L1-Norm and LMS Based Digital FIR Filters Design Using Evolutionary Algorithms
The suggested work in this paper involves the construction of digital filters by utilizing optimization algorithms to compute optimum filter coefficients in such a way that the designed filter's magnitude response is identical to the ideal one. The proposed work takes a nature-inspired approach...
        Saved in:
      
    
          | Published in | Journal of electrical engineering & technology Vol. 19; no. 1; pp. 753 - 762 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Singapore
          Springer Nature Singapore
    
        01.01.2024
     Springer Nature B.V 대한전기학회  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1975-0102 2093-7423  | 
| DOI | 10.1007/s42835-023-01589-7 | 
Cover
| Abstract | The suggested work in this paper involves the construction of digital filters by utilizing optimization algorithms to compute optimum filter coefficients in such a way that the designed filter's magnitude response is identical to the ideal one. The proposed work takes a nature-inspired approach to optimizing the design of 20th order linear phase finite impulse response (FIR) based low pass, high pass and band pass filters. This approach involves the cuckoo search optimization algorithm (CSA) and Grasshopper optimization algorithms (GOA) by minimizing the least mean square error function and L
1
-norm based ones. These GOA and CSA are used to find the best possible values for the filter coefficients. The bench mark algorithm to design the FIR filter as Parks–McClellan approach and other recently published optimization algorithms are used to prove the superiority of proposed designs. Compared with PM method, real coded genetic algorithm, Cat swarm, Particle swarm optimization and some hybrid optimization based ones, the proposed design results have been outperform. Moreover, the proposed FIR filters give the best outcome, effectively meeting the target with decreased pass band ripples and higher attenuation in the stop band with a least execution time. | 
    
|---|---|
| AbstractList | The suggested work in this paper involves the construction of digital filters by utilizing optimization algorithms to compute optimum filter coefficients in such a way that the designed filter's magnitude response is identical to the ideal one. The proposed work takes a nature-inspired approach to optimizing the design of 20th order linear phase finite impulse response (FIR) based low pass, high pass and band pass filters. This approach involves the cuckoo search optimization algorithm (CSA) and Grasshopper optimization algorithms (GOA) by minimizing the least mean square error function and L
1
-norm based ones. These GOA and CSA are used to find the best possible values for the filter coefficients. The bench mark algorithm to design the FIR filter as Parks–McClellan approach and other recently published optimization algorithms are used to prove the superiority of proposed designs. Compared with PM method, real coded genetic algorithm, Cat swarm, Particle swarm optimization and some hybrid optimization based ones, the proposed design results have been outperform. Moreover, the proposed FIR filters give the best outcome, effectively meeting the target with decreased pass band ripples and higher attenuation in the stop band with a least execution time. The suggested work in this paper involves the construction of digital flters by utilizing optimization algorithms to compute optimum flter coefcients in such a way that the designed flter's magnitude response is identical to the ideal one. The proposed work takes a nature-inspired approach to optimizing the design of 20th order linear phase fnite impulse response (FIR) based low pass, high pass and band pass flters. This approach involves the cuckoo search optimization algorithm (CSA) and Grasshopper optimization algorithms (GOA) by minimizing the least mean square error function and L1-norm based ones. These GOA and CSA are used to fnd the best possible values for the flter coefcients. The bench mark algorithm to design the FIR flter as Parks–McClellan approach and other recently published optimization algorithms are used to prove the superiority of proposed designs. Compared with PM method, real coded genetic algorithm, Cat swarm, Particle swarm optimization and some hybrid optimization based ones, the proposed design results have been outperform. Moreover, the proposed FIR flters give the best outcome, efectively meeting the target with decreased pass band ripples and higher attenuation in the stop band with a least execution time. KCI Citation Count: 2 The suggested work in this paper involves the construction of digital filters by utilizing optimization algorithms to compute optimum filter coefficients in such a way that the designed filter's magnitude response is identical to the ideal one. The proposed work takes a nature-inspired approach to optimizing the design of 20th order linear phase finite impulse response (FIR) based low pass, high pass and band pass filters. This approach involves the cuckoo search optimization algorithm (CSA) and Grasshopper optimization algorithms (GOA) by minimizing the least mean square error function and L1-norm based ones. These GOA and CSA are used to find the best possible values for the filter coefficients. The bench mark algorithm to design the FIR filter as Parks–McClellan approach and other recently published optimization algorithms are used to prove the superiority of proposed designs. Compared with PM method, real coded genetic algorithm, Cat swarm, Particle swarm optimization and some hybrid optimization based ones, the proposed design results have been outperform. Moreover, the proposed FIR filters give the best outcome, effectively meeting the target with decreased pass band ripples and higher attenuation in the stop band with a least execution time.  | 
    
| Author | Rajasekhar, K. | 
    
| Author_xml | – sequence: 1 givenname: K. surname: Rajasekhar fullname: Rajasekhar, K. email: rajakarumuri87@gmail.com organization: Department of Electronics and Communication Engineering, University College of Engineering Kakinada, JNTUK  | 
    
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003039099$$DAccess content in National Research Foundation of Korea (NRF) | 
    
| BookMark | eNp9kE1LAzEQhoNUsFX_gKeAN2E1H5vN7rF-VAurQm3PIU2TNbpNarIV_PemriB46Glg5n1n3nlGYOC80wCcYXSJEeJXMSclZRkiNEOYlVXGD8CQoIpmPCd0AIa44mmMETkCoxjfECowYnQInmqcPfmwhtKtYP34Aq9l1Ct4axvbyRZOpjM4sW2nQ4S3OtrGwUW0roF3n77ddtY7Gb7guG18sN3rOp6AQyPbqE9_6zFYTO7mNw9Z_Xw_vRnXmaIs77IKFTrlZUVuloSRnBqtCCd5hZaKyZXJtUKVSm1ZYlwYbrBKX65IqbXiBGN6DC76vS4Y8a6s8NL-1MaL9yDGs_lUYEQZZVWVxOe9eBP8x1bHTrz5bXApn6CEMcJ4gXcq0qtU8DEGbcQm2HV6Ly0SO8iihywSZPEDWfBkKv-ZVOK249IFadv9VtpbY7rjGh3-Uu1xfQMnW5Ab | 
    
| CitedBy_id | crossref_primary_10_1038_s41598_024_62403_6 | 
    
| Cites_doi | 10.1016/j.dsp.2007.05.011 10.1002/ecj.11522 10.1007/s13198-022-01650-0 10.1201/9781003300731-1 10.1007/s12652-021-03484-3 10.1007/s40031-022-00831-6 10.3850/978-981-08-7304-2_1476 10.1007/s11277-021-09403-1 10.1016/j.jestch.2016.05.013 10.1080/03772063.2022.2135622 10.1007/s00034-009-9128-1 10.1007/978-981-16-3246-4_20 10.1080/03772063.2023.2202162 10.1080/03772063.2021.1982412 10.1109/CEC.2008.4631335 10.1016/j.aeue.2014.07.019 10.1016/j.jfranklin.2012.01.013 10.1016/j.advengsoft.2017.01.004 10.1007/s00034-005-0721-7 10.1016/j.isatra.2013.07.009 10.1007/s11277-023-10326-2 10.1007/s00034-022-02034-2 10.1007/978-981-15-3369-3_26 10.1016/j.eswa.2014.03.034 10.1007/s11042-023-15462-2 10.1016/j.isatra.2020.08.032 10.1016/j.eswa.2011.02.140 10.1109/ICCSP.2017.8286416  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023.  | 
    
| Copyright_xml | – notice: The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023.  | 
    
| DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS ACYCR  | 
    
| DOI | 10.1007/s42835-023-01589-7 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) ProQuest Engineering Collection Engineering Database (Proquest) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Korean Citation Index  | 
    
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection  | 
    
| DatabaseTitleList | Advanced Technologies & Aerospace Collection  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2093-7423 | 
    
| EndPage | 762 | 
    
| ExternalDocumentID | oai_kci_go_kr_ARTI_10353599 10_1007_s42835_023_01589_7  | 
    
| GroupedDBID | -~X .UV 0R~ 2WC 406 9ZL AACDK AAHNG AAJBT AASML AATNV AAUYE AAYYP ABAKF ABECU ABFTV ABJNI ABKCH ABMQK ABTEG ABTKH ABTMW ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADURQ ADYFF AEFQL AEMSY AENEX AESKC AFBBN AFQWF AGDGC AGMZJ AGQEE AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AXYYD BGNMA CSCUP DBRKI DPUIP EBLON EBS EJD FIGPU FNLPD FRJ GGCAI GW5 IKXTQ IWAJR JDI JZLTJ KOV KVFHK LLZTM M4Y NPVJJ NQJWS NU0 OK1 PT4 ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW TDB UOJIU UTJUX VEKWB VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 8FE 8FG ABJCF AEUYN AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS ACYCR  | 
    
| ID | FETCH-LOGICAL-c354t-906e835564fb25243fec272490bc5adf4ec09c43fa8116f7f1c007d28eec72113 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1975-0102 | 
    
| IngestDate | Fri Sep 19 03:10:32 EDT 2025 Thu Oct 02 16:36:44 EDT 2025 Thu Apr 24 22:55:21 EDT 2025 Wed Oct 01 01:13:15 EDT 2025 Fri Feb 21 02:40:33 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Grasshopper optimization Cuckoo search Digital FIR filters Parks–McClellan method Fitness function  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c354t-906e835564fb25243fec272490bc5adf4ec09c43fa8116f7f1c007d28eec72113 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 3255257619 | 
    
| PQPubID | 7435074 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10353599 proquest_journals_3255257619 crossref_primary_10_1007_s42835_023_01589_7 crossref_citationtrail_10_1007_s42835_023_01589_7 springer_journals_10_1007_s42835_023_01589_7  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240100 | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – month: 1 year: 2024 text: 20240100  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Singapore | 
    
| PublicationPlace_xml | – name: Singapore – name: Seoul  | 
    
| PublicationTitle | Journal of electrical engineering & technology | 
    
| PublicationTitleAbbrev | J. Electr. Eng. Technol | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer Nature Singapore Springer Nature B.V 대한전기학회  | 
    
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: 대한전기학회  | 
    
| References | Gupta V et al (2021) Nonlinear technique-based ECG signal analysis for improved healthcare systems. In: Proceedings of international conference on communication and computational technologies: ICCCT, Springer Singapore JayaweeraALPakiyarajahDEdussooriyaCUMinimax design of MD sparse FIR filters with arbitrary frequency response using SOCPIEEE Trans Circ Syst II Expr Briefs202269524032407 GuptaVDetection of R-peaks using fractional Fourier transform and principal component analysisJ Ambient Intelld Human Comput20221396197210.1007/s12652-021-03484-3 GuptaVMittalMMittalVFrWT-PPCA-based R-peak detection for improved management of healthcare systemIETE J Res202110.1080/03772063.2021.1982412 PrashanthBUVAhmedMRKounteMRDesign and implementation of DA FIR filter for bio-inspired computing architectureInt J Electr Comput Eng20211121709 GuptaVMittalMMittalVA simplistic and novel technique for ECG signal pre-processingIETE J Res202210.1080/03772063.2022.2135622 OliveiraHAPetragliaAPetragliaMRFrequency domain FIR filter design using fuzzy adaptive simulated annealingCirc Syst Sig Process20092889991110.1007/s00034-009-9128-1 Parks TW and Sidney Burrus C (1987) Digital filter design, Wiley-Interscience BoudjelabaKRosFChikoucheDAn efficient hybrid genetic algorithm to design finite impulse response filtersExpert Syst Appl201441135917593710.1016/j.eswa.2014.03.034 GuptaVApplication of chaos theory for arrhythmia detection in pathological databasesInt J Med Eng Inform2023152191202 GuptaVAn efficient AR modelling-based electrocardiogram signal analysis for health informaticsInt J Med Eng Inform202214174894439526 KarthickRDesign and analysis of linear phase finite impulse response filter using water strider optimization algorithm in FPGACirc Syst Sig Process20224195254528210.1007/s00034-022-02034-2 GuptaVAn adaptive optimized schizophrenia electroencephalogram disease prediction frameworkWirel Pers Commun202313021191121310.1007/s11277-023-10326-2 GuptaVMittalMMittalVA novel FrWT based arrhythmia detection in ECG signal using YWARA and PCAWirel Pers Commun202212421229124610.1007/s11277-021-09403-1 GuptaVPCA as an effective tool for the detection of R-peaks in an ECG signal processingInt J Syst Assur Eng Manag202213523912403444285210.1007/s13198-022-01650-0 SahaSKGhoshalSPKarRMandalDCat swarm optimization algorithm for optimal linear phase FIR filter designISA Trans201352678179410.1016/j.isatra.2013.07.009 Yang X-S and Deb S (2010) Engineering optimisation by cuckoo search. arXiv preprint ar Xiv:1005.2908 KarabogaNCetinkayaBIDesign of digital FIR filters using differential evolution algorithmCirc Syst Signal Process2006255649660234392610.1007/s00034-005-0721-7 SaremiSMirjaliliSLewisAGrasshopper optimisation algorithm: theory and applicationAdv Eng Softw2017105304710.1016/j.advengsoft.2017.01.004 YadavSA novel approach for optimal design of digital FIR filter using grasshopper optimization algorithmISA Trans202110819620610.1016/j.isatra.2020.08.032 GuptaVPre-processing based ECG signal analysis using emerging toolsIETE J Res202310.1080/03772063.2023.2202162 Gupta V et al (2023) Adaptive Autoregressive Modeling Based ECG Signal Analysis for Health Monitoring. Optimization Methods for Engineering Problems, Apple Academic Press, pp 1–15 ReddyKSSahooSKAn approach for FIR filter coefficient optimization using differential evolution algorithmAEU-Int J Electron Commun201569110110810.1016/j.aeue.2014.07.019 Luitel B, Venayagamoorthy GK (2008) Differential evolution particle swarm optimization for digital filter design. In: IEEE congress on evolutionary computation (IEEE World Congress on Computational Intelligence), pp 3954–3961 TsutsumiSSuyamaKDesign of FIR filters with discrete coefficients using ant colony optimizationElectron Commun Jpn2014974303710.1002/ecj.11522 ArchanaSMahapatraRKPanigrahiSPDEPSO and PSO-QI in digital filter designExpert Syst Appl201138109661097310.1016/j.eswa.2011.02.140 GuptaVECG signal analysis based on the spectrogram and spider monkey optimisation techniqueJ Inst Eng (India) Ser B2023104115316410.1007/s40031-022-00831-6 MandalSDesign of optimal linear phase FIR high pass filter using craziness based particle swarm optimization techniqueJ King Saud Univ-Comput Inform Sci20122418392 Chilamkurthi DP, Tirupatipati GC, Sulochanarani J, Pamula VK (2017) Design of optimal digital FIR filters using TLBO and Jaya algorithms. In: International conference on communication and signal processing (ICCSP 2017), pp 0538–0541 MitraSKDigital signal processing: a computer-based approach2006New YorkMcGraw-Hill Higher Education SharmaIPerformance of swarm based optimization techniques for designing digital FIR filter: a comparative studyEng Sci Technol, An Int J201619315641572351821710.1016/j.jestch.2016.05.013 Gupta V, Rathi N (2010) Various objects detection using Bayesian theory. In: Proceedings of the international conference on computer applications II, Pondicherry, India, Research Publishing Services KumarAKuldeepBDesign of M-channel cosine modulated filter bank using modified Exponential windowJ Franklin Inst2012349313041315289934010.1016/j.jfranklin.2012.01.013 Yadav S, Kumar M, Yadav R, Kumar A (2020) A novel approach for optimal digital FIR filter design using hybrid Grey Wolf and Cuckoo search optimization. In: First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019), Springer Singapore, pp 329–343 JiangASparse FIR filter design via partial 1-norm optimizationIEEE Trans Circ Syst II Expr Briefs201967814821486 AbabnehJIBatainehMHLinear phase FIR filter design using particle swarm optimization and genetic algorithmsDigital Signal Process200818465766810.1016/j.dsp.2007.05.011 GuptaVA design of bat-based optimized deep learning model for EEG signal analysisMultimed Tools Appl202310.1007/s11042-023-15462-2 BUV Prashanth (1589_CR31) 2021; 11 V Gupta (1589_CR10) 2022; 124 R Karthick (1589_CR30) 2022; 41 V Gupta (1589_CR7) 2022 S Tsutsumi (1589_CR18) 2014; 97 SK Saha (1589_CR19) 2013; 52 V Gupta (1589_CR14) 2023 V Gupta (1589_CR6) 2022; 14 AL Jayaweera (1589_CR28) 2022; 69 1589_CR35 V Gupta (1589_CR12) 2022; 13 1589_CR16 JI Ababneh (1589_CR36) 2008; 18 V Gupta (1589_CR9) 2022; 13 1589_CR37 I Sharma (1589_CR23) 2016; 19 A Kumar (1589_CR29) 2012; 349 HA Oliveira (1589_CR22) 2009; 28 1589_CR4 S Archana (1589_CR25) 2011; 38 N Karaboga (1589_CR20) 2006; 25 1589_CR2 V Gupta (1589_CR8) 2023 1589_CR5 V Gupta (1589_CR3) 2023; 15 SK Mitra (1589_CR1) 2006 S Mandal (1589_CR21) 2012; 24 A Jiang (1589_CR27) 2019; 67 K Boudjelaba (1589_CR17) 2014; 41 KS Reddy (1589_CR32) 2015; 69 S Saremi (1589_CR34) 2017; 105 V Gupta (1589_CR11) 2021 V Gupta (1589_CR13) 2023; 104 1589_CR24 S Yadav (1589_CR33) 2021; 108 V Gupta (1589_CR15) 2023; 130 1589_CR26  | 
    
| References_xml | – reference: JayaweeraALPakiyarajahDEdussooriyaCUMinimax design of MD sparse FIR filters with arbitrary frequency response using SOCPIEEE Trans Circ Syst II Expr Briefs202269524032407 – reference: GuptaVAn adaptive optimized schizophrenia electroencephalogram disease prediction frameworkWirel Pers Commun202313021191121310.1007/s11277-023-10326-2 – reference: SharmaIPerformance of swarm based optimization techniques for designing digital FIR filter: a comparative studyEng Sci Technol, An Int J201619315641572351821710.1016/j.jestch.2016.05.013 – reference: Yang X-S and Deb S (2010) Engineering optimisation by cuckoo search. arXiv preprint ar Xiv:1005.2908 – reference: GuptaVMittalMMittalVFrWT-PPCA-based R-peak detection for improved management of healthcare systemIETE J Res202110.1080/03772063.2021.1982412 – reference: TsutsumiSSuyamaKDesign of FIR filters with discrete coefficients using ant colony optimizationElectron Commun Jpn2014974303710.1002/ecj.11522 – reference: ArchanaSMahapatraRKPanigrahiSPDEPSO and PSO-QI in digital filter designExpert Syst Appl201138109661097310.1016/j.eswa.2011.02.140 – reference: KarabogaNCetinkayaBIDesign of digital FIR filters using differential evolution algorithmCirc Syst Signal Process2006255649660234392610.1007/s00034-005-0721-7 – reference: Gupta V et al (2023) Adaptive Autoregressive Modeling Based ECG Signal Analysis for Health Monitoring. Optimization Methods for Engineering Problems, Apple Academic Press, pp 1–15 – reference: GuptaVApplication of chaos theory for arrhythmia detection in pathological databasesInt J Med Eng Inform2023152191202 – reference: Chilamkurthi DP, Tirupatipati GC, Sulochanarani J, Pamula VK (2017) Design of optimal digital FIR filters using TLBO and Jaya algorithms. In: International conference on communication and signal processing (ICCSP 2017), pp 0538–0541 – reference: Luitel B, Venayagamoorthy GK (2008) Differential evolution particle swarm optimization for digital filter design. In: IEEE congress on evolutionary computation (IEEE World Congress on Computational Intelligence), pp 3954–3961 – reference: Gupta V, Rathi N (2010) Various objects detection using Bayesian theory. In: Proceedings of the international conference on computer applications II, Pondicherry, India, Research Publishing Services – reference: JiangASparse FIR filter design via partial 1-norm optimizationIEEE Trans Circ Syst II Expr Briefs201967814821486 – reference: AbabnehJIBatainehMHLinear phase FIR filter design using particle swarm optimization and genetic algorithmsDigital Signal Process200818465766810.1016/j.dsp.2007.05.011 – reference: GuptaVECG signal analysis based on the spectrogram and spider monkey optimisation techniqueJ Inst Eng (India) Ser B2023104115316410.1007/s40031-022-00831-6 – reference: KarthickRDesign and analysis of linear phase finite impulse response filter using water strider optimization algorithm in FPGACirc Syst Sig Process20224195254528210.1007/s00034-022-02034-2 – reference: MandalSDesign of optimal linear phase FIR high pass filter using craziness based particle swarm optimization techniqueJ King Saud Univ-Comput Inform Sci20122418392 – reference: Gupta V et al (2021) Nonlinear technique-based ECG signal analysis for improved healthcare systems. In: Proceedings of international conference on communication and computational technologies: ICCCT, Springer Singapore – reference: GuptaVPre-processing based ECG signal analysis using emerging toolsIETE J Res202310.1080/03772063.2023.2202162 – reference: BoudjelabaKRosFChikoucheDAn efficient hybrid genetic algorithm to design finite impulse response filtersExpert Syst Appl201441135917593710.1016/j.eswa.2014.03.034 – reference: Yadav S, Kumar M, Yadav R, Kumar A (2020) A novel approach for optimal digital FIR filter design using hybrid Grey Wolf and Cuckoo search optimization. In: First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019), Springer Singapore, pp 329–343 – reference: SaremiSMirjaliliSLewisAGrasshopper optimisation algorithm: theory and applicationAdv Eng Softw2017105304710.1016/j.advengsoft.2017.01.004 – reference: GuptaVPCA as an effective tool for the detection of R-peaks in an ECG signal processingInt J Syst Assur Eng Manag202213523912403444285210.1007/s13198-022-01650-0 – reference: KumarAKuldeepBDesign of M-channel cosine modulated filter bank using modified Exponential windowJ Franklin Inst2012349313041315289934010.1016/j.jfranklin.2012.01.013 – reference: ReddyKSSahooSKAn approach for FIR filter coefficient optimization using differential evolution algorithmAEU-Int J Electron Commun201569110110810.1016/j.aeue.2014.07.019 – reference: MitraSKDigital signal processing: a computer-based approach2006New YorkMcGraw-Hill Higher Education – reference: PrashanthBUVAhmedMRKounteMRDesign and implementation of DA FIR filter for bio-inspired computing architectureInt J Electr Comput Eng20211121709 – reference: GuptaVMittalMMittalVA novel FrWT based arrhythmia detection in ECG signal using YWARA and PCAWirel Pers Commun202212421229124610.1007/s11277-021-09403-1 – reference: GuptaVAn efficient AR modelling-based electrocardiogram signal analysis for health informaticsInt J Med Eng Inform202214174894439526 – reference: Parks TW and Sidney Burrus C (1987) Digital filter design, Wiley-Interscience – reference: GuptaVDetection of R-peaks using fractional Fourier transform and principal component analysisJ Ambient Intelld Human Comput20221396197210.1007/s12652-021-03484-3 – reference: OliveiraHAPetragliaAPetragliaMRFrequency domain FIR filter design using fuzzy adaptive simulated annealingCirc Syst Sig Process20092889991110.1007/s00034-009-9128-1 – reference: YadavSA novel approach for optimal design of digital FIR filter using grasshopper optimization algorithmISA Trans202110819620610.1016/j.isatra.2020.08.032 – reference: GuptaVMittalMMittalVA simplistic and novel technique for ECG signal pre-processingIETE J Res202210.1080/03772063.2022.2135622 – reference: SahaSKGhoshalSPKarRMandalDCat swarm optimization algorithm for optimal linear phase FIR filter designISA Trans201352678179410.1016/j.isatra.2013.07.009 – reference: GuptaVA design of bat-based optimized deep learning model for EEG signal analysisMultimed Tools Appl202310.1007/s11042-023-15462-2 – volume: 18 start-page: 657 issue: 4 year: 2008 ident: 1589_CR36 publication-title: Digital Signal Process doi: 10.1016/j.dsp.2007.05.011 – volume: 97 start-page: 30 issue: 4 year: 2014 ident: 1589_CR18 publication-title: Electron Commun Jpn doi: 10.1002/ecj.11522 – volume: 13 start-page: 2391 issue: 5 year: 2022 ident: 1589_CR12 publication-title: Int J Syst Assur Eng Manag doi: 10.1007/s13198-022-01650-0 – ident: 1589_CR2 doi: 10.1201/9781003300731-1 – volume: 13 start-page: 961 year: 2022 ident: 1589_CR9 publication-title: J Ambient Intelld Human Comput doi: 10.1007/s12652-021-03484-3 – volume: 14 start-page: 74 issue: 1 year: 2022 ident: 1589_CR6 publication-title: Int J Med Eng Inform – volume: 104 start-page: 153 issue: 1 year: 2023 ident: 1589_CR13 publication-title: J Inst Eng (India) Ser B doi: 10.1007/s40031-022-00831-6 – ident: 1589_CR4 doi: 10.3850/978-981-08-7304-2_1476 – volume: 15 start-page: 191 issue: 2 year: 2023 ident: 1589_CR3 publication-title: Int J Med Eng Inform – volume: 124 start-page: 1229 issue: 2 year: 2022 ident: 1589_CR10 publication-title: Wirel Pers Commun doi: 10.1007/s11277-021-09403-1 – volume: 19 start-page: 1564 issue: 3 year: 2016 ident: 1589_CR23 publication-title: Eng Sci Technol, An Int J doi: 10.1016/j.jestch.2016.05.013 – year: 2022 ident: 1589_CR7 publication-title: IETE J Res doi: 10.1080/03772063.2022.2135622 – volume: 28 start-page: 899 year: 2009 ident: 1589_CR22 publication-title: Circ Syst Sig Process doi: 10.1007/s00034-009-9128-1 – ident: 1589_CR5 doi: 10.1007/978-981-16-3246-4_20 – year: 2023 ident: 1589_CR8 publication-title: IETE J Res doi: 10.1080/03772063.2023.2202162 – year: 2021 ident: 1589_CR11 publication-title: IETE J Res doi: 10.1080/03772063.2021.1982412 – ident: 1589_CR37 doi: 10.1109/CEC.2008.4631335 – volume: 11 start-page: 1709 issue: 2 year: 2021 ident: 1589_CR31 publication-title: Int J Electr Comput Eng – volume: 69 start-page: 101 issue: 1 year: 2015 ident: 1589_CR32 publication-title: AEU-Int J Electron Commun doi: 10.1016/j.aeue.2014.07.019 – volume: 24 start-page: 83 issue: 1 year: 2012 ident: 1589_CR21 publication-title: J King Saud Univ-Comput Inform Sci – volume: 349 start-page: 1304 issue: 3 year: 2012 ident: 1589_CR29 publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2012.01.013 – volume: 105 start-page: 30 year: 2017 ident: 1589_CR34 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.01.004 – volume: 69 start-page: 2403 issue: 5 year: 2022 ident: 1589_CR28 publication-title: IEEE Trans Circ Syst II Expr Briefs – volume: 25 start-page: 649 issue: 5 year: 2006 ident: 1589_CR20 publication-title: Circ Syst Signal Process doi: 10.1007/s00034-005-0721-7 – volume: 67 start-page: 1482 issue: 8 year: 2019 ident: 1589_CR27 publication-title: IEEE Trans Circ Syst II Expr Briefs – ident: 1589_CR16 – volume-title: Digital signal processing: a computer-based approach year: 2006 ident: 1589_CR1 – volume: 52 start-page: 781 issue: 6 year: 2013 ident: 1589_CR19 publication-title: ISA Trans doi: 10.1016/j.isatra.2013.07.009 – volume: 130 start-page: 1191 issue: 2 year: 2023 ident: 1589_CR15 publication-title: Wirel Pers Commun doi: 10.1007/s11277-023-10326-2 – volume: 41 start-page: 5254 issue: 9 year: 2022 ident: 1589_CR30 publication-title: Circ Syst Sig Process doi: 10.1007/s00034-022-02034-2 – ident: 1589_CR26 doi: 10.1007/978-981-15-3369-3_26 – volume: 41 start-page: 5917 issue: 13 year: 2014 ident: 1589_CR17 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.03.034 – ident: 1589_CR35 – year: 2023 ident: 1589_CR14 publication-title: Multimed Tools Appl doi: 10.1007/s11042-023-15462-2 – volume: 108 start-page: 196 year: 2021 ident: 1589_CR33 publication-title: ISA Trans doi: 10.1016/j.isatra.2020.08.032 – volume: 38 start-page: 10966 year: 2011 ident: 1589_CR25 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.02.140 – ident: 1589_CR24 doi: 10.1109/ICCSP.2017.8286416  | 
    
| SSID | ssj0061053 | 
    
| Score | 2.3049743 | 
    
| Snippet | The suggested work in this paper involves the construction of digital filters by utilizing optimization algorithms to compute optimum filter coefficients in... The suggested work in this paper involves the construction of digital flters by utilizing optimization algorithms to compute optimum flter coefcients in such a...  | 
    
| SourceID | nrf proquest crossref springer  | 
    
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 753 | 
    
| SubjectTerms | Electrical Engineering Electrical Machines and Networks Electronics and Microelectronics Engineering Instrumentation Original Article Power Electronics 전기공학  | 
    
| Title | L1-Norm and LMS Based Digital FIR Filters Design Using Evolutionary Algorithms | 
    
| URI | https://link.springer.com/article/10.1007/s42835-023-01589-7 https://www.proquest.com/docview/3255257619 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003039099  | 
    
| Volume | 19 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Journal of Electrical Engineering & Technology, 2024, 19(1), , pp.753-762 | 
    
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2093-7423 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061053 issn: 1975-0102 databaseCode: AFBBN dateStart: 20190101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-t7Qs8ID5Ft1FZgjewiJM4iR8QalnDhrYIDSbtzfJXumoj3dqCxH_P2U06hsSeIsVxotydfT_7zr8DeBMLnRVoKRTRr6WpUTXV3Fiqc2bz1OUqiv0B55MqOzxLv5zz8x2ourMwPq2ymxPDRG0Xxu-Rv08Q-3pwzMTH6xvqq0b56GpXQkO1pRXsh0Ax1oNB7Jmx-jCYTKuvp93cjFgh8FIykfuUNZ_bs7s9TBeoxyj6MGzhhaD5HVfVa5b1HRT6T-A0-KPyMTxqgSQZbzT_BHZc8xQe_kUv-AyqY0YrxKRENZYcn3wjE3RZlhzMZ75SCCmPTkk599HyFTkIiRwkJBCQ6a_WHtXyNxlfzVAM64sfq-dwVk6_fzqkbf0EahKerqmIMoe_xLO01jGP06R2Js5xvRVpw5WtU2ciYfC2KhjL6rxmBgVh48I54xeGyQvoN4vGvQSS1pmOrNYZVzjkdSGMVZp56ioVFYa7IbBOVNK05OK-xsWV3NIiB_FKFK8M4pX5EN5u-1xvqDXuffo1akBemrn0jNj-OlvIy6VE3H-EnRKecCGGsN9pSLaDcSVvTWcI7zqt3Tb__5u7979tDx7ECHE2GzL70F8vf7pXCFHWegS9ovw8gsG4nEyqUWuFfwCUZeD1 | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB71cQAOFU-RtsBKwAlW-LFrew8VakmihCYWKq3U27Ivh6it0yZpUf8cv41Zx04pEr31ZMn2rqWZ8c43uzPfALyLhE4ytBSK6NdSZlRBNTeW6jS0KXOpCiJf4DzMk94R-3rMj1fgd1ML49MqmzWxWqjtxPg98k8xYl8PjkPx-fyC-q5R_nS1aaGh6tYKdqeiGKsLO_bd9S8M4WY7_Tbq-30UdTuHX3q07jJATczZnIogcQhDeMIKHfGIxYUzUYpRSaANV7ZgzgTC4G2VhWFSpEVo0K_aKHPO-PApxnlXYZ3FTGDwt77Xyb8dNL4AsUnFgxmK1KfI-VyizWXxXkV1RtFn4hOeCZreco2r5bS4hXr_Oait_F_3MWzUwJXsLiztCay48ik8-ovO8Bnkg5DmiIGJKi0ZDL-TPXSRlrTHI9-ZhHT7B6Q79qfzM9KuEkdIlbBAOle1_avpNdk9HaHY5z_PZs_h6F4k-QLWyknpXgJhRaIDq3XCFS4xOhPGKh16qiwVZIa7FoSNqKSpycx9T41TuaRhrsQrUbyyEq9MW_BhOeZ8QeVx59tvUQPyxIylZ-D219FEnkwlxhl9HBTzmAvRgu1GQ7L--WfyxlRb8LHR2s3j_39z8-7Z3sCD3uFwIAf9fH8LHkYIrxabQduwNp9eulcIj-b6dW2DBH7ct9n_AZDIGvY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=L1-Norm+and+LMS+Based+Digital+FIR+Filters+Design+Using+Evolutionary+Algorithms&rft.jtitle=Journal+of+electrical+engineering+%26+technology&rft.au=Rajasekhar%2C+K.&rft.date=2024-01-01&rft.pub=Springer+Nature+Singapore&rft.issn=1975-0102&rft.eissn=2093-7423&rft.volume=19&rft.issue=1&rft.spage=753&rft.epage=762&rft_id=info:doi/10.1007%2Fs42835-023-01589-7&rft.externalDocID=10_1007_s42835_023_01589_7 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1975-0102&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1975-0102&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1975-0102&client=summon |