L1-Norm and LMS Based Digital FIR Filters Design Using Evolutionary Algorithms

The suggested work in this paper involves the construction of digital filters by utilizing optimization algorithms to compute optimum filter coefficients in such a way that the designed filter's magnitude response is identical to the ideal one. The proposed work takes a nature-inspired approach...

Full description

Saved in:
Bibliographic Details
Published inJournal of electrical engineering & technology Vol. 19; no. 1; pp. 753 - 762
Main Author Rajasekhar, K.
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.01.2024
Springer Nature B.V
대한전기학회
Subjects
Online AccessGet full text
ISSN1975-0102
2093-7423
DOI10.1007/s42835-023-01589-7

Cover

Abstract The suggested work in this paper involves the construction of digital filters by utilizing optimization algorithms to compute optimum filter coefficients in such a way that the designed filter's magnitude response is identical to the ideal one. The proposed work takes a nature-inspired approach to optimizing the design of 20th order linear phase finite impulse response (FIR) based low pass, high pass and band pass filters. This approach involves the cuckoo search optimization algorithm (CSA) and Grasshopper optimization algorithms (GOA) by minimizing the least mean square error function and L 1 -norm based ones. These GOA and CSA are used to find the best possible values for the filter coefficients. The bench mark algorithm to design the FIR filter as Parks–McClellan approach and other recently published optimization algorithms are used to prove the superiority of proposed designs. Compared with PM method, real coded genetic algorithm, Cat swarm, Particle swarm optimization and some hybrid optimization based ones, the proposed design results have been outperform. Moreover, the proposed FIR filters give the best outcome, effectively meeting the target with decreased pass band ripples and higher attenuation in the stop band with a least execution time.
AbstractList The suggested work in this paper involves the construction of digital filters by utilizing optimization algorithms to compute optimum filter coefficients in such a way that the designed filter's magnitude response is identical to the ideal one. The proposed work takes a nature-inspired approach to optimizing the design of 20th order linear phase finite impulse response (FIR) based low pass, high pass and band pass filters. This approach involves the cuckoo search optimization algorithm (CSA) and Grasshopper optimization algorithms (GOA) by minimizing the least mean square error function and L 1 -norm based ones. These GOA and CSA are used to find the best possible values for the filter coefficients. The bench mark algorithm to design the FIR filter as Parks–McClellan approach and other recently published optimization algorithms are used to prove the superiority of proposed designs. Compared with PM method, real coded genetic algorithm, Cat swarm, Particle swarm optimization and some hybrid optimization based ones, the proposed design results have been outperform. Moreover, the proposed FIR filters give the best outcome, effectively meeting the target with decreased pass band ripples and higher attenuation in the stop band with a least execution time.
The suggested work in this paper involves the construction of digital flters by utilizing optimization algorithms to compute optimum flter coefcients in such a way that the designed flter's magnitude response is identical to the ideal one. The proposed work takes a nature-inspired approach to optimizing the design of 20th order linear phase fnite impulse response (FIR) based low pass, high pass and band pass flters. This approach involves the cuckoo search optimization algorithm (CSA) and Grasshopper optimization algorithms (GOA) by minimizing the least mean square error function and L1-norm based ones. These GOA and CSA are used to fnd the best possible values for the flter coefcients. The bench mark algorithm to design the FIR flter as Parks–McClellan approach and other recently published optimization algorithms are used to prove the superiority of proposed designs. Compared with PM method, real coded genetic algorithm, Cat swarm, Particle swarm optimization and some hybrid optimization based ones, the proposed design results have been outperform. Moreover, the proposed FIR flters give the best outcome, efectively meeting the target with decreased pass band ripples and higher attenuation in the stop band with a least execution time. KCI Citation Count: 2
The suggested work in this paper involves the construction of digital filters by utilizing optimization algorithms to compute optimum filter coefficients in such a way that the designed filter's magnitude response is identical to the ideal one. The proposed work takes a nature-inspired approach to optimizing the design of 20th order linear phase finite impulse response (FIR) based low pass, high pass and band pass filters. This approach involves the cuckoo search optimization algorithm (CSA) and Grasshopper optimization algorithms (GOA) by minimizing the least mean square error function and L1-norm based ones. These GOA and CSA are used to find the best possible values for the filter coefficients. The bench mark algorithm to design the FIR filter as Parks–McClellan approach and other recently published optimization algorithms are used to prove the superiority of proposed designs. Compared with PM method, real coded genetic algorithm, Cat swarm, Particle swarm optimization and some hybrid optimization based ones, the proposed design results have been outperform. Moreover, the proposed FIR filters give the best outcome, effectively meeting the target with decreased pass band ripples and higher attenuation in the stop band with a least execution time.
Author Rajasekhar, K.
Author_xml – sequence: 1
  givenname: K.
  surname: Rajasekhar
  fullname: Rajasekhar, K.
  email: rajakarumuri87@gmail.com
  organization: Department of Electronics and Communication Engineering, University College of Engineering Kakinada, JNTUK
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003039099$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kE1LAzEQhoNUsFX_gKeAN2E1H5vN7rF-VAurQm3PIU2TNbpNarIV_PemriB46Glg5n1n3nlGYOC80wCcYXSJEeJXMSclZRkiNEOYlVXGD8CQoIpmPCd0AIa44mmMETkCoxjfECowYnQInmqcPfmwhtKtYP34Aq9l1Ct4axvbyRZOpjM4sW2nQ4S3OtrGwUW0roF3n77ddtY7Gb7guG18sN3rOp6AQyPbqE9_6zFYTO7mNw9Z_Xw_vRnXmaIs77IKFTrlZUVuloSRnBqtCCd5hZaKyZXJtUKVSm1ZYlwYbrBKX65IqbXiBGN6DC76vS4Y8a6s8NL-1MaL9yDGs_lUYEQZZVWVxOe9eBP8x1bHTrz5bXApn6CEMcJ4gXcq0qtU8DEGbcQm2HV6Ly0SO8iihywSZPEDWfBkKv-ZVOK249IFadv9VtpbY7rjGh3-Uu1xfQMnW5Ab
CitedBy_id crossref_primary_10_1038_s41598_024_62403_6
Cites_doi 10.1016/j.dsp.2007.05.011
10.1002/ecj.11522
10.1007/s13198-022-01650-0
10.1201/9781003300731-1
10.1007/s12652-021-03484-3
10.1007/s40031-022-00831-6
10.3850/978-981-08-7304-2_1476
10.1007/s11277-021-09403-1
10.1016/j.jestch.2016.05.013
10.1080/03772063.2022.2135622
10.1007/s00034-009-9128-1
10.1007/978-981-16-3246-4_20
10.1080/03772063.2023.2202162
10.1080/03772063.2021.1982412
10.1109/CEC.2008.4631335
10.1016/j.aeue.2014.07.019
10.1016/j.jfranklin.2012.01.013
10.1016/j.advengsoft.2017.01.004
10.1007/s00034-005-0721-7
10.1016/j.isatra.2013.07.009
10.1007/s11277-023-10326-2
10.1007/s00034-022-02034-2
10.1007/978-981-15-3369-3_26
10.1016/j.eswa.2014.03.034
10.1007/s11042-023-15462-2
10.1016/j.isatra.2020.08.032
10.1016/j.eswa.2011.02.140
10.1109/ICCSP.2017.8286416
ContentType Journal Article
Copyright The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023.
Copyright_xml – notice: The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
ACYCR
DOI 10.1007/s42835-023-01589-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest)
ProQuest Engineering Collection
Engineering Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Korean Citation Index
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList

Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-7423
EndPage 762
ExternalDocumentID oai_kci_go_kr_ARTI_10353599
10_1007_s42835_023_01589_7
GroupedDBID -~X
.UV
0R~
2WC
406
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
AAYYP
ABAKF
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AFBBN
AFQWF
AGDGC
AGMZJ
AGQEE
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AXYYD
BGNMA
CSCUP
DBRKI
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
FRJ
GGCAI
GW5
IKXTQ
IWAJR
JDI
JZLTJ
KOV
KVFHK
LLZTM
M4Y
NPVJJ
NQJWS
NU0
OK1
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
TDB
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
ACYCR
ID FETCH-LOGICAL-c354t-906e835564fb25243fec272490bc5adf4ec09c43fa8116f7f1c007d28eec72113
IEDL.DBID BENPR
ISSN 1975-0102
IngestDate Fri Sep 19 03:10:32 EDT 2025
Thu Oct 02 16:36:44 EDT 2025
Thu Apr 24 22:55:21 EDT 2025
Wed Oct 01 01:13:15 EDT 2025
Fri Feb 21 02:40:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Grasshopper optimization
Cuckoo search
Digital FIR filters
Parks–McClellan method
Fitness function
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-906e835564fb25243fec272490bc5adf4ec09c43fa8116f7f1c007d28eec72113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3255257619
PQPubID 7435074
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10353599
proquest_journals_3255257619
crossref_primary_10_1007_s42835_023_01589_7
crossref_citationtrail_10_1007_s42835_023_01589_7
springer_journals_10_1007_s42835_023_01589_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240100
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 1
  year: 2024
  text: 20240100
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Seoul
PublicationTitle Journal of electrical engineering & technology
PublicationTitleAbbrev J. Electr. Eng. Technol
PublicationYear 2024
Publisher Springer Nature Singapore
Springer Nature B.V
대한전기학회
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: 대한전기학회
References Gupta V et al (2021) Nonlinear technique-based ECG signal analysis for improved healthcare systems. In: Proceedings of international conference on communication and computational technologies: ICCCT, Springer Singapore
JayaweeraALPakiyarajahDEdussooriyaCUMinimax design of MD sparse FIR filters with arbitrary frequency response using SOCPIEEE Trans Circ Syst II Expr Briefs202269524032407
GuptaVDetection of R-peaks using fractional Fourier transform and principal component analysisJ Ambient Intelld Human Comput20221396197210.1007/s12652-021-03484-3
GuptaVMittalMMittalVFrWT-PPCA-based R-peak detection for improved management of healthcare systemIETE J Res202110.1080/03772063.2021.1982412
PrashanthBUVAhmedMRKounteMRDesign and implementation of DA FIR filter for bio-inspired computing architectureInt J Electr Comput Eng20211121709
GuptaVMittalMMittalVA simplistic and novel technique for ECG signal pre-processingIETE J Res202210.1080/03772063.2022.2135622
OliveiraHAPetragliaAPetragliaMRFrequency domain FIR filter design using fuzzy adaptive simulated annealingCirc Syst Sig Process20092889991110.1007/s00034-009-9128-1
Parks TW and Sidney Burrus C (1987) Digital filter design, Wiley-Interscience
BoudjelabaKRosFChikoucheDAn efficient hybrid genetic algorithm to design finite impulse response filtersExpert Syst Appl201441135917593710.1016/j.eswa.2014.03.034
GuptaVApplication of chaos theory for arrhythmia detection in pathological databasesInt J Med Eng Inform2023152191202
GuptaVAn efficient AR modelling-based electrocardiogram signal analysis for health informaticsInt J Med Eng Inform202214174894439526
KarthickRDesign and analysis of linear phase finite impulse response filter using water strider optimization algorithm in FPGACirc Syst Sig Process20224195254528210.1007/s00034-022-02034-2
GuptaVAn adaptive optimized schizophrenia electroencephalogram disease prediction frameworkWirel Pers Commun202313021191121310.1007/s11277-023-10326-2
GuptaVMittalMMittalVA novel FrWT based arrhythmia detection in ECG signal using YWARA and PCAWirel Pers Commun202212421229124610.1007/s11277-021-09403-1
GuptaVPCA as an effective tool for the detection of R-peaks in an ECG signal processingInt J Syst Assur Eng Manag202213523912403444285210.1007/s13198-022-01650-0
SahaSKGhoshalSPKarRMandalDCat swarm optimization algorithm for optimal linear phase FIR filter designISA Trans201352678179410.1016/j.isatra.2013.07.009
Yang X-S and Deb S (2010) Engineering optimisation by cuckoo search. arXiv preprint ar Xiv:1005.2908
KarabogaNCetinkayaBIDesign of digital FIR filters using differential evolution algorithmCirc Syst Signal Process2006255649660234392610.1007/s00034-005-0721-7
SaremiSMirjaliliSLewisAGrasshopper optimisation algorithm: theory and applicationAdv Eng Softw2017105304710.1016/j.advengsoft.2017.01.004
YadavSA novel approach for optimal design of digital FIR filter using grasshopper optimization algorithmISA Trans202110819620610.1016/j.isatra.2020.08.032
GuptaVPre-processing based ECG signal analysis using emerging toolsIETE J Res202310.1080/03772063.2023.2202162
Gupta V et al (2023) Adaptive Autoregressive Modeling Based ECG Signal Analysis for Health Monitoring. Optimization Methods for Engineering Problems, Apple Academic Press, pp 1–15
ReddyKSSahooSKAn approach for FIR filter coefficient optimization using differential evolution algorithmAEU-Int J Electron Commun201569110110810.1016/j.aeue.2014.07.019
Luitel B, Venayagamoorthy GK (2008) Differential evolution particle swarm optimization for digital filter design. In: IEEE congress on evolutionary computation (IEEE World Congress on Computational Intelligence), pp 3954–3961
TsutsumiSSuyamaKDesign of FIR filters with discrete coefficients using ant colony optimizationElectron Commun Jpn2014974303710.1002/ecj.11522
ArchanaSMahapatraRKPanigrahiSPDEPSO and PSO-QI in digital filter designExpert Syst Appl201138109661097310.1016/j.eswa.2011.02.140
GuptaVECG signal analysis based on the spectrogram and spider monkey optimisation techniqueJ Inst Eng (India) Ser B2023104115316410.1007/s40031-022-00831-6
MandalSDesign of optimal linear phase FIR high pass filter using craziness based particle swarm optimization techniqueJ King Saud Univ-Comput Inform Sci20122418392
Chilamkurthi DP, Tirupatipati GC, Sulochanarani J, Pamula VK (2017) Design of optimal digital FIR filters using TLBO and Jaya algorithms. In: International conference on communication and signal processing (ICCSP 2017), pp 0538–0541
MitraSKDigital signal processing: a computer-based approach2006New YorkMcGraw-Hill Higher Education
SharmaIPerformance of swarm based optimization techniques for designing digital FIR filter: a comparative studyEng Sci Technol, An Int J201619315641572351821710.1016/j.jestch.2016.05.013
Gupta V, Rathi N (2010) Various objects detection using Bayesian theory. In: Proceedings of the international conference on computer applications II, Pondicherry, India, Research Publishing Services
KumarAKuldeepBDesign of M-channel cosine modulated filter bank using modified Exponential windowJ Franklin Inst2012349313041315289934010.1016/j.jfranklin.2012.01.013
Yadav S, Kumar M, Yadav R, Kumar A (2020) A novel approach for optimal digital FIR filter design using hybrid Grey Wolf and Cuckoo search optimization. In: First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019), Springer Singapore, pp 329–343
JiangASparse FIR filter design via partial 1-norm optimizationIEEE Trans Circ Syst II Expr Briefs201967814821486
AbabnehJIBatainehMHLinear phase FIR filter design using particle swarm optimization and genetic algorithmsDigital Signal Process200818465766810.1016/j.dsp.2007.05.011
GuptaVA design of bat-based optimized deep learning model for EEG signal analysisMultimed Tools Appl202310.1007/s11042-023-15462-2
BUV Prashanth (1589_CR31) 2021; 11
V Gupta (1589_CR10) 2022; 124
R Karthick (1589_CR30) 2022; 41
V Gupta (1589_CR7) 2022
S Tsutsumi (1589_CR18) 2014; 97
SK Saha (1589_CR19) 2013; 52
V Gupta (1589_CR14) 2023
V Gupta (1589_CR6) 2022; 14
AL Jayaweera (1589_CR28) 2022; 69
1589_CR35
V Gupta (1589_CR12) 2022; 13
1589_CR16
JI Ababneh (1589_CR36) 2008; 18
V Gupta (1589_CR9) 2022; 13
1589_CR37
I Sharma (1589_CR23) 2016; 19
A Kumar (1589_CR29) 2012; 349
HA Oliveira (1589_CR22) 2009; 28
1589_CR4
S Archana (1589_CR25) 2011; 38
N Karaboga (1589_CR20) 2006; 25
1589_CR2
V Gupta (1589_CR8) 2023
1589_CR5
V Gupta (1589_CR3) 2023; 15
SK Mitra (1589_CR1) 2006
S Mandal (1589_CR21) 2012; 24
A Jiang (1589_CR27) 2019; 67
K Boudjelaba (1589_CR17) 2014; 41
KS Reddy (1589_CR32) 2015; 69
S Saremi (1589_CR34) 2017; 105
V Gupta (1589_CR11) 2021
V Gupta (1589_CR13) 2023; 104
1589_CR24
S Yadav (1589_CR33) 2021; 108
V Gupta (1589_CR15) 2023; 130
1589_CR26
References_xml – reference: JayaweeraALPakiyarajahDEdussooriyaCUMinimax design of MD sparse FIR filters with arbitrary frequency response using SOCPIEEE Trans Circ Syst II Expr Briefs202269524032407
– reference: GuptaVAn adaptive optimized schizophrenia electroencephalogram disease prediction frameworkWirel Pers Commun202313021191121310.1007/s11277-023-10326-2
– reference: SharmaIPerformance of swarm based optimization techniques for designing digital FIR filter: a comparative studyEng Sci Technol, An Int J201619315641572351821710.1016/j.jestch.2016.05.013
– reference: Yang X-S and Deb S (2010) Engineering optimisation by cuckoo search. arXiv preprint ar Xiv:1005.2908
– reference: GuptaVMittalMMittalVFrWT-PPCA-based R-peak detection for improved management of healthcare systemIETE J Res202110.1080/03772063.2021.1982412
– reference: TsutsumiSSuyamaKDesign of FIR filters with discrete coefficients using ant colony optimizationElectron Commun Jpn2014974303710.1002/ecj.11522
– reference: ArchanaSMahapatraRKPanigrahiSPDEPSO and PSO-QI in digital filter designExpert Syst Appl201138109661097310.1016/j.eswa.2011.02.140
– reference: KarabogaNCetinkayaBIDesign of digital FIR filters using differential evolution algorithmCirc Syst Signal Process2006255649660234392610.1007/s00034-005-0721-7
– reference: Gupta V et al (2023) Adaptive Autoregressive Modeling Based ECG Signal Analysis for Health Monitoring. Optimization Methods for Engineering Problems, Apple Academic Press, pp 1–15
– reference: GuptaVApplication of chaos theory for arrhythmia detection in pathological databasesInt J Med Eng Inform2023152191202
– reference: Chilamkurthi DP, Tirupatipati GC, Sulochanarani J, Pamula VK (2017) Design of optimal digital FIR filters using TLBO and Jaya algorithms. In: International conference on communication and signal processing (ICCSP 2017), pp 0538–0541
– reference: Luitel B, Venayagamoorthy GK (2008) Differential evolution particle swarm optimization for digital filter design. In: IEEE congress on evolutionary computation (IEEE World Congress on Computational Intelligence), pp 3954–3961
– reference: Gupta V, Rathi N (2010) Various objects detection using Bayesian theory. In: Proceedings of the international conference on computer applications II, Pondicherry, India, Research Publishing Services
– reference: JiangASparse FIR filter design via partial 1-norm optimizationIEEE Trans Circ Syst II Expr Briefs201967814821486
– reference: AbabnehJIBatainehMHLinear phase FIR filter design using particle swarm optimization and genetic algorithmsDigital Signal Process200818465766810.1016/j.dsp.2007.05.011
– reference: GuptaVECG signal analysis based on the spectrogram and spider monkey optimisation techniqueJ Inst Eng (India) Ser B2023104115316410.1007/s40031-022-00831-6
– reference: KarthickRDesign and analysis of linear phase finite impulse response filter using water strider optimization algorithm in FPGACirc Syst Sig Process20224195254528210.1007/s00034-022-02034-2
– reference: MandalSDesign of optimal linear phase FIR high pass filter using craziness based particle swarm optimization techniqueJ King Saud Univ-Comput Inform Sci20122418392
– reference: Gupta V et al (2021) Nonlinear technique-based ECG signal analysis for improved healthcare systems. In: Proceedings of international conference on communication and computational technologies: ICCCT, Springer Singapore
– reference: GuptaVPre-processing based ECG signal analysis using emerging toolsIETE J Res202310.1080/03772063.2023.2202162
– reference: BoudjelabaKRosFChikoucheDAn efficient hybrid genetic algorithm to design finite impulse response filtersExpert Syst Appl201441135917593710.1016/j.eswa.2014.03.034
– reference: Yadav S, Kumar M, Yadav R, Kumar A (2020) A novel approach for optimal digital FIR filter design using hybrid Grey Wolf and Cuckoo search optimization. In: First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019), Springer Singapore, pp 329–343
– reference: SaremiSMirjaliliSLewisAGrasshopper optimisation algorithm: theory and applicationAdv Eng Softw2017105304710.1016/j.advengsoft.2017.01.004
– reference: GuptaVPCA as an effective tool for the detection of R-peaks in an ECG signal processingInt J Syst Assur Eng Manag202213523912403444285210.1007/s13198-022-01650-0
– reference: KumarAKuldeepBDesign of M-channel cosine modulated filter bank using modified Exponential windowJ Franklin Inst2012349313041315289934010.1016/j.jfranklin.2012.01.013
– reference: ReddyKSSahooSKAn approach for FIR filter coefficient optimization using differential evolution algorithmAEU-Int J Electron Commun201569110110810.1016/j.aeue.2014.07.019
– reference: MitraSKDigital signal processing: a computer-based approach2006New YorkMcGraw-Hill Higher Education
– reference: PrashanthBUVAhmedMRKounteMRDesign and implementation of DA FIR filter for bio-inspired computing architectureInt J Electr Comput Eng20211121709
– reference: GuptaVMittalMMittalVA novel FrWT based arrhythmia detection in ECG signal using YWARA and PCAWirel Pers Commun202212421229124610.1007/s11277-021-09403-1
– reference: GuptaVAn efficient AR modelling-based electrocardiogram signal analysis for health informaticsInt J Med Eng Inform202214174894439526
– reference: Parks TW and Sidney Burrus C (1987) Digital filter design, Wiley-Interscience
– reference: GuptaVDetection of R-peaks using fractional Fourier transform and principal component analysisJ Ambient Intelld Human Comput20221396197210.1007/s12652-021-03484-3
– reference: OliveiraHAPetragliaAPetragliaMRFrequency domain FIR filter design using fuzzy adaptive simulated annealingCirc Syst Sig Process20092889991110.1007/s00034-009-9128-1
– reference: YadavSA novel approach for optimal design of digital FIR filter using grasshopper optimization algorithmISA Trans202110819620610.1016/j.isatra.2020.08.032
– reference: GuptaVMittalMMittalVA simplistic and novel technique for ECG signal pre-processingIETE J Res202210.1080/03772063.2022.2135622
– reference: SahaSKGhoshalSPKarRMandalDCat swarm optimization algorithm for optimal linear phase FIR filter designISA Trans201352678179410.1016/j.isatra.2013.07.009
– reference: GuptaVA design of bat-based optimized deep learning model for EEG signal analysisMultimed Tools Appl202310.1007/s11042-023-15462-2
– volume: 18
  start-page: 657
  issue: 4
  year: 2008
  ident: 1589_CR36
  publication-title: Digital Signal Process
  doi: 10.1016/j.dsp.2007.05.011
– volume: 97
  start-page: 30
  issue: 4
  year: 2014
  ident: 1589_CR18
  publication-title: Electron Commun Jpn
  doi: 10.1002/ecj.11522
– volume: 13
  start-page: 2391
  issue: 5
  year: 2022
  ident: 1589_CR12
  publication-title: Int J Syst Assur Eng Manag
  doi: 10.1007/s13198-022-01650-0
– ident: 1589_CR2
  doi: 10.1201/9781003300731-1
– volume: 13
  start-page: 961
  year: 2022
  ident: 1589_CR9
  publication-title: J Ambient Intelld Human Comput
  doi: 10.1007/s12652-021-03484-3
– volume: 14
  start-page: 74
  issue: 1
  year: 2022
  ident: 1589_CR6
  publication-title: Int J Med Eng Inform
– volume: 104
  start-page: 153
  issue: 1
  year: 2023
  ident: 1589_CR13
  publication-title: J Inst Eng (India) Ser B
  doi: 10.1007/s40031-022-00831-6
– ident: 1589_CR4
  doi: 10.3850/978-981-08-7304-2_1476
– volume: 15
  start-page: 191
  issue: 2
  year: 2023
  ident: 1589_CR3
  publication-title: Int J Med Eng Inform
– volume: 124
  start-page: 1229
  issue: 2
  year: 2022
  ident: 1589_CR10
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-021-09403-1
– volume: 19
  start-page: 1564
  issue: 3
  year: 2016
  ident: 1589_CR23
  publication-title: Eng Sci Technol, An Int J
  doi: 10.1016/j.jestch.2016.05.013
– year: 2022
  ident: 1589_CR7
  publication-title: IETE J Res
  doi: 10.1080/03772063.2022.2135622
– volume: 28
  start-page: 899
  year: 2009
  ident: 1589_CR22
  publication-title: Circ Syst Sig Process
  doi: 10.1007/s00034-009-9128-1
– ident: 1589_CR5
  doi: 10.1007/978-981-16-3246-4_20
– year: 2023
  ident: 1589_CR8
  publication-title: IETE J Res
  doi: 10.1080/03772063.2023.2202162
– year: 2021
  ident: 1589_CR11
  publication-title: IETE J Res
  doi: 10.1080/03772063.2021.1982412
– ident: 1589_CR37
  doi: 10.1109/CEC.2008.4631335
– volume: 11
  start-page: 1709
  issue: 2
  year: 2021
  ident: 1589_CR31
  publication-title: Int J Electr Comput Eng
– volume: 69
  start-page: 101
  issue: 1
  year: 2015
  ident: 1589_CR32
  publication-title: AEU-Int J Electron Commun
  doi: 10.1016/j.aeue.2014.07.019
– volume: 24
  start-page: 83
  issue: 1
  year: 2012
  ident: 1589_CR21
  publication-title: J King Saud Univ-Comput Inform Sci
– volume: 349
  start-page: 1304
  issue: 3
  year: 2012
  ident: 1589_CR29
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2012.01.013
– volume: 105
  start-page: 30
  year: 2017
  ident: 1589_CR34
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 69
  start-page: 2403
  issue: 5
  year: 2022
  ident: 1589_CR28
  publication-title: IEEE Trans Circ Syst II Expr Briefs
– volume: 25
  start-page: 649
  issue: 5
  year: 2006
  ident: 1589_CR20
  publication-title: Circ Syst Signal Process
  doi: 10.1007/s00034-005-0721-7
– volume: 67
  start-page: 1482
  issue: 8
  year: 2019
  ident: 1589_CR27
  publication-title: IEEE Trans Circ Syst II Expr Briefs
– ident: 1589_CR16
– volume-title: Digital signal processing: a computer-based approach
  year: 2006
  ident: 1589_CR1
– volume: 52
  start-page: 781
  issue: 6
  year: 2013
  ident: 1589_CR19
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2013.07.009
– volume: 130
  start-page: 1191
  issue: 2
  year: 2023
  ident: 1589_CR15
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-023-10326-2
– volume: 41
  start-page: 5254
  issue: 9
  year: 2022
  ident: 1589_CR30
  publication-title: Circ Syst Sig Process
  doi: 10.1007/s00034-022-02034-2
– ident: 1589_CR26
  doi: 10.1007/978-981-15-3369-3_26
– volume: 41
  start-page: 5917
  issue: 13
  year: 2014
  ident: 1589_CR17
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.03.034
– ident: 1589_CR35
– year: 2023
  ident: 1589_CR14
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-15462-2
– volume: 108
  start-page: 196
  year: 2021
  ident: 1589_CR33
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2020.08.032
– volume: 38
  start-page: 10966
  year: 2011
  ident: 1589_CR25
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.02.140
– ident: 1589_CR24
  doi: 10.1109/ICCSP.2017.8286416
SSID ssj0061053
Score 2.3049743
Snippet The suggested work in this paper involves the construction of digital filters by utilizing optimization algorithms to compute optimum filter coefficients in...
The suggested work in this paper involves the construction of digital flters by utilizing optimization algorithms to compute optimum flter coefcients in such a...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 753
SubjectTerms Electrical Engineering
Electrical Machines and Networks
Electronics and Microelectronics
Engineering
Instrumentation
Original Article
Power Electronics
전기공학
Title L1-Norm and LMS Based Digital FIR Filters Design Using Evolutionary Algorithms
URI https://link.springer.com/article/10.1007/s42835-023-01589-7
https://www.proquest.com/docview/3255257619
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003039099
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Electrical Engineering & Technology, 2024, 19(1), , pp.753-762
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2093-7423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061053
  issn: 1975-0102
  databaseCode: AFBBN
  dateStart: 20190101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-t7Qs8ID5Ft1FZgjewiJM4iR8QalnDhrYIDSbtzfJXumoj3dqCxH_P2U06hsSeIsVxotydfT_7zr8DeBMLnRVoKRTRr6WpUTXV3Fiqc2bz1OUqiv0B55MqOzxLv5zz8x2ourMwPq2ymxPDRG0Xxu-Rv08Q-3pwzMTH6xvqq0b56GpXQkO1pRXsh0Ax1oNB7Jmx-jCYTKuvp93cjFgh8FIykfuUNZ_bs7s9TBeoxyj6MGzhhaD5HVfVa5b1HRT6T-A0-KPyMTxqgSQZbzT_BHZc8xQe_kUv-AyqY0YrxKRENZYcn3wjE3RZlhzMZ75SCCmPTkk599HyFTkIiRwkJBCQ6a_WHtXyNxlfzVAM64sfq-dwVk6_fzqkbf0EahKerqmIMoe_xLO01jGP06R2Js5xvRVpw5WtU2ciYfC2KhjL6rxmBgVh48I54xeGyQvoN4vGvQSS1pmOrNYZVzjkdSGMVZp56ioVFYa7IbBOVNK05OK-xsWV3NIiB_FKFK8M4pX5EN5u-1xvqDXuffo1akBemrn0jNj-OlvIy6VE3H-EnRKecCGGsN9pSLaDcSVvTWcI7zqt3Tb__5u7979tDx7ECHE2GzL70F8vf7pXCFHWegS9ovw8gsG4nEyqUWuFfwCUZeD1
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB71cQAOFU-RtsBKwAlW-LFrew8VakmihCYWKq3U27Ivh6it0yZpUf8cv41Zx04pEr31ZMn2rqWZ8c43uzPfALyLhE4ytBSK6NdSZlRBNTeW6jS0KXOpCiJf4DzMk94R-3rMj1fgd1ML49MqmzWxWqjtxPg98k8xYl8PjkPx-fyC-q5R_nS1aaGh6tYKdqeiGKsLO_bd9S8M4WY7_Tbq-30UdTuHX3q07jJATczZnIogcQhDeMIKHfGIxYUzUYpRSaANV7ZgzgTC4G2VhWFSpEVo0K_aKHPO-PApxnlXYZ3FTGDwt77Xyb8dNL4AsUnFgxmK1KfI-VyizWXxXkV1RtFn4hOeCZreco2r5bS4hXr_Oait_F_3MWzUwJXsLiztCay48ik8-ovO8Bnkg5DmiIGJKi0ZDL-TPXSRlrTHI9-ZhHT7B6Q79qfzM9KuEkdIlbBAOle1_avpNdk9HaHY5z_PZs_h6F4k-QLWyknpXgJhRaIDq3XCFS4xOhPGKh16qiwVZIa7FoSNqKSpycx9T41TuaRhrsQrUbyyEq9MW_BhOeZ8QeVx59tvUQPyxIylZ-D219FEnkwlxhl9HBTzmAvRgu1GQ7L--WfyxlRb8LHR2s3j_39z8-7Z3sCD3uFwIAf9fH8LHkYIrxabQduwNp9eulcIj-b6dW2DBH7ct9n_AZDIGvY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=L1-Norm+and+LMS+Based+Digital+FIR+Filters+Design+Using+Evolutionary+Algorithms&rft.jtitle=Journal+of+electrical+engineering+%26+technology&rft.au=Rajasekhar%2C+K.&rft.date=2024-01-01&rft.pub=Springer+Nature+Singapore&rft.issn=1975-0102&rft.eissn=2093-7423&rft.volume=19&rft.issue=1&rft.spage=753&rft.epage=762&rft_id=info:doi/10.1007%2Fs42835-023-01589-7&rft.externalDocID=10_1007_s42835_023_01589_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1975-0102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1975-0102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1975-0102&client=summon