iIJ-foM-xG0qk-6oTghErLFQXw4UZUvjkChYn80m-UdKT6YstAFs68K1e86mmHNyg7F-el7dlMiPBsHsujClC7Prwhy6KEJ4I3zx_o_kfC_xzrlXvG10qU6Jf3dAlCU
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TSP_2017_2692731
crossref_primary_10_1186_s13634_016_0410_7
crossref_primary_10_1109_TASLP_2019_2923969
crossref_primary_10_1109_TASLP_2023_3313435
crossref_primary_10_1016_j_sigpro_2021_108411
crossref_primary_10_1109_TASLP_2014_2329732
crossref_primary_10_1109_TSP_2020_3011572
crossref_primary_10_1109_TSP_2019_2910490
crossref_primary_10_1109_TSP_2024_3480321
Cites_doi 10.1016/S0165-1684(00)00082-7
10.1109/ICASSP.1995.479485
10.1109/TSP.2011.2112355
10.1109/TSA.2005.852012
10.1109/TASSP.1985.1164730
10.1109/TSP.2008.2008261
10.1016/0005-1098(82)90022-X
10.1109/ICASSP.2002.5744997
10.1080/00207178908547379
10.1109/ICASSP.2012.6287811
10.1109/89.824701
10.1109/TASL.2011.2136336
10.1016/S0167-6393(96)00055-6
10.1016/S0165-1684(00)00085-2
10.1109/LSP.2011.2166385
10.1016/j.sigpro.2005.09.013
10.1109/TSP.2009.2037073
10.1109/97.782067
10.1109/ICASSP.2011.5946335
10.1109/ICASSP.2010.5495841
10.1109/TSP.2009.2021713
10.1080/00207176508905543
10.1109/TASL.2011.2164525
10.1201/9781420015836
10.1109/TSP.2008.2007105
10.1016/S0165-1684(00)00084-0
10.1109/TSP.2008.2008964
10.1109/79.127998
10.1109/78.205715
10.1016/0165-1684(95)00044-E
10.1109/ICASSP.2002.5745001
10.1007/978-0-387-45528-0
10.1007/978-3-662-04437-7
10.1109/ICASSP.2011.5946334
10.1109/TASL.2012.2196512
10.1109/TCOM.1982.1095435
10.1214/aoms/1177704250
10.1109/TASL.2010.2045185
10.1109/79.109205
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TSP.2013.2281021
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 5867
ExternalDocumentID 3170227811
28150162
10_1109_TSP_2013_2281021
6590018
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AJQPL
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
53G
5VS
AAYXX
ABFSI
ACKIV
AETIX
AI.
AIBXA
AKJIK
ALLEH
CITATION
H~9
ICLAB
IFJZH
VH1
AAYOK
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c354t-b00da91336a75448cd9dafe0f90474b928be8c86780d3c70d30b84c1e4a2b893
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Sun Sep 28 12:03:34 EDT 2025
Mon Jun 30 10:16:43 EDT 2025
Wed Apr 02 07:26:05 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Wed Oct 01 03:34:12 EDT 2025
Tue Aug 26 16:46:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Cascade modeling
Microphone
Variational methods
Noise reduction
Discrete Fourier transformation
Loudspeaker
Non linear phenomenon
Composite material
Learning
Acoustic noise
post-filtering
Random variable
Lower bound
Probabilistic approach
Acoustic signal
recursive Bayesian estimator
state-space model
nonlinear echo cancellation
Markov model
State space method
Acoustic signal processing
Echo suppression
Algorithm
Residual impurity
First order
A priori estimation
Signal processing
Bayes methods
Non linear effect
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-b00da91336a75448cd9dafe0f90474b928be8c86780d3c70d30b84c1e4a2b893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1473311121
PQPubID 85478
PageCount 15
ParticipantIDs ieee_primary_6590018
pascalfrancis_primary_28150162
crossref_citationtrail_10_1109_TSP_2013_2281021
proquest_journals_1473311121
proquest_miscellaneous_1464591303
crossref_primary_10_1109_TSP_2013_2281021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref53
ref52
ref11
billings (ref9) 1982; 18
beal (ref55) 2003
ref19
ref18
enzner (ref16) 2005
mader (ref34) 2000; 80
attias (ref46) 2000
ref51
ref50
h nsler (ref41) 2003
scharf (ref54) 1991
loizou (ref57) 2007
proakis (ref14) 1996
ref45
ref48
ref44
ref43
haykin (ref39) 2002
k ch (ref21) 2004
klippel (ref17) 1990; 38
petersen (ref56) 2008
ref7
benesty (ref35) 2000; 8
ref4
ref6
ref5
ref40
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
scheck (ref49) 2005
ref38
niemist (ref3) 2003
enzner (ref42) 2006; 86
k ch (ref8) 2005; 3
ref24
ref23
ref26
ref25
ref20
ref22
k ch (ref15) 2006
ref29
nollett (ref27) 1997
malik (ref47) 2012
zeller (ref10) 2008
stenger (ref28) 1999
References_xml – volume: 38
  start-page: 944
  year: 1990
  ident: ref17
  article-title: Dynamic measurement and interpretation of the nonlinear parameters of electrodynamic loudspeakers
  publication-title: J Audio Eng Soc
– volume: 80
  start-page: 1697
  year: 2000
  ident: ref34
  article-title: Step-size control for acoustic echo cancellation filters?an overview
  publication-title: Signal Process
  doi: 10.1016/S0165-1684(00)00082-7
– ident: ref11
  doi: 10.1109/ICASSP.1995.479485
– ident: ref12
  doi: 10.1109/TSP.2011.2112355
– start-page: 168
  year: 1999
  ident: ref28
  article-title: Adaptation of acoustic echo cancellers incorporating a memoryless nonlinearity
  publication-title: Proc Int Workshop Acoust Echo Noise Contr
– ident: ref52
  doi: 10.1109/TSA.2005.852012
– volume: 3
  start-page: 105
  year: 2005
  ident: ref8
  article-title: Nonlinear acoustic echo cancellation using adaptive orthogonalized power filters
  publication-title: Proc IEEE Int Conf Acoust Speech Signal Process
– ident: ref20
  doi: 10.1109/TASSP.1985.1164730
– ident: ref37
  doi: 10.1109/TSP.2008.2008261
– year: 2003
  ident: ref41
  publication-title: Least-Mean-Square Adaptive Filters
– volume: 18
  start-page: 15
  year: 1982
  ident: ref9
  article-title: Identification of systems containing linear dynamic and static nonlinear elements
  publication-title: Automatica
  doi: 10.1016/0005-1098(82)90022-X
– start-page: 213
  year: 2005
  ident: ref16
  article-title: On the problem of acoustic echo control in cellular networks
  publication-title: Proc Int Workshop Acoust Echo Noise Contr
– ident: ref51
  doi: 10.1109/ICASSP.2002.5744997
– ident: ref5
  doi: 10.1080/00207178908547379
– ident: ref31
  doi: 10.1109/ICASSP.2012.6287811
– volume: 8
  start-page: 168
  year: 2000
  ident: ref35
  article-title: A new class of doubletalk detectors based on cross-correlation
  publication-title: IEEE Trans Speech Audio Process
  doi: 10.1109/89.824701
– ident: ref26
  doi: 10.1109/TASL.2011.2136336
– year: 2012
  ident: ref47
  publication-title: Bayesian learning of linear and nonlinear acoustic system models in hands-free communication
– ident: ref50
  doi: 10.1016/S0167-6393(96)00055-6
– ident: ref19
  doi: 10.1016/S0165-1684(00)00085-2
– start-page: 1805
  year: 2004
  ident: ref21
  article-title: Coefficient-dependent step-size for adaptive second-order Volterra filters
  publication-title: Proc Eur Signal Process Conf
– ident: ref44
  doi: 10.1109/LSP.2011.2166385
– volume: 86
  start-page: 1140
  year: 2006
  ident: ref42
  article-title: Frequency-domain adaptive Kalman filter for acoustic echo control in hands-free telephones
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2005.09.013
– ident: ref23
  doi: 10.1109/TSP.2009.2037073
– year: 1991
  ident: ref54
  publication-title: Statistical Signal Processing
– ident: ref7
  doi: 10.1109/97.782067
– year: 2006
  ident: ref15
  publication-title: Topics in Acoustic Echo and Noise Control
– start-page: 209
  year: 2000
  ident: ref46
  article-title: A variational Bayesian framework for graphical models
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2008
  ident: ref10
  article-title: Coefficient pruning for higher-order diagonals of Volterra filters representing Wiener-Hammerstein models
  publication-title: Int Workshop Acoust Echo Noise Control
– year: 1996
  ident: ref14
  publication-title: Digital Signal Processing Principles Algorithms and Applications
– ident: ref29
  doi: 10.1109/ICASSP.2011.5946335
– ident: ref43
  doi: 10.1109/ICASSP.2010.5495841
– ident: ref25
  doi: 10.1109/TSP.2009.2021713
– ident: ref4
  doi: 10.1080/00207176508905543
– ident: ref38
  doi: 10.1109/TASL.2011.2164525
– year: 2007
  ident: ref57
  publication-title: Speech Enhancement Theory and Practice
  doi: 10.1201/9781420015836
– start-page: 79
  year: 2003
  ident: ref3
  article-title: On performance of linear adaptive filtering algorithms in acoustic echo control in presence of distorting loudspeakers
  publication-title: Proc Int Workshop Acoust Echo Noise Contr
– ident: ref22
  doi: 10.1109/TSP.2008.2007105
– ident: ref36
  doi: 10.1016/S0165-1684(00)00084-0
– year: 2008
  ident: ref56
  publication-title: The Matrix Cookbook
– ident: ref2
  doi: 10.1109/TSP.2008.2008964
– year: 2002
  ident: ref39
  publication-title: Adaptive Filter Theory
– ident: ref1
  doi: 10.1109/79.127998
– ident: ref6
  doi: 10.1109/78.205715
– ident: ref18
  doi: 10.1016/0165-1684(95)00044-E
– ident: ref40
  doi: 10.1109/ICASSP.2002.5745001
– ident: ref48
  doi: 10.1007/978-0-387-45528-0
– ident: ref33
  doi: 10.1007/978-3-662-04437-7
– year: 2005
  ident: ref49
  publication-title: Mechanics from Newton's Laws to Deterministic Chaos
– ident: ref30
  doi: 10.1109/ICASSP.2011.5946334
– year: 1997
  ident: ref27
  article-title: Nonlinear echo cancellation for hands-free speakerphones
  publication-title: Proc IEEE Workshop Nonlinear Signal Image Process
– ident: ref45
  doi: 10.1109/TASL.2012.2196512
– ident: ref13
  doi: 10.1109/TCOM.1982.1095435
– ident: ref53
  doi: 10.1214/aoms/1177704250
– ident: ref24
  doi: 10.1109/TASL.2010.2045185
– year: 2003
  ident: ref55
  publication-title: Variational algorithms for approximate Bayesian inference
– ident: ref32
  doi: 10.1109/79.109205
SSID ssj0014496
Score 2.2000418
Snippet In this work, we present novel Bayesian algorithms for acoustic echo cancellation and residual echo suppression in the presence of a memoryless loudspeaker...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5853
SubjectTerms Acoustics
Adaptation models
Algorithms
Applied sciences
Bayes methods
Bayesian analysis
Cancellation
Cascade modeling
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Information, signal and communications theory
Learning
Mathematical analysis
Mathematical model
Mathematical models
Miscellaneous
nonlinear echo cancellation
Nonlinearity
Operations research
post-filtering
Random variables
recursive Bayesian estimator
Signal and communications theory
Signal processing
Signal, noise
State-space methods
state-space model
Telecommunications and information theory
Vectors
Vectors (mathematics)
Title A Variational Bayesian Learning Approach for Nonlinear Acoustic Echo Control
URI https://ieeexplore.ieee.org/document/6590018
https://www.proquest.com/docview/1473311121
https://www.proquest.com/docview/1464591303
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5WT3rwLa4vIngR7G4fSZscV1EWURFcZW8lTVMPyq7o7kF_vTNptvhCvJRCX-lMk3zTmXwfwCEXWka6KgJhkizgVtkAUYIIdCqNMEIkxon2XV2n_Tt-MRTDFhw3a2Gsta74zHZo1-Xyy7GZ0q-ybkoSl5Gcg7ksU_VarSZjwLnT4kK4kARCZsNZSjJU3cHtDdVwJZ04lqRk_WUKcpoqVBGpX9EoVa1m8WNgdrPN-TJczdpZF5k8dqaTomPev1E4_vdFVmDJw07Wq7-TVWjZ0RosfiIjXIfLHrvHwNn_HGQn-s3SAkvmGVgfWM_TjzPEuey6ptjQL6xnxk4RjJ3hSMpO69L3DRicnw1O-4HXWghMIviEdHhKrTBgTTVR4klTqlJXNqxUyDNeqFgWVhqJU1tYJibDTVhIbiLLdVwg5tmE-dF4ZLeASV6VpdYxcXtxJbkiSrGqSok3KIp02IbuzPq58TzkJIfxlLt4JFQ5-isnf-XeX204aq54rjk4_jh3nczdnOct3Yb9Lw5ujuNVAlFv3Ibdmcdz34tfMSwiRUtEpHjbg-Yw9j9KquiRRfNS6MSFIiSw_fujd2CBGliXwOzC_ORlavcQyEyKffcFfwCJ7-zy
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4BPQCH0vIQKY9uJS5IOPFj1949pgiUQhIhEVBu1nq95tAqQSE50F_fmfXGAoqqXixLfq1nvLvfeGa_D-CECy0jXRWBMEkWcKtsgChBBDqVRhghEuNE-wbDtHfHr8ZivAJnzVoYa60rPrNt2nW5_HJqFvSrrJOSxGUkV-GDwKgiq1drNTkDzp0aFwKGJBAyGy-TkqHqjG5vqIoracexJC3rV5OQU1Whmkj9hGapaj2Lv4ZmN99cbsFg2dK6zORnezEv2ub3GxLH_32VT_DRA0_Wrb-Uz7BiJ9uw-YKOcAf6XXaPobP_Pci-62dLSyyZ52B9YF1PQM4Q6bJhTbKhZ6xrpk4TjF3gWMrO6-L3XRhdXozOe4FXWwhMIviclHhKrTBkTTWR4klTqlJXNqxUyDNeqFgWVhqJk1tYJibDTVhIbiLLdVwg6tmDtcl0YveBSV6VpdYxsXtxJbkiUrGqSok5KIp02ILO0vq58UzkJIjxK3cRSahy9FdO_sq9v1pw2lzxWLNw_OPcHTJ3c563dAuOXzm4OY5XCcS9cQsOlx7PfT9-wsCINC0Rk-JtvzWHsQdSWkVPLJqXgicuFGGBL-8_-ius90aDft7_Mbw-gA1qbF0Qcwhr89nCHiGsmRfH7mv-AyPk8EM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Variational+Bayesian+Learning+Approach+for+Nonlinear+Acoustic+Echo+Control&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=MALIK%2C+Sarmad&rft.au=ENZNER%2C+Gerald&rft.date=2013-12-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1053-587X&rft.volume=61&rft.issue=21-24&rft.spage=5853&rft.epage=5867&rft_id=info:doi/10.1109%2FTSP.2013.2281021&rft.externalDBID=n%2Fa&rft.externalDocID=28150162
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon