Airfoil friction drag reduction based on grid-type and super-dense array plasma actuators
To improve the cruise flight performance of aircraft, two new configurations of plasma actuators (grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed...
Saved in:
Published in | Plasma science & technology Vol. 26; no. 2; pp. 25503 - 25512 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Plasma Science and Technology
01.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1009-0630 |
DOI | 10.1088/2058-6272/ad0c99 |
Cover
Abstract | To improve the cruise flight performance of aircraft, two new configurations of plasma actuators (grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed with high-speed particle image velocimetry (PIV), and their drag reduction efficiencies were examined under different operating conditions in a wind tunnel. The results showed that the grid-type plasma actuator was capable of producing a wall-normal jet array (peak magnitude: 1.07 m/s) similar to that generated in a micro-blowing technique, while the super-dense array plasma actuator created a wavy wall-parallel jet (magnitude: 0.94 m/s) due to the discrete spanwise electrostatic forces. Under a comparable electrical power consumption level, the super-dense array plasma actuator array significantly outperformed the grid-type configuration, reducing the total airfoil friction drag by approximately 22% at a free-stream velocity of 20 m/s. The magnitude of drag reduction was proportional to the dimensionless jet velocity ratio (
r
), and a threshold
r =
0.014 existed under which little impact on airfoil drag could be discerned. |
---|---|
AbstractList | To improve the cruise flight performance of aircraft, two new configurations of plasma actuators (grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed with high-speed particle image velocimetry (PIV), and their drag reduction efficiencies were examined under different operating conditions in a wind tunnel. The results showed that the grid-type plasma actuator was capable of producing a wall-normal jet array (peak magnitude: 1.07 m/s) similar to that generated in a micro-blowing technique, while the super-dense array plasma actuator created a wavy wall-parallel jet (magnitude: 0.94 m/s) due to the discrete spanwise electrostatic forces. Under a comparable electrical power consumption level, the super-dense array plasma actuator array significantly outperformed the grid-type configuration, reducing the total airfoil friction drag by approximately 22% at a free-stream velocity of 20 m/s. The magnitude of drag reduction was proportional to the dimensionless jet velocity ratio (
r
), and a threshold
r =
0.014 existed under which little impact on airfoil drag could be discerned. |
Author | SU, Zhi FANG, Ziqi LIANG, Hua ZONG, Haohua WU, Yun |
Author_xml | – sequence: 1 givenname: Ziqi surname: FANG fullname: FANG, Ziqi organization: School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China – sequence: 2 givenname: Haohua surname: ZONG fullname: ZONG, Haohua organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China – sequence: 3 givenname: Yun surname: WU fullname: WU, Yun organization: National Key Lab of Aerospace Power System and Plasma Technology, Air Force Engineering University, Xi’an 710038, People’s Republic of China – sequence: 4 givenname: Hua surname: LIANG fullname: LIANG, Hua organization: National Key Lab of Aerospace Power System and Plasma Technology, Air Force Engineering University, Xi’an 710038, People’s Republic of China – sequence: 5 givenname: Zhi surname: SU fullname: SU, Zhi organization: National Key Lab of Aerospace Power System and Plasma Technology, Air Force Engineering University, Xi’an 710038, People’s Republic of China |
BookMark | eNp9kL1PwzAQxT0UiRbYGb2xEHpx4tgZq4ovqRILDEzWxR-VqzSJbGfof0-iMiFgunvS-z3dvRVZdH1nCbnN4SEHKdcMuMwqJtgaDei6XpBlDlBnUBVwSVYxHgB4WctiST43Prjet9QFr5PvO2oC7mmwZjzLBqM1dFr2wZssnQZLsTM0joMNmbFdnHQIeKJDi_GIFHUaMfUhXpMLh220N9_zinw8Pb5vX7Ld2_PrdrPLdMHLlKExjNXOlnnJkAttStE4MDZ3ttFOCwE1l8ZxiVJj5YQVBhtXCGsFkyia4opU51wd-hiDdUr7hPPtKaBvVQ5qLkXNpai5FHUuZQLhBzgEf8Rw-g-5OyO-H9ShH0M3faaGmBSrFFPAOIdCDcZNzvtfnH8GfwEoIYbn |
CitedBy_id | crossref_primary_10_1063_5_0261108 crossref_primary_10_1063_5_0246008 crossref_primary_10_1088_2631_8695_adabb3 crossref_primary_10_1088_2058_6272_ad91e9 crossref_primary_10_1063_5_0250849 crossref_primary_10_1088_1361_6463_ada804 crossref_primary_10_1088_2058_6272_ad5d4e |
Cites_doi | 10.1063/5.0050547 10.1016/j.paerosci.2015.05.001 10.1016/j.ijft.2020.100053 10.1007/s10494-020-00221-2 10.1088/1674-1056/26/8/084703 10.1017/S0022112094000431 10.1017/S002211200100667X 10.1063/1.4712125 10.1063/1.869789 10.2514/1.J056949 10.1017/jfm.2021.311 10.1017/S0022112095000978 10.1017/jfm.2021.167 10.1063/1.4942979 10.1109/TIA.2016.2637305 10.1007/s00348-007-0362-7 10.2514/1.J056690 10.1016/j.paerosci.2021.100713 10.3390/fluids7070240 10.2514/1.J051852 10.1098/rsta.2010.0362 10.1063/1.2773932 10.1103/PhysRevFluids.2.062601 10.2514/1.J057998 10.1016/j.cja.2022.11.019 10.1063/5.0104609 |
ContentType | Journal Article |
Copyright | 2024 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing. All rights reserved |
Copyright_xml | – notice: 2024 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing. All rights reserved |
DBID | AAYXX CITATION |
DOI | 10.1088/2058-6272/ad0c99 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | 10_1088_2058_6272_ad0c99 pstad0c99 |
GroupedDBID | -SA -S~ 123 1JI 4.4 5B3 5VR 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 CW9 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 U1G U5K W28 AAYXX ADEQX CITATION Q-- |
ID | FETCH-LOGICAL-c354t-add229fe4142a57cd47bf0de1febcfc770958df58a8ca6f7e7dabf37ee728a7b3 |
IEDL.DBID | IOP |
ISSN | 1009-0630 |
IngestDate | Tue Jul 01 03:44:43 EDT 2025 Thu Apr 24 23:01:34 EDT 2025 Tue Aug 20 22:16:38 EDT 2024 Wed Sep 25 08:11:24 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-add229fe4142a57cd47bf0de1febcfc770958df58a8ca6f7e7dabf37ee728a7b3 |
OpenAccessLink | https://doi.org/10.1088/2058-6272/ad0c99 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1088_2058_6272_ad0c99 crossref_primary_10_1088_2058_6272_ad0c99 iop_journals_10_1088_2058_6272_ad0c99 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240201 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 2 year: 2024 text: 20240201 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Plasma science & technology |
PublicationTitleAlternate | Plasma Sci. Technol |
PublicationYear | 2024 |
Publisher | Plasma Science and Technology |
Publisher_xml | – name: Plasma Science and Technology |
References | Eto (pst_26_2_025503_bib14) 2019; 57 Ricco (pst_26_2_025503_bib1) 2021; 123 Zhang (pst_26_2_025503_bib21) 2023; 36 Duong (pst_26_2_025503_bib12) 2021; 915 Bian (pst_26_2_025503_bib19) 2017; 26 Corke (pst_26_2_025503_bib15) 2018; 56 Cheng (pst_26_2_025503_bib31) 2021; 918 Choi (pst_26_2_025503_bib35) 1994; 262 Hamilton (pst_26_2_025503_bib32) 1995; 287 Yakeno (pst_26_2_025503_bib5) 2021; 33 pst_26_2_025503_bib25 Benard (pst_26_2_025503_bib26) 2012; 100 Zheng (pst_26_2_025503_bib9) 2023; 38 Yao (pst_26_2_025503_bib29) 2017; 2 Jukes (pst_26_2_025503_bib13) 2013; 51 pst_26_2_025503_bib22 pst_26_2_025503_bib20 Gattere (pst_26_2_025503_bib3) 2022; 7 Singh (pst_26_2_025503_bib23) 2007; 91 Schoppa (pst_26_2_025503_bib33) 1998; 10 pst_26_2_025503_bib28 pst_26_2_025503_bib2 Kornilov (pst_26_2_025503_bib6) 2015; 76 pst_26_2_025503_bib27 Schoppa (pst_26_2_025503_bib34) 2002; 453 pst_26_2_025503_bib4 Soleimani (pst_26_2_025503_bib37) 2021; 9 Zong (pst_26_2_025503_bib30) 2018; 56 Forte (pst_26_2_025503_bib24) 2007; 43 Xie (pst_26_2_025503_bib36) 2021; 107 Roy (pst_26_2_025503_bib17) 2016; 6 Su (pst_26_2_025503_bib16) 2023; 36 Shimizu (pst_26_2_025503_bib18) 2017; 53 Zong (pst_26_2_025503_bib7) 2022; 34 pst_26_2_025503_bib11 pst_26_2_025503_bib10 Choi (pst_26_2_025503_bib8) 2011; 369 |
References_xml | – volume: 33 start-page: 065122 year: 2021 ident: pst_26_2_025503_bib5 publication-title: Phys. Fluids doi: 10.1063/5.0050547 – volume: 76 start-page: 1 year: 2015 ident: pst_26_2_025503_bib6 publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2015.05.001 – volume: 9 start-page: 100053 year: 2021 ident: pst_26_2_025503_bib37 publication-title: Int. J. Thermofluids doi: 10.1016/j.ijft.2020.100053 – ident: pst_26_2_025503_bib28 – ident: pst_26_2_025503_bib4 – ident: pst_26_2_025503_bib2 – volume: 107 start-page: 51 year: 2021 ident: pst_26_2_025503_bib36 publication-title: Flow Turbulence Combust doi: 10.1007/s10494-020-00221-2 – volume: 26 start-page: 084703 year: 2017 ident: pst_26_2_025503_bib19 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/26/8/084703 – ident: pst_26_2_025503_bib20 – ident: pst_26_2_025503_bib22 – volume: 262 start-page: 75 year: 1994 ident: pst_26_2_025503_bib35 publication-title: J. Fluid Mech. doi: 10.1017/S0022112094000431 – volume: 453 start-page: 57 year: 2002 ident: pst_26_2_025503_bib34 publication-title: J. Fluid Mech. doi: 10.1017/S002211200100667X – volume: 100 start-page: 193503 year: 2012 ident: pst_26_2_025503_bib26 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4712125 – volume: 10 start-page: 1049 year: 1998 ident: pst_26_2_025503_bib33 publication-title: Phys. Fluids doi: 10.1063/1.869789 – ident: pst_26_2_025503_bib10 – volume: 56 start-page: 3835 year: 2018 ident: pst_26_2_025503_bib15 publication-title: AIAA J. doi: 10.2514/1.J056949 – volume: 918 start-page: A24 year: 2021 ident: pst_26_2_025503_bib31 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.311 – volume: 287 start-page: 317 year: 1995 ident: pst_26_2_025503_bib32 publication-title: J. Fluid Mech. doi: 10.1017/S0022112095000978 – volume: 38 start-page: 1157 year: 2023 ident: pst_26_2_025503_bib9 publication-title: J. Aerosp. Power – ident: pst_26_2_025503_bib27 – volume: 915 start-page: A113 year: 2021 ident: pst_26_2_025503_bib12 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.167 – volume: 6 start-page: 025322 year: 2016 ident: pst_26_2_025503_bib17 publication-title: AIP Adv. doi: 10.1063/1.4942979 – volume: 53 start-page: 1452 year: 2017 ident: pst_26_2_025503_bib18 publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2016.2637305 – ident: pst_26_2_025503_bib25 – volume: 43 start-page: 917 year: 2007 ident: pst_26_2_025503_bib24 publication-title: Exp. Fluids doi: 10.1007/s00348-007-0362-7 – volume: 56 start-page: 2075 year: 2018 ident: pst_26_2_025503_bib30 publication-title: AIAA J. doi: 10.2514/1.J056690 – volume: 36 start-page: 1 year: 2023 ident: pst_26_2_025503_bib21 publication-title: Chin. J. Aeronaut. – volume: 123 start-page: 100713 year: 2021 ident: pst_26_2_025503_bib1 publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2021.100713 – volume: 7 start-page: 240 year: 2022 ident: pst_26_2_025503_bib3 publication-title: Fluids doi: 10.3390/fluids7070240 – volume: 51 start-page: 452 year: 2013 ident: pst_26_2_025503_bib13 publication-title: AIAA J. doi: 10.2514/1.J051852 – volume: 369 start-page: 1443 year: 2011 ident: pst_26_2_025503_bib8 publication-title: Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2010.0362 – volume: 91 start-page: 081504 year: 2007 ident: pst_26_2_025503_bib23 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2773932 – volume: 2 start-page: 062601 year: 2017 ident: pst_26_2_025503_bib29 publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.2.062601 – volume: 57 start-page: 2774 year: 2019 ident: pst_26_2_025503_bib14 publication-title: AIAA J. doi: 10.2514/1.J057998 – ident: pst_26_2_025503_bib11 – volume: 36 start-page: 104 year: 2023 ident: pst_26_2_025503_bib16 publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2022.11.019 – volume: 34 start-page: 085133 year: 2022 ident: pst_26_2_025503_bib7 publication-title: Phys. Fluids doi: 10.1063/5.0104609 |
SSID | ssj0054983 |
Score | 2.3483927 |
Snippet | To improve the cruise flight performance of aircraft, two new configurations of plasma actuators (grid-type and super-dense array) were investigated to reduce... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 25503 |
SubjectTerms | airfoil drag reduction flow control plasma actuator |
Title | Airfoil friction drag reduction based on grid-type and super-dense array plasma actuators |
URI | https://iopscience.iop.org/article/10.1088/2058-6272/ad0c99 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6rInjxLb7JQQ8esnaTtknxtIgiHtSDgoIQJi9ZXHdL2z3orzdpu6IiIt4SmKZh0s58k3yZQejAMCsUA03AWUHiLLJEUcuJyTRT0POYXdcs36v04i6-vE_uO-jk4y7MOG9Nf9c3m0TBjQpbQpzw4XoiSEo5PQYT6SybQXMsVFIKt_eub6Zm2Mc9omHXh93_lEXtGeVPI3zxSTP-vZ9czPkSepxOrmGWPHcnlerqt295G_85-2W02EJP3G9EV1DHjlbRfE0B1eUaeugPCjceDHGoHBSWC5sCnnARcrvW3eDwDPaNp2JgSNi7xTAyuJzktiDefJW-XxTwinOPyF8AQ7ibEor5rKO787Pb0wvSFl4gmiVxRbzNozRzNu7FFBKuTcyVi4ztOau005x7XCaMSwQIDanjlhtQjnFrORXAFdtAs6PxyG4inPHEaOM8hPdYwcVOxIyD5mA514Jp2ELHU9VL3WYlD8UxhrI-HRdCBoXJoDDZKGwLHX08kTcZOX6RPfTrINvfsvxFDn-Ry8tK0lRSGSKuiMncuO0_DrWDFqjHPQ2xexfNVsXE7nncUqn9-vt8Bx-054s |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEYgL5SkKBXyAAwfvZu0k4xwr2lULqPRApXIy41e1ouxGSfYAv55xkkUUoQqJmy1NnGQmnvkmM55h7JVXQVuFTmAMWuRVFoSVAYSvnLI4I8zu-izfk_LoLH93XpyPfU77szCrelT9ExoOhYIHFo4JcZrc9UKLUoKcos9cVU1rH7fYzUIVkHbm8cfTjSom30cPGfYpAlCqbIxT_m2VK3Zpi-79m5mZ77Avmwccsku-Ttadnbgff9Ru_I83uMfujhCU7w_k99mNsHzAbvWpoK59yD7vL5q4Wlzy1EEoiY37Bi94k2q89tNk-DynwUWz8CL9w-W49Lxd16ERpMZamjcNfuc1IfNvyDGdUUlNfR6xs_nhp7dHYmzAIJwq8k6Q7pOyiiGf5RILcD4HGzMfZjFYFx0A4TPtY6FROywjBPBoo4IQQGoEqx6z7eVqGZ4wXkHhnY8E5QkzxDzqXAE6wADgtHK4y6Yb9hs3VidPTTIuTR8l19okppnENDMwbZe9-XVFPVTmuIb2NcnCjNuzvYaOX6Gr287I0kiTPK9MGZLT039c6iW7fXowNx-OT94_Y3ckQaEh13uPbXfNOjwnKNPZF_3n-hO2pez1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Airfoil+friction+drag+reduction+based+on+grid-type+and+super-dense+array+plasma+actuators&rft.jtitle=Plasma+science+%26+technology&rft.au=FANG%2C+Ziqi&rft.au=ZONG%2C+Haohua&rft.au=WU%2C+Yun&rft.au=LIANG%2C+Hua&rft.date=2024-02-01&rft.pub=Plasma+Science+and+Technology&rft.issn=1009-0630&rft.volume=26&rft.issue=2&rft_id=info:doi/10.1088%2F2058-6272%2Fad0c99&rft.externalDocID=pstad0c99 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-0630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-0630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-0630&client=summon |