Airfoil friction drag reduction based on grid-type and super-dense array plasma actuators

To improve the cruise flight performance of aircraft, two new configurations of plasma actuators (grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed...

Full description

Saved in:
Bibliographic Details
Published inPlasma science & technology Vol. 26; no. 2; pp. 25503 - 25512
Main Authors FANG, Ziqi, ZONG, Haohua, WU, Yun, LIANG, Hua, SU, Zhi
Format Journal Article
LanguageEnglish
Published Plasma Science and Technology 01.02.2024
Subjects
Online AccessGet full text
ISSN1009-0630
DOI10.1088/2058-6272/ad0c99

Cover

Abstract To improve the cruise flight performance of aircraft, two new configurations of plasma actuators (grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed with high-speed particle image velocimetry (PIV), and their drag reduction efficiencies were examined under different operating conditions in a wind tunnel. The results showed that the grid-type plasma actuator was capable of producing a wall-normal jet array (peak magnitude: 1.07 m/s) similar to that generated in a micro-blowing technique, while the super-dense array plasma actuator created a wavy wall-parallel jet (magnitude: 0.94 m/s) due to the discrete spanwise electrostatic forces. Under a comparable electrical power consumption level, the super-dense array plasma actuator array significantly outperformed the grid-type configuration, reducing the total airfoil friction drag by approximately 22% at a free-stream velocity of 20 m/s. The magnitude of drag reduction was proportional to the dimensionless jet velocity ratio ( r ), and a threshold r = 0.014 existed under which little impact on airfoil drag could be discerned.
AbstractList To improve the cruise flight performance of aircraft, two new configurations of plasma actuators (grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed with high-speed particle image velocimetry (PIV), and their drag reduction efficiencies were examined under different operating conditions in a wind tunnel. The results showed that the grid-type plasma actuator was capable of producing a wall-normal jet array (peak magnitude: 1.07 m/s) similar to that generated in a micro-blowing technique, while the super-dense array plasma actuator created a wavy wall-parallel jet (magnitude: 0.94 m/s) due to the discrete spanwise electrostatic forces. Under a comparable electrical power consumption level, the super-dense array plasma actuator array significantly outperformed the grid-type configuration, reducing the total airfoil friction drag by approximately 22% at a free-stream velocity of 20 m/s. The magnitude of drag reduction was proportional to the dimensionless jet velocity ratio ( r ), and a threshold r = 0.014 existed under which little impact on airfoil drag could be discerned.
Author SU, Zhi
FANG, Ziqi
LIANG, Hua
ZONG, Haohua
WU, Yun
Author_xml – sequence: 1
  givenname: Ziqi
  surname: FANG
  fullname: FANG, Ziqi
  organization: School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
– sequence: 2
  givenname: Haohua
  surname: ZONG
  fullname: ZONG, Haohua
  organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
– sequence: 3
  givenname: Yun
  surname: WU
  fullname: WU, Yun
  organization: National Key Lab of Aerospace Power System and Plasma Technology, Air Force Engineering University, Xi’an 710038, People’s Republic of China
– sequence: 4
  givenname: Hua
  surname: LIANG
  fullname: LIANG, Hua
  organization: National Key Lab of Aerospace Power System and Plasma Technology, Air Force Engineering University, Xi’an 710038, People’s Republic of China
– sequence: 5
  givenname: Zhi
  surname: SU
  fullname: SU, Zhi
  organization: National Key Lab of Aerospace Power System and Plasma Technology, Air Force Engineering University, Xi’an 710038, People’s Republic of China
BookMark eNp9kL1PwzAQxT0UiRbYGb2xEHpx4tgZq4ovqRILDEzWxR-VqzSJbGfof0-iMiFgunvS-z3dvRVZdH1nCbnN4SEHKdcMuMwqJtgaDei6XpBlDlBnUBVwSVYxHgB4WctiST43Prjet9QFr5PvO2oC7mmwZjzLBqM1dFr2wZssnQZLsTM0joMNmbFdnHQIeKJDi_GIFHUaMfUhXpMLh220N9_zinw8Pb5vX7Ld2_PrdrPLdMHLlKExjNXOlnnJkAttStE4MDZ3ttFOCwE1l8ZxiVJj5YQVBhtXCGsFkyia4opU51wd-hiDdUr7hPPtKaBvVQ5qLkXNpai5FHUuZQLhBzgEf8Rw-g-5OyO-H9ShH0M3faaGmBSrFFPAOIdCDcZNzvtfnH8GfwEoIYbn
CitedBy_id crossref_primary_10_1063_5_0261108
crossref_primary_10_1063_5_0246008
crossref_primary_10_1088_2631_8695_adabb3
crossref_primary_10_1088_2058_6272_ad91e9
crossref_primary_10_1063_5_0250849
crossref_primary_10_1088_1361_6463_ada804
crossref_primary_10_1088_2058_6272_ad5d4e
Cites_doi 10.1063/5.0050547
10.1016/j.paerosci.2015.05.001
10.1016/j.ijft.2020.100053
10.1007/s10494-020-00221-2
10.1088/1674-1056/26/8/084703
10.1017/S0022112094000431
10.1017/S002211200100667X
10.1063/1.4712125
10.1063/1.869789
10.2514/1.J056949
10.1017/jfm.2021.311
10.1017/S0022112095000978
10.1017/jfm.2021.167
10.1063/1.4942979
10.1109/TIA.2016.2637305
10.1007/s00348-007-0362-7
10.2514/1.J056690
10.1016/j.paerosci.2021.100713
10.3390/fluids7070240
10.2514/1.J051852
10.1098/rsta.2010.0362
10.1063/1.2773932
10.1103/PhysRevFluids.2.062601
10.2514/1.J057998
10.1016/j.cja.2022.11.019
10.1063/5.0104609
ContentType Journal Article
Copyright 2024 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing. All rights reserved
Copyright_xml – notice: 2024 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing. All rights reserved
DBID AAYXX
CITATION
DOI 10.1088/2058-6272/ad0c99
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 10_1088_2058_6272_ad0c99
pstad0c99
GroupedDBID -SA
-S~
123
1JI
4.4
5B3
5VR
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
CW9
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
U1G
U5K
W28
AAYXX
ADEQX
CITATION
Q--
ID FETCH-LOGICAL-c354t-add229fe4142a57cd47bf0de1febcfc770958df58a8ca6f7e7dabf37ee728a7b3
IEDL.DBID IOP
ISSN 1009-0630
IngestDate Tue Jul 01 03:44:43 EDT 2025
Thu Apr 24 23:01:34 EDT 2025
Tue Aug 20 22:16:38 EDT 2024
Wed Sep 25 08:11:24 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-add229fe4142a57cd47bf0de1febcfc770958df58a8ca6f7e7dabf37ee728a7b3
OpenAccessLink https://doi.org/10.1088/2058-6272/ad0c99
PageCount 10
ParticipantIDs crossref_citationtrail_10_1088_2058_6272_ad0c99
crossref_primary_10_1088_2058_6272_ad0c99
iop_journals_10_1088_2058_6272_ad0c99
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240201
2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 2
  year: 2024
  text: 20240201
  day: 01
PublicationDecade 2020
PublicationTitle Plasma science & technology
PublicationTitleAlternate Plasma Sci. Technol
PublicationYear 2024
Publisher Plasma Science and Technology
Publisher_xml – name: Plasma Science and Technology
References Eto (pst_26_2_025503_bib14) 2019; 57
Ricco (pst_26_2_025503_bib1) 2021; 123
Zhang (pst_26_2_025503_bib21) 2023; 36
Duong (pst_26_2_025503_bib12) 2021; 915
Bian (pst_26_2_025503_bib19) 2017; 26
Corke (pst_26_2_025503_bib15) 2018; 56
Cheng (pst_26_2_025503_bib31) 2021; 918
Choi (pst_26_2_025503_bib35) 1994; 262
Hamilton (pst_26_2_025503_bib32) 1995; 287
Yakeno (pst_26_2_025503_bib5) 2021; 33
pst_26_2_025503_bib25
Benard (pst_26_2_025503_bib26) 2012; 100
Zheng (pst_26_2_025503_bib9) 2023; 38
Yao (pst_26_2_025503_bib29) 2017; 2
Jukes (pst_26_2_025503_bib13) 2013; 51
pst_26_2_025503_bib22
pst_26_2_025503_bib20
Gattere (pst_26_2_025503_bib3) 2022; 7
Singh (pst_26_2_025503_bib23) 2007; 91
Schoppa (pst_26_2_025503_bib33) 1998; 10
pst_26_2_025503_bib28
pst_26_2_025503_bib2
Kornilov (pst_26_2_025503_bib6) 2015; 76
pst_26_2_025503_bib27
Schoppa (pst_26_2_025503_bib34) 2002; 453
pst_26_2_025503_bib4
Soleimani (pst_26_2_025503_bib37) 2021; 9
Zong (pst_26_2_025503_bib30) 2018; 56
Forte (pst_26_2_025503_bib24) 2007; 43
Xie (pst_26_2_025503_bib36) 2021; 107
Roy (pst_26_2_025503_bib17) 2016; 6
Su (pst_26_2_025503_bib16) 2023; 36
Shimizu (pst_26_2_025503_bib18) 2017; 53
Zong (pst_26_2_025503_bib7) 2022; 34
pst_26_2_025503_bib11
pst_26_2_025503_bib10
Choi (pst_26_2_025503_bib8) 2011; 369
References_xml – volume: 33
  start-page: 065122
  year: 2021
  ident: pst_26_2_025503_bib5
  publication-title: Phys. Fluids
  doi: 10.1063/5.0050547
– volume: 76
  start-page: 1
  year: 2015
  ident: pst_26_2_025503_bib6
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2015.05.001
– volume: 9
  start-page: 100053
  year: 2021
  ident: pst_26_2_025503_bib37
  publication-title: Int. J. Thermofluids
  doi: 10.1016/j.ijft.2020.100053
– ident: pst_26_2_025503_bib28
– ident: pst_26_2_025503_bib4
– ident: pst_26_2_025503_bib2
– volume: 107
  start-page: 51
  year: 2021
  ident: pst_26_2_025503_bib36
  publication-title: Flow Turbulence Combust
  doi: 10.1007/s10494-020-00221-2
– volume: 26
  start-page: 084703
  year: 2017
  ident: pst_26_2_025503_bib19
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/26/8/084703
– ident: pst_26_2_025503_bib20
– ident: pst_26_2_025503_bib22
– volume: 262
  start-page: 75
  year: 1994
  ident: pst_26_2_025503_bib35
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112094000431
– volume: 453
  start-page: 57
  year: 2002
  ident: pst_26_2_025503_bib34
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211200100667X
– volume: 100
  start-page: 193503
  year: 2012
  ident: pst_26_2_025503_bib26
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4712125
– volume: 10
  start-page: 1049
  year: 1998
  ident: pst_26_2_025503_bib33
  publication-title: Phys. Fluids
  doi: 10.1063/1.869789
– ident: pst_26_2_025503_bib10
– volume: 56
  start-page: 3835
  year: 2018
  ident: pst_26_2_025503_bib15
  publication-title: AIAA J.
  doi: 10.2514/1.J056949
– volume: 918
  start-page: A24
  year: 2021
  ident: pst_26_2_025503_bib31
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.311
– volume: 287
  start-page: 317
  year: 1995
  ident: pst_26_2_025503_bib32
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112095000978
– volume: 38
  start-page: 1157
  year: 2023
  ident: pst_26_2_025503_bib9
  publication-title: J. Aerosp. Power
– ident: pst_26_2_025503_bib27
– volume: 915
  start-page: A113
  year: 2021
  ident: pst_26_2_025503_bib12
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.167
– volume: 6
  start-page: 025322
  year: 2016
  ident: pst_26_2_025503_bib17
  publication-title: AIP Adv.
  doi: 10.1063/1.4942979
– volume: 53
  start-page: 1452
  year: 2017
  ident: pst_26_2_025503_bib18
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2016.2637305
– ident: pst_26_2_025503_bib25
– volume: 43
  start-page: 917
  year: 2007
  ident: pst_26_2_025503_bib24
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-007-0362-7
– volume: 56
  start-page: 2075
  year: 2018
  ident: pst_26_2_025503_bib30
  publication-title: AIAA J.
  doi: 10.2514/1.J056690
– volume: 36
  start-page: 1
  year: 2023
  ident: pst_26_2_025503_bib21
  publication-title: Chin. J. Aeronaut.
– volume: 123
  start-page: 100713
  year: 2021
  ident: pst_26_2_025503_bib1
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2021.100713
– volume: 7
  start-page: 240
  year: 2022
  ident: pst_26_2_025503_bib3
  publication-title: Fluids
  doi: 10.3390/fluids7070240
– volume: 51
  start-page: 452
  year: 2013
  ident: pst_26_2_025503_bib13
  publication-title: AIAA J.
  doi: 10.2514/1.J051852
– volume: 369
  start-page: 1443
  year: 2011
  ident: pst_26_2_025503_bib8
  publication-title: Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2010.0362
– volume: 91
  start-page: 081504
  year: 2007
  ident: pst_26_2_025503_bib23
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2773932
– volume: 2
  start-page: 062601
  year: 2017
  ident: pst_26_2_025503_bib29
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.2.062601
– volume: 57
  start-page: 2774
  year: 2019
  ident: pst_26_2_025503_bib14
  publication-title: AIAA J.
  doi: 10.2514/1.J057998
– ident: pst_26_2_025503_bib11
– volume: 36
  start-page: 104
  year: 2023
  ident: pst_26_2_025503_bib16
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2022.11.019
– volume: 34
  start-page: 085133
  year: 2022
  ident: pst_26_2_025503_bib7
  publication-title: Phys. Fluids
  doi: 10.1063/5.0104609
SSID ssj0054983
Score 2.3483927
Snippet To improve the cruise flight performance of aircraft, two new configurations of plasma actuators (grid-type and super-dense array) were investigated to reduce...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 25503
SubjectTerms airfoil
drag reduction
flow control
plasma actuator
Title Airfoil friction drag reduction based on grid-type and super-dense array plasma actuators
URI https://iopscience.iop.org/article/10.1088/2058-6272/ad0c99
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6rInjxLb7JQQ8esnaTtknxtIgiHtSDgoIQJi9ZXHdL2z3orzdpu6IiIt4SmKZh0s58k3yZQejAMCsUA03AWUHiLLJEUcuJyTRT0POYXdcs36v04i6-vE_uO-jk4y7MOG9Nf9c3m0TBjQpbQpzw4XoiSEo5PQYT6SybQXMsVFIKt_eub6Zm2Mc9omHXh93_lEXtGeVPI3zxSTP-vZ9czPkSepxOrmGWPHcnlerqt295G_85-2W02EJP3G9EV1DHjlbRfE0B1eUaeugPCjceDHGoHBSWC5sCnnARcrvW3eDwDPaNp2JgSNi7xTAyuJzktiDefJW-XxTwinOPyF8AQ7ibEor5rKO787Pb0wvSFl4gmiVxRbzNozRzNu7FFBKuTcyVi4ztOau005x7XCaMSwQIDanjlhtQjnFrORXAFdtAs6PxyG4inPHEaOM8hPdYwcVOxIyD5mA514Jp2ELHU9VL3WYlD8UxhrI-HRdCBoXJoDDZKGwLHX08kTcZOX6RPfTrINvfsvxFDn-Ry8tK0lRSGSKuiMncuO0_DrWDFqjHPQ2xexfNVsXE7nncUqn9-vt8Bx-054s
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEYgL5SkKBXyAAwfvZu0k4xwr2lULqPRApXIy41e1ouxGSfYAv55xkkUUoQqJmy1NnGQmnvkmM55h7JVXQVuFTmAMWuRVFoSVAYSvnLI4I8zu-izfk_LoLH93XpyPfU77szCrelT9ExoOhYIHFo4JcZrc9UKLUoKcos9cVU1rH7fYzUIVkHbm8cfTjSom30cPGfYpAlCqbIxT_m2VK3Zpi-79m5mZ77Avmwccsku-Ttadnbgff9Ru_I83uMfujhCU7w_k99mNsHzAbvWpoK59yD7vL5q4Wlzy1EEoiY37Bi94k2q89tNk-DynwUWz8CL9w-W49Lxd16ERpMZamjcNfuc1IfNvyDGdUUlNfR6xs_nhp7dHYmzAIJwq8k6Q7pOyiiGf5RILcD4HGzMfZjFYFx0A4TPtY6FROywjBPBoo4IQQGoEqx6z7eVqGZ4wXkHhnY8E5QkzxDzqXAE6wADgtHK4y6Yb9hs3VidPTTIuTR8l19okppnENDMwbZe9-XVFPVTmuIb2NcnCjNuzvYaOX6Gr287I0kiTPK9MGZLT039c6iW7fXowNx-OT94_Y3ckQaEh13uPbXfNOjwnKNPZF_3n-hO2pez1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Airfoil+friction+drag+reduction+based+on+grid-type+and+super-dense+array+plasma+actuators&rft.jtitle=Plasma+science+%26+technology&rft.au=FANG%2C+Ziqi&rft.au=ZONG%2C+Haohua&rft.au=WU%2C+Yun&rft.au=LIANG%2C+Hua&rft.date=2024-02-01&rft.pub=Plasma+Science+and+Technology&rft.issn=1009-0630&rft.volume=26&rft.issue=2&rft_id=info:doi/10.1088%2F2058-6272%2Fad0c99&rft.externalDocID=pstad0c99
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-0630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-0630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-0630&client=summon